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Abstract

We study probes of neutral triple gauge couplings (nTGCs) at the LHC and the proposed
100TeV pp colliders, and compare their sensitivity reaches with those of the proposed
e+e− colliders. The nTGCs provide a unique window to the new physics beyond the
Standard Model (SM) because they can arise from SM effective field theory (SMEFT)
operators that respect the full electroweak gauge group SU(2)L⊗U(1)Y of the SM only
at the level of dimension-8 or higher. We derive the neutral triple gauge vertices (nT-
GVs) generated by these dimension-8 operators in the broken phase and map them onto
a newly generalized form factor formulation, which takes into account only the residual
U(1)em gauge symmetry. Using this mapping, we derive new relations between the form
factors that guarantee a truly consistent form factor formulation of the nTGVs and re-
move large unphysical energy-dependent terms. We then analyze the sensitivity reaches
of the LHC and future 100TeV hadron colliders for probing the nTGCs via both the
dimension-8 nTGC operators and the corresponding nTGC form factors in the reaction
pp(q q̄)→Zγ with Z→ `+`−, ν ν̄ . We compare their sensitivities with the existing LHC
measurements of nTGCs and with those of the high-energy e+e− colliders. In general, we
find that the prospective LHC sensitivities are comparable to those of an e+e− collider
with center-of-mass energy 61TeV, whereas an e+e− collider with center-of-mass energy
(3− 5)TeV would have greater sensitivities, and a 100TeV pp collider could provide the
most sensitive probes of the nTGCs.

( Phys. Rev. D in press, Editors’ Suggestion )
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1 Introduction

Neutral triple-gauge couplings (nTGCs) provide a unique window for probing the new physics
beyond the Standard Model (SM). It is well known that they do not appear among the
dimension-4 terms of the SM Lagrangian, nor are they generated by dimension-6 terms in its
extension to the Standard Model Effective Field Theory (SMEFT) [1]. Instead, the nTGCs
first appear through the gauge-invariant dimension-8 operators [2]-[6] in the SMEFT. Hence
any indication of a non-vanishing nTGC would be direct prima facie evidence for new physics
beyond the SM, which is different in nature from anything that might be first revealed by
dimension-6 operators of the SMEFT [7]-[9]. Moreover, searching for the effects of interference
between the other dimension-8 interactions and the SM contributions to amplitudes must
contend with possible contributions that are quadratic in dimension-6 interactions, which is
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not an issue for the nTGCs.

Relatively few experimental probes of dimension-8 SMEFT interactions have been proposed
in the literature. One of them is the nTGCs mentioned above [2]-[6], which first arise from
the dimension-8 operators of the SMEFT and have no counterpart in the SM Lagrangian of
dimension-4 or in the dimension-6 SMEFT interactions. Recent works have studied how the
nTGCs can be probed by measuring Zγ production at high-energy e+e− colliders [5][6][10] and
pp colliders [11] under planning. Other examples include light-by-light scattering [12], which
has been measured at the LHC and could also be interesting for high-energy e+e− colliders [13],
and the processes gluon+gluon→ γ+ γ [14] and gluon+gluon→Z + γ [15], which have been
probed at the LHC. There are also recent studies on the dimension-8 operators induced by
top-like heavy vector quarks and the their probes via tt̄h production at hadron colliders [16],
and on the dimension-8 operators induced by the heavy Higgs doublet of the two-Higgs-doublet
model [17].

In this work, we present a systematic study of the sensitivity reaches of probing the
dimension-8 nTGC interactions by measuring Zγ production at the LHC(13TeV) and the
pp(100TeV) colliders. The nTGCs are coupling coefficients of the the neutral triple gauge
vertices (nTGVs), which are often parametrized in terms of effective form factors that respect
only the residual U(1)em gauge symmetry of the electromagnetism. This is in contrast with the
dimension-8 nTGC operators of the SMEFT, which respect the full electroweak gauge group
SU(2)L⊗U(1)Y of the SM. We derive the nTGVs from these dimension-8 operators in the
broken phase and map them onto a newly generalized form factor formulation of the nTGVs.
Using this mapping, we derive new nontrivial relations among the form factor parameters that
ensure a truly consistent form factor formulation of the nTGVs and remove unphysically large
energy-dependent terms. Using these, we analyze systematically the sensitivity reaches of the
LHC and future hadron colliders for nTGC couplings via both the dimension-8 nTGC opera-
tors and the corresponding nTGC form factors. We also make a direct comparison of our LHC
analysis with the existing LHC measurements of nTGCs in the reaction pp(q q̄)→Zγ with
Z→ν ν̄ by the CMS [18] and ATLAS [19] collaborations based on the conventional nTGC form
factor formulation that takes into account only the unbroken U(1)em gauge symmetry [3][4].
From this comparison, we demonstrate the importance of using our proposed SMEFT form
factor approach to analyze nTGC constraints at the LHC and future high-energy colliders.

The outline of this paper is as follows. In Section 2 we review the parametrization of nTGCs
and derive the cross sections for the reaction q q̄→Zγ (followed by Z→ff̄ decays) as induced
by the nTGCs. We also analyze the perturbative unitarity bounds on the nTGCs, showing that
they are much weaker than the collider limits we present in Sections 4-5. Then, in Section 3 we
present a newly generalized form factor formulation of the nTGCs and demonstrate that the
full spontaneously-broken electroweak gauge symmetry SU(2)L⊗U(1)Y of the SM leads to
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important restrictions on the nTGC form factors. As noted above, the full electroweak gauge
symmetry is respected by the construction of the SMEFT, where the nTGCs appear first
through dimension-8 operators. Using this formulation, we study in Section 4 the sensitivities
of the LHC and future pp(100TeV) colliders for probes of the nTGCs in the reaction pp(qq̄→
Zγ) with Z→` ¯̀, ν ν̄ . We make a direct comparison of the sensitivity bounds using our SMEFT
formulation of nTGCs with the existing LHC measurements on the nTGCs. In Section 5, we
further present a systematic comparison with the sensitivity reaches of the prospective high-
energy e+e− colliders. Finally, we summarize our findings and conclusions in Section 6.

2 Scattering Amplitudes and Cross Sections for nTGCs

In this section, we first set up the notations and present the dimension-8 operators for the
neutral triple gauge couplings (nTGCs) and the corresponding neutral triple gauge vertices
(nTGVs). Then, we derive the nTGC contributions to the Zγ amplitudes and cross sections.
Finally, we derive the perturbative unitarity constraints on the nTGC couplings.

2.1 nTGCs from the Dimension-8 Operators

In previous works [5][6] we studied the dimension-8 operators that generate nTGCs and for
their contributions to helicity amplitudes and cross sections at e+e− colliders. In particular,
we identified a new set of CP-conserving pure gauge operators of dimension-8 for the nTGCs,
one of which (OG+) can give leading contributions to the neutral triple gauge boson vertices
ZγZ∗ and Zγγ∗ with enhanced energy-dependences ∝E5. In this subsection, we recast them
for our applications to the LHC and future high-energy pp colliders.

The general dimension-8 SMEFT Lagrangian takes the following form:

∆L(dim-8) =
∑
j

c̃j

Λ̃4
Oj =

∑
j

sign(c̃j)

Λ4
j

Oj =
∑
j

1

[Λ4
j ]
Oj , (2.1)

where the dimensionless coefficients c̃j are expected to be around O(1) and may take either
sign, sign(c̃j)=± . For each dimension-8 operator Oj , we have defined in Eq.(2.1) the corre-
sponding effective cutoff scale for new physics, Λj ≡ Λ̃/|c̃j|1/4 . We also introduced a notation
[Λ4

j ]≡ sign(c̃j)Λ
4
j .

We have analyzed the following set of dimension-8 operators [5] that are relevant for our
nTGC analysis:

gOG+ = B̃µνW
aµρ(DρDλW

aνλ+DνDλW a
λρ), (2.2a)

gOG− = B̃µνW
aµρ(DρDλW

aνλ−DνDλW a
λρ), (2.2b)

O
B̃W

= iH†B̃µνW
µρ
{
Dρ, D

ν
}
H + h.c., (2.2c)
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OC+ = B̃µνW
aµρ
[
Dρ(ψLT

aγνψL) +Dν(ψLT
aγρψL)

]
, (2.2d)

OC− = B̃µνW
aµρ
[
Dρ(ψLT

aγνψL)−Dν(ψLT
aγρψL)

]
. (2.2e)

The fermionic operators OC+ and OC− do not contribute directly to the nTGC couplings,
but are connected to the three bosonic nTGC operators (OG+,OG−,OB̃W ) by the equation of
motion [5]:

OC+ = OG−−OB̃W , (2.3a)

OC− = OG+ − { iH†B̃µνW
µρ
[
Dρ, D

ν
]
H+ i 2(DρH)†B̃µνW

µρDνH + h.c.}. (2.3b)

They both contribute to the quartic ff̄Zγ vertex and thus to the on-shell amplitude T [ff̄→
Zγ ] . Hence they can be probed by the reaction ff̄→Zγ . However, we note that the operators
OG+ and OC− give exactly the same contribution to the on-shell amplitude T [ff̄→Zγ] at
tree level [5], because Eq.(2.3b) shows that the difference (OC−−OG+) is given by the Higgs-
doublet-related term on the right-hand side (RHS) which contains at least 4 gauge fields and
is thus irrelevant for the amplitude T [ff̄→Zγ ] at the tree level.

