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The Diagrammatic Coaction Einan Gardi

1. Introduction

In recent years there has been significant progress in understanding the mathematical properties
of Feynman integrals. One proposition is that dimensionally-regularized Feynman integrals can
be endowed with a coaction, which on the one hand has a purely diagrammatic description, while
on the other hand represents an operation on the functions to which the integrals evaluate. The
most familiar example of such functions are multiple polylogarithms (MPLs) [1, 2]. The latter
have a well-established Hopf algebraic structure that includes a coaction [3–5]. The coaction on
MPLs has been widely used in Feynman integral computations [6–12], for example, to understand
their analytic continuation properties, efficiently solve differential equations and algorithmically
simplify results. These applications significantly advanced the reach of analytic computation of
Feynman integrals over the past decade. Having witnessed how powerful this algebraic structure
is, an interesting question to ask is whether Feynman integrals themselves can be endowed with a
coaction, or even whether this is a general property of Feynman integrals. At one loop the answer to
this question1 is positive [20–22]: dimensionally regularized one-loop Feynman integrals admit a
diagrammatic coaction involving pinches and cuts, which maps directly onto the coaction on MPLs.

The coaction on integrals [21] can be described in general, that is without committing to a
particular class of function, as follows. Consider an integral defined by an integrand𝜔 (a differential
form) integrated over a contour 𝛾. The coaction Δ acting on this integral takes the form

Δ

(∫
𝛾

𝜔

)
≡
∑︁
𝑖

∫
𝛾

𝜔𝑖 ⊗
∫
𝛾𝑖

𝜔 . (1)

Each left entry of the coaction is characterised by an integrand 𝜔𝑖 , corresponding to an element of
a basis of master integrals,

{∫
𝛾
𝜔𝑖

}
. The right entry, in turn, is characterised by the contour 𝛾𝑖 . The

left entries preserve the original contour 𝛾 while the right ones preserve the original integrand 𝜔.
The coaction on MPLs can be recovered as a special case of this more general formulation.

The aforementioned diagrammatic coaction associates Feynman diagrams to each of the terms
in eq. (1) as follows. The integrands 𝜔𝑖 defining each left entry are described by diagrams with
all or a (non-empty) subset of the propagators of the original integral 𝜔. The propagators (edges
of the graph) that are absent in a given master integrand are effectively pinched, identifying the
corresponding vertices. The right entry, in turn, is characterised by the contour 𝛾𝑖 encircling a
subset of the propagator poles: each encircled pole places the corresponding particle on-shell,
thus cutting that edge. An example of this coaction, applied to an off-shell triangle with massless
propagators, is given by2

Δ

[
2

1

3

]
=

1

2

⊗ 2

1
3 + 1

3

⊗
2

31
+ 2

3

⊗
1

3

2 +
2

1

3 ⊗
31

2

(2)

1Historically, the search for a combinatorial coaction on Feynman graphs has been an active area of research. Other
propositions [13–19], however, have not considered dimensional regularization.

2Note that tadpoles are absent in (2) simply because, being massless, they vanish in dimensional regularization: they
do appear if the propagators are massive.
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The Diagrammatic Coaction Einan Gardi

where the dashed lines cutting through edges represent cuts. Note that the correspondence between
the contour 𝛾𝑖 and the master integrand 𝜔𝑖 is such that only propagators that are cut on the right
entry, feature on the corresponding left entry. This is a general condition.

Refs. [21, 22] established the diagrammatic coaction for dimensionally-regularized one-loop
Feynman integrals, with any number of edges and any configuration of internal and external
masses. This line of research continued over the last few years, extending this construction in
two ways. First, Refs. [23–25] formulated the coaction on integrals in eq. (1) directly in terms of
hypergeometric functions, thus not requiring an 𝜖 expansion. This coaction is sometimes referred
to as the global coaction and it is consistent with the local coaction acting on MPLs upon expansion
in 𝜖 . This development benefits from established mathematical techniques to deal with hyperplane
arrangements (intersections of hyperplanes) corresponding to the geometry underlying the definition
of hypergeometric functions [26–30]. Next, Ref. [31] took the first steps in generalising the coaction
to multi-loop Feynman integrals.

In this talk we will review this topic, starting with a brief discussion of the coaction on MPLs
(section 2), the properties stemming from the general definition in eq. (1) (section 3), and then
describe some central features of the diagrammatic coaction at one loop (section 4). We proceed
with one example of the coaction on hypergeometric functions (section 5) before discussing the
generalization of the diagrammatic coaction to two-loop integrals and beyond in section 6. We
conclude with a short summary and outlook.

2. Coaction on Multiple Polylogarithms

Multiple Polylogarithms (MPLs) are iterated integrals of the form:

𝐺 ( ®𝑎; 𝑧) ≡ 𝐺 (𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛︸              ︷︷              ︸
weight 𝑛

; 𝑧) =
∫ 𝑧

0

𝑑𝑡

𝑡 − 𝑎1
𝐺 (𝑎2, 𝑎3..., 𝑎𝑛︸        ︷︷        ︸

weight 𝑛−1

; 𝑡) , (3)

where the (transcendental) weight corresponds to the number of integrations required to obtain
a given MPL starting from a rational function. MPLs admit a shuffle product 𝐺 ( ®𝑎; 𝑧)𝐺 (®𝑏; 𝑧) =∑

®𝑐∈ ®𝑎tt®𝑏 𝐺 ( ®𝑐; 𝑧). In addition, as anticipated, they can be endowed with a coaction [1, 32–36], an
operation which maps a given MPL into pairs of simpler (lower weight) MPLs, effectively capturing
the algebraic and analytic complexity of these functions. The coaction on MPLs may be defined by

Δ(𝐺 ( ®𝑐; 𝑧)) =
∑︁
®𝑏⊆®𝑐

𝐺 (®𝑏; 𝑧)︸  ︷︷  ︸
weight | ®𝑏 |

⊗ 𝐺 ®𝑏 ( ®𝑐; 𝑧)︸    ︷︷    ︸
weight | ®𝑐 |− | ®𝑏 |

, (4)

where ⊗ stands for a tensor product and 𝐺 ®𝑏 ( ®𝑐; 𝑧) is defined using a modified integration contour,
which differs from the original contour of eq. (3) by encircling (precisely) the subset of poles
contained in ®𝑏. Note that the left entry 𝐺 (®𝑏; 𝑧) has a modified integrand, selecting a subset ®𝑏 of the
original poles, retaining the original contour, while the corresponding right entry has a modified
integration contour encircling these poles, retaining the original integrand defined by the full set
of poles ®𝑐. By breaking a high-weight function into simpler ones, (if applied repeatedly, into
logarithms), the coaction allows one to derive functional identities by simple algebra. The coaction
on MPLs as defined in eq. (4) provides a template for the more general coaction on integrals (1)
and all that follows.
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3. Coaction on integrals and its properties

The coaction formula of eq. (1) can be seen as a special case of the definition

Δ

(∫
𝛾

𝜔

)
≡
∑︁
𝑖, 𝑗

𝑐𝑖 𝑗

∫
𝛾

𝜔𝑖 ⊗
∫
𝛾 𝑗

𝜔 . (5)

By rotating the basis of differential forms or the basis of contours, or both, one can recover eq. (1),
corresponding to 𝑐𝑖𝑗 = 𝛿𝑖 𝑗 . The condition 𝑐𝑖 𝑗 = 𝛿𝑖 𝑗 is called the duality condition: it identifies
a natural pairing between integrands and integration contours. The diagonal form of the coaction
of eq. (1) is most convenient and we will see examples of how the duality condition is satisfied in
different contexts in the following sections.

Two important properties of the coaction stem directly from its definition. The fact that the
original integration contour is carried by the left entries, dictates how the coaction interacts with a
discontinuity operator across branch cuts, namely the discontinuity acts only on the left entries:

Δ

(
Disc

[∫
𝛾

𝜔

] )
=
∑︁
𝑖

Disc
[∫
𝛾

𝜔𝑖

]
⊗
∫
𝛾𝑖

𝜔 . (6)

Similarly, the fact that the original integrand is in the right entries, dictates the interaction of the
coaction with differentiation, namely derivatives act only on the right entries:

Δ

(
𝜕

[∫
𝛾

𝜔

] )
=
∑︁
𝑖

∫
𝛾

𝜔𝑖 ⊗ 𝜕

[∫
𝛾𝑖

𝜔

]
. (7)

Eq. (6) is therefore key to performing analytic continuation, while eq. (7) to deriving differential
equations. Both these operations are essential in the context of Feynman integrals, which we
consider next.

