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Cosmic strings are predicted by many Standard Model extensions involving the cosmological
breaking of a symmetry with nontrivial first homotopy group and represent a potential source of
primordial gravitational waves (GWs). Present efforts to model the GW signal from cosmic strings
are often based on minimal models, such as, e.g ., the Nambu–Goto action that describes cosmic
strings as exactly one-dimensional objects without any internal structure. In order to arrive at more
realistic predictions, it is therefore necessary to consider nonminimal models that make an attempt
at accounting for the microscopic properties of cosmic strings. With this goal in mind, we derive
in this paper the GW spectrum emitted by current-carrying cosmic strings (CCCSs), which may
form in a variety of cosmological scenarios. Our analysis is based on a generalized version of the
velocity-dependent one-scale (VOS) model, which, in addition to the mean velocity and correlation
length of the string network, also describes the evolution of a chiral (light-like) current. As we are
able to show, the solutions of the VOS equations imply a temporarily growing fractional cosmic-
string energy density, Ωcs. This results in an enhanced GW signal across a broad frequency interval,
whose boundaries are determined by the times of generation and decay of cosmic-string currents.
Our findings have important implications for GW experiments in the Hz to MHz band and motivate
the construction of realistic particle physics models that give rise to large currents on cosmic strings.

I. INTRODUCTION

Cosmic defects are a common prediction in many models of physics beyond the Standard Model
(BSM), especially, in the context of grand unified theories (GUTs) [1, 2]. Cosmological phase transitions
associated with the spontaneous breaking of new global or local symmetries can in particular give rise
to various types of topological and nontopological defects [3, 4], including domain walls [5], cosmic
strings [6], and monopoles [7]. Evidence for any type of cosmic defect would clearly point to new physics,
since the two phase transitions predicted by the Standard Model, the QCD crossover [8–10] and the
electroweak crossover [11–13], are both expected to yield no observational signal from cosmic defects. In
this paper, we are going to focus on cosmic strings, which, unlike monopoles and domain walls, do not
threaten to overclose the Universe, as long as the string network reaches its characteristic scaling regime.

Cosmic strings contribute to the primordial scalar power spectrum and can hence be probed in obser-
vations of the cosmic microwave background [14]. Another appealing avenue for the detection of cosmic
strings is the search for primordial gravitational waves (GWs) [15]. The GW signal from a string network
is dominated by the emission from closed string loops [16], which are formed when long strings in the
network intersect with each other or with themselves. String loops oscillate under their own tension and
hence emit GWs. In addition, localized features on closed loops, such as cusps and kinks, emit bursts of
GW radiation, which all together results in a stochastic GW background (SGWB) over a large frequency
range. An interesting property of this SGWB signal is that it acts as a logbook of the expansion history
of the early Universe. Indeed, the GW signal emitted by cosmic strings encodes information on the state
of the Universe when cosmic string loops were formed and emitted GWs [17]. This dependence on the
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FIG. 1: Benchmark GW spectra emitted by current-carrying cosmic strings. For spectra (A), (C), (E), we assume
a cosmic-string tension of Gµ = 0.5 × 10−10, while for spectra (B) and (E), we assume Gµ = 0.5 × 10−17. In
scenarios (A) and (B), the current flowing on cosmic strings decays around the time of the QCD crossover, while
in scenarios (C) and (D), it decays around the time of the electroweak crossover. In scenario (E), the current
decays at even earlier times (see text for details). For each scenario, the lower and upper edges of the predicted
spectrum respectively correspond to k = 1 and k = 106 harmonic string modes accounted for in the computation
of the GW spectrum. We also show standard (i.e., no current) spectra for string networks with Gµ = 0.5×10−10

and Gµ = 0.5 × 10−17 (black lines), together with existing constraints and future sensitivities of present and
planned GW experiments [23]. All spectra for Gµ = 0.5 × 10−10 can explain the PTA signal at nHz frequencies.

expansion rate notably results in a flat GW spectrum across many orders of magnitude in frequency that
is associated with the era of radiation domination in the early Universe. Similarly, loops produced during
the matter era result in a steeply falling contribution to the GW spectrum when going from higher to
lower frequencies [15]. In this sense, cosmic strings can be used to probe nonstandard expansion histories
of the early Universe, such as early matter domination [18, 19] and kination [20, 21], see also Ref. [22].

Recently, GWs from cosmic strings attracted a lot of attention in consequence of the first hints for a
SGWB signal at nHz frequencies reported by the NANOGrav, PPTA, EPTA, and IPTA pulsar timing
array (PTA) collaborations [24–27]. As demonstrated in Refs. [28–32], GWs from cosmic strings represent
a plausible interpretation of the PTA data and hence compete with the astrophysical interpretation in
terms of inspiraling supermassive black-hole binaries [33]. At present, the true nature of the new PTA
signal is still unclear, as the characteristic interpulsar quadrupole correlations that would clearly indicate
a GW origin have not yet been confirmed. However, in anticipation of near-future PTA data, cosmic
strings remain one of the leading candidates for the source of a SGWB at nHz frequencies, which calls
for refined theoretical predictions of the expected GW signal.