We consider first the dimension-8 nTGC operators OG+,OB̃W and OG−. These operators
contribute to the ZγZ∗ and Zγγ∗ vertices as follows:

ΓαβµZγZ∗(G+)(q1, q2, q3) = − v(q2
3−M2

Z)

MZ [Λ4
G+]

(
q2

3 q2νε
αβµν+ 2qα2 q3νq2σε

βµνσ
)
, (2.4a)

ΓαβµZγγ∗(G+)(q1, q2, q3) = − sWv q
2
3

cWMZ [Λ4
G+]

(
q2

3 q2νε
αβµν+ 2qα2 q3νq2σε

βµνσ
)
, (2.4b)

Γαβµ
ZγZ∗(B̃W )

(q1, q2, q3) =
vMZ (q2

3−M2
Z)

[Λ4
B̃W

]
εαβµνq2ν , (2.4c)

ΓαβµZγγ∗(G−)(q1, q2, q3) = − sW vMZ

cW [Λ4
G−]

εαβµνq2νq
2
3 . (2.4d)

In the above and afterwards, the three gauge bosons are defined as outgoing.

We consider next the fermion-bilinear operator OC+
, which contributes to the effective

contact vertex qq̄Zγ as follows:

Γαβqq̄Zγ(C+)(q1, q2) = −sign(c̃C+)
2M2

ZT3

Λ4
εαβµνq2νγµPL , (2.5)

where the four external fields are on-shell. In the above formula, we have introduced the third
component of the weak isospin T3 = ± 1

2
and the chirality projections PL(R) = 1

2
(1∓γ5).

2.2 nTGC Contributions to Zγ Amplitude and Cross Section

Next, we study the helicity amplitude for the quark and antiquark annihilation process q q̄→
Zγ , where the quark has weak isospin T3 and electric charge Q. We can compute the SM
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contributions to the helicity amplitude of q q̄→Z(λ)γ(λ′) as follows:

T ss′,Tsm

−− −+
+− ++

=
−2e2Q

sW cW (s−M2
Z)

(c′Lcot θ
2
−c′Rtan θ

2

)
M2

Z

(
−c′Lcot θ

2
+c′Rtan θ

2

)
s(

c′Ltan θ
2
−c′Rcot θ

2

)
s

(
−cLtan θ

2
+cRcot θ

2

)
M2

Z

, (2.6a)

T ss′,Lsm (0−, 0+) =
−2
√

2e2Q(c′L+c
′
R)MZ

√
s

sW cW (s−M2
Z)

(1, −1) , (2.6b)

for the helicity combinations λλ′ = (−−,−+,+−,++) and λλ′ = (0−, 0+). In the above,
we have defined the coupling coefficients (c′L, c

′
R) = ((T3 −Qs2

W )δ
s,− 1

2

, −Qs2
W δs, 1

2

) with the
notations (sW , cW ) = (sinθW , cosθW ) and the subscript index s = ∓1

2
denoting the initial-

state fermion helicities. If the initial-state quark and antiquark masses are negligible, the
relation s =−s′ holds.

We find the following contributions to the corresponding helicity amplitudes from the
dimension-8 operator OG+ (OC−):

T ss
′,T

(8),G+

−− −+
+− ++

=
(c′L+c

′
R)(s−M2

Z)s sinθ

[Λ4
G+]

1 0

0 −1

, (2.7a)

T ss
′,L

(8),G+(0−, 0+) =

√
2MZ(s−M2

Z)
√
s

[Λ4
G+]

(
c′Lsin2 θ

2
− c′Rcos2 θ

2
, c′Rsin2 θ

2
− c′Lcos2 θ

2

)
, (2.7b)

where the coupling coefficients are given by (c′L, c
′
R) =−T3(δ

s,− 1
2

, 0), and we have used the
notations [Λ4

G+] ≡ sign(c̃G+)Λ4
G+ for OG+ . We note that in Eq.(2.7a) the off-diagonal ampli-

tudes vanish exactly. This is because the final state Z(λ)γ(λ′) with helicities λλ′ = +−,−+

should have their spin angular momenta pointing to the same direction in their central-of-mass
frame and thus the sum of their spin momenta would have magnitude equal 2. But this is
disallowed by the s-channel spin-1 gauge boson Z∗ or γ∗. For the same reason, the off-diagonal
amplitudes contributed by the other dimension-8 operators in the following Eq.(2.8a) have to
vanish as well.

As for the other three dimension-8 operators (OG−,OB̃W ,OC+), we derive their contribu-
tions to the helicity amplitudes of the reaction q q̄→Zγ as follows:

T ss
′,T

(8),j

−− −+
+− ++

=
(c′L+ c′R) sinθM2

Z (s−M2
Z)

[Λ4
j ]

1 0

0 −1

, (2.8a)

T ss
′,L

(8),j (0−, 0+) =

√
2MZ(s−M2

Z)
√
s

[Λ4
j ]

(
c′Lsin2 θ

2
− c′Rcos2 θ

2
, c′Rsin2 θ

2
− c′Lcos2 θ

2

)
, (2.8b)

where [Λ4
j ] = sign(c̃j)Λ

4
j and j ∈ (G− , B̃W , C+). In Eq.(2.8), the coupling factors (c′L, c

′
R)

are given by
(c′L, c

′
R) = −Qs2

W (δ
s,− 1

2
, δ
s, 1

2
), (for OG−), (2.9a)

(c′L, c
′
R) =

(
qLδs,− 1

2
, qRδs, 1

2

)
, (for O

B̃W
), (2.9b)

(c′L, c
′
R) = −T3(δ

s,− 1
2
, 0), (for OC+), (2.9c)
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and the coefficients (qL, qR) = (T3−Qs2
W , −Qs2

W ) arise from Z gauge boson couplings with
the (left, right)-handed the quarks.

The kinematics for the complete annihilation process q q̄ → Zγ→ff̄γ are defined by the
three angles (θ, θ∗, φ∗), where θ is the polar scattering angle between the direction of the
outgoing Z and the initial state quark q , θ∗ denotes the angle between the direction opposite
to the final-state γ and the final-state fermion f direction in the Z rest frame, and φ∗ is the
angle between the scattering plane and the decay plane of Z in the q q̄ center-of-mass frame
[cf. Eq.(4.8)]. We note that, at a pp collider, we cannot determine which is the initial state
quark (antiquark) in each collision, so we could only determine the scattering angle up to an
ambiguity θ ↔ π− θ . It follows that the determination of the angle between the scattering
plane and Z-decay plane also has an ambiguity φ∗ ↔ π− φ∗ .

Taking these remarks into account, we can express the full amplitude of the reaction process
q q̄ → Zγ→ff̄γ in the following form:

T ss′σσ′λ(ff̄γ) =
eMZDZ
sW cW

[√
2 eiφ∗

(
fσR cos2 θ∗

2
− fσLsin2 θ∗

2

)
T Tss′(+λ)

+
√

2 e−iφ∗
(
fσR sin2 θ∗

2
− fσLcos2 θ∗

2

)
T Tss′(−λ) + (fσR+fσL) sinθ∗T Lss′(0λ)

]
, (2.10)

where DZ = 1/(q2
1−M2

Z + iMZΓZ) comes from the Z propagator. In Eq.(2.10), the final-state
fermions have the electroweak gauge couplings given by (fσL , f

σ
R)=((T3−Qs2

W )δ
σ,− 1

2

, −Qs2
W δσ, 1

2

),
and the scattering amplitudes T Tss′(±λ) and T Lss′(0λ) represent the on-shell helicity amplitudes
for the reaction q q̄→ Zγ :

T Tss′(±λ) = T ss′,Tsm (±λ) + T ss
′,T

(8) (±λ),
(2.11)

T Lss′(0λ) = T ss′,Lsm (0λ) + T ss
′,L

(8) (0λ),

which receive contributions from both the SM and the dimension-8 operator.

Applying a lower angular cut sin θ > sin δ for some δ� 1, we derive the following total
cross section for the partonic process q q̄ → Zγ , including both the linear and quadratic
contributions of OG+ and summing over the final-state Z and γ polarizations:

σ(Zγ) =
e4(q2

L+q2
R)Q2

[
−(s−M2

Z)2−2(s2+M4
Z)ln sin δ

2

]
8πs2

W c
2
W (s−M2

Z)s2

+
e2qLQT3M

2
Z(s−M2

Z)

4πsW cW s

1

[Λ4
G+]

(2.12)

+
T 2

3 (s+M2
Z)(s−M2

Z)
3

48π s

1

Λ8
G+

+O(δ) ,

where the weak isospin T3 =± 1
2
is associated with the W3 gauge coupling, and the coefficients

(qL, qR)=(T3−Qs2
W , −Qs2

W ) are the (left, right)-handed gauge couplings of the quarks to the
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Z boson. In Eq.(2.12),
√
s denotes the center-of-mass energy of the partonic process q q̄→ Zγ ,

but for the pp collider analyses in Section 4 we will rename the above partonic center-of-mass
energy as

√
ŝ for clarity.

We define the normalized angular distribution functions as follows:

f jξ =
1

σj

dσj
dξ

, (2.13)

where the angles ξ ∈ (θ, θ∗, φ∗), and the cross sections σj (j = 0, 1, 2) represent the SM
contribution (σ0), the O(Λ−4) contribution (σ1), and the O(Λ−8) contribution (σ2), respec-
tively. In the following, we derive the explicit formulas for the normalized azimuthal angular
distribution functions f jφ∗ :

f0
φ∗

=
1

2π
+

3π2(q2
L−q2

R)(f2
L−f2

R)MZ

√
s (s+M2

Z) cosφ∗− 8(q2
L+q2

R)(f2
L+f2

R)M2
Z s cos2φ∗

16π(q2
L+q2

R)(f2
L + f2

R)
[
(s−M2

Z)2+ 2(s2+M4
Z) ln sin δ2

] +O(δ),

(2.14a)

f1
φ∗

=
1

2π
−

3π(f2
L−f2

R)(M2
Z + 5s) cosφ∗

256(f2
L+f2

R)MZ

√
s

+
s cos 2φ∗
8πM2

Z

, (2.14b)

f2
φ∗

=
1

2π
−

9π(f2
L−f2

R)MZ

√
s cosφ∗

128(f2
L+f2

R)(s+M2
Z)

, (2.14c)

where we denote the Z couplings with the initial state quarks as (qL, qR)=(T3−Qs2
W , −Qs2

W ),
and the the Z couplings with the final-state fermions as (fL, fR)=((T3−Qs2

W ), −Qs2
W ).