4. The diagrammatic coaction at one loop

One-loop integrals, considered in dimensional regularization, and with any internal and external
configuration of masses, present a rich class of examples. In this section we briefly describe the form
the coaction (1) takes in these cases following Refs. [21, 22]. A particular advantage of one-loop
integrals, is that it is easy to specify a pure basis at the outset. Specifically, it is sufficient to consider
scalar integrals with single-power propagators, as this set of integrals forms a basis for any one-loop
integral. Furthermore, considering the case of dimensional regularization around an even number
of dimensions we may consider one-loop integrals with an even number of propagators 𝑛even in
𝐷 = 𝑛even −2𝜖 dimensions, and ones with an odd number of propagators 𝑛odd in 𝐷 = (𝑛odd +1) −2𝜖
dimensions. That is, for any 𝑛 we fix the number of dimensions as 𝐷 = 2d𝑛2 e − 2𝜖 . Thus, tadpoles
and bubbles are considered in 2 − 2𝜖 dimensions, triangles and boxes in 4 − 2𝜖 dimensions, etc.
Dimensional-shift relations allow one to obtain expressions in other even dimensions. Importantly,
all these basis integrals, which we denote by 𝐽𝑛, are pure functions [37] of uniform transcendental
weight (assuming we assign 𝜖 weight −1), up to an overall multiplicative kinematic factor.

4



The Diagrammatic Coaction Einan Gardi

We have already seen one example, that of the off-shell triangle in eq. (2) above.3 To understand
how the diagrammatic coaction maps (exactly, but in a highly non-trivial way) onto a coaction on
MPLs, let us consider the coaction on the leading-order term in the 𝜖 expansion of eq. (2). At
leading order in 𝜖 the triangle evaluates to the Bloch-Wigner single-valued dilogarithm, see e.g.
Ref. [38]:

T (𝑧, 𝑧) = −2Li2(𝑧) + 2Li2(𝑧) − ln(𝑧𝑧) ln
(
1 − 𝑧

1 − 𝑧

)
, (8)

where 𝑧 𝑧 =
𝑝2

2
𝑝2

1
and (1 − 𝑧) (1 − 𝑧) = 𝑝2

3
𝑝2

1
. The coaction on T (𝑧, 𝑧) reads:

Δ [T (𝑧, 𝑧)] = ln
(
−𝑝2

2

)
⊗ ln

1 − 𝑧

1 − 𝑧
+ ln

(
−𝑝2

3

)
⊗ ln

𝑧

𝑧
+ ln(−𝑝2

1) ⊗ ln
𝑧(1 − 𝑧)
𝑧(1 − 𝑧)

+ T (𝑧, 𝑧) ⊗ 1 + 1 ⊗ T (𝑧, 𝑧) , (9)

where the logarithmic terms in the left entries of the first line have been re-expressed in terms of
Mandelstam invariants, manifesting the first-entry condition [22, 39, 40]: these terms capture the
discontinuity in the three channels according to eq. (6). It is clear that these logarithmic terms
arise from the terms containing bubble integrals in the left entry in eq. (2) which indeed have
a unitarity cut in the respective channel. It is also clear that the penultimate term in eq. (9),
with T (𝑧, 𝑧) in the left entry, represents the triangle of eq. (2). It is harder to understand the
origin of the remaining term, 1 ⊗ T (𝑧, 𝑧). Its origin becomes clear [22], however, considering
that eq. (2) holds in dimensional regularization, and bubble integrals also have a divergent 1/𝜖
contributions (these are bubbles in 2 − 2𝜖 dimensions, which are infrared divergent). These 1/𝜖
poles multiply the two-propagator cuts of the triangle shown in the right entries in eq. (2), and a
finite O(𝜖0) contribution to the coaction arises then from the O(𝜖1) term in the expansion of these
cuts. Remarkably these add up to reproduce the term 1 ⊗ T (𝑧, 𝑧). Moreover, the linear relation
underlying this cancellation generalises to all orders in 𝜖 and can be understood as a diagrammatic
relation between cut integrals:4

T (z, z̄) ⌦ 1 in the coaction of eq. (3.24) should be reproduced using the three-propagator

cut of eq. (3.25) in the second entry. Indeed we see that

⌦ = T (z, z̄) ⌦ 1 + O(✏) . (3.27)

Next, let us analyze the terms in eq. (3.24) that have a logarithm in both entries,

�1,1 [T (z, z̄)] = log(�p2
1)⌦ log

z̄(1 � z)

z(1 � z̄)
+log

�
�p2

2

�
⌦ log

1 � z̄

1 � z
+log

�
�p2

3

�
⌦ log

z

z̄
. (3.28)

Following the same logic as for the tadpole and bubble integrals, we would expect that the

logarithms in the second entry are related to the discontinuities of the triangle in one of

the external scales, i.e., they should correspond to the two-propagator cuts of the triangle.

Indeed, computing the two-propagator cuts one obtains:

= Ce1e2J3 = log
z̄(1 � z)

z(1 � z̄)
+ O(✏) ,

= Ce2e3J3 = log
1 � z̄

1 � z
+ O(✏) ,

= Ce1e3J3 = log
z

z̄
+ O(✏) .

(3.29)

We expect that the logarithms in the left-hand side of eq. (3.28) arise from Feynman

integrals that have a discontinuity precisely when the logarithms develop an imaginary

part. The natural choice for such a Feynman integral is a bubble integral,

= J2

�
p2
1

�
= �1

✏
+ log(�p2

1) + O(✏) . (3.30)

Ignoring for the moment the fact that the bubble is divergent, we see that we can indeed

write

�1,1 [T (z, z̄)] =
��
✏0
⌦

�����
✏0

+
��
✏0
⌦

�����
✏0

+
��
✏0
⌦

�����
✏0

,

(3.31)

where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the term 1 ⌦ T (z, z̄) in eq. (3.24). To see how this term arises,

we rely on eq. (2.10), which relates the result of a Feynman integral to a specific sum of

its cuts:

1

2

3

e2

e1
e3

�����
✏n

+ 1

2

3

e2

e3e1

�����
✏n

+ 1

2

3
e1 e3

e2
�����
✏n

= � 1

2

3

e2

e1

e3

�����
✏n�1

mod i⇡ . (3.32)

– 14 –

Figure 1: The relation between cuts in the case of the off-shell triangle with massless propagators.

The triangle example gave us an opportunity to appreciate the non-trivial nature of the di-
agrammatic coaction map, relating the purely diagrammatic statement of eq. (2), to a statement
regarding the polylogarithmic function the corresponding (cut) integrals evaluate to in dimensional
regularization. Refs. [21, 22] demonstrated that such a precise mapping exists for any one-loop

3Note that all diagrams appearing there represent elements in the aforementioned pure basis: the triangles are in
defined in 4 − 2𝜖 dimensions , while the bubbles are defined in 2 − 2𝜖 dimensions.

4This relation holds up to 𝑖𝜋 terms, which are irrelevant on the right entry.
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integral. In particular, a similar relation to Figure 1 applies to any one-loop integral 𝐽𝑛 with 𝑛

propagators. It reads: ∑︁
𝑖∈[𝑛]

C𝑖𝐽𝑛 +
∑︁

𝑖, 𝑗∈[𝑛], 𝑖< 𝑗
C𝑖 𝑗𝐽𝑛 = −𝜖 𝐽𝑛 mod 𝑖𝜋 , (10)

where C𝑖 represents a cut operator acting on propagator 𝑖 and [𝑛] = {1, 2, . . . , 𝑛}. This implies that
any integral 𝐽𝑛 can be recovered (up to 𝑖𝜋 terms) through a sum of its single and double propagator
cuts. This identity explains why the uncut integral itself is not ever required on the right entry
of the coaction. As explained in Section 2 in Ref. [22], eq. (10) is a specific manifestation of the
one-loop homology relation [20, 41] generalised to dimensional regularization, which is central to
the structure of the diagrammatic coaction.