The precise description of a string network requires large-scale numerical simulations [34], which are
typically either based on the Nambu–Goto action [35–39] or a field-theoretic description in terms of
the Abelian Higgs model [40–45]; for a comparison of Abelian Higgs and Nambu–Goto strings, we refer
to Sec. 3.4 of Ref. [15]. In the Nambu–Goto approximation, cosmic strings are treated as exactly one-
dimensional featureless objects whose only relevant property is their tension or energy per unit length, µ.
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In order to obtain more realistic predictions, it is therefore necessary to go beyond this minimal descrip-
tion and consider, e.g ., extensions of the simplest Nambu–Goto model featuring additional worldsheet
degrees of freedom. Such degrees of freedom can be currents induced by charge carriers that propagate
along cosmic strings [46, 47], or, e.g ., short-wavelength propagation modes known as wiggles [48]. In this
paper, we will focus on the former possibility and consider neutral currents, i.e., currents of particles that
are only charged under the Abelian gauge group whose spontaneous breaking results in the formation of
the string network but that do not interact with any other gauge force. This notably ensures that strings
cannot lose energy via their coupling to massless vector bosons, as would be the case if they carried
electromagnetic currents and which would in fact lead to a highly suppressed GW emission [49].

Current-carrying cosmic strings (CCCSs) were first introduced by Witten [50], who studied both
bosonic and fermionic charge carriers. More recently, CCCSs were investigated in Refs. [51–57]. The
evolution of standard Nambu–Goto strings can be conveniently described by the so-called velocity-
dependent one-scale (VOS) model [58, 59], which allows one to track the evolution of two important
properties of the string network: its correlation length and the root-mean-square velocity of long strings.
By comparison, a network of CCCSs features on top a third property that is not described by the VOS
model: the strength of the current propagating on cosmic strings. Recently, the authors of Ref. [47]
generalized the standard VOS model in order to account for the time evolution of this current. In our
analysis, we will make use of these results and solve the generalized VOS equations derived in Ref. [47]
for a CCCS network featuring a chiral (light-like) current. This corresponds to charge carriers that are
massive far away from the string core, but allow for massless zero modes along the string, where the
symmetry is restored. In combination with the fact that we assume neutral currents, a well-motivated
CCCS scenario appears to be right-handed neutrinos (RHNs) propagating along cosmic B−L cosmic
strings, which can be easily embedded in grand unified theories (GUTs) based on SO (10).

A first study of RHN scattering and capture by cosmic strings has been carried out in Ref. [60]. On
the other hand, superconducting currents made of zero modes can undergo a sudden change when these
zero mode solutions are no longer permitted as a result of a phase transition. This may e.g. apply to
RHN currents at the time of the electroweak phase transition, when the Higgs vacuum expectation value
gives mass to RHN zero modes propagating along the string cores [61].

As we will see below, the decay of RHN currents at the time of electroweak symmetry breaking can
then be instrumental in avoiding a potential overclosure problem that may arise if the currents carried
by the string network are too long-lived. Overall, we, however, emphasize that the process of current
generation and quenching requires further work, especially, in the context of specific GUT models. In
this paper, we will not address this question and defer any further top-down model building to future
work. Instead, we will adopt a bottom-up approach and carry out a phenomenological analysis based on
the recently proposed generalized VOS model focusing on a general scenario where currents are present
only for a certain amount of time between the instant of network formation and today. As can be seen
in Fig. 1, this approach leads to very promising results, in particular, a boosted SGWB signal over large
ranges in frequency that is related to a temporary growth in the fractional CCCS energy density, Ωcs.
We therefore hope that our analysis is going to motivate further model-building efforts aiming at the
construction of realistic particle physics models that give rise to large currents on cosmic strings.

The remainder of this paper is organized as follows. First, we will discuss the generalized VOS model in
Section II. We will start by introducing the generalized VOS equations in Section II A, which include the
new terms accounting for the presence of a current. We will then derive the attractor solutions of these
equations, first in the case of zero current in Section II B and subsequently in the case of nonvanishing
current in Section II C, which is the scenario of our interest. In Section III, we will employ these
results in order to derive the loop number density as well as the energy density of a CCCS network. The
SGWB signal is computed in Section IV, where we compare our predictions to the existing and projected
sensitivities of current and planned GW experiments. Section V, finally, contains our conclusions.

II. GENERALIZED VOS MODEL WITH CHIRAL CURRENTS

The energy density of a network of long strings is

ρ∞ =
µ

L2
, (II.1)

where L is the characteristic correlation length. A network of Nambu–Goto strings in the expanding
Universe with no worldsheet degrees of freedom and intercommutation probability P = 1 is known to
reach a scaling solution, L ∝ t, soon after formation. The existence of such a solution can be derived
analytically within the VOS framework [15, 58, 59], which in its standard form contains two coupled
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differential equations describing the evolution of L and the root-mean-square (RMS) velocity v.

A. Nonlinear autonomous system

Using t to denote cosmic time, the generalized VOS equations for superconducting strings carrying a
chiral current read [47]∗

L̇ =
ȧ

a

L

1 + Y

(
1 + v2 + 2Y

)
+

gc̃

2
√

1 + Y
v , (II.2a)

v̇ =
1− v2
1 + Y

[
(1− Y )k(v)

L
√

1 + Y
− 2v

ȧ

a

]
, (II.2b)

Ẏ = 2Y

[
vk(v)

L
√

1 + Y
− ȧ

a

]
− v

L
c̃(g − 1)

√
1 + Y , (II.2c)

k(v) =
2
√

2

π

1− 8v6

1 + 8v6
(
1− v2

)(
1 + 2

√
2v3
)
. (II.2d)

Here, Y denotes the current strength defined as Y = (Q2+J2)/2, where Q and J are the total charge and
current energy density of the system, respectively. The three quantities Y , Q2, and J2 are dimensionless
and understood to describe the properties of the current carried by the string network in units of the string
tension µ. Chiral (or light-like) currents are characterized by a vanishing state parameter K = Q2 − J2,
meaning that in our scenario of interest K = 0 and hence Y = Q2 = J2. Further, a in the above set
of equations denotes the cosmic scale factor. c̃ is the so-called chopping parameter, which describes
the efficiency of chopping off loops from the long-string network. In absence of dedicated numerical
simulations of CCCS networks, we fix c̃ ≈ 0.23, the typical value found in numerical simulations of
standard uncharged Nambu–Goto strings [59]. We also set g =

√
1 + Y , in which case the energy loss of

the long-string network due to loop formation is qualitatively described in the same way as in the current-
less case; see Eqs. (33), (38), and (39) in Ref. [47]. Finally, the function k(v) is known as the momentum
parameter; again we adopt the standard expression for uncharged Nambu-Goto strings [15, 47].