In the cases of the other nTGC operators Oj, we further derive their contributions to the
total cross sections of the reaction q q̄→ Zγ as follows:

σ(Zγ) =
e4(q2

L+q2
R)Q2

[
−(s−M2

Z)2−2(s2+M4
Z) ln sin δ

2

]
8πs2

W c
2
W (s−M2

Z)s2

− e2Q(qLxL−qRxR)M2
Z(s−M2

Z)(s+M2
Z)

8πsW cW s
2

1

[Λ4
j ]

(2.15)

+
(x2

L+x2
R)M2

Z(s+M2
Z)(s−M2

Z)
3

48πs2

1

Λ8
j

+O(δ) ,

where we define the relevant coupling coefficients (xL, xR) as

(xL, xR) = −Qs2
W (1, 1), (for Oj = OG−), (2.16a)

(xL, xR) =
(
T3−Qs2

W , −Qs2
W

)
, (for Oj = O

B̃W
), (2.16b)

(xL, xR) = −(T3, 0), (for Oj = OC+). (2.16c)

We see that in the high energy limit, the contributions of the SM, the interference term, and
the squared term behave as (s−1, s0, s2) respectively. We can compare the above cross section
with that of Eq.(2.12) for the nTGC operator OG+ where the SM term, the interference term,
and the squared term scale as (s−1, s0, s3) respectively. This shows that the contribution of
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OG+ to the squared term has higher energy power enhancement of s3 than the factor s2 of
the other operators.

Then, for the full process q q̄ →Zγ→ ff̄γ , we further derive the following normalized
angular distribution functions f jφ∗ for the operators (OG−,OB̃W ,OC+):

f 0
φ∗

=
1

2π
+

3π2f 2
−q

2
−MZ

√
s (s+M2

Z) cosφ∗− 8f 2
+q

2
+M

2
Z s cos2φ∗

16πf 2
+q

2
+

[
(s−M2

Z)2+ 2(s2+M4
Z) ln sin δ

2

] +O(δ), (2.17a)

f 1
φ∗

=
1

2π
− 9π(qLxL+qRxR)(f 2

L−f 2
R)
√
s cosφ∗

128(qLxL−qRxR)(f 2
L+f 2

R)MZ

+
s cos2φ∗

4π(s+M2
Z)
, (2.17b)

f 2
φ∗

=
1

2π
− 9π(x2

L−x2
R)(f 2

L−f 2
R)MZ

√
s cosφ∗

128(x2
L+x2

R)(f 2
L+f 2

R)(s+M2
Z)

, (2.17c)

where we have defined the coefficients (f 2
±, q

2
±)≡(f 2

L±f 2
R, q

2
L±q2

R), and the electroweak gauge
couplings of the final state fermions are given by (fL, fR)=((T3−Qs2

W ), −Qs2
W ).

2.3 Analysis of Unitarity Constraints on nTGCs

In this subsection, we analyze the perturbative unitarity constraints on the nTGCs, showing
that these constraints are much weaker than the sensitivity reaches of the collider probes
presented in the following Sections 3-5.

We first make the following partial-wave expansion [20] of the nTGC contributions to the
scattering amplitude for the reaction ff̄→Zγ :

aJ =
1

32π
ei(ν

′−ν)φ

∫ 1

−1

d(cos θ) dJν′ν(cos θ)T
sf sf̄ ,λZλγ

nTGC , (2.18)

where the differences of initial/final state helicities are given by ν = sf−sf̄ = ±1 and ν ′ =

λZ−λγ = 0,±1, respectively. We note that for the present collider analysis it is sufficient
to treat the initial-state fermions (f, f̄) (light quarks or leptons) as massless. Thus we have
sf =−s

f̄
, which leads to ν =±1. Hence the J=1 partial wave makes the leading contribution.

The relevant Wigner d functions are given by

d1
1,0 = − 1√

2
sin θ, d1

1,±1 = 1
2

(1± cos θ), (2.19)

and we have a general relation dJm,m′= dJ−m,−m′ .

In the case of the dimension-8 operator OG+ (or OC−), its leading contribution to the

amplitude T
sf sf̄ ,λZλγ

nTGC is given by Eq.(2.7a), as follows:

T sf sf̄ ,T(8)G+ (∓∓) = ± (c′L+c′R)s2 sinθ

[Λ4
G+]

, (2.20)

where
√
s =ECM stands for the c.m. energy of ff̄ . As for the other three dimension-8 operators

Oj ∈(OG−,OB̃W ,OC+), their leading contributions to the amplitude T
sf sf̄ ,λZλγ

nTGC are given by
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ECM(TeV) 0.25 0.5 1 3 5 25 40

ΛG+(TeV) 0.078 0.16 0.31 0.93 1.6 7.8 12
ΛB̃W (TeV) 0.058 0.098 0.16 0.37 0.55 1.8 2.6
ΛG−(TeV) 0.050 0.084 0.14 0.32 0.47 1.6 2.2
ΛC+(TeV) 0.060 0.10 0.17 0.39 0.57 1.9 2.7

|h4| 33 2.0 0.13 0.0016 2.0×10−4 3.3×10−7 5.0×10−8

|hZ3 | 53 6.6 0.83 0.031 6.6×10−3 5.3×10−5 1.3×10−5

|hγ3 | 53 6.6 0.83 0.031 6.6×10−3 5.3×10−5 1.3×10−5

Table 1: Unitarity bounds on the new physics scale Λj of the dimension-8 nTGC operators and on
the nTGC form factors hVj , as derived for various sample values of the center-of-mass energy ECM

of the reaction qq̄→Zγ or e−e+→Zγ that are relevant to the present collider study.

Eq.(2.8b), as follows:

T sf sf̄ ,L(8)j (0−, 0+) =

√
2MZ s

3/2

[Λ4
j ]

(
c′Lsin2 θ

2
− c′Rcos2 θ

2
, c′Rsin2 θ

2
− c′Lcos2 θ

2

)
, (2.21)

where the coupling factors (c′L, c
′
R) are defined in Eq.(2.9).

Then, we derive the leading p-wave amplitude a1 for the nTGC operator OG+:

|<e(aG+
1 )| =

s2

48
√

2πΛ4
G+

. (2.22)

For the other nTGC operators Oj∈(OG−,OB̃W ,OC+), we derive their leading p-wave ampli-
tudes as follows:

|<e(aj1)| =
c′L,RMZ s

3/2

24
√

2 πΛ4
j

. (2.23)

Next, we impose the partial-wave unitarity condition |<e(aJ)|< 1
2
for J=1, and derive the

following unitarity bounds on the new physics cutoff scales (ΛG+, Λj) of the nTGC operators
OG+ and Oj∈(OG−,OB̃W ,OC+), respectively:

ΛG+ >

√
s

(24
√

2π)1/4
' 0.311

√
s , (2.24a)

Λj >

(
C ′L,RMZ

12
√

2 π

)1
4(√

s
)3

4 ' 0.203
(
C ′L,R

)1
4

(
TeV
√
s3
)1

4
, (2.24b)

where
√
s =ECM denotes the center-of-mass energy of ff̄ .

In the cases of the nTGC form factors (h4, h
Z
3 , h

γ
3) defined in Eq.(3.5) of Section 3, they are

connected to the cutoff scales of (OG+,OB̃W ,OG−) via (|h4|, |hZ3 , |h
γ
3 |)= (r4/Λ

4
G+, r

Z
3 /Λ

4
B̃W

, rγ3/Λ
4
G−),

as given by Eq.(3.6). Thus, using Eq.(2.24) we further derive the following unitarity bounds
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Figure 1: Unitarity bounds on new physics cutoff scales for the nTGC operators (OG+,OB̃W ,OG−,
OC+) in plot (a) and for the nTGC form factors (|h4|, |hZ3 |, |h

γ
3 |) in plot (b). These bounds are derived

from the p-wave amplitudes of the reaction ff̄ → Zγ , where ff̄ = qq̄, e+e− with q being the light
quarks.

on the nTGC form factors:

|h4| <
24
√

2πv2M2
Z

sW cW s
2

'
(

0.597 TeV√
s

)4

, (2.25a)

|hV3 | <
6
√

2πr̄V3
sW cWC

′
L,R

v2MZ√
s3
' 0.350 r̄V3

C ′L,R

(
TeV√
s

)3

, (2.25b)

where we have used the expressions in Eq.(3.7b) for the coefficients (r4, r
V
3 ) and have defined

r̄V3 ∈(r̄Z3 , r̄
γ
3 )=(1, sW/cW ).

Using formulae (2.24) and (2.25) for the unitarity bounds, we present their values in Table 1
for various sample values of the c.m. energies ECM =(0.25, 0.5, 1, 3, 5, 25)TeV, of the reactions
qq̄→Zγ and e−e+→Zγ that are relevant to the present collider study. Then, in Fig. 1 we
present the unitarity bounds on the nTGC operators and nTGC form factors as functions
of the center-of-mass energy ECM = (0.25− 30)TeV for the reaction ff̄ → Zγ , where ff̄ =

qq̄, e+e− and q denotes the light quarks. We plot the unitarity bounds on the new physics
cutoff scales of the nTGC operators (OG+,OB̃W ,OG−,OC+) in plot (a), whereas in plot (b) we
impose the unitarity bounds on the nTGC form factors (|h4|, |hZ3 |, |h

γ
3 |), as derived from the

p-wave amplitudes. Finally, by comparing the unitarity bounds of Table 1 and Fig. 1 with our
collider bounds summarized in Tables 9-10 and in Figs. 10-11 of Section 5, we find that these
perturbative unitarity bounds are much weaker than our collider bounds. Hence, they do not
affect our collider analyses in the following Sections 4-5.