Let us turn then to the formulation of the diagrammatic coaction at one loop, which we view as
a special case of the coaction on integrals in eq. (1). Consider the integrand of a generic one-loop
graph 𝐺 with 𝑛 propagators, which we denote by 𝜔𝐺 , such that

𝐽𝑛 =

∫
Γ∅

𝜔𝐺 ,

where we denote the usual loop-momentum integration contourΓ∅, corresponding to the unrestricted
integration over all momentum components. The coaction of this generic one-loop integral takes
the form:

Δ

(∫
Γ∅

𝜔𝐺

)
=

∑︁
𝐶∈𝑀𝐺

∫
Γ∅

𝜔𝐺𝐶 ⊗
∫
𝛾𝐶

𝜔𝐺 with 𝛾𝐶 =

{
Γ𝐶∞ for |C| odd
Γ𝐶 for |C| even

, (11)

where𝐶 is a non-empty subset of propagators in 𝐺 and 𝜔𝐺𝐶 in the left entry is the master integrand
corresponding to the graph 𝐺𝐶 , which is obtained from the original graph 𝐺 by pinching all the
propagators which are not in the set 𝐶. For later convenience we also introduce the notation
𝑀𝐺 , denoting the basis of master topologies of 𝐺, which at one loop simply consists of 𝐺 itself
and all its pinches (those that vanish in dimensional regularization may be excluded). Finally,
the master contour 𝛾𝐶 corresponding to 𝜔𝐺𝐶 , defined in eq. (11), satisfies the duality condition∫
𝛾𝐶

𝜔𝐺𝐶 = 1 + O(𝜖), while for other contours 𝛾𝐶′ in the basis (𝐶 ′ ∈ 𝑀𝐺),
∫
𝛾𝐶′

𝜔𝐺𝐶 = O(𝜖).
Writing 𝛾𝐶 in eq. (11) we used the notation Γ𝐶 for the contour that encircles (precisely) the poles of
the propagators in the set𝐶, thus effectively cutting the corresponding edges of the graph. Similarly
Γ𝐶∞ encircles the same set of propagator poles, plus the singularity at infinite loop momentum.
It was further shown [22] that the aforementioned homology relations allow one to express any
integral over the contour Γ𝐶∞ (up to 𝑖𝜋 terms) as the following linear combination of contours that
do not involve the pole at infinity,

𝛾𝐶 ≡ Γ𝐶 + 𝑎𝐶

∑︁
𝑒∉𝐶

Γ𝐶𝑒 , with 𝑎𝐶 =

{
1
2 if |𝐶 | is odd
0 if |𝐶 | is even .

(12)

The conclusion is that with our choice of basis integrands 𝜔𝐺𝐶 for the left entries, the right entries
are simply the cuts of the original integral where, for even |𝐶 |, only the propagators in 𝐶 are cut,
while for odd |𝐶 | it is this cut plus a half times the sum of cuts in which one additional propagator

6
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Coaction for one loop Feynman diagrams
• The diagrammatic coaction at one loop, expressed in terms of cuts:

⇔

!i �i

!12 �12

!1 �1 + 1
2�12 = �11

!2 �2 + 1
2�12 = �12

<latexit sha1_base64="v1+qz29P7QI1TudT3Y5DEy3b4Cc="></latexit><latexit sha1_base64="v1+qz29P7QI1TudT3Y5DEy3b4Cc="></latexit><latexit sha1_base64="v1+qz29P7QI1TudT3Y5DEy3b4Cc="></latexit><latexit sha1_base64="v1+qz29P7QI1TudT3Y5DEy3b4Cc="></latexit>

satisfy the duality condition
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!j = �ij + O(✏)

Example
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Z
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✓Z
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+
1

2

Z
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Figure 2: The diagrammatic coaction of the bubble integral with massive propagators.

that is not in𝐶 is cut as well. In every term, all the propagators that feature on the left entry, must be
cut on the corresponding right entry. As a final example, consider the bubble integral in Figure 2,
illustrating both even and odd |𝐶 |.

One application of the diagrammatic coaction discussed in Ref. [22] is the derivation of
differential equations. The key observation is that because differentiation only acts on the right
entries, as in eq. (7), when using a pure basis (as we do) the derivative of a given Feynman integral
can be determined in full from terms in the coaction in which the right entry has weight 1. After
differentiation, such terms yield rational functions which simply multiply the respective master
integral in the left entry. This means that the coefficients of the differential equation are directly
determined by derivatives of certain (maximal, next-to-maximal and next-to-next-to-maximal) cuts,
computed at the relevant order in the 𝜖 expansion to yield weight 1 contributions. As an example,
we show in Figure 3 the case of a generic pentagon. The result for a generic one-loop integral can
be found in Ref. [22].

Using eq. (9.5) and summing the di↵erent orders in the ✏ expansion, we obtain

dJG = ✏ JG dC(1)
EG

JG +
X

X⇢EG
nX=nG�1

✏ JGX

⇣
dC(1)

X JG +
1

2
dC(1)

EG
JG

⌘

+
X

X⇢EG
nX=nG�2

JGX
dC(0)

X JG +
X

X⇢EG
nX=nG�3

JGX

⇣
dC(0)

X JG +
1

2

X

e2EG\X

dC(0)
XeJG

⌘
(9.9)

= ✏ JG dC(1)
EG

JG +
X

X⇢EG
nX=nG�1

✏ JGX

⇣
dC(1)

X JG +
1

2
dC(1)

EG
JG

⌘
+

X

X⇢EG
nX=nG�2

JGX
dC(0)

X JG ,

where in the last step we use the fact that the terms with nX = nG � 3 cancel due

to eq. (7.3).

To make these equations more concrete, consider the fully generic pentagon graph. Ac-

cording to eq. (9.7), the corresponding Feynman integral satisfies a di↵erential equation

which can be graphically represented as

d

2
664

3
775 =

X

(ijk)

j

i

k d

2
664

i

k
j

�����
✏0

+
1

2

X

l

i

k
j

l

�����
✏0

3
775

+
X

(ijkl)

i

j

k

l

d

2
664

i

k
j

l

�����
✏0

3
775+ ✏ d

2
664

�����
✏1

3
775 ,

(9.10)

where the labels on the edges of the diagrams denote the set of propagators being cut in

the second entry.

From eqs. (9.7) and (9.9) it follows that the di↵erential equation for JG is determined

by the cuts of JG with at most two uncut propagators. We compute the complete set of

relevant cut integrals in Appendix D and find:

• if nG is odd,

C(1)
EG

JG = log

✓
GramEG

YEG

◆
,

C(0)
EG\eJG = log

 p
YEG

GramEG\e � GramEG
YEG\e �

p�GramEG
YEG\ep

YEG
GramEG\e � GramEG

YEG\e +
p�GramEG

YEG\e

!
,

C(0)
EG\{e,f}JG = log

✓
a1 + a2 + a3 + a4 + a5

a1 + a2 + a3 + a4 � a5

◆
,

(9.11)

with the ai given in terms of determinants in eq. (D.28).

– 40 –

Figure 3: The differential equation for a pentagon integral, as derived from the diagrammatic coaction.

This concludes our brief exposition of the one-loop diagrammatic coaction. We have seen that
the duality condition is realised in a rather straightforward manner, and the dual contours can be
expressed in terms of ordinary cut integrals with at least those propagators present on the left entry
being put on shell. Specifying the precise linear combination of cuts is based on the homology
relations. Finally, we have seen how the diagrammatic coaction encodes the differential equations.
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5. The coaction on hypergeometric functions

So far our interpretation of the coaction formula in terms of functions was based exclusively
on MPLs. Therefore, the application to Feynman integrals was based on applying the coaction to
the functions appearing order by order in the Laurent expansion in 𝜖 . This coaction is sometimes
referred to as the local coaction [25]. As emphasised already in Ref. [20], eq. (1) itself is more
general. In particular, it may be applied directly to the hypergeometric functions one obtains
in dimensional regularization, without considering the expansion in 𝜖 . This is called the global
coaction. With this motivation, Refs. [23–25] investigated the application of the coaction directly
on hypergeometric functions. Importantly, the global and local coactions must be consistent.
Specifically, when the Laurent coefficients are MPLs, it is expected that by expanding both left
and right entries in the coaction on hypergeometric functions one would reproduce the coaction on
MPLs. This correspondence was proven for certain classes of functions [25].

