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Abstract
Recurrent neural networks have been shown to be effective architectures for many tasks in high
energy physics, and thus have been widely adopted. Their use in low-latency environments has,
however, been limited as a result of the difficulties of implementing recurrent architectures on
field-programmable gate arrays (FPGAs). In this paper we present an implementation of two types
of recurrent neural network layers—long short-term memory and gated recurrent unit—within
the hls4ml framework. We demonstrate that our implementation is capable of producing effective
designs for both small and large models, and can be customized to meet specific design
requirements for inference latencies and FPGA resources. We show the performance and
synthesized designs for multiple neural networks, many of which are trained specifically for jet
identification tasks at the CERN Large Hadron Collider.

1. Introduction

Machine learning (ML) has seen a huge expansion in its range of uses over the last decade. It is difficult to
find a field of industry or science that has not at least explored ML in some capacity. One particular field
where ML usage has seen widespread interest is in high energy physics, which benefits from complex
multidimensional problems, large datasets of accurate simulation, and substantial existing computing
infrastructure. These all contribute to a field which has adopted ML algorithms for many aspects of research.
While most ML algorithms in high energy physics are run using central processing units (CPUs) and
graphics processing units (GPUs) which provide inference latencies in the milliseconds, field-programmable
gate arrays (FPGAs) and application-specific integrated circuits (ASICs) have begun to be used for those
applications that demand low latencies [1–4]. Up to now recurrent neural networks (RNNs) have received
relatively little attention for these low latency applications, despite their success in many physics tasks and
prevalence in the field at large.

RNNs are neural network architectures that treat their inputs as a sequence with a well-defined order.
RNNs act successively on each entry of the input sequence, utilizing the same set of weights in each step,
allowing for RNNs to act on sequences of variable length. Most modern RNN applications utilize one of two
recurrent layer implementations: long-short term memory layer (LSTM) [5] or gated recurrent unit layers
(GRU) [6]. Both LSTMs and GRUs contain forget gates, which avoid vanishing gradient problems [7] and
allows for long-distance correlations to be learned by the algorithm. These RNN models, often employed to
treat time-series signal processing problems, have been successfully employed by physicists to handle
different types of data. For example, RNN architectures have been utilized to represent hadronic showers
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(jets) in collider events, aiding on tasks of identifying different jet types by using their constituents to form
sequences [8–10]; have been applied to finding interaction vertices in lepton colliders [11]; and have been
explored as monitoring tools for the CERN Large Hadron Collider (LHC) superconducting magnets [12]. In
general, RNNs have critical applications also outside the realm of collider physics, having been applied,
among others, to gravitational waves detection experiments [13], to neutrino detectors from nuclear
reactors [14], and to the reconstruction of quantum dynamics of superconducting qubits [15].

In this paper, we focus on particle physics datasets produced by the LHC at CERN [16]. Collisions within
the LHC occur at 40MHz, making it impossible to readout and store the entire collisions record. To handle
this rate, LHC experiments filter out only interesting events through an online selection system called the
trigger. These systems are usually set in two stages, where the first stage (Level-1 trigger or L1T) needs to
operate at 40MHz with a latency of O(1µs). The selections performed at these stages need to ensure that
interesting events are kept, while discarding common, non-interesting events, which occur several orders of
magnitude more frequently than the former. Therefore, utilizing complex algorithms such as RNNs is of
utmost importance.

The severe constraints of the trigger prevent the usage of CPUs and GPUs. Instead, custom low-latency
hardware such as FPGAs and ASICs must be deployed to meet the latency requirements and offer the
flexibility to adapt to changing conditions. These devices are also able to take advantage of high parallelism
making their designs both efficient and fast. ML inference in this regime has not seen much support due to
its specialized nature, but some tools specifically designed for ultra-low latency inference have emerged [17].
Support in this area has focused primarily on dense and convolutional layers, owing to their versatility and
popularity. In this work we present a generalized and flexible implementation of RNNs written in high level
synthesis (HLS) for the hls4ml package [18]. The implementation supports a wide range of RNN sizes, design
requirements, and is capable of translating both GRUs and LSTMs trained in the Keras framework [19].
Using three different benchmark neural network models of varying size, we show that ultra-low latency
inference can be achieved within the resource limitations of modern FPGAs. This integration into hls4ml
opens the door for much wider usage of RNNs for low latency applications. While the focus in this work is
on applications in physics, we note that there is also a demand for low-power efficient RNNs in industry as
well.