3 Form Factor Formulation for nTGCs

We study in this Section the form factor formulation of the neutral triple gauge vertices
(nTGVs) ZγV ∗. After imposing Lorentz invariance, the residual electromagnetic U(1)em gauge
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symmetry and CP conservation, they are conventionally expressed in the following form [3][4]:

ΓαβµZγV ∗(q1, q2, q3) =
e(q2

3 −M2
V )

M2
Z

(
hV3 q2νε

αβµν+
hV4
M2

Z

qα2 q3ν q2σε
βµνσ

)
, (3.1)

where the gauge bosons are denoted by V≡Z, γ and the form factor parameters (hV3 , h
V
4 ) are

treated as constant coefficients for the purposes of experimental tests [18].1

We stress that the spontaneous breaking of the SM electroweak gauge symmetry requires
the nTGCs to be generated only by the gauge-invariant effective operators of dimension-
8 or higher. This implies that the consistent form factor formulation of the neutral triple
gauge vertices must map precisely the expressions for these gauge-invariant nTGC operators
in the broken phase. This precise mapping between the nTGVs in the broken phase of these
dimension-8 nTGC operators (2.2) imposes nontrivial relations between the parameters of
the nTGVs in the form factor formulation and removes possible unphysical energy-dependent
terms in them.2

By direct power counting, we find that the dimension-8 operator OG+ contributes to the
nTGVs with a leading E5 energy dependence. Based on this and the above observations, we
find that the conventional form factor formula (3.1) is not compatible with the gauge-invariant
SMEFT formulation, and a new term must be added, labelled by hV5 in the following. With
these remarks in mind, we express the neutral triple gauge vertices ZγV ∗ as follows:

Γ
αβµ(8)
ZγV ∗ (q1, q2, q3) =

e(q2
3−M2

V )

M2
Z

[(
hV3 + hV5

q2
3

M2
Z

)
q2νε

αβµν +
hV4
M2

Z

qα2 q3ν q2σ ε
βµνσ

]
, (3.2)

where the form factors hVi are taken as constants in the present study. The parametrization
of the nTGVs in Eq.(3.2) corresponds to the following effective Lagrangian:

L =
e

M2
Z

[
−
[
hγ3(∂σF

σρ) + hZ3 (∂σZ
σρ) +

hγ5
M2

Z

(∂2∂σF
ρσ) +

hZ5
M2

Z

(∂2∂σZ
ρσ)

]
ZαF̃ρα

+

{
hγ4

2M2
Z

[�∂σF ρα] +
hZ4

2M2
Z

[
(�+M2

Z)∂σZρα
]}
ZσF̃ρα

]
. (3.3)

which differs from the conventional nTGV form factor Lagrangian [2] by the new hV5 terms.

We now compare our modified nTGV formula (3.2) with the nTGVs in Eqs.(2.4a)-(2.4d) as
predicted by the gauge-invariant dimension-8 nTGC operators (OG+, OG−, OB̃W ) in Eqs.(2.2a)-
(2.2c), which should match exactly case by case. In the case of the operatorOG+, this matching

1qα2 q3ν q2σε
βµνσ is equivalent to qα3 q3ν q2σε

µβνσ under the on-shell condition (qα2 + qα3 )ε∗α = −qα1 ε∗α= 0 .
2The spontaneous breaking of the SM electroweak gauge symmetry has many important physical conse-

quences that, most notably, guarantee the renormalizability [21] of the SM electroweak gauge theory. Here
our new observation is that the spontaneous breaking of the electroweak gauge symmetry requires nontrivial
extension of the conventional form factor parametrization and imposes new restrictions on these form factors
that go beyond the residual U(1)em gauge symmetry alone. These considerations were not incorporated in the
conventional form factor formulation of the nTGVs [3][4].
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leads to the following two restrictions on the form factors in Eq.(3.2):

hV4 = 2hV5 , (3.4a)

hZ4 =
cW
sW

hγ4 , (3.4b)

where henceforward we denote h4 ≡ hZ4 for convenience. These conditions demonstrates that
there are only three independent form-factor parameters (hZ3 , h

γ
3 , h4). Applying the condition

(3.4a), we can express the ZγV ∗ vertex (3.2) as follows:

Γ
αβµ(8)
ZγV ∗ (q1, q2, q3) =

e(q2
3−M2

V )

M2
Z

[(
hV3 +

hV4
2M2

Z

q2
3

)
q2ν ε

αβµν +
hV4
M2

Z

qα2 q3ν q2σ ε
βµνσ

]
. (3.5)

Comparing the nTGVs (2.4) predicted by the dimension-8 operators (2.2a)-(2.2c) with the
form factor formulation (3.5) of the nTGVs, we can connect the three independent form-factor
parameters (hZ3 , h

γ
3 , h4) to the cutoff scales (ΛG+, ΛG−, Λ

B̃W
) of the corresponding dimension-

8 operators (OG+,OG−,OB̃W ), as follows:

h4 = −
sign(c̃G+)

Λ4
G+

v2M2
Z

sW cW
≡ r4

[Λ4
G+]

, hV3 = 0, for OG+ , (3.6a)

hZ3 =
sign(c̃

B̃W
)

Λ4
B̃W

v2M2
Z

2sW cW
≡ rZ3

[Λ4
B̃W

]
, hγ3 , h

V
4 = 0, for O

B̃W
, (3.6b)

hγ3 = −
sign(c̃G−)

Λ4
G−

v2M2
Z

2c2
W

≡ rγ3
[Λ4

G−]
. hZ3 , h

V
4 = 0, for OG− , (3.6c)

where the form factor h4 is defined below Eq.(3.4) and we have used the notations:

[Λ4
G+] = sign(c̃G+)Λ4

G+ , [Λ4
B̃W

] = sign(c̃
B̃W

)Λ4
B̃W

, [Λ4
G−] = sign(c̃G−)Λ4

G− , (3.7a)

r4 = − v2M2
Z

sW cW
, rZ3 =

v2M2
Z

2sW cW
, rγ3 = − v2M2

Z

2c2
W

. (3.7b)

From the above, we see that only the operator OG+ can directly contribute to the form factor
hV4 , as in Eq.(3.6a), which can be understood from the explicit formulae (2.4a). We note that
the operator O

B̃W
contains Higgs-doublet fields and thus cannot contribute to the hV4 term in

Eq.(3.5), but O
B̃W

can contribute to the hZ3 term through the ZγZ∗ vertex and leaves hγ3 = 0,
as shown in Eq.(3.6b). The operator OG− also cannot contribute to hV4 due to the equation of
motion (2.3a), OG−= O

B̃W
+OC+, where OC+ contains a bilinear fermion factor and cannot

contribute directly to the nTGC. The fact that OG− is irrelevant to hV4 is also shown explicitly
in Eq.(2.4d). The explicit formula (2.4d) further shows that OG− makes a nonzero contribution
to hγ3 , but leaves hZ3 = 0, as we find in Eq.(3.6c) above.

Using Eq.(3.2) or (3.5) and by direct power counting, we infer the following leading energy-
dependences of the hVi contributions to the helicity amplitudes T [ff̄→Zγ] :

T ss
′,T

(8) = hV3 O(E2) + hV5 O(E4) , (3.8a)

T ss
′,L

(8) = hV3 O(E3) + hV4 O(E5) + hV5 O(E5) . (3.8b)
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We note in Eq.(3.8a) that the form factor hV4 does not contribute to the production of a
transversely polarized Z boson in the final state, because the s-channel momentum qα3 has no
spatial component and the Z boson’s transverse polarization vector εTα has no time compo-
nent, and thus qα3 ε∗Tα= 0.

Inspecting Eq.(3.8), it would appear that the leading energy-dependence of T ss
′,L

(8) should
be O(E5). However, we observe that the helicity amplitudes including a final-state longitudinal
Z boson as contributed by the gauge-invariant dimension-8 nTGC operators must obey the
equivalence theorem (ET) [22]. At high energies E�MZ , the ET takes the following form:

T(8)[ZL, γT ] = T(8)[−iπ0, γT ] +B , (3.9)

where the longitudinal gauge boson ZL absorbs the would-be Goldstone boson π0 through
the Higgs mechanism, and the residual term B = T(8)[v

µZµ, γT ] is suppressed by the relation
vµ ≡ εµL− qµZ/MZ = O(MZ/EZ) [22]. However, we cannot apply the ET (3.9) directly to
the form factor formulation (3.2), because it does not respect the full electroweak gauge
symmetry of the SM and contains no would-be Goldstone boson. We stress again that the
electroweak gauge-invariant formulation of the nTGCs can be derived only from the dimension-
8 operators as in Eq.(2.2). Hence, we study the allowed leading energy-dependences of the
helicity amplitudes (3.8) by applying the ET to the contributions of the dimension-8 nTGC
operators (2.2). Then, we find that only the operator O

B̃W
could give a nonzero contribution

to the Goldstone amplitude T(8)[−iπ0, γT ] , with a leading energy-dependence O(E3) that
corresponds to the form factor hZ3 . The operator OG+

does not contribute to the Goldstone
amplitude T(8)[−iπ0, γT ], but can contribute the largest residual term B = O(E3). From these
facts, we deduce that in Eq.(3.8b) the O(E5) terms due to the form factors hV4 and hV5 must
exactly cancel each other, from which we derive the following condition,

hV4 /h
V
5 = 2 , (3.10)

which agrees with Eq.(3.4a). Then, using our improved form factor formulation (3.5) of the
nTGCs, we can compute the corresponding helicity amplitudes of ff̄→Zγ from the nTGC
contributions:

T ss
′,T

(8),F

−− −+
+− ++

=
(cVL+cVR)e2(2hV3 M

2
Z + hV4 s)(s−M2

Z) sinθ

4M4
ZcW sW

1 0

0 −1

, (3.11a)

T ss
′,L

(8),F (0−, 0+) =

√
2 e2(s−M2

Z)
√
s

4M3
ZcW sW

(2hV3 +hV4 )

(
cVL sin2 θ

2
− cVR cos2 θ

2
, cVR sin2 θ

2
− cVL cos2 θ

2

)
,

(3.11b)

where the coupling coefficients are defined as (cZL , c
Z
R) = (T3 − Qs2

W ,−Qs2
W ) for V = Z and

cAL = cAR = QcW sW for V = γ . On the right-hand-side of the above formulas, the subscript “ F ”
indicates contributions given by the form factors. From the above, we see that the helicity
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amplitude T ss
′,T

(8) for the transverse ZT final state contains the O(E2) contribution from the
form factor hV3 and the leading contribution of O(E4) from the form factor hV4 , while the the
helicity amplitude T ss

′,L
(8) for the longitudinal ZL final state has a leading contribution of O(E3)

from the form factor combination (2hV3 + hV4 ).