This system of ordinary differential equations can be rewritten in terms of the scaling length α(t) =
L(t)/t and derivatives with respect to logarithmic time

dα

d ln t
=

αν

1 + Y

(
1 + v2 + 2Y

)
− α+

gc̃

2
√

1 + Y
v , (II.3a)

dv

d ln t
=

1− v2
1 + Y

[
(1− Y )k(v)

α
√

1 + Y
− 2vν

]
, (II.3b)

dY

d ln t
= 2Y

[
vk(v)

α
√

1 + Y
− ν
]
− v

α
c̃(g − 1)

√
1 + Y , (II.3c)

where ν = 1/2 (ν = 2/3) for radiation (matter) dominated Universe since we defined a(t) ∼ tν . Notice
that the right-hand side does not depend explicitly on time, meaning that this set of equations is an
autonomous system and the vector X(ln t) = (α, v, Y )(ln t) describing the solution of this system is an
integral curve. We showcase in Fig. 2 the integral curves for X(ln t) in three-dimensional space.

Looking at Fig. 2, we identify two attractor solutions. First, there is an attractor solution where the
current vanishes and the parameters α and v reach a constant value, identical to the predictions of the
standard VOS framework. We discuss it in more details in Section II B. A second attractor solution
exists when Y is large enough, in which case the current remains close to Y = 1 and the parameters α
and v feature a power-law decay. We cover this situation in Section II C.

B. Vanishing current attractor

In this section, we study the autonomous system of Eqs. (II.3a), (II.3b) and (II.3c) around the attractor
appearing at Y = 0. In what follows we will first determine the exact location of the attractor, i.e. the

∗ Note that we express these equations in terms of cosmic time and physical length whereas in Ref. [47] conformal time
and wavenumber are used.
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FIG. 2: Streamlines derived from the autonomous system of ordinary differential equations (II.3a), (II.3b) and
(II.3c) for c̃ = 0.23 and ν = 1/2. All the trajectories start from the plane α = 0.27 and eventually fall into one
of the two different attractors, one at Y = 0 and another one at Y ∼ 1.

fixed point for this system of equations around Y = 0. Then we will determine its characteristics, such
as its stability and the efficiency with which the system converges to Y = 0.

1. Fixed point at vanishing current

First, we note that setting Y = 0 trivially satisfies Eq. (II.3c). Then, imposing that dα/d ln t = 0, we
obtain that

α =
c̃v∞

2(1− ν − νv2∞)
, (II.4)

where v∞ is the RMS velocity at the fixed point. Further, if we impose that dv/d ln t = 0, we find that
the velocity has to satisfy the polynomial equation

k(v∞) =
c̃νv2∞

1− ν − νv2∞
, (II.5)

where k(v) is defined in Eq. (II.2d); the solution of Eq. (II.5) cannot be determined analytically. We
provide numerical values for v∞ in Table I.

2. Characteristics of the Y = 0 attractor solution

One can assess the behaviour of Y around the Y = 0 fixed point as follows: Let us divide Eq. (II.3c)
by Y , then expand for Y → 0 and evaluate at the fixed point. We thus find a power-law behavior Y ∝ tβ ,
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c̃ α v∞ β = λ3 Re{λ1} = Re{λ2}
0.15 0.186 0.675 −0.360 −0.408

0.20 0.24 0.667 −0.388 −0.417

0.23 0.271 0.662 −0.404 −0.421

0.25 0.291 0.659 −0.414 −0.424

0.30 0.340 0.652 −0.438 −0.431

TABLE I: Values of parameters α, v∞ and β around the vanishing current attractor of Section II B for ν = 1/2.

with the coefficient β determined by

β ≡ 1

Y

dY

d ln t
=

2k(v∞)v∞
α

− cv∞
2α
− 2ν = −1 + (5v2∞ − 1)ν . (II.6)

Numerical values for β are also given in Table I.
In order to prove that this fixed point is indeed an attractor we utilize that the system of Eqs. (II.3a),

(II.3b) and (II.3c) is an autonomous system of the form

Ẋ = f(X) , (II.7)

with a fixed point Xp = (α, v∞, 0), i.e. f(Xp) = 0. The Jacobian of f(X) evaluated at Xp reads
−1 + ν(1 + v2∞) c̃

[
1

2
+

νv2∞
1− ν(1 + v2∞)

]
c̃νv∞

2[1 + ν(1 + v2∞)]
(1− v2∞)

−4ν

c̃
(1− v2∞)[1− ν(1 + v2∞)] −2ν(1− v2∞) −3νv∞(1− v2∞)

0 0 −1 + ν(5v2∞ − 1).

 . (II.8)

Looking at the last row of the Jacobian, we identify one of its eigenvalues, dubbed λ3 = −1 +ν(5v2∞−1)
which matches β from Eq. (II.6). For the fixed point to be an attractor, the three eigenvalues λ1, λ2 and
λ3 are required to have a negative real part. From the trace and determinant of the Jacobian, we find

λ1 + λ2 = −1 + ν(3v2∞ − 1) ∈ R , (II.9a)

λ1 · λ2 = 4ν(1− v2∞)(1− ν) > 0 . (II.9b)

Hence, λ1 and λ2 are complex conjugate and

Re{λ1} = Re{λ2} =
1

2

[
−1 + ν(3v2∞ − 1)

]
. (II.10)

Numerical values for Re{λ1} are shown in Table I for several cases; for all values of c̃ we have considered,
the fixed point Y = 0 is a stable attractor.