Let us make some comments regarding the formulation of the global coaction. The mathemat-
ical framework of twisted (co-)homology theory allows one to form a basis of differential forms 𝜔 𝑗

(generating the cohomology group) and a corresponding basis of integration contours 𝛾𝑖 (generating
the homology group), such that their pairing,

∫
𝛾𝑖
𝜔 𝑗 , defines a class of hypergeometric-type inte-

grals [42]. With these bases in place one can define a coaction on any function in this space, where
all the entries in the coaction are expressed in terms of the same class of function. Specifically, to
express the integrand one defines

𝜔 𝑗 = Φ(u)𝜑𝑛1...𝑛𝐾 (u) with Φ(u) =
𝐾∏
𝐼=1

𝑃𝐼 (u)𝑎𝐼 𝜖 and 𝜑𝑛1...𝑛𝐾 (u) = 𝑑u
𝐾∏
𝐼=1

𝑃𝐼 (u)𝑛𝐼 (13)

in terms of polynomials 𝑃𝐼 (u), where u is a vector of integration variables. Assuming that 𝜖 is
real while the indices 𝑛𝐼 are integers, multivaluedness of the integrand 𝜔 𝑗 is controlled exclusively
by lnΦ(u), the so-called twist. The integration contours 𝛾𝑖 are then defined between the zeros of
polynomials 𝑃𝐼 (u). Geometrically, these correspond to hypersurfaces, often hyperplanes, whose
arrangement (and intersections) fully characterise the class of integrals. Methods from intersection
theory [26–30] then become handy in computing the coaction coefficients 𝑐𝑖 𝑗 of eq. (5). This
also allows one to pick bases of forms and contours that satisfy the duality condition, bringing the
coaction to the diagonal form of eq. (1).

Several classes of generalised hypergeometric functions have been analysed in Ref. [24] along
similar lines, including 𝑝+1𝐹𝑝, Lauricella 𝐹𝐷 and the four Appell functions. Here we restrict
ourselves to quoting the results of one simple example, namely Gauss hypergeometric function. We
start with the integral representation of the latter, involving a single integration variable 𝑢,

2𝐹1(𝛼, 𝛽; 𝛾; 𝑥) = Γ(𝛾)
Γ(𝛼)Γ(𝛾 − 𝛼)

∫ 1

0
𝑑𝑢𝑢𝛼−1(1 − 𝑢)𝛾−𝛼−1(1 − 𝑢𝑥)−𝛽 , (14)

which leads, according to eq. (13), to the following identification

Φ(𝑢) = 𝑢𝑎𝜖 (1 − 𝑢) (𝑐−𝑎) 𝜖 (1 − 𝑥𝑢)−𝑏𝜖 , 𝜑𝑛𝛼𝑛𝛽𝑛𝛾 (𝑢) = 𝑢𝑛𝛼−1(1 − 𝑢)𝑛𝛾−𝑛𝛼−1(1 − 𝑥𝑢)−𝑛𝛽 𝑑𝑢 ,
(15)

8
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where 𝛼 = 𝑛𝛼 + 𝑎𝜖 , 𝛽 = 𝑛𝛽 + 𝑏𝜖 and 𝛾 = 𝑛𝛾 + 𝑐𝜖 . For integer indices 𝑛𝛼, 𝑛𝛽 and 𝑛𝛾 , eq. (14)
defines a meromorphic function of 𝜖 , with Laurent coefficients that are linear combinations of MPLs
with rational coefficients. The homology and cohomology groups associated with this function are
two-dimensional. We choose a basis of contours going between the zeros of the polynomials in
Φ(𝑢),

𝛾1 = [0, 1] , 𝛾2 = [0, 1/𝑥] , (16)

and a dual basis for the integrands,

𝜔1 = (𝑐 − 𝑎)𝜖 Φ(𝑢)𝜑101(𝑢) = (𝑐 − 𝑎)𝜖 𝑢𝑎𝜖 (1 − 𝑢)−1+(𝑐−𝑎) 𝜖 (1 − 𝑥𝑢)−𝑏𝜖 𝑑𝑢 ,
𝜔2 = −𝑏𝜖𝑥Φ(𝑢)𝜑112(𝑢) = −𝑏𝜖𝑥 𝑢𝑎𝜖 (1 − 𝑢) (𝑐−𝑎) 𝜖 (1 − 𝑥𝑢)−1−𝑏𝜖 𝑑𝑢 .

(17)

With this choice
∫
𝛾𝑖
𝜔 𝑗 = 𝛿𝑖 𝑗 + O(𝜖) and then 𝑐𝑖 𝑗 = 𝛿𝑖 𝑗 in eq. (5) leading to a diagonal coaction as

in eq. (1), given by [24]

Δ

(
2𝐹1(𝛼, 𝛽; 𝛾; 𝑥)

)
= 2𝐹1(1 + 𝑎𝜖, 𝑏𝜖 ; 1 + 𝑐𝜖 ; 𝑥) ⊗ 2𝐹1(𝛼, 𝛽; 𝛾; 𝑥)

− 𝑏𝜖

1 + 𝑐𝜖
2𝐹1(1 + 𝑎𝜖, 1 + 𝑏𝜖 ; 2 + 𝑐𝜖 ; 𝑥) (18)

⊗ Γ(1 − 𝛽)Γ(𝛾)
Γ(1 − 𝛽 + 𝛼)Γ(𝛾 − 𝛼) 𝑥

1−𝛼
2𝐹1

(
𝛼, 1 + 𝛼 − 𝛾; 1 − 𝛽 + 𝛼;

1
𝑥

)
.

Naturally, the particular form of the coaction in eq. (18) depends on the choice of bases made for
the contours and integrands. Other choices would lead to equivalent formulae, related to eq. (18)
through contiguous and analytic continuation relations. As anticipated, for integer 𝑛𝛼, 𝑛𝛽 , 𝑛𝛾 ,
eq. (18) can be expanded into a Laurent series involving only MPLs. Its expansion is consistent
with computing the local coaction on MPLs at each order in the expansion. This was conjectured in
Ref. [24], and proven in Ref. [25]. Finally, we stress a simple but important lesson from the study
of the coaction on hypergeometric functions, namely that all the elements of the coaction, both left
and right entries, may be expressed in terms of the same class of function. This property becomes
useful when studying the coaction on multiloop Feynman integrals, as discussed below.

6. Constructing the coaction on two-loop integral families

The availability of the global coaction on hypergeometric functions opens the way to extending
the diagrammatic coaction to Feynman integrals beyond one loop. It is clear at the outset that
this generalization is highly non-trivial, as one-loop integrals are special in several ways. First,
all one-loop Feynman integrals evaluate to MPLs, making the application of the local coaction
straightforward in principle. In contrast, starting at two loop, the Laurent expansion of Feynman
integrals may include elliptic polylogarithms (and more complicated iterated integrals) as well.
Work on the generalization of the diagrammatic coaction to the elliptic case is in progress, and is
beyond the scope of this talk, but we mention that the global coaction provides a good starting point.
Second, as described in section 4, all one-loop Feynman integrals have a natural basis of master
integrals (and a corresponding basis of cuts). In particular, this basis consists of a single integral for
a given (sub-)set of propagators: specifying the propagators uniquely identifies the master integral.
Similarly, specifying the subset of propagators that is being cut, uniquely identifies an integration

9
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contour. Starting at two loops an a priori basis is not available: the basis needs to be determined
for each topology, e.g. by studying the solutions of the corresponding set of integration-by-parts
identities. Furthermore, in many cases, multi-loop integrals have multiple master integrals corre-
sponding to the same set of propagators, and a basis requires raising propagators to higher powers
or including numerators that depend on the loop momenta through irreducible scalar products. This
presents a significant challenge to the generalization of the diagrammatic coaction even in the purely
polylogarithmic case. Here we follow Ref. [31] and demonstrate how this issue is addressed.