We note that the operators OC+ and OC− both contain only left-handed fermions, and
recall that the operators OG+ and OC− give the same contributions to the amplitude T [ff̄→
Zγ], due to the equation of motion (2.3b). Thus, we find that the ratio hZ4 /h

γ
4 must be fixed

to cancel their contributions to the amplitude T [ff̄→Z∗→Zγ] + T [ff̄→ γ∗→Zγ] via right-
handed fermions [5]. This imposes the following condition on the two form factors (hZ4 , h

γ
4):

h4 ≡ hZ4 =
cW
sW

hγ4 , (3.12)

for the OG+ operator. This condition agrees with Eq.(3.4b), which we derived earlier by
matching the prediction of the operator OG+ with the nTGV formulation (3.2). Hence, using
the gauge-invariant dimension-8 nTGC operators to derive the form factor formulation (3.2),
we deduce that there are only three independent form-factor parameters (hZ3 , h

γ
3 , h4), where

h4 ≡ hZ4 and hγ4 are connected by the condition (3.12).
The fermionic dimension-8 operators OC+ and OC− contribute to the quartic vertex ff̄Zγ ,

but do not contribute directly to the nTGC vertex ZγV ∗ in Eq.(3.5). We can factorize their
contribution to the on-shell quartic vertex ff̄Zγ as follows:

Γαβ
ff̄Zγ

(q1, q2) =
∑
V

Γµ(ff̄V ∗)PL× (q2
3−M2

V )−1×ΓαβµZγV ∗(q1, q2, q3) , (3.13)

which includes effectively an nTGC vertex ΓαβµZγV ∗ . This effective nTGC vertex function ΓαβµZγV ∗

contains the form factor parameters (hZ3 , h
γ
3) for the operator OC+ . Since OC+ involves purely

left-handed fermions, we find that the ratio hZ3 /h
γ
3 must be fixed, so as to cancel its contri-

butions to the amplitude T [ff̄→Z∗→Zγ] +T [ff̄→γ∗→Zγ] via right-handed fermions. This
imposes the following condition between form factors (hZ3 , h

γ
3):

h3 ≡ hZ3 =
cW
sW

hγ3 , for OC+ . (3.14)

We note that the above relation holds only for the fermionic operator OC+ . For the other
fermionic operator OC−, its contribution to the effective nTGC vertex function ΓαβµZγV ∗ in
Eq.(3.13) contains the same form factors (hZ4 , h

γ
4) as that of the operator OG+, because the

equation of motion guarantees [5] that both of the operators OG+ and OC− give the same
contributions to the on-shell quartic vertex ff̄Zγ . Thus, the form factors (hZ4 , h

γ
4) of the

effective nTGC vertex function ΓαβµZγV ∗ of the left-handed fermionic operator OC− obey the
same cancellation condition Eq.(3.4b).
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4 Probing nTGCs at the LHC and Future pp Colliders

In this Section we will analyze the sensitivity reaches on probing the nTGCs at the LHC
and future pp colliders via the reactions pp(q q̄) → Zγ with Z → `+`−, ν ν̄ . In Section 4.1,
we give the setup for the analyses. In Sections 4.2-4.3, we present the analyses of nTGCs at
O(Λ−4) and O(Λ−8) respectively. In the analysis of Section 4.4, we further include the decay
channel of Z→ν ν̄. Then, we study the probes of the nTGV form factor in Section 4.5, and the
correlations between the nTGC sensitivities in Section 4.6. Finally, we compare in Section 4.7
our predicted LHC sensitivity reaches on the nTGCs with the published LHC experimental
limits by both the ATLAS and CMS collaborations.

4.1 Setup for the Analyses at Hadron Colliders

The distributions of quark and antiquark momenta in protons are given by parton distribution
functions (PDFs). At leading order, the total cross section of pp→Zγ at the LHC is calculated
by integrating the convolved product of the quark and antiquark PDFs and the parton-level
cross section of the q q̄→Zγ subprocess:

σ =
∑
q,q̄

∫
dx1dx2

[
Fq/p(x1, µ)Fq̄/p(x2, µ)σqq̄(ŝ) + (q ↔ q̄)

]
, (4.1)

where the functions Fq/p and Fq̄/p are the PDFs of the quark and antiquark in the proton beams,
and ŝ=x1x2s with the collider energy

√
s=13TeV. The PDFs depend on the factorization

scale µ, which is set to be µ=
√
ŝ /2 in our leading-order analysis. We use the PDFs of the

quarks q = u, d, s, c, b and their antiquarks determined by the CTEQ collaboration [23].

During LHC Run-2 the ATLAS measurements of the `+`−γ and ν̄νγ final states reached
a maximum value of M``γ ∼ 3TeV.3 Accordingly, we set ŝ. 3TeV for our LHC analysis and
use an upper limit ŝ . 23TeV for the 100TeV pp collider.

We compute the production cross section of q q̄→Zγ at leading order (LO) in QCD and
O(α2) for the SM, and O(α1.5c̃j) or O(αc̃2

j) for the nTGCs, where α = αem or αw, as the
possible high-order contributions are not important for our study. There are next-to-leading-
order (NLO) QCD corrections from the gluon-induced loop diagrams for q q̄ → Zγ and the
real emission of a gluon: q q̄ → Zγ + g , and there are also NLO QCD contributions from
gq→ Zγ + q (g q̄→ Zγ + q̄). In these cases the NLO/LO ratio is O(αs), and it was found
numerically that the effect of adding the full NNLO corrections is less than 10% [24][25][26].
We define a QCD K-factor for the nTGC signal by KS≡ S/SLO =1+∆KS and for the SM
background by KB≡B/BLO =1+∆KB . We have checked the K-factors for pp→Zγ by using
Madgraph5@NLO [27], and find that they depend on the kinematic cuts. The corrections ∆K

3We thank our ATLAS colleague Shu Li for discussions of the ATLAS measurements during LHC Run-2.
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can be larger than one if only basic cuts are made, but we find that adding a cut to remove
the small PT (γ) region and vetoing extra jets in the final state reduces ∆K to only a few
percent, which may be neglected.

We note in addition that Zγ production by the gluon fusion process is formally a next-
to-next-to-leading-order (NNLO) contribution, and is found to be generally less than 1% [28].
The nTGC contributions via gluon fusion is also found to be negligible [28].

Next, we discuss the statistical significance and its optimization for our present analysis
of sensitivity reaches on the nTGCs. Since the SM contribution σ0 could be small, the ratio
S/
√
B is not an optimal measure of the statistical significance. We use instead the following

formula for the background-with-signal hypothesis [32]:

Z =

√
2

(
B ln

B

B+S
+ S

)
=

√
2

(
σ0 ln

σ0

σ0 + ∆σ
+ ∆σ

)
×
√
L× ε , (4.2)

where ∆σ = σ−σ0 denotes the part of the cross section beyond the SM contribution, L is the
integrated luminosity, and ε is the detection efficiency. When B�S , we can expand (4.12) in
terms of S/B and find that it reduces to the form Z'S/

√
B , whereas for S�B it reduces

to Z'
√

2S . If the signal S is dominated by the interference contribution of O(Λ−4), we can
deduce that the sensitivity reach on the new physics scale:

Λ ∝ (L×ε)1/8, (for B�S ), (4.3a)

Λ ∝ (L×ε)1/4, (for S�B ). (4.3b)

If the signal S is dominated by the squared contribution of O(Λ−8), we can deduce that the
sensitivity reach on the new physics scale:

Λ ∝ (L×ε)1/16, (for B�S ), (4.4a)

Λ ∝ (L×ε)1/8, (for S�B ). (4.4b)

In either case, we see that the bound on the new physics scale Λ is not very sensitive to the
integrated luminosity L and the detection efficiency ε. For instance, in the case of B�S, if
the integrated luminosity L increases by a factor of 10 , we find that the sensitivity reach of Λ

is enhanced by about 33% when the interference contribution dominates the signal and 15%
when the squared contribution dominates the signal. If the detection efficiency ε is reduced
from the ideal value of ε= 1 to ε= 0.5, we find that the sensitivity reach of Λ is weakened
by only about 8% when the interference contribution dominates the signal and 4% when the
squared contribution dominates the signal.

In order to achieve higher sensitivity, we can discriminate between the signal and back-
ground by using the photon PT distribution, employing the following measure of significance:

Ztotal =
√∑

Z2
bin . (4.5)
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In the above, we impose the optimal cut on the photon PT for each bin and compute the
corresponding significance Zbin of each bin. By doing so, we maximize the significance Ztotal

given in Eq.(4.5).

4.2 Analysis of nTGCs at O(Λ−4)

We compute analytically the parton-level cross section of the annihilation process q q̄→Zγ ,
and then perform the convolved integration over the product of the quark and antiquark PDFs
to obtain the cross section for pp(q q̄)→Zγ .