C. Steady current attractor

Now we focus our attention on the attractor solution around Y = 1 identified in Fig. 2. In Fig. 3,
we show slices of this streamplot across the planes α = 0.1 and Y = 1. Clearly, around this attractor
solution, the parameters α, v and ε ≡ 1 − Y converge to 0. In what follows, we describe the attractor
solution and discuss its stability.
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FIG. 3: Two-dimensional slices of Fig. 2 around the Y ∼ 1 attractor.

1. Description of the attractor solution

We start again from Eqs. (II.3a), (II.3b) and (II.3c) and expand around Y = 1, such that |ε(t)| � 1.
We obtain the following nonlinear autonomous system of differential equations

dα

d ln t
= ν

α

2

(
3 + v2 − 2

ν

)
+
c̃

2
v , (II.11a)

dv

d ln t
=

1− v2
2

[
εk(v)

α(t)
√

2
− 2vν

]
, (II.11b)

− dε

d ln t
= 2

[
vk(v)

α
√

2
− ν
]
− v

α
c̃
(

2−
√

2
)
. (II.11c)

We make the additional assumption that α(t) � 1 and v(t) � 1 after a certain amount of time, thus
reducing the system of differential equations to

dα

d ln t
=

3να

2
− α+

c̃

2
v , (II.12a)

dv

d ln t
=

ε

απ
− νv , (II.12b)

dε

d ln t
= 2ν +

v

α
c̃

(
2−
√

2− 4

c̃π

)
. (II.12c)

One should note that even though we numerically observe that (α, v, ε) = (0, 0, 0) is an attractor in our
dynamical system, it is not a fixed point. Indeed, Eqs. (II.12b) and (II.12c) are singular when α = 0.
In the following, we determine the attractor trajectory when α(t)→ 0, such that Eqs. (II.12a), (II.12b)
and (II.12c) converge to 0. Imposing |dε/d ln t | � 1, we find that α and v are proportional to each other

κ ≡ v

α
= − 2ν

c̃
(
2−
√

2
)
− 4/π

. (II.13)

At this point, if we impose that |dα/d ln t | � 1, we recover |α| � 1. However, we can go further and
show that α follows a power-law decay, α ∝ tδ, around the attractor with coefficient

δ ≡ 1

α

dα

d ln t
=

3ν

2
− 1− ν(

2−
√

2
)
− 4/(c̃π)

. (II.14)
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FIG. 4: Left panel : Evolution of the parameters α, v∞ and Y when the current is artificially sourced to 1 at
t = 10−18 s, for c̃ = 0.23 and ν = 1/2. Right panel : Evolution of αt−δ, v/α and ε/α2 that should be approximately
time independent for a steady current attractor.

c̃ κ ≡ v∞/α ε/α2 δ Ymin

0.15 0.844 0.830 −0.187 0.36

0.20 0.865 0.914 −0.164 0.42

0.23 0.878 0.969 −0.149 0.46

0.25 0.887 1.001 −0.139 0.49

0.30 0.911 1.107 −0.113 0.58

TABLE II: Values of parameters v∞/α and δ determining the steady current attractor of Section II C for ν = 1/2.

Similarly, if we divide Eq. (II.12b) by v, considering that v is proportional to α, we obtain that

δ =
1

v

dv

d ln t
=

ε

αvπ
− ν . (II.15)

Thus, we deduce that ε is proportional to α2

ε

α2
= (δ + ν)π

v

α
. (II.16)

The numerical values for all these coefficients are in Table II. In the left panel of Fig. 4 we show the
evolution of α, v and Y in the scenario where the current suddenly increases from Y = 0 to Y = 1 at a
particular time. Given α ∝ tδ and derived Eqs. (II.13) and (II.16), in the right panel of Fig. 4 we show
the evolution of expressions that should be approximately time-independent for steady current attractor.

2. Stability of the attractor solution

Unlike in the case of the Y = 0 attractor, the system of differential equations is not well defined at the
steady current attractor (α, v, Y ) = (0, 0, 1), and we cannot straightforwardly perform the same stability
analysis. First, the existence of the steady current attractor requires that δ < 0 which imposes

ν <
8− 2(2−

√
2)c̃π

12 + (3
√

2− 4)c̃π
. (II.17)

If c̃ = 0.23, then ν < 0.588, meaning that this attractor does not exist in the matter era where ν = 2/3.
Second, we estimate numerically the basin of attraction of the steady current attractor. Assuming that
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the system starts from the vanishing current attractor and the current is instantaneously switched on,
we compute the minimal value of the current, Ymin, needed in order for the system to fall into the steady
current attractor. Numerical values for Ymin are collected in Table II. Our detailed analysis in this section
is supported by the previous findings in the literature. While the behaviour of the vanishing current
attractor solution follows from the standard VOS model, the behavior of the steady current solution has
previously been discussed in Ref. [46] (see also [55]); our findings are consistent with those in Ref. [46].

For novel gravitational wave signature from current-carrying cosmic strings we require that the system
approaches the steady current solution, otherwise the gravitational wave spectrum would match the
standard one, see e.g. [17]. We should also emphasize that the steady current solution Y = 1 is near the
edge of validity of the studied system of equations.