The approach taken by Ref. [31] is to construct the diagrammatic coaction on a case-by-case
basis by taking full advantage of the availability of explicit coaction formulae for a wide class
of generalised hypergeometric-type functions. One begins by considering a particular integral
topology, establishes a basis of master integrals and evaluates these in terms of hypergeometric
functions. Next one computes the cuts of a given integral in this space, whose diagrammatic
coaction is of interest. Based on what we have learnt about the coaction of hypergeometric
functions, the expectation is that all master integrals, as well as all cuts should be expressible in
terms of the same class of function. This is indeed what one finds in every example considered. The
next step is therefore clear: one evaluates the global coaction of the Feynman integral considered
using the known coaction formulae of hypergeometric-type functions [24], and then expresses the
left entries in terms of the master integrals and the right entries in terms of the cuts. Once this is
achieved, the result has an immediate diagrammatic interpretation. This step may be non-trivial,
as it requires using both contiguous relations (integration-by-parts identities) as well as analytic
continuation identities to bring the left and right entries of the coaction into a form where the
respective basis elements are identified. Nevertheless, in practice this was achieved in every case
considered.

To demonstrate the application of the diagrammatic coaction to two-loop Feynman integrals,
let us focus first on a simple example, namely the sunset integral with one massive propagator. This
topology is defined by

𝑆(𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5; 𝐷; 𝑝2, 𝑚2) =
(
𝑒𝛾𝐸 𝜖

𝑖𝜋𝐷/2

)2 ∫
𝑑𝐷𝑘 𝑑𝐷𝑙

[(𝑘 + 𝑙)2]−𝜈4 [(𝑙 + 𝑝)2]−𝜈5

[𝑘2]𝜈1 [𝑙2]𝜈2 [(𝑘 + 𝑙 + 𝑝)2 − 𝑚2]𝜈3
, (19)

for integer 𝜈𝑖 with 𝜈4, 𝜈5 ≤ 0 and for 𝐷 = 𝑛 − 2𝜖 , with 𝑛 even. This space is known to be
two-dimensional, and we choose as basis elements

𝑆 (1) (𝑝2, 𝑚2) = 𝜖2
(
𝑝2 − 𝑚2

)
𝑆(1, 1, 1, 0, 0; 2 − 2𝜖 ; 𝑝2, 𝑚2) (20a)

= (𝑚2)−2𝜖
(
1 − 𝑝2

𝑚2

)
𝑒2𝛾𝐸 𝜖Γ(1 + 2𝜖)Γ(1 − 𝜖)Γ(1 + 𝜖) 2𝐹1

(
1 + 2𝜖, 1 + 𝜖 ; 1 − 𝜖 ;

𝑝2

𝑚2

)
𝑆 (2) (𝑝2, 𝑚2) = −𝜖2𝑆(1, 1, 1,−1, 0; 2 − 2𝜖 ; 𝑝2, 𝑚2)

= (𝑚2)−2𝜖 𝑒2𝛾𝐸 𝜖Γ(1 + 2𝜖)Γ(1 − 𝜖)Γ(1 + 𝜖) 2𝐹1

(
2𝜖, 𝜖 ; 1 − 𝜖 ;

𝑝2

𝑚2

)
,

(20b)

which are both pure functions. The result is expressed in terms Gauss hypergeometric functions,
whose coaction we know from eq. (18) above. In order to be able to identify the right entries in the
coaction in terms of cut diagrams, let us first evaluate the cuts.

10
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The maximal cut of the first master integral, eq. (20a), is

C1,2,3𝑆
(1) ∼ C1

∫
𝑑2−2𝜖 𝑘

𝑖𝜋1−𝜖
1
𝑘2

(
C2,3

∫
𝑑2−2𝜖 𝑙

𝑖𝜋1−𝜖
1
𝑙2

1
(𝑘 + 𝑙 + 𝑝)2 − 𝑚2

)
, (21)

where we use the notation C𝑖 (as in eq. (10)) for a cutting operation of propagator 𝑖; rather than
equality we used here the symbol ∼ because we do not keep track here of overall normalisation
factors – we refer the reader to appendix A of Ref. [31] for details. The expression in parentheses in
eq. (21) is readily identified as the maximal cut of a one-loop bubble integral with a single massive
propagator and a massive external leg of mass (𝑘 + 𝑝)2. Using the result for this one-loop cut
integral [20] we get

C1,2,3𝑆
(1) ∼ C1

∫
𝑑2−2𝜖 𝑘

𝑖𝜋1−𝜖
1
𝑘2

[
(𝑘 + 𝑝)2 − 𝑚2

]−1−2𝜖 [
(𝑘 + 𝑝)2

] 𝜖
. (22)

The integrand of the remaining integral is similar to the integrand of a one-loop one-mass bubble
integral. We can thus use one-loop techniques [20, 40, 43] to compute its cut, getting

C1,2,3𝑆
(1) ∼

∫
𝑑𝑘0 𝑘

−1−2𝜖
0

(
𝑝2 − 𝑚2 + 2

√︃
𝑝2𝑘0

)−1−2𝜖 (
𝑝2 + 2

√︃
𝑝2𝑘0

)2𝜖
. (23)

At this stage we encounter a major difference between one-loop cuts and multi-loop ones. After
having imposed all cut conditions, we have not fully localised the integrand. Instead, we have a
one-dimensional integral left to perform. The integration region over 𝑘0 has not been specified in
eq. (23) because it is not determined by the cut conditions. However, knowing that the space of
master integrals is two dimensional, we also expect two independent cuts. We also recognise that
the integrand in (23) is compatible with the integral representation of the Gauss hypergeometric
function (14), which has a two-dimensional homology space. With this in mind we may choose a
basis of contours, e.g.

Γ
(1)
1,2,3 : 𝑘0 ∈

[
−
√︁
𝑝2

2
, 0

]
, Γ

(2)
1,2,3 : 𝑘0 ∈

[
𝑚2 − 𝑝2

2
√︁
𝑝2

, 0

]
. (24)

With these we may readily evaluate two independent maximal cuts of each of the two master
integrals. However, in order to bring the coaction into a simple, diagonal form we require the
duality condition ∫

𝛾
( 𝑗)
1,2,3

𝜔 (𝑖) = 𝛿𝑖 𝑗 + O(𝜖) . (25)

to be satisfied, where𝜔 (𝑖) correspond to the two master integrands of eq. (20a) and (20b) respectively.
The duality condition is satisfied for 𝛾 (1)

1,2,3 and 𝛾
(2)
1,2,3 that are related to those of eq. (24) by

𝛾
(1)
1,2,3 =

1
4𝜖

Γ
(2)
1,2,3 , 𝛾

(2)
1,2,3 =

1
2𝜖

(
Γ
(1)
1,2,3 −

1
2
Γ
(2)
1,2,3

)
, (26)

which yields the coaction

Δ

∫
Γ∅

𝜔 (𝑖) =

∫
Γ∅

𝜔 (1) ⊗
∫
𝛾
(1)
1,2,3

𝜔 (𝑖) +
∫
Γ∅

𝜔 (2) ⊗
∫
𝛾
(2)
1,2,3

𝜔 (𝑖) . (27)
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Here the left entries correspond to the two master integrals of eq. (20a) and (20b),∫
Γ∅

𝜔 (1) = 𝑆 (1) (𝑝2, 𝑚2) and
∫
Γ∅

𝜔 (2) = 𝑆 (2) (𝑝2, 𝑚2),

while the right entries are defined, respectively, by the two contours in eq. (26). We used colour
coding to emphasise the association of contour 𝛾 (1)

1,2,3 to 𝜔 (1) (red) and the contour 𝛾 (1)
1,2,3 to 𝜔 (1)

(blue). This colour coding comes in handy in representing the coaction of eq. (27) diagrammatically:

Δ


(1)  =

(1)
⊗

(1)
+

(2)
⊗

(1)
, (28)

and

Δ


(2)  =

(1)
⊗

(2)
+

(2)
⊗

(2)
. (29)

We have thus constructed the diagrammatic coaction for the one-mass sunset topology. Know-
ing the global coaction on the corresponding class of hypergeometric function made this task
straightforward. The result, however, is non-trivial: it demonstrates that the diagrammatic coaction
construction extends beyond one loop, despite the fact that the basis of master integrals is more
complex, and consists of more than one integral with a given set of propagators. We emphasise that
the result may be interpreted as a coaction on functions either as a global coaction, or as a local
one, in which case it reproduces the coaction on MPLs to any order. Of course, the example we
have chosen here is simple. It has just two master integrals, both with all three propagators present,
namely it does not contain any subtopologies (pinches of the original graph). This also implies
that we need not consider any cuts except for the maximal cuts. Indeed, it can be shown that all
non-vanishing cuts (as well as the uncut integral, barring 𝑖𝜋 terms) can be expressed in this case
in terms of the above maximal cut basis. More complex topologies would have a rich structure of
subtopologies, and corresponding cut contours where a subset of the propagators is put on-shell.
Ref. [31] explored that structure for a range of two-loop topologies. Here we illustrate some of the
salient features using a couple of additional examples.