2. Related work

Previous work in the realm of fast RNN inference on FPGAs has focused largely on millisecond-latency
inferences [20–23]. However, for the applications discussed above we are interested primarily in latencies in
the microsecond range, or faster. Some previous work has explored this design space in the context of
low-power sparse LSTMs [24], small LSTMs for real-time energy reconstruction [25], RNNs for
gravitation-wave experiments [26], and highly quantized RNNs [27]. In contrast, the work in this paper is
focused on general support for both large and small LSTMs and GRUs for problems with a range of latency
and device constraints. The examples we use are largely chosen from the high energy physics domain, but the
applicability is by no means limited to this field. The work is built on top of HLS and the hls4ml framework.

HLS tools are designed to simplify the use of FPGAs by automatically transforming algorithms written in
C into the register-transfer level (RTL) [28]. There are multiple advantages of these tools. One substantial
advantage is that they allow users without a knowledge of highly technical Verilog/VHDL languages to
generate effective RTL [29]. Additionally, they can greatly simplify the effort required in prototyping designs,
especially those that are complex. FPGA manufacturers like Xilinx and Altera have their own HLS compilers
for their devices. There also exist open-source compilers, such as Catapult HLS [30]. In this work we use the
Vivado/Vitis compiler from Xilinx [31, 32].

The hls4ml framework is built on top of HLS compilers, and is capable of converting neural network
models into fully-ready HLS projects. The details of the HLS design, in particular the resources and latency,
can be controlled through multiple tunable parameters in hls4ml. These are important to allow a flexible
design flow that performs well for a wide range of network sizes, architectures, and FPGAs. They also allow
the design to be optimized for the target use case. hls4ml already has support for multilayer perceptrons,
convolutional neural networks (CNNs), graph neural networks, and several other architectures. Building on
hls4ml allows for models with these architectures to be interfaced with the models in this paper.
Furthermore, extensive work has been done to hls4ml to ensure that matrix multiplications and other core
ML components are optimized. Our work uses the hls4ml design flow in order to leverage these existing
framework capabilities.
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Figure 1. Schematics of the two RNN modes: static (left) and non-static (right). A sketch of the latency and pipelining is shown at
the bottom for each mode, and illustrates the latency advantage of non-static mode at the cost of resources.

3. Implementation details

RNNs at their core are comprised of many standard operations in ML. Our implementation relies on this fact
to avoid re-implementing any unnecessary operations in the hls4ml framework. Taking the LSTM, we see
that each state update requires 4 distinct matrix multiplications, given by

it = σ(Wixt +Uiht−1 + bi)

ft = σ(Wfxt +Ufht−1 + bf)

ot = σ(Woxt +Uoht−1 + bo)

ct = tanh(Wcxt +Ucht−1 + bc) (1)

whereW and U are the weight matrices (denoted as the kernel and recurrent kernel, respectively), b are the
biases for the input gate, forget gate, output gate, and cell state, respectively, xt is the input at time-step t, and
ht−1 is the computed recurrence value from the previous state. Each of the operations involvingW and U in
equation (1) are standard matrix-vector multiplications and the activation functions can be taken directly
from the hls4ml library and integrated into the LSTM-specific layer implementations. The GRU is composed
of two gates (update and reset) and a hidden state, but the weights of the kernel and recurrent kernel for the
gates are again packaged together and can thus be handled together with one dense layer call each. The
remaining operations to complete a state update for both an LSTM and a GRU are Hadamard products,
which is not part of the existing hls4ml library of operations. In this paper, we implemented an
HLS-optimized Hadamard product. Because many of the operations in our implementation are taken from
the existing hls4ml framework, we are able to trivially support the standard tuning knobs for reuse and
precision.