Inspecting the azimuthal angular distributions in Eq.(2.14), we note that the SM φ∗ distri-
bution f 0

φ∗
is nearly flat, whereas the maximum of the nTGC contribution f 1

φ∗
is at φ∗ = 0 . We

consider the double differential cross section with respect to the photon transverse momentum
PT and φ∗ at φ∗= 0,4

f jPT
=

2πd2σj
dPT dφ∗

∣∣∣∣
φ∗=0

. (4.6)

Eq.(2.14a) gives dσ0/dφ∗ ' σ0/(2π) for the SM contribution, so we can deduce:

f 0
PT
' dσ0

dPT
. (4.7)

We present in Fig. 2 the photon PT distribution (4.6) at the LHC (upper panel) and a 100 TeV
pp collider (lower panel), where in each plot the SM contribution is shown as a black curve and
the OG+ new physics contributions for different values of Λ are shown as the colored curves.
We find that the SM contribution to the photon PT distribution f 0

PT
decreases more rapidly

with the increase of PT , whereas the nTGC contribution to f 1
PT

reduces much more slowly
with PT .

According to our definition of the azimuthal angle φ∗ in Section 2, we have

cosφ∗ =
(pq×pZ) · (pf×p

f̄
)

|pq×pZ ||pf×p
f̄
|

. (4.8)

We note that the quark q can be emitted from either proton beam, so the direction of pq

is subject to a 180◦ ambiguity. This means that the normal direction of the scattering plane
of q q̄→ Zγ is also subject to a 180◦ ambiguity, so that cosφ∗ can take either sign in each
event and the cosφ∗ terms in f jφ∗ cancel out when the statistical average is taken. However,
the angular terms ∝ cos(2φ∗) = 2 cos2φ∗−1 are not affected by this ambiguity and survive
statistical average. Thus, for the nTGC operator OG+ and also the related contact operator

4In our study we define the angles θ and φ∗ and the momenta in the center-of-mass frame of the `¯̀γ
system, rather than in the laboratory frame.
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Figure 2: Photon transverse momentum PT distributions at the azimuthal angle φ∗ = 0 for the
reaction pp(q q̄)→Zγ followed by Z→ ` ¯̀ decays, as contributed by the SM (black curve) and by the
nTGC operator OG+ at O(Λ−4) (colored curves for the indicated values of Λ) at the LHC (13TeV) in
the upper panel and at the 100TeV pp collider in the lower panel.

OC−, we derive the following effective distributions of φ∗ after averaging:

f̄ 0
φ∗ =

1

2π
− ŝM2

Z cos2φ∗
2π
[
(ŝ−M2

Z)2+ 2(ŝ2+M4
Z) ln sin δ

2

] +O(δ), (4.9a)

f̄ 1
φ∗ =

1

2π
+

ŝ cos 2φ∗
8πM2

Z

, (4.9b)

f̄ 2
φ∗ =

1

2π
. (4.9c)

We see that the interference term f̄ 1
φ∗

has a nontrivial angular dependence ∝ cos(2φ∗) that is
enhanced by the energy factor s/M2

Z relative to the nearly flat SM distribution f̄ 0
φ∗
'1/2π . We

present the angular distributions of φ∗ in Fig. 3, where the angular distribution f̄ 1
φ∗

(red curve)
from the interference contribution of O(Λ−4) dominates over the nearly flat SM distribution
f̄ 0
φ∗

(black curve) and the distribution f̄ 2
φ∗

(blue curve) of the squared contribution of O(Λ−8),
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Figure 3: Normalized distributions in the azimuthal angle φ∗ for the reaction pp(q q̄)→Zγ followed
by Z→ ` ¯̀ decays, as generated by the dimension-8 nTGC operator OG+ at the LHC (13TeV). The
angular distribution f1

φ∗
of the interference contribution of O(Λ−4) is shown as a red curve; the

angular distribution f2
φ∗

of the squared contribution of O(Λ−8) is shown as the blue curve that is flat
like the SM distribution f0

φ∗
(black curve).

which is flat and behaves like the SM distribution. In this figure, for illustration we have
imposed a selection cut on the parton-parton collision energy,

√
ŝ >2TeV.

For the other operators (OG−,OB̃W ,OC+), inspecting their angular distributions in Eq.(2.17)
we find that (f 0

φ∗
, f 1

φ∗
) have the leading energy contributions given by the cosφ∗ terms and

the cos(2φ∗) terms only have subleading energy-dependence. In addition, their contributions
to f 2

φ∗
contain no cos(2φ∗) term. After statistically averaging over the two possible directions

of the scattering plane at pp colliders, we derive the following effective distributions:

f̄ 0
φ∗

=
1

2π
− ŝM2

Z cos2φ∗
2π
[
(ŝ−M2

Z)2+ 2(ŝ2+M4
Z) ln sin δ

2

] +O(δ), (4.10a)

f̄ 1
φ∗

=
1

2π
+

ŝ cos2φ∗
4π(ŝ+M2

Z)
, (4.10b)

f̄ 2
φ∗

=
1

2π
, (4.10c)

where the SM contribution f̄ 0
φ∗

is the same as that of Eq.(4.9a). For operators (OG−,OB̃W ,OC+),
under the statistical average, their angular distribution f 1

φ∗
has a high-energy dependence of

ŝ0 , while the angular distribution f 2
φ∗

becomes a constant and is independent of both the
energy and φ∗. These should be compared to the statistically averaged angular distributions
(4.9b)-(4.9c) for the nTGC operator OG+, where its angular distribution f 1

φ∗
has higher-energy

dependence of ŝ1 for the cos(2φ∗) term, while the angular distribution f 2
φ∗

also becomes con-
stant.

Based on the effective angular distributions (4.9) and Fig. 3, we construct the following
observable O1 :
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√
s LHC (13TeV) pp (100TeV)

L (ab−1) 0.14 0.3 3 3 10 30
Λ2σ
G+ (TeV) 2.1 2.4 3.3 14 17 19

Λ5σ
G+ (TeV) 1.6 1.8 2.6 10 12 15

Table 2: Sensitivities to the new physics scale Λ at O(Λ−4) of the nTGC operator OG+ at the 2σ
and 5σ levels, as obtained by analyzing the reaction pp(q q̄)→Zγ→` ¯̀γ at the LHC (13TeV) and the
pp (100TeV) collider respectively, with the indicated integrated luminosities.

O1 =

∣∣∣∣σ1

∫
dφ∗ f

1
φ∗× sign(cos2φ∗)

∣∣∣∣ , (4.11)

where σ1 is the total cross section from the interference contribution of O(Λ−4). Then, we use
the formula (4.2) to derive the significance:

Z =

√
2

(
B ln

B

B+S
+ S

)
=

√
2

(
σ0 ln

σ0

σ0 +O1

+ O1

)
×
√
L× ε , (4.12)

where L is the integrated luminosity and ε denotes the detection efficiency.

To achieve the optimal sensitivity, we apply the formula (4.5) to compute the total signifi-
cance Ztotal from the contributions of the significances {Zbin} of all the individual bins. In our
analysis, we choose the bin size to be ∆PT=100GeV for the LHC (13TeV) and ∆PT =500GeV
for the pp(100TeV) collider. But we find that Ztotal is not very sensitive to such choice. For in-
stance, if we choose ∆PT =50GeV or ∆PT =200GeV at the LHC, we find that the significance
Ztotal only varies by about 1%.

We present prospective sensitivity reaches for probing the new physics scale Λ of the nTGC
operator OG+ in Table 2. For instance, given an integrated luminosity L= 300 fb−1 (3 ab−1)
at the LHC and choosing the ideal detection efficiency ε=1, we find the 2σ sensitivity reach
Λ2σ
G+'2.6TeV (Λ2σ

G+'3.6TeV). At the 100TeV pp collider with L=3 ab−1 (30 ab−1), we derive
the 2σ sensitivity reach Λ2σ

G+'15TeV (Λ2σ
G+' 21TeV).

4.3 nTGC Analysis Including O(Λ−8) Contributions

In this subsection, we further analyze the squared contributions of O(Λ−8) and study their
impact on the sensitivity reaches at the LHC and the pp(100TeV) collider. Inspecting the
effective angular distributions (4.9), we find that requiring the differential cross section of
the interference contribution of O(Λ−4) to be larger than that of the squared contribution of
O(Λ−8) would impose the following condition:∣∣σ1f

1
φ∗

∣∣ > σ2f
2
φ∗=

σ2

2π
, (4.13)

21



√
s LHC (13TeV) pp (100TeV)

L (ab−1) 0.14 0.3 3 3 10 30
Λ2σ
G+ (TeV) 3.0 3.2 3.9 21 24 26

Λ5σ
G+ (TeV) 2.6 2.8 3.4 17 20 22

Table 3: Sensitivities to the new physics scale Λ at O(Λ−8) of the nTGC operator OG+ at the 2σ
and 5σ levels, as obtained by analyzing the reaction pp(q q̄)→Zγ→`¯̀γ at the LHC (13TeV) and the
pp(100TeV) collider respectively, with the indicated integrated luminosities.

which gives a lower bound of Λ>1.3
√
ŝ for the reaction channel uū→Zγ and Λ>1.5

√
ŝ

for the dd̄→Zγ channel. These bounds are comparable or somewhat stronger than the LHC
sensitivity limits of the new physics scale Λ given in Table 2, whereas they are satisfied by
the sensitivity limits of the 100TeV pp collider. Thus, to improve the sensitivities for the LHC
probe of the nTGCs, we consider the full contributions of the nTGC operators including their
squared terms of O(Λ−8). We note that including the full contributions of the nTGC operators
also allows a consistent mapping of the current analysis to the form factor approach given in
the following Section 4.5 which always includes the full contributions of the form factors to
the cross sections.

We present in Fig. 4 the photon PT distribution including the contribution of O(Λ−8). Since
the O(Λ−8) contribution can be larger than O(Λ−4) for large ŝ , we choose here a set of larger
values Λ=(2, 4, 6)TeV for the LHC distributions and Λ=(20, 25, 30)TeV for the distributions
at the pp(100TeV) collider, instead of the previous values of Λ = (1, 2, 3)TeV for the LHC
and Λ=(15, 20, 25)TeV for the pp(100TeV) collider chosen for Fig.2. Also, Fig. 4 extends to
a larger range of the photon PT .