III. LOOP NUMBER DENSITY

Let us now derive the number density of cosmic string loops for the steady current attractor scenario,
discussed in Section II C. This will allow us to calculate the gravitational-wave spectra (see Section IV).

A. General expressions

The length, L(t), defined in Eq. (II.1), is directly related to the energy density of the long-string
network. The energy lost by the long string reads

dρ∞
dt

=
−2µ

L3

dL

dt
=
−2µ

L3

[
ȧ

a

L

1 + Y
(1 + v2 + 2Y ) +

c̃v

2

]
. (III.18)

The chopping of loops, driven by the last term of Eq. (III.18), induces the following transfer of energy
density to the cosmic string loops

ρ̇∞, loops = − c̃µv(t)

L3(t)
. (III.19)

Assuming that a fraction, F , of this energy goes into large loops with boost factor γ yields

F ρ̇∞, loops = −γµ
∫

d` `P(`, t) . (III.20)

Here, the loop production function P(`, t) is the number of loops of sizes in the range (`, `+d`) produced
in the time interval (t, t+ dt). Furthermore, we assume that all the loops are produced at the same scale
with a fraction αL of L(t). The loop production function then reads

P(`, t) =
c̃Fv(t)

γαLα4(t)
t−5δD

[
αLα(t)− `

t

]
, (III.21)

where δD is the Dirac delta distribution.
The loop number density is obtained by integrating the loop production function over the possible

loop formation times

n(`, t) =
1

a3(t)

∫ t

tini

dt′ a3(t′)P(`′(t′), t′) , (III.22)

where `′(t′) = `+ ΓGµ(t− t′) is the hypothetical length of the loop at the time of formation. The delta
distribution in P imposes a unique choice for the loop formation time t? satisfying

αLα(t?)t? + ΓGµt? = `+ ΓGµt . (III.23)

The loop number density is then given by

t4n(`, t) =
c̃Fv(t?)

γαLα4(t?)

Θ(t? − tini)Θ(t− t?)
ΓGµ+ αLα(t?) + αLα′(t?)t?

[
a(t?)

a(t)

]3(
t

t?

)4

, (III.24)

where tini is the time when the current is switched on. Let us stress that there does not exist a closed
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FIG. 5: t4n(`, t) for different times t as a function of x = `/t. Left panel : The black dashed line corresponds to
the standard scaling. It can be seen that during the current-carrying phase more loops are produced at shorter
lengths. In the calculation, we have taken Gµ = 10−10 and assumed that the transition starts at redshift z = 1015

and ends at z = 109. Right panel : t4n(`, t) after the end of the current-carrying phase is shown. A gap develops
in the loop distribution, see text for details.

form for t? and we evaluate Eq. (III.23) numerically for all practical purposes. We, however, point out
the existence of an analytical approximation (see Section III B) for the loop number density that works
rather well and which helps in gaining an analytical understanding.

B. Analytical approximations

The equation for the loop number density in Eq. (III.24) can be simplified if we consider the limit in
which αLα(t) � ΓGµ for all the duration of the current-carrying phase. This approximation allows us
to solve for the loop formation time, t?, in a closed form

`+ ΓGµt = [αLα(t?) + ΓGµ] t? =⇒ t? ' tini
(
`+ ΓGµt

αLαstini

) 1
1+δ

, (III.25)

where we employed α(t) = αs (t/tini)
δ parametrization according to the asymptotic power–law behaviour

described in Section II C; here αs = α(tini).
We then obtain

t4n(`, t) ' c̃Fκα2
L

(1 + δ)γ

a(t?)
3

a(t)3
(x+ ΓGµ)

−4
Θ(t? − tini)Θ(t− t?) , (III.26)

where we have defined x = `/t, and κ ≡ v(t?)/α(t?) is an O(1) number within the current-carrying
attractor solution, as shown in Table II.

The expression above can be further simplified if the time at which the loop number density is evaluated
and the loop formation time belong to the same cosmological era described by a(t) ∝ tν . Then we obtain

t4n(`, t) ' c̃Fκα2
L

(1 + δ)γ(αLαs)
3ν
1+δ

(
t

tini

)− 3νδ
1+δ

(x+ ΓGµ)
−4+ 3ν

1+δ Θ(t? − tini)Θ(t− t?) . (III.27)

A couple of comments are in order. First, if we set δ = 0 we see that n(`, t)t4 agrees with the usual
scaling in which ` and t only enter through the dimensionless ratio x. We then recover n(`, t)t4 ∝
(x+ ΓGµ)β with β = −5/2 (−2) in radiation (matter) domination, see e.g . Ref. [15].

On the other hand, the loop number density does not scale for δ 6= 0, namely we still have an explicit
dependence on t due to the presence of tini. In particular, since δ ∈ (−1, 0) the loop number density
increases with the duration of the current-carrying phase, t/tini.

We present the loop number density in the current-carrying phase in Fig. 5 (left panel). Comparing
to the standard case, we can infer that during the current-carrying phase more loops are produced at
shorter lengths. This already suggests interesting implications for the calculation of the gravitational-
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wave spectrum (Section IV), which depends on the loop number density. The right panel of Fig. 5
features a gap which arises due to the fact that we assume an instantaneous switch from the steady
current attractor to the standard attractor for the long string network. This means that the loop size at
formation is suddenly changed from αLα(tlast) to αLα, with α > α(tlast). In the realistic case of a current
gradually turning on and off, the gap will be partially filled, thus increasing the gravitational-wave signal
coming from the current–carrying phase. In this sense, our assumption of instantaneous turn off yields
a conservative estimate of the spectrum.