In addition to the pre-existing hls4ml methods for adjusting resources and latency, RNNs introduce an
additional possibility which we refer to as ‘static’ and ‘non-static’, shown in figure 1. In static mode, a single
RNN block is created, which processes every input for every sequence. This block stores the necessary state
vectors internally, and outputs the final result at the end of the sequence. Since there is only one RNN block in
static mode, the resources are kept to a minimum. However, the initiation interval (II) of the design increases
linearly with the length of the sequence since a new RNN inference cannot begin until the previous inference
is complete; in other words, the II is equal to the latency. In contrast to static mode, non-static mode creates
RNN blocks for each input in the sequence, and the necessary state vectors are passed from one RNN block
to another. This results in a resource utilization that is a factor of the sequence length larger than the resource
utilization in static mode. For large RNNs, or inference with long sequences, this means that static mode can
be the only viable option. However, for those RNNs for which it is possible to use non-static mode, the II can
be dramatically reduced with respect to static mode since non-static mode allows a new inference to begin
once the first RNN block has finished processing the first input from the previous inference. This reduces the
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II by a factor of the length of the sequence, and thus increases the overall throughput of the RNN layer by the
same factor. Further increases in throughput are possible when the II of a single RNN block can be made
small since in this case each individual block may be used simultaneously by distinct inferences. While not
implemented in this paper, we note that multiple inferences can be cached during static mode when the
initiation interval of a single RNN block is less than its latency, thus allowing for higher throughput.

4. Benchmark studies

In order to measure the performance of the hls4ml translation of the RNN-based architectures, we use three
different tasks as benchmarks. The sizes of the networks are chosen such that they span a range of use cases,
input dimensions, and numbers of weights. The first benchmark is a binary classifier with approximately
4000 parameters, trained to classify jets of particles coming from top-quark decays. The second benchmark is
a multi-class classifier, with approximately 50 000 parameters, trained for heavy-flavor jet identification using
the reconstructed trajectories of charged particles (tracks) within a jet. The final benchmark is also a
multi-class classifier with approximately 130 000 parameters, trained to classify sequences of strokes into five
different image classes. Each benchmark is studied with two models using LSTM and GRU recurrent layers,
respectively. All the models are trained using Keras and TensorFlow. A summary of each of these models is
given in table 1, and details are given in the following sections.

4.1. Top quark tagging
The top quark tagging algorithm is trained to classify top quarks from light-flavor quarks using simulated
events generated at

√
s= 13 TeV for comparison to LHC performance. Algorithms designed for this task

could be utilized in the Level-1 trigger systems of LHC experiments to help increase the acceptance for these
types of interesting decays. Their use would require algorithm latencies of less than approximately a few
microseconds in order to fit within system constraints.

The data [33] used for training and testing consists of parton-level scattering processes with top
quark-antiquark pair (tt) and light-flavor quark-antiquark pair (qq) final states that are generated at
leading-order using MadGraph [34] with the NNPDF23LO1 parton distribution functions [35]. The
transverse momenta (pT) of the partons are generated in a window with energy spread given by
δpT/pT = 0.01, centered at 1 TeV. These parton-level events are then decayed and showered using
Pythia8 [36] (version 8.212) with the Monash 2013 tune [37], including the contribution from the
underlying event. A custom detector simulation is used which reproduces the main resolution effects
relevant for jet substructure reconstruction through particle level smearing and granularization. We used a
configuration for a ‘CMS-like’ detector as described in [38]. Jets are clustered using the anti-kT algorithm,
with a distance parameter of 0.8. Only low level features are used in this study. Particles inside a jet are
ordered according to their pT and up to 20 particles are used in this study. For each particle six features are
use: pT, pseudorapidity (η), azimuthal angle (ϕ), energy, relative angular distance from the jet axis, particle
ID given by the generator. The generated events are split into training (95%) and testing (5%), and during
training 20% of the training data is used for validation.