For the high-energy hadron colliders such as the LHC and pp(100TeV), we have |σ1| �
2π|σ1f

1
φ∗
|<σ2 , and thus σ1 may be neglected. Following the procedure in Section 4.2, we use

the same method and cuts on PT to divide events into a set of bins. Because the φ∗ distribution
is rather flat for both the SM and O(Λ−8) contributions, we do not need to impose an angular
cut on φ∗ . We analyze the sensitivity reaches of Λ by using Eq.(4.5), and present the results for
probing the nTGC operator OG+ up to O(Λ−8) in Table 3. The sensitivity reaches at O(Λ−8)

appear significantly better than those at O(Λ−4) shown in Table 2.

For instance, given an integrated luminosity L=300 fb−1 (3 ab−1) at the LHC and choosing
the ideal detection efficiency ε=1, we find from Table 3 that the 2σ sensitivity reach is given
by Λ2σ

G+' 3.4TeV (Λ2σ
G+' 4.1TeV). At the 100TeV pp collider with L= 3 ab−1 (30 ab−1), we

obtain the 2σ sensitivity reach Λ2σ
G+'22TeV (Λ2σ

G+' 27TeV).
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Figure 4: Photon transverse momentum PT distributions at the azimuthal angle φ∗=0 for the reaction
pp(q q̄)→Zγ followed by Z→ `¯̀ decays, as contributed by the SM (black curve) and by the nTGC
operator OG+ up to O(Λ−4) and O(Λ−8) (colored curves) at the LHC (13TeV) and the pp (100TeV)
collider in the lower panel.

4.4 nTGC Analysis Including the Invisible Decays Z→νν̄

In this subsection, we study the probe of nTGCs via the Zγ production with invisible decays
Z→ ν ν̄ . In this case, the final-state photon is the only signature of Zγ production that
can be detected, and we will use the jet-vetoing to effectively remove all the reducible SM
backgrounds having the final state jet+γ . Then, we can use the same strategy as that for
probing the O(Λ−8) contribution via the leptonic Z-decay channels, where the kinetic cut on
the photon PT distribution will play the major role to enhance the sensitivity to the nTGC
contributions.

Following this strategy, we perform combined analyses for both the Z→ ` ¯̀ final state
and the Z→ ν ν̄ final state. We present in Table 4 a summary of the prospective sensitivity
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√
s LHC (13 TeV) pp (100TeV)

L (ab−1) 0.14 0.3 3 3 10 30
Λ2σ
G+ (TeV) 3.3 3.6 4.2 23 26 28

Λ5σ
G+ (TeV) 2.9 3.1 3.7 20 22 24

Table 4: Sensitivity reaches on the new physics scale Λ at O(Λ−8) of the nTGC operator OG+ at the
2σ and 5σ levels, as obtained from the reactions pp(q q̄)→Zγ→`¯̀γ and pp(q q̄)→Zγ→νν̄γ at the
LHC (13TeV) and the pp (100TeV) collider, with the indicated integrated luminosities.

reaches on the new physics scale Λ of the nTGC operator OG+ , where we have combined the
limits from both the charged-lepton final state and the neutrino final state. We find that the
combination of both leptonic and invisible Z-decay channels can enhance the sensitivity to
the new physics scale Λ by about 10% over that using the leptonic channels alone.

Using the sensitivity bounds of Table 4 and comparing them with our study for e+e−

colliders [5] (which will be summarized later in Table 9 of Section 5), we find that for probing the
nTGC operator OG+ the sensitivity reaches with the current LHC luminosity (L = 140 fb−1)
are already better than those at future 250GeV and 500GeV e+e− colliders [5], and that the
HL-LHC (with L = 3ab−1) should have comparable sensitities to a 1TeV e+e− collider [5].
The future pp (100TeV) collider can have much stronger sensitivities than an (3−5)TeV e+e−

collider. A systematic comparison with the high-energy e+e− colliders will be presented in the
following Section 5.

Next, we extend the above analysis to the three other nTGC operators (OG−,OB̃W ,OC+).
We present the 2σ sensitivities to their associated new physics scales in Table 5. The third and
fifth columns of this Table, marked with (` ¯̀, ν ν̄), present the combined limits including both
the charged-lepton and neutrino final states. We see that these sensitivities are significantly
weaker than those of the operators OG+ and OC− . At the LHC, they are generally below 2TeV,

√
s 13TeV (` ¯̀) 13TeV (` ¯̀, νν̄) 100TeV (` ¯̀) 100TeV (` ¯̀, νν̄)

L(ab−1) 0.14 0.3 3 0.14 0.3 3 3 10 30 3 10 30
ΛB̃W (TeV) 1.2 1.3 1.5 1.3 1.4 1.7 5.1 5.6 6.1 5.6 6.1 6.7
ΛG− (TeV) 1.0 1.1 1.3 1.1 1.2 1.4 4.2 4.7 5.1 4.6 5.1 5.5
ΛC+ (TeV) 1.3 1.4 1.6 1.4 1.5 1.7 5.4 5.9 6.5 5.9 6.5 7.1

Table 5: Sensitivity reaches on the new physics scales of the nTGC operators (O
B̃W

, OG−, OC+) at
the 2σ level, as obtained from analyzing the reactions pp(q q̄)→Zγ→`¯̀γ and pp(q q̄)→Zγ→νν̄γ at
the LHC (13TeV) and the pp (100TeV) collider, with the indicated integrated luminosities. The third
and fifth columns indicated by (` ¯̀, ν ν̄) present the combined limits including both the charged-lepton
and neutrino final states.
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but the proposed 100TeV pp collider could improve the sensitivities substantially, reaching new
physics scales Λ over the (5−7)TeV range. Finally, we compare the collider sensitivity limits
presented in Tables 3-5 with the perturbative unitarity limits given in Table 1 and Fig.1. We
find that our collider limits are much stronger than the unitarity limits of Table 1 and Fig.1.
Hence, our current collider analyses of probing the nTGCs via the SMEFT formulation hold
well the perturbation expansion.

As a final remark, we emphasize that the reaction qq̄→Zγ is a unique process for probing
the nTGCs via s-channel at the LHC and future pp colliders. We note, however, that certain
dimension-6 operators can contribute to the process qq̄→Zγ via t-channel diagrams by modi-
fying the q-q̄-Z vertex. Such contributions are constrained separately by existing electroweak
precision data via other reactions, and future e+e− colliders will place more severe constraints
on the q-q̄-Z coupling via Z-pole measurements. These measurements are independent of the
reaction qq̄→Zγ , and may be obtained from global fits to (α, GF , MZ , MW ) and other Z-pole
observables [29][30][31]. We take values of these observables from the current electroweak pre-
cision data [31] and from the projected CEPC sensitivities [30]. For contributions to the q-q̄-Z
coupling, we consider the following dimension-6 Higgs-related operators:

O(3)
L = (iH†σa

↔
DµH)(ΨLγ

µσaΨL),

OL = (iH†
↔
DµH)(ΨLγ

µΨL), (4.14)

OR = (iH†
↔
DµH)(ψRγ

µψR).

Then, using the method of [30] we make a global fit and obtain the electroweak precision
constraints on the cutoff scale Λ of these operators, which we summarize in Table 6, assuming
for simplicity that the dimension-6 operators are universal for the three families of fermions.
Table 6 shows that the dimension-6 operators (4.14) can be constrained independently through
different processes and observables. The existing bounds Λ[PDG] derived in Table 6 are already
strong and the projected sensitivities on the cutoff scale Λ[CEPC] for the future e+e− collider
CEPC(250GeV) are much stronger than the corresponding bounds on the cutoff scale of
the dimension-8 nTGC operators at the same e+e− collider (as we show below in Table 9 of
Section 5).

Operators O(3)
L (qL) OL(qL) OR(uR) OR(dR)

Λ[PDG] (TeV) 4.7 4.7 2.9 2.4
Λ[CEPC] (TeV) 9.1 9.1 5.5 5.1

Table 6: Precision constraints at the 2σ level on the indicated dimension-6 operators that contribute
to the q-q̄-Z coupling. The bounds Λ[PDG] are derived from the existing electroweak data [31], whereas
the bounds Λ[CEPC] are the projected sensitivities of the future e+e− collider CEPC(250GeV) [30].
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4.5 Probing the Form Factors of nTGVs

In this Section we analyze the sensitivity reaches of the LHC and the pp (100TeV) collider for
probing the nTGCs by using the form factor formulation given in Section 3. We will also clarify
the nontrivial difference between our consistent form factor formulation (3.5) (based upon the
fully gauge-invariant SMEFT approach) and the conventional form factor formulation (3.1)
[retaining only the residual gauge symmetry U(1)em ], where the latter leads to erroneously
strong sensitivity limits.