Our next example is the more general sunset integral with two non-vanishing (and non-equal)
internal masses. This topology is defined by

𝑆(𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5; 𝐷; 𝑝2, 𝑚2
1, 𝑚

2
2) =

=

(
𝑒𝛾𝐸 𝜖

𝑖𝜋𝐷/2

)2 ∫
𝑑𝐷𝑘

∫
𝑑𝐷𝑙

[𝑚2
2 − (𝑘 + 𝑝)2]−𝜈4 [𝑚2

1 − (𝑙 + 𝑝)2]−𝜈5

[𝑘2 − 𝑚2
1]𝜈1 [𝑙2 − 𝑚2

2]𝜈2 [(𝑘 + 𝑙 + 𝑝)2]𝜈3
,

(30)

for integer 𝜈𝑖 with 𝜈4, 𝜈5 ≤ 0 and for 𝐷 = 𝑛 − 2𝜖 , with 𝑛 even. There are four master integrals
in this topology, three of which are at the top topology sector, i.e. featuring all three propagators,
while the remaining one is the double tadpole with two massive propagators. The result for all these
integrals and their cuts can be expressed in terms of Appell 𝐹4 functions, which is significantly more
involved than the Gauss hypergeometric function of the one-mass sunset case discussed above. The
diagrammatic coaction can nevertheless be obtained following the steps described above, and using
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the coaction of the Appell 𝐹4 functions derived in Ref. [24]. The resulting diagrammatic coaction
takes the form:

Δ


(1)  = ⊗

©«
(1)

+
(1)

+
(1)

+
(1) ª®®¬

+
(1)

⊗
(1)

+
(2)

⊗
(1)

+
(3)

⊗
(1)

,

(31)

Δ


(2)  = ⊗

©«
(2)

+
(2)

+
(2)

+
(2) ª®®¬

+
(1)

⊗
(2)

+
(2)

⊗
(2)

+
(3)

⊗
(2)

,

(32)

Δ


(3)  = ⊗

©«
(3)

+
(3)

+
(3)

+
(3) ª®®¬

+
(1)

⊗
(3)

+
(2)

⊗
(3)

+
(3)

⊗
(3)

,

(33)

where we associate the colours orange, blue and green to the three master integrals and the cor-
responding cuts. Note that similarly to the one-loop case, the contour dual to the double tadpole
consists not only of the two-propagator cut but also of additional maximal-cut terms.

As a final example we choose to present the three-mass double-edged triangle with massless
propagators. This topology is defined by

𝑃(𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5, 𝜈6, 𝜈7; 𝐷; 𝑝2
1, 𝑝

2
2, 𝑝

2
3)

=

(
𝑒𝛾𝐸 𝜖

𝑖𝜋𝐷/2

)2 ∫
𝑑𝐷𝑙

∫
𝑑𝐷𝑘

[(𝑘 + 𝑝3)2]−𝜈5 [(𝑘 + 𝑝2)2]−𝜈6 [(𝑙 + 𝑝2)2]−𝜈7

[𝑘2]𝜈1 [(𝑘 + 𝑙 + 𝑝2)2]𝜈2 [𝑙2]𝜈3 [(𝑙 − 𝑝3)2]𝜈4

(34)

for integer 𝜈𝑖 with 𝜈5, 𝜈6, 𝜈7 ≤ 0 and for 𝐷 = 𝑛 − 2𝜖 , with 𝑛 even. The space of functions defined
by eq. (34) is spanned by four master integrals, two of which are of the top topology, containing
all four propagators, while the remaining two are the (massless) sunset integrals corresponding to
pinching either of the two single-edge sides of the triangle. These integrals can again be expressed
in terms of Appell 𝐹4 functions, and we refer the reader to Section 5.3 in Ref. [31] for details. The
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diagrammatic coaction takes the form

Δ


𝑝3

𝑝2

𝑝1

3

4

1 2

(1) 
= 1

4

2

𝑝1 𝑝1 ⊗

©«
𝑝3

𝑝2

𝑝1

3

4

1 2

(1)

+ 𝑝3

𝑝2

𝑝1

3

4

1 2

(1) ª®®®®®¬
+ 1

3

2

𝑝2 𝑝2 ⊗

©«
𝑝3

𝑝2

𝑝1

3

4

1 2

(1)

+ 𝑝3

𝑝2

𝑝1

3

4

1 2

(1) ª®®®®®¬
+ 𝑝3

𝑝2

𝑝1

3

4

1 2

(1)

⊗ 𝑝3

𝑝2

𝑝1

3

4

1 2

(1)

+ 𝑝3

𝑝2

𝑝1

3

4

1 2

(2)

⊗ 𝑝3

𝑝2

𝑝1

3

4

1 2

(1)

, (35)

and similarly for the second master integral. This example gives us an opportunity to discuss
one of the key properties of the diagrammatic coaction, namely its behaviour in massless limits,
which illustrates nicely how it captures the subtle properties of Feynman integrals. The integral in
eq. (34) is infrared finite, as all external particles are off shell. However, the coaction (35) must
be consistent for any mass configuration, including in particular massless limits, in which infrared
singularities arise. This property is of course realised at one loop. However, at two loop, additional
complexity arises due to the fact that the number of master integrals varies as massless limits are
taken. Specifically, while in the off-shell case eq. (35) has four master integrals, two of which belong
to the top topology, in the on-shell limit where say, 𝑝2

2 = 0, there are only two master integrals, with
only one at the top topology. This follows from the fact that in the massless limit one of the sunset
integrals vanishes, and the two top-topology integrals become linearly dependent. Recovering the
coaction in this limit from eq. (35) requires intricate relations between cuts, which must be valid
to all orders in 𝜖 . This is indeed realised, and one obtains the following diagrammatic coaction for
𝑝2

2 = 0,

Δ


𝑝3

𝑝2

𝑝1

3

4

1 2


= 𝑝3

𝑝2

𝑝1

3

4

1 2 ⊗ 𝑝3

𝑝2

𝑝1

3

4

1 2 + 1
4

2

𝑝1 𝑝1 ⊗ 𝑝3

𝑝2

𝑝1

3

4

1 2
,

(36)

where each entry evaluates to Gauss hypergeometric functions, as can be seen either by a direct
calculation, or as a limit of eq. (35).

Having seen a few examples, let us now summarise some key features of the diagrammatic
coaction beyond one loop, which we write as [31]

Δ

(∫
Γ∅

𝜔
(𝑘)
𝐺

)
=

∑︁
𝐶∈𝑀𝐺

∑︁
𝑖

∫
Γ∅

𝜔
(𝑖)
𝐺𝐶

⊗
∫
𝛾
(𝑖)
𝐶

𝜔
(𝑘)
𝐺

with 𝛾
(𝑘)
𝐶

=
∑︁
𝑋 ∈𝑀𝐺
𝐶⊆𝑋

∑︁
𝑖

𝛼
(𝑘,𝑖)
𝑋

Γ
(𝑖)
𝑋

, (37)
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where 𝑖 indexes the elements of the basis forms𝜔 (𝑖)
𝐺𝐶

for a given𝐶, as well as their dual contours 𝛾 (𝑖)
𝐶

.
This formula reduces to eq. (11) for one-loop integrals: in that case 𝑀𝐺 corresponds to all non-
empty subsets of edges of the graph 𝐺 and there is just a single value of 𝑖 for every 𝐶. The dual
contour to 𝜔

(𝑘)
𝐺𝐶

is a linear combination of contours that encircle all the poles of the propagators
in 𝐶 or more (but not fewer). The coefficients 𝛼 (𝑘,𝑖)

𝑋
can in general depend on the same variables as

the Feynman integral.
We stress that while the one-loop coaction (11) is fully explicit (the bases have been fixed and

all integrals have been explicitly defined for a generic mass configuration and any number of legs,
see Refs. [21, 22]), the 𝐿-loop generalisation (37) is not. Beyond one loop the set of master integrals
and their dual contours needs to be identified on a case-by-case basis. Nevertheless, some properties
of the coaction are understood in general. In particular, all left entries are master integrals with
𝐿 loops of the given topology, and all propagators that feature on a given left entry are cut on the
corresponding right one.