Two networks are trained for identifying the jets coming from top-quark decay. The padded sequence of
particles, with maximum length of 20, is fed into a recurrent layer with an output size of 20. The output from
the final recurrent layer is passed through a dense layer of size 64 before sending it to the output layer. The
recurrent layer used sigmoid and hyperbolic tangent activation functions. The activation function for the
hidden layers is rectified linear unit (ReLU) [39] while the output layer activation function is a sigmoid
function. The binary cross-entropy loss function is minimized with L1 (10−5) and L2 (10−4) regularization
of the weights using the Adam algorithm [40] with a learning rate of 2×10−4 and a batch size of 246. The
two models use different recurrent layers; one uses GRU and the other uses LSTM. There are total 3089 and
3569 trainable parameters for the LSTM and GRU models, respectively.

4.2. Jet flavor tagging
The jet flavor tagging algorithm was trained on Compact Muon Solenoid (CMS) experiment open data
samples containing top quark pairs decaying hadronically with center-of-mass energy of 7 TeV [41]. These
events are rich in bottom quark jets (b jets), charm quark jets (c jets) and jets from light quarks and gluons
(light jets), and so are optimal for training this class of algorithms. Jets are labeled b jets if they contain
bottom quarks, c jets if they do not contain bottom quarks but contain charm quarks, and light jets if they do
not contain bottom or charm quarks. The main feature that separates b jets (and c jets) from light jets is the
presence of the displaced vertex corresponding to the decay of the hadron containing the b (or c) quark.
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Table 1. Network hyperparameters and total number of trainable parameters for different benchmark models.

Benchmark
Sequence
length

Input
vector
size

Hidden
vector
size

Dense
layer
sizes

output
vector
size

Trainable parameters

Non-RNN
layers LSTM GRU

Top quark tagging 20 6 20 64 1 1409 2160 1680
Jet flavor tagging 15 6 120 50/10 3 6593 60,960 46,080
QuickDraw 100 3 128 256/128 5 66,565 67,584 51,072

These hadrons can travel significant distances before decaying due to their mass, depending on their
momenta. The algorithm proposed here aims to identify the presence of tracks that are consistent with these
displaced vertices with the usage of an RNN architecture. This strategy is inspired by the RNNIP algorithm
used by the ATLAS experiment [8].

In this study, we consider jets reconstructed with the anti-kt algorithm with a distance parameter of 0.5,
with transverse momenta larger than 30GeV and absolute pseudorapidities less than 2.0. Tracks with
transverse momenta larger than 1GeV are associated to the nearest jet according to the angular distance∆R;
a maximum∆R of 0.5 is required for association. Tracks within a jet are ordered by the significance of their
transverse impact parameter (S(d0)), and only the first 15 tracks are used by the algorithm. Each track is
represented by a vector of the following features: relative transverse momentum (pT(track)/pT(jet));
∆R(track, jet); transverse and longitudinal impact parameters (d0, dz) and their significances (S(d0), S(dz)).

Flavor tagging models were constructed using Keras/TensorFlow, using either GRU or LSTM layers. The
padded sequence of tracks, with maximum length of 15, is fed into either one recurrent layer (GRU or
LSTM) with 120 hidden units. The recurrent layer outputs a representation of the padded sequence directly
into two dense layers with ReLU activation function, with 50 and 10 hidden layers. The following layer
outputs the probabilities of a jet to be classified as either a b jet, c jet or light jet; it contains three output
nodes with softmax activation function. The training is performed with a categorical cross-entropy loss, with
30% of the training data retained as the validation dataset and used for early stopping based on the accuracy
metric. The GRU (LSTM) architecture contains 52 673 (67 553) trainable parameters, of which 46 080
(60 960) are in the recurrent layer.