C. Energy density of the network

Let us now move on to discuss how the different components of the energy density related to the cosmic
string network behave compared to the critical density. In the standard scaling regime (δ = 0), both the
long strings and the loops constitute a constant and subdominant component of the energy density at
all times. This is, however, no longer true in the presence of currents.

For the long strings, we have

ρ∞
ρc
∼ Gt2 µ

L2
=

Gµ

α(t)2
' Gµ

α2
s

(
t

tini

)−2δ
, (III.28)

where we have taken the critical density as ρc ∼ 1/Gt2. This shows that, given negative δ for steady
current attractor (see again Section II C), the energy density in the long strings has a power-law growth
with the duration of the steady-current phase t/tini.

The time evolution of the energy density in loops is given by the following integral

ρL
ρc
∼ Gt2

∫
d` µ ` n(`, t) , (III.29)

which can be evaluated assuming αLα(t) � ΓGµ by using (III.27) for the radiation era. The result
becomes particularly simple when we look at sufficiently late times, t� tini/ΓGµ, for which we find†

ρL
ρc
∼ c̃Fκα2

L

(1 + δ)(αLαs)
3ν
1+δ

(Gµ)3+pΓ2+p

(1 + p)(2 + p)

(
t

tini

)− 3νδ
1+δ

. (III.30)

Here, p = −4 + 3ν/(1 + δ) ≈ −2.2.
When comparing the energy in loops with the energy in the long strings we obtain

ρ∞
ρc

(
ρL
ρc

)−1
∼ (Gµ)−2−p

(
t

tini

)−2δ+3ν δ
1+δ

∼ (Gµ)0.214...
(

t

tini

)0.034...

. (III.31)

We thus conclude that given the very mild time growth in (III.31) and the small prefactor, the energy
density in loops will generically be dominant with respect to the long string network. For completeness,
note that in the case with no currents and δ = 0, we recover the standard results ρ∞/ρc ∼ Gµ and
ρL/ρc ∼ (Gµ/Γ)1/2 .

Finally, let us evaluate the energy density in gravitational waves during the current-carrying phase.
Each loop is expected to emit with a constant power P = ΓGµ2 during its lifetime, so that the total
amount of energy in gravitational waves at the time t is given by

ρGW

ρc
= Γ(Gµ)2t2

∫ t

tini

[
a(t′)
a(t)

]4
N (t′) dt′ , (III.32)

where N (t) is the total number density obtained after integrating n(`, t) over all possible loop lengths,
N (t) =

∫
n(`, t) d` . The lower integration bound, tini, ensures that we select contributions only from

loops formed after the occurrence of the current. Loops formed prior to the current carrying phase, as
well as loops formed afterwards, can be accounted for in the standard way.

† Notice that this is compatible with αLα(t) � ΓGµ, which requires t� tini/(ΓGµ)1/|δ|.
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FIG. 6: Energy density in small loops, ρL, gravitational waves, ρGW, and long string network, ρ∞, normalized
to the critical density ρc ∼ 1/Gt2, as a function of time after the onset of the current–carrying phase, tini.

Direct evaluation of (III.32) at times t � tini/ΓGµ shows that the energy density in loops and in
gravitational waves are proportional to each other and of the same order,

ρGW

ρL
' (1 + δ)(−2− p)
−2− 2δ + 4ν + δν

∼ O(1) . (III.33)

A summary plot with the behavior of the different components of the energy density associated to
the cosmic strings is shown in Fig. 6. We conclude that the most relevant contribution to the total
energy density comes from the population of small loops and it grows in time. This can still be a
subdominant component provided that the right hand side of (III.30) is much smaller than unity at the
time at which the current-carrying phase has ended, providing agreement with standard cosmology. The
disappearance of the current can occur because of a change in the microscopic properties of the system,
e.g . the occurrence of a phase transition (see the comment on RHN currents in the Introduction), or due
to the onset of matter domination in which the steady current attractor no longer exists.

Let us close this section by stating that, in the current-carrying scenario, the appearance of vortons
is anticipated [62–68]. However, the originality of the steady-current attractor is the combination of a
high current and of a reduced loop formation size, which favor the formation of vortons.

One may be concerned that the abundance of vortons ρvort could become dominant and overclose the
Universe. We address this concern by bounding ρvort from above with the extreme scenario where the
loops produced by the network become vortons instantly, i.e. Γ = 0 in Eq. (III.26). Performing an
integral analogous to Eq. (III.29), we find that the abundance of vortons is bounded by

ρvort
ρc
� c̃FκGµ

α2
sγ(2 + 2δ − 3ν)

(
t

tini

)2−3ν
. (III.34)

Therefore, in radiation era ν = 1/2, the steady-current attractor needs to last at least until t ∼ (Gµ)−2tini
for the vortons to dominate the energy density of the Universe. However, as we assume a finite lifetime
of the current propagating on strings, reaching this point can be easily avoided.

Another possible concern could be that vortons may reduce the amount of GWs produced. It has been
shown quantitatively in Ref. [67], in the context of standard scaling, that this does not happen. Indeed,
the loops produced by the network during scaling need to lose nearly all of their energy to GWs before
reaching a size small enough to become stable vortons. In the steady-current attractor solution, the
situation is less clear due to the high currents on the string. In this work we assume that the conclusions
of Ref. [67] still hold and hence that vortons are not relevant for the GW signature. If this were not the
case, then the vortons would become unstable when the current leaks at tend and resume GW production.
We stress that this scenario deserves a more thorough and quantitative analysis in future work.
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IV. GRAVITATIONAL WAVE SIGNAL

Equipped with the modified loop number density during the current-carrying phase we are now ready
to present the gravitational wave spectra emitted by CCCSs. We work with the assumption that the
current-carrying phase does not match the time of string network formation. In particular, it is expected
that the current does not form at the time of the phase transition, but only at a later time when the
temperature of the thermal bath has become sufficiently low. This is because the temperature needs to
be smaller than the difference in current-carrier mass inside and outside of the string.