While multi-loop homology relations, which dictate the details of the coaction, are not known
in general, certain relations follow directly from the one-loop case. Ref. [31] defines genuine L-loop
cuts as cuts which leave no loop uncut. Because the one-loop relation of eq. (10) may be applied to
any loop of a multi-loop integral, we can always establish a basis of cuts solely in terms of genuine
𝐿-loop cuts, and use it to define the right entries in the coaction.

7. Conclusions

We constructed a coaction on integrals (1) based on pairing between master integrands and
master contours. This coaction naturally applies to generalised hypergeometric functions including
all Appell functions, where 𝜖 dependence is introduced in the framework of twisted (co)-homology.
This coaction reproduces the coaction on MPLs upon expansion. It also translates into a coaction
of dimensionally-regularized Feynman integrals for any one-loop diagram, with any mass con-
figuration. Right entries are master integrals while left entries are cuts. Relations between cuts
(homology) are essential to establish its precise form.

We conjecture that the diagrammatic coaction extends to the multi-loop case according to
eq. (37), identifying key features: the left entries are the master integrals of the given topology,
while the right entries are cuts, where all propagators that feature in a given left entry must be cut on
the corresponding right entry. In contrast with one loop, the bases need to be set for each topology.
While there is no complete theory of the relations between contours (cuts) for multi-loop integrals,
certain features can be deduced from the one-loop case in a loop-by-loop analysis. Specifically,
the basis of cuts can be chosen in terms of genuine 𝐿-loop cuts, where every loop features at least
one cut propagator. The diagrammatic coaction is consistent with massless limits, and it encodes
discontinuities and differential equations of Feynman integrals. The analysis of more complex
topologies [44] and elliptic cases is under way.

Besides the fundamental nature of this study in understanding the algebraic and analytic
structure of Feynman integrals, there are several important applications. Some applications of the
coaction in computing integrals have been initiated in Ref. [22] in the context of multi-leg one-loop
integrals, including a determination of the differential equation in terms of cuts (see Figure 3 above)
as well as an iterative expression for the symbol of such integrals. Another set of applications is
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the use of the duality between master integrands and cut contours to project the integrand of an
amplitude into a set of master integrals, by-passing the need to solve the integration-by-parts system.
Using intersection theory to this end has been an active research direction recently [28–30, 45–54],
but the precise connection to the diagrammatic coaction has not yet been studied.

References

[1] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059.

[2] A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative
geometry, Duke Math.J. 128 (2005) 209 [math/0208144].

[3] A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative
geometry, arXiv Mathematics e-prints (2002) [math/0208144].

[4] F. C. S. Brown, Mixed Tate Motives over Spec(Z), Annals of Math. 175 (2012) .

[5] F. Brown, On the decomposition of motivic multiple zeta values, in Galois-Teichmüller
theory and arithmetic geometry, vol. 68 of Adv. Studies in Pure Math., pp. 31–58, Math. Soc.
Japan, 2012, 1102.1310.

[6] F. Brown, The Massless higher-loop two-point function, Commun. Math. Phys. 287 (2009)
925 [0804.1660].

[7] C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs
production at N3LO, JHEP 07 (2013) 003 [1302.4379].

[8] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to
Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [1403.3385].

[9] C. Bogner and F. Brown, Feynman integrals and iterated integrals on moduli spaces of
curves of genus zero, Commun. Num. Theor. Phys. 09 (2015) 189 [1408.1862].

[10] C. Bogner, MPL—A program for computations with iterated integrals on moduli spaces of
curves of genus zero, Comput. Phys. Commun. 203 (2016) 339 [1510.04562].

[11] J. Ablinger, J. Blümlein, C. Raab, C. Schneider and F. Wißbrock, Calculating Massive 3-loop
Graphs for Operator Matrix Elements by the Method of Hyperlogarithms, Nucl. Phys. B 885
(2014) 409 [1403.1137].

[12] C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08 (2019) 135
[1904.07279].

[13] S. Bloch, H. Esnault and D. Kreimer, On Motives associated to graph polynomials, Commun.
Math. Phys. 267 (2006) 181 [math/0510011].

[14] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv.
Theor. Math. Phys. 2 (1998) 303 [q-alg/9707029].

16

https://arxiv.org/abs/math/0103059
https://doi.org/10.1215/S0012-7094-04-12822-2
https://arxiv.org/abs/math/0208144
https://arxiv.org/abs/math/0208144
https://arxiv.org/abs/1102.1310
https://doi.org/10.1007/s00220-009-0740-5
https://doi.org/10.1007/s00220-009-0740-5
https://arxiv.org/abs/0804.1660
https://doi.org/10.1007/JHEP07(2013)003
https://arxiv.org/abs/1302.4379
https://doi.org/10.1016/j.cpc.2014.10.019
https://arxiv.org/abs/1403.3385
https://doi.org/10.4310/CNTP.2015.v9.n1.a3
https://arxiv.org/abs/1408.1862
https://doi.org/10.1016/j.cpc.2016.02.033
https://arxiv.org/abs/1510.04562
https://doi.org/10.1016/j.nuclphysb.2014.04.007
https://doi.org/10.1016/j.nuclphysb.2014.04.007
https://arxiv.org/abs/1403.1137
https://doi.org/10.1007/JHEP08(2019)135
https://arxiv.org/abs/1904.07279
https://doi.org/10.1007/s00220-006-0040-2
https://doi.org/10.1007/s00220-006-0040-2
https://arxiv.org/abs/math/0510011
https://arxiv.org/abs/q-alg/9707029


The Diagrammatic Coaction Einan Gardi

[15] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry,
Commun. Math. Phys. 199 (1998) 203 [hep-th/9808042].

[16] A. Connes and D. Kreimer, Renormalization in quantum field theory and the
Riemann-Hilbert problem. 1. The Hopf algebra structure of graphs and the main theorem,
Commun. Math. Phys. 210 (2000) 249 [hep-th/9912092].

[17] D. Kreimer, The core Hopf algebra, Clay Math. Proc. 11 (2010) 313 [0902.1223].

[18] S. Bloch and D. Kreimer, Feynman amplitudes and Landau singularities for 1-loop graphs,
Commun. Num. Theor. Phys. 4 (2010) 709 [1007.0338].

[19] S. Bloch and D. Kreimer, Cutkosky Rules and Outer Space, 1512.01705.

[20] S. Abreu, R. Britto, C. Duhr and E. Gardi, Cuts from residues: the one-loop case, JHEP 06
(2017) 114 [1702.03163].

[21] S. Abreu, R. Britto, C. Duhr and E. Gardi, Algebraic Structure of Cut Feynman Integrals and
the Diagrammatic Coaction, Phys. Rev. Lett. 119 (2017) 051601 [1703.05064].

[22] S. Abreu, R. Britto, C. Duhr and E. Gardi, Diagrammatic Hopf algebra of cut Feynman
integrals: the one-loop case, JHEP 12 (2017) 090 [1704.07931].

[23] S. Abreu, R. Britto, C. Duhr, E. Gardi and J. Matthew, Generalized hypergeometric functions
and intersection theory for Feynman integrals, PoS (2019) 067 [1912.03205].

[24] S. Abreu, R. Britto, C. Duhr, E. Gardi and J. Matthew, From positive geometries to a
coaction on hypergeometric functions, JHEP 02 (2020) 122 [1910.08358].

[25] F. Brown and C. Dupont, Lauricella hypergeometric functions, unipotent fundamental
groups of the punctured Riemann sphere, and their motivic coactions, 1907.06603.