4.3. Quickdraw dataset
The QuickDraw dataset [42] is a collection of 50 million drawings in 345 categories created by Google and
contributed by players of the game Quick! Draw. In this game, users are asked to draw a specified drawing in
under 15 s. The drawings are recorded as a time-stamped sequence of the strokes from which the drawing is
created. For each 15 s stroke the x and y coordinates of the pen are recorded 100 times. The coordinates along
with the timestamp make up the network inputs. While 345 different drawing categories exist, we use only 5
for our tests; these are ants, butterflies, bees,mosquitos and snails. Contrary to other popular representations
of images, the QuickDraw dataset is completely stroke-based. We train two RNNs to classify these sequences
into each respective category. We use these networks as proxies for any networks acting on large sequences of
low-dimensional inputs. For example, these networks could be used to identify and classify tracks based on
the sequence of their hits, or incident particles based on their showers in finely-segmented calorimeters. For
example, networks developed by the ATLAS experiment to identify showers originating from pions take as
input a low dimensional set of up to 100 clusters [43]. Although these particular applications are not
appropriate for the Level-1 trigger environment, running these algorithms at later stages in the trigger for a
whole event could still require low latencies under a millisecond depending on the exact application.

The two networks process the sequence of 100 stroke inputs from the QuickDraw dataset with a
recurrent layer whose output size is 128. The final recurrent layer output is passed through two dense layers
of sizes 256 and 128, respectively, before being sent to the final output layer. Dropout layers are placed before
the two dense layers to regularize during training. The recurrent layer uses a hyperbolic tangent activation
function, the dense layers use ReLU activations, and the output is a five-class softmax layer. The only
difference in the two networks is that in one the recurrent layer is a GRU and in the other it is an LSTM.
These networks have total sizes of 117 637 and 134 149 trainable parameters, respectively. The two networks
perform well and show top-1 area under the curve (AUC)5 that are nearly identical, approximately 99% for
each of the five classes.

5 AUC measures the area under the receiver operating characteristic (ROC) curve.
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Figure 2. Ratios of the fixed-point and floating-point AUCs as function of fractional bits for the (a) top quark tagging, (b) jet
flavor tagging, and (c) QuickDraw models. The precision of the integer part is kept fixed to 6 (blue), 8 (orange), 10 (green), and
12 (red) bits. All four lines overlap for the top quark tagging GRU (dashed) and LSTM (solid) models.

5. Performance, resource and latency estimation

The models described in section 4 are translated into HLS using the hls4ml framework. Vivado HLS 2019.2 is
used for HLS synthesis with the synthesis clock frequency set to 200MHz. For the top quark tagging and jet
flavor tagging models we use a Xilinx Kintex UltraScale FPGA (part number xcku115-flvb2104-2-i)
as the target device and for the Quickdraw models we use a Xilinx Alveo U250 (part number xcu250-
figd2104-2-e). For each of the three benchmark models a range of different settings are considered
simultaneously to accurately profile the full design space. These settings modify the quantization of the model
by adjusting the fixed-point data type and modify the degree of parallelism of the design by using the hls4ml
reuse parameter. Finally, we also consider the static and non-static implementations discussed in section 3.

5.1. Quantization
The weights and biases in trained models are typically stored with 32-bit floating-point precision. However,
32-bit floating-point calculations are often not required for optimal network inference, and are costly to
implement on FPGAs. Other quantization techniques can offer more efficient ways of compressing neural
networks by reducing the number of bits used to represent the weights and biases, ideally with no or minimal
loss in performance. In hls4ml, all the inputs, weights, biases, sums, and outputs of each layer are represented
as fixed-point numbers. In this scheme the amount of bits used to store the integer and decimal components
of the number are configured, such that, for example, an unsigned fixed point number with 4 integer bits and
3 fractional points is capable of storing values between 0 and 15.875 with a granularity of 0.125. The total
numbers of bits is also referred to as the precision of the fixed-point number. Hls4ml allows a different
precision to be chosen for the computations and internal values of each individual layer; for the sake of
consistency we fix the precision to be the same for all layers in the scans below. We do find that it is necessary
to increase the precision and size of the lookup table (LUT) used for the softmax computation at the end of
the flavor-tagging and QuickDraw models, but this has a minimal impact on the overall resource usage.