We describe the gravitational wave signal as the superposition of three different contributions,

ΩtotGW = Ω0
GW(tF , tini) + ΩGW(tini, tend) + Ω0

GW(tend, t0) , (IV.35)

stemming from

(i) loops whose formation time is tF < t < tini, where tF is the formation time of the cosmic string
network (which can be approximately taken as the time of the corresponding phase transition) and
tini is the time at which the current first appears. For these loops we adopt the standard loop
production function ;

(ii) loops formed during the current-carrying phase, for which the loop number density is given in
(III.24). This will be the case for tini < t < tend, where tend corresponds to the time at which the
current on the network disappears either because of leakage effects or because the Universe entered
matter domination era (as discussed in Section II C 2, there is no steady current attractor solution
during such times) ;

(iii) loops formed after the end of the current carrying phase, t > tend, for which the production
function is again taken to be the standard one as in (i). We argue that this is a conservative
approach because the system will not instantaneously enter the scaling solution; instead, there will
be a period of enhanced loop production right after the current is switched off .

For contributions from (i) and (iii) we use the standard formula for energy density in gravitational
waves, Ω0

GW, see for instance Eq. (27) in Ref. [22]. Hence, we will only show here the expression for
gravitational wave energy density during current-carrying phase. Note that the average power spectrum
for GW emission reads Pk = Γ/(kqζ(q)), and we focus on cusps for which q = 4/3. In this work we take
Γ = 50; we stress that in a recent work [70], the authors established a phenomenological relation between
Γ and the value of the current. It turns out that by fixing Γ our prediction for the modification of the
gravitational wave spectrum in the current-carrying phase is on the conservative side.

Utilizing results from Section III, we obtain the following formula for k-th mode contribution to the
gravitational wave spectrum

ΩkGW(tini, tend) =
2kΓkGµ2

ρcf

c̃Fκ
γ

∫ t0

tini

θ(tk∗ − tini)θ(tend − tk∗)(tk∗)−4 dt

αLα(tk∗)3[ΓGµ+ αLα(tk∗)(1 + δ)]

[
a(t)

a0

]5[
a(tk∗)
a(t)

]3
(IV.36)

where t0 denotes the present time and tk∗ is the formation time of the loop contributing to the production
of gravitational waves of frequency f at time t. Note that the Heaviside functions θ(tk∗ − tini)θ(tend− tk∗)
only require that the loops were formed during the steady current attractor. Therefore, some of these
loops continue to emit gravitational waves after the end of the steady current attractor. The formation
time tk∗ is the solution of

2ka(t)

fa(t0)
= αLα(tini)(t

k
∗/tini)

δtk∗ − ΓGµ(t− tk∗) , (IV.37)

for which a good approximation is given by

tk∗ ≈
{

tδini
αLα(tini)

[
a(t)

a(t0)

2k

f
+ ΓGµt

]} 1
1+δ

. (IV.38)

In order to compute the gravitational wave spectra, we have also set F = 0.1, γ = 1, αL = 0.37,
αs = 0.27, which are the values commonly used in the literature.
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FIG. 7: GW spectrum as a function of the time at which the current appears, tini, and disappears, tend, from
the network for a string tension of Gµ = 5 × 10−11. The parameter region labeled LVK is disfavored by searches
for the stochastic gravitational wave background at ground-based interferometers [69]. We excluded GW signals
with h2ΩGW > 5 × 10−9h2 at 20 Hz corresponding to the limits set on a flat power spectrum with a log-uniform
prior.

In passing, let us stress that, as expected, the general expression in Eq. (IV.36) matches the standard
one in the limit δ → 0. In order to compute the GW spectrum, we sum over 106 modes, namely,

ΩGW(tini, tend) =

106∑
k=1

ΩkGW(tini, tend) . (IV.39)

We stress that the current is expected to cause a backreaction on string loops. This can lead to the
emission of current carriers from strings cusps, which would result in the smoothing of the cusps. We,
therefore, in addition to the full contribution from all cusps also compute the case where string loops
oscillate at their fundamental frequency (only taking mode k = 1). Hence, for each of the five benchmark
cases in Fig. 1 we show both k = 1 and k . 106 contributions and this is what gives a “width” to the
predicted gravitational wave spectra.

What is immediately obvious by looking at each of the spectral predictions is an enhancement in ΩtotGW
arising from the period when the current is on. This enhancement can be explained by looking at the
denominator of Eq. (IV.36). For −1 < δ < 0, αLαs[αLαs(1 + δ)(tk∗/tini)

δ + ΓGµ] would attain smaller
values than in the standard δ = 0 case, leading to the rise in the spectrum. The origin of the enhancement
is the increased loop number density in presence of a current when compared to the standard case.

In Fig. 1 we consider five different scenarios (denoted with (A)–(E)), corresponding to different values
of tini and tend and this is what causes the rise of the spectrum in different frequency regions. Benchmark
points (A), (C) and (E) are computed for Gµ = 0.5×10−10. For benchmark point (A), tend is the time of
QCD phase transition; further, the current for point (C) ends at the time of electroweak phase transition
while for (E) the current stops flowing at the time that is 10−4 times smaller than for (C). As the
current gets turned off earlier, the spectral enhancement shifts to higher frequency. Benchmark points
(A) and (C) are receiving current-induced spectral modification in the frequency region where ground-
based interferometers such as LIGO [71, 72] are most sensitive. In addition, (A) can also be tested at
forthcoming space-based interferometers such as BBO [73] and DECIGO [74]. Benchmark point (E), on
the other hand, is interesting in the context of experiments sensitive to GWs in MHz region [75]. The
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two remaining benchmark points are calculated for Gµ = 0.5×10−17. For (B) and (D), the current stops
at QCD and electroweak phase transition, respectively. As Gµ gets smaller, we observe that for a fixed
tend the spectral enhancement is shifted to higher frequencies; we can see that by comparing (A) and
(B) as well as (C) and (D) for which current stops flowing at the same time.