[26] Y. Goto and K. Matsumoto, The monodromy representation and twisted period relations for
Appell’s hypergeometric function 𝐹4, Nagoya Math. J. 217 (2015) 61 [1310.4243].

[27] K. Matsumoto, Intersection numbers for logarithmic 𝑘-forms, Osaka J. Math. 35 (1998) 873.

[28] S. Mizera, Scattering Amplitudes from Intersection Theory, Phys. Rev. Lett. 120 (2018)
141602 [1711.00469].

[29] S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, Ph.D. thesis,
Perimeter Inst. Theor. Phys., 2019. 1906.02099.

[30] P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 02 (2019) 139
[1810.03818].

[31] S. Abreu, R. Britto, C. Duhr, E. Gardi and J. Matthew, The diagrammatic coaction beyond
one loop, JHEP 10 (2021) 131 [2106.01280].

17

https://doi.org/10.1007/s002200050499
https://arxiv.org/abs/hep-th/9808042
https://doi.org/10.1007/s002200050779
https://arxiv.org/abs/hep-th/9912092
https://arxiv.org/abs/0902.1223
https://doi.org/10.4310/CNTP.2010.v4.n4.a4
https://arxiv.org/abs/1007.0338
https://arxiv.org/abs/1512.01705
https://doi.org/10.1007/JHEP06(2017)114
https://doi.org/10.1007/JHEP06(2017)114
https://arxiv.org/abs/1702.03163
https://doi.org/10.1103/PhysRevLett.119.051601
https://arxiv.org/abs/1703.05064
https://doi.org/10.1007/JHEP12(2017)090
https://arxiv.org/abs/1704.07931
https://doi.org/10.22323/1.375.0067
https://arxiv.org/abs/1912.03205
https://doi.org/10.1007/JHEP02(2020)122
https://arxiv.org/abs/1910.08358
https://arxiv.org/abs/1907.06603
https://doi.org/10.1215/00277630-2873714
https://arxiv.org/abs/1310.4243
https://doi.org/10.1103/PhysRevLett.120.141602
https://doi.org/10.1103/PhysRevLett.120.141602
https://arxiv.org/abs/1711.00469
https://arxiv.org/abs/1906.02099
https://doi.org/10.1007/JHEP02(2019)139
https://arxiv.org/abs/1810.03818
https://doi.org/10.1007/JHEP10(2021)131
https://arxiv.org/abs/2106.01280


The Diagrammatic Coaction Einan Gardi

[32] E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int.J.Mod.Phys. A15 (2000) 725
[hep-ph/9905237].

[33] F. C. Brown, Multiple zeta values and periods of moduli spaces M0,𝑛, Annales Sci.Ecole
Norm.Sup. 42 (2009) 371 [math/0606419].

[34] F. Brown, On the decomposition of motivic multiple zeta values, 1102.1310.

[35] C. Duhr, H. Gangl and J. R. Rhodes, From polygons and symbols to polylogarithmic
functions, JHEP 1210 (2012) 075 [1110.0458].

[36] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes,
JHEP 08 (2012) 043 [1203.0454].

[37] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar
Scattering Amplitudes, JHEP 06 (2012) 125 [1012.6032].

[38] F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms,
JHEP 11 (2012) 114 [1209.2722].

[39] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12
(2011) 011 [1102.0062].

[40] S. Abreu, R. Britto, C. Duhr and E. Gardi, From multiple unitarity cuts to the coproduct of
Feynman integrals, JHEP 10 (2014) 125 [1401.3546].

[41] D. Fotiadi and F. Pham, Analytic Properties of Some Integrals over Complex Manifolds, in
Homology and Feynman integrals, R. C. Hwa and V. L. Teplitz, eds., W. A. Benjamin Inc.,
(1966).

[42] K. Aomoto and M. Kita, Theory of Hypergeometric Functions, Springer Monographs in
Mathematics. Springer Japan, 2011.

[43] S. Abreu, R. Britto and H. Grönqvist, Cuts and coproducts of massive triangle diagrams,
JHEP 07 (2015) 111 [1504.00206].

[44] E. Gardi and A. Ioannou, The diagrammatic coaction and cuts of the double box, SciPost
Phys. Proc. 7 (2022) 012 [2111.01498].

[45] S. Caron-Huot and A. Pokraka, Duals of Feynman Integrals, I: Differential Equations,
2104.06898.

[46] S. Caron-Huot and A. Pokraka, Duals of Feynman Integrals. Part II. Generalized unitarity,
JHEP 04 (2022) 078 [2112.00055].

[47] H. Frellesvig, F. Gasparotto, M. K. Mandal, P. Mastrolia, L. Mattiazzi and S. Mizera, Vector
Space of Feynman Integrals and Multivariate Intersection Numbers, Phys. Rev. Lett. 123
(2019) 201602 [1907.02000].

18

https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://arxiv.org/abs/math/0606419
https://arxiv.org/abs/1102.1310
https://doi.org/10.1007/JHEP10(2012)075
https://arxiv.org/abs/1110.0458
https://doi.org/10.1007/JHEP08(2012)043
https://arxiv.org/abs/1203.0454
https://doi.org/10.1007/JHEP06(2012)125
https://arxiv.org/abs/1012.6032
https://doi.org/10.1007/JHEP11(2012)114
https://arxiv.org/abs/1209.2722
https://doi.org/10.1007/JHEP12(2011)011
https://doi.org/10.1007/JHEP12(2011)011
https://arxiv.org/abs/1102.0062
https://doi.org/10.1007/JHEP10(2014)125
https://arxiv.org/abs/1401.3546
https://doi.org/10.1007/JHEP07(2015)111
https://arxiv.org/abs/1504.00206
https://doi.org/10.21468/SciPostPhysProc.7.012
https://doi.org/10.21468/SciPostPhysProc.7.012
https://arxiv.org/abs/2111.01498
https://arxiv.org/abs/2104.06898
https://doi.org/10.1007/JHEP04(2022)078
https://arxiv.org/abs/2112.00055
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.1103/PhysRevLett.123.201602
https://arxiv.org/abs/1907.02000


The Diagrammatic Coaction Einan Gardi

[48] S. Weinzierl, On the computation of intersection numbers for twisted cocycles, J. Math. Phys.
62 (2021) 072301 [2002.01930].

[49] J. Chen, X. Jiang, X. Xu and L. L. Yang, Constructing canonical Feynman integrals with
intersection theory, Phys. Lett. B 814 (2021) 136085 [2008.03045].

[50] H. Frellesvig, F. Gasparotto, S. Laporta, M. K. Mandal, P. Mastrolia, L. Mattiazzi et al.,
Decomposition of Feynman Integrals by Multivariate Intersection Numbers, JHEP 03 (2021)
027 [2008.04823].

[51] S. Weinzierl, Applications of intersection numbers in physics, PoS MA2019 (2022) 021
[2011.02865].

[52] H. A. Frellesvig and L. Mattiazzi, On the Application of Intersection Theory to Feynman
Integrals: the univariate case, PoS MA2019 (2022) 017 [2102.01576].

[53] M. K. Mandal and F. Gasparotto, On the Application of Intersection Theory to Feynman
Integrals: the multivariate case, PoS MA2019 (2022) 019.

[54] J. Chen, X. Jiang, C. Ma, X. Xu and L. L. Yang, Baikov representations, intersection theory,
and canonical Feynman integrals, 2202.08127.

19

https://doi.org/10.1063/5.0054292
https://doi.org/10.1063/5.0054292
https://arxiv.org/abs/2002.01930
https://doi.org/10.1016/j.physletb.2021.136085
https://arxiv.org/abs/2008.03045
https://doi.org/10.1007/JHEP03(2021)027
https://doi.org/10.1007/JHEP03(2021)027
https://arxiv.org/abs/2008.04823
https://doi.org/10.22323/1.383.0021
https://arxiv.org/abs/2011.02865
https://doi.org/10.22323/1.383.0017
https://arxiv.org/abs/2102.01576
https://doi.org/10.22323/1.383.0019
https://arxiv.org/abs/2202.08127

	1 Introduction
	2 Coaction on Multiple Polylogarithms
	3 Coaction on integrals and its properties
	4 The diagrammatic coaction at one loop
	5 The coaction on hypergeometric functions
	6 Constructing the coaction on two-loop integral families
	7 Conclusions