The optimal precision for each model depends on the training details, the specific task, and the inputs.
All the models are quantized only after training, a method referred to as ‘post-training quantization’ (PTQ).
For each model we profile the performance of the synthesized design from hls4ml as a function of the bit
precision of the weights and activation functions. Figure 2 shows the ratio of the AUC from the quantized
model to the AUC from the floating-point model as a function of fractional bits while keeping the precision
of the integer part fixed to 6, 8, 10, or 12 bits.

The best performance for each model, measured by the AUC ratio, is generally achieved with at least 10
fractional bits irrespective of the values of the integer bit. For the top quark and flavor tagging models, 6
integer bits are sufficient, while the QuickDraw models require at least 10 integer bits. For further results in
this paper, we fix the integer bits for each model to these values. We note that there is a small performance
degradation in the GRU models after quantization for all three benchmark cases. The difference is
particularly visible for the top quark tagging model, but it is less than 5%. It is possible that
quantization-aware training or sequence masking could potentially enable models with lower precision to
perform as well as or better than the ones we present in this paper.
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Table 2.Minimum and maximum latencies for the top quark tagging model.

Model Latency (µs) R= (6,5) (µs) R= (12,10) (µs) R= (30,20) (µs) R= (60,60 [40]) (µs)

GRU 1.7–1.7 2.4–6.5 3.2–7.3 5.0–9.1 8.0–12.1
LSTM 1.7–1.7 2.7–6.8 3.5–7.6 5.3–9.4 8.3–12.4

Table 3.Minimum and maximum latencies for the jet flavor tagging model.

Model R= (48,40) (µs) R= (90,60) (µs) R= (120,120) (µs) R= (240,240) (µs)

GRU 6.7–24.8 9.8–27.9 11.5–29.6 20.5–38.6
LSTM 6.9–25.0 10.1–28.2 11.7–29.8 20.7–38.8

Table 4.Minimum and maximum latencies for the QuickDraw model.

Model R= (48,32) (µs) R= (96,64) (µs) R= (192,128) (µs) R= (384,384 [256]) (µs)

GRU 35.4–164.0 59.4–188.0 107.0–235.0 203.0–331.0
LSTM 35.9–164.0 59.9–188.0 107.0–236.0 203.0–332.0

Figure 3. DSP utilization as a function of total width for the (a) top quark tagging, (b) jet flavor tagging (c) QuickDraw model.
Performance of both GRU (dashed) and LSTM (solid) models are shown. DSP utilization with latency strategy is shown only for
the top quark tagging models and all other lines correspond to different reuse factors. The DSPs available in the target FPGA for
each model are shown in the black dashed horizontal line.

5.2. Parallelization
The other main tuning knob besides the precision is the amount of parallelism employed during weight
matrix multiplication. This is controlled in hls4ml through a parameter called ‘reuse’. Specifically, reuse is the
number of multiplication operations each digital signal processing (DSP) block must do for a given matrix
multiply. Setting reuse to 1, i.e. the fully parallel case, means that each multiplication is done by its own DSP
and can happen simultaneously. Increasing the reuse factor reduces the number of DSPs that are required,
but increases the latency and initiation interval of the layer computation in proportion to the reuse. All three
benchmark models are synthesized with different values of the reuse factor (R) and fractional bit precision.
The results are expressed for different FPGA resource categories: onboard FPGA memory (BRAM), DSPs,
and registers and programmable logic like flip-flops (FFs) and LUTs. In hls4ml, a model can either be
synthesized to minimize the latency (latency strategy) or the resource utilization (resource strategy). For large
models with 40 k or more trainable parameters it becomes difficult to synthesize the models with the latency
strategy, and so resource strategy must be used. With resource strategy the design is optimized for low
resource utilization by reusing existing hardware to complete operations in multiple stages. Out of the three
benchmark models only the top quark tagging model is small enough to be synthesized with both latency
and resource strategies, whereas only resource strategy is used for the other two models. The minimum and
maximum latencies for each model are shown in tables 2–4. The amounts of DSPs, FFs, and LUTs for each
model are shown for different reuse factor values in figures 3–5, respectively. The resource utilization is
shown as a function of total width, which is the sum of the integer and fractional bits used to represent the
weights and biases of each layer of the neural network. In these results the reuse factor values are written in
the form R= (X,Y), where X and Y correspond to the reuse factors for the kernel and recurrent kernel
matrix multiplications discussed in equation (1). The numbers shown in the square brackets correspond to