We point out that the enhancement in the spectrum in the region where PTA experiments such as
NANOGrav [24] are sensitive is not supported by standard cosmology; the same holds for LISA [76, 77].
Namely, to make those experiments sensitive to the considered CCCS scenario, one would need to require
that currents last for a very long time, which can easily result in an overclosure problem or unwanted
modifications of the CMB power spectrum. In addition, it is not clear whether any microscopic theory
of current generation and decay would realistically allow one to delay the time of current quenching
to very late times. Naively, we would expect phase transitions in the string network to occur much
earlier. We nevertheless observe that a portion of the parameter space of cosmic string tension that is
in the standard case considered to be unreachable by ground-based detectors such as LIGO, becomes
testable in the scenario where cosmic strings feature currents. For all benchmark points in Fig. 1 we use
tini = 10−35 s. In Fig. 7 we show the dependence of the total gravitational wave spectrum as a function
of tini and tend fixing the string tension as Gµ = 10−11. The region excluded by present ground-based
interferometers is indicated in the upper left corner as “LVK”. Notice that for tini < 10−28 s the exclusion
line becomes flat and the only non trivial dependence is on tend, which controls the time at which the
network is assumed to be back in scaling. This is because further lowering tini will enhance the signal,
but only at frequencies outside the LVK sensitivity.

V. CONCLUSIONS

The emission of gravitational waves by cosmic-string networks in the early Universe is typically studied
in terms of simple models, e.g., the Nambu–Goto action or the Abelian Higgs model. In this work, we
made an attempt to go beyond the standard Nambu–Goto approximation by investigating the implica-
tions for the gravitational-wave spectrum in the presence of additional worldsheet degrees of freedom,
namely, charge carriers that give rise to a current flowing on cosmic strings. We specifically focused on
neutral currents, i.e., currents composed of particles that do not interact with any long-range force field,
in order to avoid energy loss of the string network via other decay channels on top of the emission of
gravitational waves. At the same time, we restricted ourselves to the case of chiral currents, which are
characterized by a particularly simple state parameter K = Q2 − J2 = 0 and which appear to be well
motivated in view of the possibility of chiral RHN currents on cosmic strings in SO(10) GUT models.

In order to study the evolution of a current-carrying cosmic string (CCCS) network, we employed
the generalized velocity-dependent one-scale model formulated in Ref. [47], which allows one to track
the time dependence of three characteristic properties of the network: its correlation length, the RMS
velocity of long strings, and the strength of the current carried by the network. After rewriting them as
a nonlinear autonomous system, we analyzed and solved the generalized VOS equations, which allowed
us to identify two attractor solutions: one solution in the vicinity of the standard VOS attractor solution
featuring a decaying current, Y → 0; as well as a new solution in the large-current regime, Y → 1,
featuring a decaying dimensionless correlation length α = L/t as well as a decaying RMS velocity v. The
second attractor solution can be reached whenever the process of current formation on cosmic strings
results in a large initial current that is of O (1) right from the start; see e.g . the Ymin values in Tab. II.
In future work, it will therefore be interesting to identify concrete microscopic CCCS models that can
give rise to such large currents on cosmic strings, i.e., physical current energy densities as large as O (µ).

For the purposes of this paper, we decided to restrict ourselves to a bottom-up phenomenological
analysis and focus on the implications of the second attractor solution of the generalized VOS model for
the gravitational-wave spectrum. To this end, we computed the loop number density as well as energy
density of a CCCS network based on the Y → 1 attractor solution, which led us to several interesting
observations. First of all, the shrinking dimensioneless correlation length α = L/t during the current-
carrying phase results in the production of smaller loops, which boosts the loop number density in the
small-loop regime and causes a gap in the loop number density after the end of the current-carrying
phase; see Fig. 5. At the same, the steadily decreasing value of α results in a growing fractional energy
density of long strings, Ω∞ = ρ∞/ρc ∝ α−2, which eventually translates into growing fractional energy
densities of loops and gravitational waves; see Fig. 6. The extra energy in gravitational waves notably
manifests itself in a peak-like enhancement of the standard gravitational-wave spectrum from cosmic
strings whose boundaries are controlled by the times of current generation and decay; see Fig. 1.

The boosted gravitational-wave signal across large ranges in frequency implies interesting prospects for
current and upcoming gravitational-wave experiments. Values of the cosmic-string tension that are out
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of reach of existing experiments may e.g . be probed in the near future if currents should be responsible
for an enhanced signal in the right frequency band; see e.g . benchmark points (A) and (C). At the same,
we observe that gravitational waves from CCCSs are an interesting target for planned gravitational-wave
searches at high frequencies, reaching up to the MHz regime; see e.g . benchmark point (E). Finally, we
caution that our results come with a sizable uncertainty, which is, at least to some extent, reflected in
the width of the different bands in Fig. 1. Ultimately, our results call for an independent confirmation
based on numerical simulations. The validity of the standard VOS model has been well confirmed
by simulations; similarly, simulations of CCCS networks might allow one to confirm the validity of the
generalized VOS model, and hence our promising predictions for the associated gravitational-wave signal.
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