

Searches for exclusive Higgs and Z boson decays into a vector quarkonium state and a photon with the ATLAS experiment

R. Ward¹, on behalf of the ATLAS Collaboration | ¹University of Birmingham

1. Motivation

- \triangleright $H \rightarrow Q\gamma$ sensitive to magnitude and sign of c- and b-quark Yukawa couplings
 - \circ $\mathcal{A}_{\mathrm{dir}}$ and $\mathcal{A}_{\mathrm{ind}}$ contributions to decay amplitude destructively interfere

Charmonium: $Q = J/\psi, \psi(2S)$

- $> BR_{H\to\psi(nS)\gamma}^{SM} \approx 10^{-6}$
- $\rightarrow |\mathcal{A}_{ind}| \approx 20 \times |\mathcal{A}_{dir}|$

Bottomonium: $Q = \Upsilon(1S, 2S, 3S)$

- $> BR_{H\to \Upsilon(nS)\gamma}^{SM} \approx 10^{-9} 10^{-8}$
- \triangleright \mathcal{A}_{ind} , \mathcal{A}_{dir} almost cancel in SM
- $ightharpoonup Z
 ightharpoonup Q\gamma$ offers a reference channel and a test of QCD factorisation
 - Receive analogous contributions from \mathcal{A}_{dir} and \mathcal{A}_{ind}
 - $OBR_{Z\to QY}^{SM} \approx 10^{-8} 10^{-7}$

[†]Phys. Rev. D 100 (2019) 054038

[‡]Phys. Rev. D 97 (2018) 016009

2. Event Selection

- \blacktriangleright Target $Q \rightarrow \mu^+ \mu^-$: Distinct signature
 - Low QCD backgrounds compared to inclusive $H \rightarrow q \bar{q}$

- **Dedicated** single photon + muon triggers with 139 fb⁻¹ of $\sqrt{s} = 13$ TeV data
 - \circ Split $\Upsilon(nS)\gamma$ into barrel and endcap categories for better distinction between $\Upsilon(1S, 2S, 3S)$ states

3. Background Modelling

 \triangleright Exclusive background: $q\bar{q} \rightarrow \mu^+\mu^-\gamma$

ATLAS Preliminary

Region: VR1

ψ(nS)γ Analysis

- Analytical shape derived from a fit to simulated events
- \triangleright Inclusive background: γ + jet and multi-jet events involving Q or $\mu^+\mu^-$
 - Non-parametric data-driven background model, based on ancestral sampling¶

Region: VR3

1200 $\psi(nS)\gamma$ Analysis

Pre-Fit

ATLAS Preliminary

- Assess performance in three validation regions

¶arXiv: 2112.00650 [hep-ex]; Phys. Lett. B 786 (2018) 134; JHEP 07 (2018) 127

Determine normalisation and constrain shape systematics using data

4. Signal Modelling

- Model H mass with double Gaussian distributions
 - Simulate ggH, VBF, VH, and $t\bar{t}H$ production modes separately
 - Acceptance $\sim 19 21\%$
- \triangleright Model Z mass with double Voigtian distributions × mass-dependent efficiency
 - Acceptance $\sim 11 14\%$
- Resolution 1.6 1.8% for all signals

5. Results

- \succ 2D unbinned maximum-likelihood fit in $m_{\mu^+\mu^-\nu}$ and $m_{\mu^+\mu^-}$
 - Distinguishes all signal and background sources from each other

- **Statistics limited:** Systematic uncertainties contribute at most 1% (5%) to the total uncertainty in the strength of the H(Z) signals
 - Main systematic uncertainty is the shape of the inclusive background

6. κ_c and κ_h Interpretation

- Define κ_a coupling modifier as the ratio of Yukawa coupling y_a over the SMexpectation: $\kappa_q = \frac{y_q}{v^{\rm SM}}$
- \triangleright Combine with $H \to \gamma \gamma$ result§ to interpret in terms of $\kappa_{c,b}/\kappa_{\gamma}$, e.g.:

 μ is the observed rate, normalised to the SM rate

- Observed (expected) bounds @ 95% CL:
 - κ_c/κ_{γ} : [-136, 178] ([-123, 164]) from $H \to J/\psi \gamma$
 - κ_b/κ_{ν} : [-38, 40] ([-37,40]) from combined $H \to \Upsilon(nS)\gamma$

§ATLAS-CONF-2020-026

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