7



Mach. Learn.: Sci. Technol. 4 (2023) 025004 E E Khoda et al

Figure 4. FF utilization as a function of total width for the (a) top quark tagging, (b) jet flavor tagging (c) QuickDraw model.
Performance of both GRU (dashed) and LSTM (solid) models are shown. FF utilization with latency strategy is shown only for
the top quark tagging models and all other lines correspond to different reuse factors. The FFs available in the target FPGA for
each model are shown in the black dashed horizontal line.

Figure 5. LUT utilization as a function of total width for the (a) top quark tagging, (b) jet flavor tagging (c) QuickDraw model.
Performance of both GRU (dashed) and LSTM (solid) models are shown. LUT utilization with latency strategy is shown only for
the top quark tagging models and all other lines correspond to different reuse factors. The LUTs available in the target FPGA for
each model are shown in the black dashed horizontal line.

reuse factor for the LSTM layer in the case when the reuse factor differs between the LSTM and GRU
implementations.

We observe that all resources generally increase with smaller values of R and increased precision. In the
case of FFs and LUTs, this increase is roughly linear, while for DSPs the utilization remains flat until the
precision exceeds the DSP input width. The latency, on the other hand, follows a scaling inverse to that of the
FFs and LUTs with respect to the reuse. Thus, as with other architectures supported under hls4ml, reuse can
be used to reduce FFs and LUTs at the expense of latency. This simple scaling is critical for allowing users to
tune the resource usage and latency such that the synthesized designs to meet desired requirements. The
latency strategy adds another finer option to this tuning space for latency-limited tasks, but comes at the cost
of larger resource usage. As expected we find that the GRUmodels use approximately 1/4 less resources when
compared to the LSTMmodels. This is a result of the 3:4 ratio between the number of matrix multiplications
in GRU and LSTMmodels. Finally, it is important to note that the results shown in this paper are from HLS
synthesis. When running Vivado synthesis we observe a reduction in LUT usage between 20% and 65% and
in FF usage between 10% and 20%. This is particularly important to note in the case of the larger flavor
tagging and QuickDraw models where the estimated LUT usages from HLS synthesis are quite large.

For the top quark tagging models we observe that designs with maximal quantized performance can be
implemented on one SLR of a Xilinx Virtex Ultrascale+ VU9P board, the planned future device for an
upgrade to the CMS Level-1 trigger [44]. We observe slightly larger resource usage for the flavor tagging
models, as expected, but still within the resource constraints of a single SLR of a VU9P board. In both cases
the latencies for the designs are also within the task requirements. For the QuickDraw models, the estimates
from Vivado synthesis suggest that maximal quantized performance could be implemented on a Xilinx Alveo
U250, a popular device for the types of coprocessor applications we envision for these models. Extrapolating
from the initiation interval (II), we find the average throughput of the QuickDraw LSTMmodel is between
4300 to 9700 events/second. Tests of the batch 1 inference for the same model using an Nvidia Tesla V100
GPU yield a throughput of 660 events/second Increasing the batch size to 10 increases the throughput to
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Figure 6. Resource usage of DSPs (a), FFs (b), and LUTs (c) for the top quark tagging model in static and non-static mode with
solid and dashed lines, respectively. The resources available in the target FPGA are shown in the black dashed horizontal line.

Table 5.Minimum and maximum latencies and initiation intervals for the top quark tagging model in both static and non-static mode.

Model Static latency (µs) Non-static latency (µs) Static II Non-static II

GRU 1.7–1.7 1.6–1.6 315 1
LSTM 1.6–1.6 1.5–1.5 314 1

7700 events/second, comparable with the FPGA throughput. The throughput increases further by a factor of
five to approximately 30 000 if the batch size is increased to 100. While it is unsurprising that GPU inference
at large batch sizes is able to outperform an FPGA, many physics tasks are inherently low-batch problems.
This is because each event must be processed separately and latency is extremely important, therefore the
maximal batch size is dictated by the amount of inferences necessary only for a single event. For example,
algorithms to classify particle-induced showers in a detector need only to be run once every event if the
algorithm can use the full detector information in one pass. Thus, a factor of ten improvement in the FPGA
inference for batch-1 inference is highly relevant for future trigger applications.

5.3. Static and non-static comparison
In order to study the impacts of the static and non-static modes discussed in section 3 we limit our
consideration to the top quark tagging models. As shown in figure 6, resource usage for non-static mode
increases dramatically compared to static mode. For even moderate-sized models, non-static mode requires
too many resources to be feasible. In the case of the top quark tagging model we see that non-static mode is
able to fit within the available resources of the chip only for very small bitwidths. However, table 5 confirms
that although non-static mode offers similar overall latency to static mode, the initiation interval (II) in
non-static mode is reduced from 315 (314) to 1 for the GRU (LSTM) models. This results in a increased
throughput for non-static mode by a factor of more than 300. The increased throughput of non-static mode
would be vital for Level-1 trigger applications that run inferences at rates of up to 40MHz. While this
particular top quark tagging model suffers in performance using a total bitwidth of 10 (6 integer and 4
fractional bits in this case), there are multiple options, such as per-layer quantization or quantization-aware
training, that were not considered for this study but could potentially allow a performant version of this
model to be synthesized in non-static mode.

6. Summary and outlook

RNNs have shown substantial success for many tasks in particle physics. They are particularly well-suited to
those problems involving sequences of particle or detector signals, outperforming densely connected deep
neural networks (DNNs) [45] and convolutional neural networks (CNNs) [46] on certain jet classification
tasks. In spite of this success, RNNs have not seen the widespread adoption in ultra-low latency
environments in physics when compared to DNNs and CNNs. This difference is owed in part to tools such as
hls4ml that simplify the adaptation of the latter models from Keras to HLS. The support for GRUs and
LSTMs in hls4ml that we present in this work represents the removal of a major barrier to the use of RNNs in
ultra-low latency environments. This has ramifications not only for high energy physics but also other
research areas where RNNs have become popular. While we have focused on the usage of hls4ml with FPGAs,
it is important to note that hls4ml can also be used to create ASIC designs [47], and thus this work also
allows for the possibility of RNN usage on ASICs as well.
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The implementation we present in hls4ml in this work maintains the main tuning features of hls4ml,
namely the reuse factor and per-layer bit precision. This is necessary to allow the customization of the
synthesized design to meet the needs of a given task. The benchmark models chosen cover a range of sizes,
latencies, and problems, and showcase the quality of the hls4ml support for a variety of realistic scenarios.
We also add an RNN-specific tuning parameter to hls4ml called the RNN mode, with static and non-static
settings capable of further adjusting the behavior of the synthesized design. While we show that this work is
capable of producing results with high accuracy, there are multiple possibilities for future development. In
particular, we observe that even small RNN models can require a substantial amount of resources to
implement. While the PTQ scheme we have used here is able to minimize resources to a certain extent, other
methods, such as quantization-aware training, have shown that even more resource reduction can be possible
with little to no cost to performance. This is perhaps even more true for RNNs than dense neural networks
due to the repeated use of the recurrent layer weights. Other techniques such as masking are also a possible
method for reducing both resource usage and dependence on small weight values (high bit precision).

The recurrent or repeating nature of many modern algorithms, such as RNNs, transformers and graph
neural networks, make them very difficult to be run, particularly at low latency, on FPGAs. In this work, we
present the successful deployment of RNNs in models with number of trainable parameters ranging from
O(1 k) toO(100 k) achieving latencies ofO(1µs) toO(100µs). This represents an important step in
enabling support in hls4ml for more complex architectures with recursive computations.
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