From Eqs.(2.12), (2.15)-(2.16) and (3.6), we can further derive the partonic cross section of
the reaction q q̄→Zγ in terms of the form factors. As before, we decompose the partonic cross
section into the sum of three parts, σ(Zγ) = σ0 + σ1 + σ2 , where (σ0, σ1, σ2) correspond to
the SM contribution, the interference contribution, and the squared contribution, respectively.
The cross section terms (σ1, σ2) are contributed by the form factors and take the following
expressions:

σ1 = − e
2QqLT3(ŝ−M2

Z)

4πv2 ŝ
h4 −

e2Q(qLx
Z
L−qRxZR)(ŝ2−M4

Z)

4πv2 ŝ2
hZ3

+
e2cWQ(qLx

A
L−qRxAR)(ŝ2−M4

Z)

4πsWv
2 ŝ2

hγ3 , (4.15)

and

σ2 = σ44
2 + σ33

2Z + σ33
2A + σ43

2Z + σ43
2A + σ33

2ZA , (4.16a)

σ44
2 =

e4T 2
3 (ŝ+M2

Z)(ŝ−M2
Z)3

768πs2
W c

2
WM

8
Z ŝ

(h4)
2 , (4.16b)

σ33
2Z =

e4[Q2s4
W +(T3−Qs2

W)2](ŝ+M2
Z)(ŝ−M2

Z)3

192πs2
W c

2
WM

6
Z ŝ

2
(hZ3 )2 , (4.16c)

σ33
2A =

e4Q2(ŝ+M2
Z)(ŝ−M2

Z)3

96πM6
Z ŝ

2
(hγ3)2 , (4.16d)

σ43
2Z =

e4T3(T3−Qs2
W )(ŝ−M2

Z)3

96πs2
W c

2
WM

6
Z ŝ

h4h
Z
3 , (4.16e)

σ43
2A =

e4QT3(ŝ−M2
Z)3

96πsW cWM
6
Z ŝ

h4h
γ
3 , (4.16f)

σ33
2ZA =

e4Q(T3−2Qs2
W )(ŝ+M2

Z)(ŝ−M2
Z)3

96πsW cWM
6
Z ŝ

2
hZ3 h

γ
3 , (4.16g)

where the coefficients (qL, qR)=(T3−Qs2
W , −Qs2

W ) denote the (left, right)-handed gauge cou-
plings between the quarks and Z boson. The form factor hZ3 is contributed by the operator
O
B̃W

as in Eq.(3.6b) and the coupling coefficients (xZL , x
Z
R)=(T3−Qs2

W , −Qs2
W ) are given by

Eq.(2.16b), whereas the form factor hγ3 is contributed by the operator OG− as in Eq.(3.6c) and
the coupling coefficients (xAL , x

A
R)=−Qs2

W (1, 1) are given by Eq.(2.16a). Inspecting Eqs.(4.15)-
(4.16), we find that the cross section terms (σ1, σ2) have the following scaling behaviors in the

26



high energy limit:

σ1 = O(ŝ0)h4 +O(ŝ0)hZ3 +O(ŝ0)hγ3 , (4.17a)

σ2 = O(ŝ3)(h4)
2 +O(ŝ2)(hV3 )2 +O(ŝ2)(h4h

V
3 ) +O(ŝ2)(hZ3 h

γ
3) , (4.17b)

where we have used the notation V =Z, γ .

If we consider instead the conventional parametrization (3.1) with the nTGC form factors
(hV3 , h

V
4 ) only, we would obtain their contributions to the total cross section σ̃(Zγ)= σ0 + σ̃1 +

σ̃2 . The form factors hV3 are not subject to the constraints (3.4) imposed by the dimension-
8 nTGC operators of the SMEFT, so they contribute to (σ̃1, σ̃2) in the same way as in our
Eqs.(4.15)-(4.16). However, the hV4 contributions to the interference and squared cross sections
(σ̃1, σ̃2) have vital differences from Eqs.(4.15)-(4.17). For simplicity of illustration, we set
hV3 = 0 and express the hV4 contributions to (σ̃1, σ̃2) as follows:

σ̃1(hV4 ) =
e4Q(ŝ−M2

Z)2

32πs2
W c

2
WM

4
Z ŝ

[
(qLx

Z
L−qRxZR)hZ4 − (qLx

A
L−qRxAR)

cW
sW

hγ4

]
, (4.18a)

σ̃2(hV4 ) =
e4(ŝ−M2

Z)5

768πs2
W c

2
WM

10
Z ŝ

[
XZZ
LR (hZ4 )2 +XAA

LR

c2
W

s2
W

(hγ4)2 − 2XZA
LR

cW
sW

(hZ4 h
γ
4)

]
, (4.18b)

where we have defined the notations

XZZ
LR ≡ (xZL)2 + (xZR)2, XAA

LR ≡ (xAL)2 + (xAR)2, XZA
LR ≡ xZLx

A
L + xZRx

A
R . (4.19)

Taking the high-energy limit, we find that the cross sections (σ̃1, σ̃2) scale as follows:

σ̃1(hV4 ) = O(ŝ)hZ4 +O(ŝ)hγ4 , (4.20a)

σ̃2(hV4 ) = O(ŝ4)(hZ4 )2 +O(ŝ4)(hγ4)
2 +O(ŝ4)(hZ4 h

γ
4) . (4.20b)

Comparing Eq.(4.20) with Eq.(4.17), we see that the hV4 contributions to the cross sections
(σ̃1, σ̃2) in the conventional form factor parametrization (3.1) have an additional high-energy
factor of s1 beyond the h4 contributions to (σ1, σ2) in our improved parametrization (3.5).

We present in Table 7 the sensitivities of probes of the form factor parameters hVi at
the LHC (13TeV) and a 100TeV pp collider (marked in blue), with the indicated integrated
luminosities. We recall that the form factors and dimension-8 operators are connected via
Eq.(3.6). We find that the most sensitive probes are those of the form factor h4 , which is
generated by the nTGC operator OG+. The sensitivities of probes of hZ3 (via the operator
O
B̃W

) and hγ3 (via the operator OG−) are smaller. In the case of h4, we present in the third
row the sensitivities obtained from the interference contributions using the observable O1

of Eq.(4.11), and in the fourth row the sensitivities from the squared contributions. The
sensitivity limits in the third row are not improved by including the invisible decays of Z→ν ν̄

because the angular distribution of φ∗ cannot be measured for the invisible channel. We see
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√
s 13TeV (` ¯̀) 13TeV (` ¯̀, νν̄)

L(ab−1) 0.14 0.3 3 0.14 0.3 3
|h4(O1)|×105 5.8 (18) 3.7 (11) 1.0 (2.8) 5.8 (18) 3.7 (11) 1.0 (2.8)
|h4|×106 14 (28) 11 (21) 5.2 (9.1) 9.6 (18) 7.5 (14) 3.8 (6.4)
|hZ3 |×104 2.7 (5.0) 2.1 (3.8) 1.1 (1.8) 1.9 (3.4) 1.5 (2.7) 0.80 (1.3)
|hγ3 |×104 3.1 (5.8) 2.5 (4.5) 1.3 (2.1) 2.2 (4.0) 1.8 (3.1) 0.97 (1.6)
√
s 100TeV (` ¯̀) 100TeV (` ¯̀, νν̄)

L(ab−1) 3 10 30 3 10 30
|h4(O1)|×108 3.4 (11) 1.6 (5.0) 0.85 (2.6) 3.4 (11) 1.6 (5.0) 0.85 (2.6)
|h4|×109 6.1 (13) 3.9 (7.8) 2.6 (5.1) 4.0 (8.1) 2.6 (5.1) 1.9 (3.4)
|hZ3 |×107 8.9 (17) 6.0 (11) 4.2 (7.5) 6.1 (11) 4.2 (7.5) 3.0 (5.2)
|hγ3 |×107 10 (20) 6.8 (13) 4.9 (8.7) 7.2 (13) 4.9 (8.7) 3.5 (6.1)

Table 7: Sensitivity reaches on the nTGC form factor parameters at the 2σ (black color) and 5σ (blue
color) levels, as derived by analyzing the reactions pp(q q̄)→Zγ→ `¯̀γ and pp(q q̄)→Zγ→ νν̄γ at
the LHC (13TeV) and the pp (100TeV) collider, with the indicated integrated luminosities. In the third
and ninth rows, the sensitivity limits for |h4(O1)| are derived by using the observable (4.11) from the
interference contributions, whereas the |h4| limits in the fourth and tenth rows are derived including
the squared contributions. The third and fifth columns marked (` ¯̀, ν ν̄) present the combined limits
including both the charged-lepton and neutrino final states.

that the sensitivity bounds on |h4| in the fourth row are significantly stronger than those in
the third row. This is because the squared contributions have stronger energy dependence
and thus are enhanced. The sensitivities of probes to |hZ3 | and |h

γ
3 | are shown in the last two

rows of Table 7, and are found to be much weaker than the bounds on |h4| (third and fourth
rows). We also see from Table 7 that the sensitivities of probes of these nTGC form factors
at 100TeV pp colliders are generally much stronger than those at the LHC by large factors of
O(102−103). In passing, we note that the current collider limits on the nTGC form factors
given in Table 7 are much stronger than the unitarity limits of Table 1 and Fig.1.

Next, we present in Table 8 a comparison of the 2σ sensitivities to the form factor h4

defined in Eq.(3.5) (based on the SMEFT formulation and marked in red color, taken from
Table 7) and the conventional form factors hV4 in Eq.(3.1) (respecting only U(1)em and marked
in blue color). These limits were derived by analyzing the reactions q q̄ → Zγ → ` ¯̀γ and
q q̄→Zγ→ν ν̄γ at the LHC (13 TeV) and a 100TeV pp collider, with the indicated integrated
luminosities. We see that the sensitivities to the conventional form factor hV4 (marked in blue
color) are generally stronger than those of the SMEFT form factor h4 (marked in red color) by
large factors, ranging from O(20) at the LHC to O(102) at a 100TeVpp collider. However, they
are incorrect for the reasons discussed earlier. By comparing the energy-dependences of the
hV4 -induced cross sections between Eqs.(4.17) and (4.20), we have explicitly clarified why the
sensitivity limits based on the conventional form factor parametrization (3.1) are spuriously
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√
s 13TeV (` ¯̀) 13TeV (` ¯̀, νν̄)

√
s 100TeV (` ¯̀) 100TeV (` ¯̀, νν̄)

L(ab−1) 0.14 0.3 3 0.14 0.3 3 L(ab−1) 3 10 30 3 10 30
|h4|×106 14 11 5.2 9.6 7.5 3.8 |h4|×109 6.1 3.9 2.6 4.0 2.6 1.9
|hZ4 |×107 7.5 5.7 2.8 5.2 4.0 2.0 |hZ4 |×1011 4.3 2.7 1.9 2.8 1.9 1.3
|hγ4 |×107 8.7 6.7 3.2 5.9 4.7 2.4 |hγ4 |×1011 4.9 3.2 2.1 3.3 2.1 1.5

Table 8: Comparisons of the 2σ sensitivities to the form factor h4 formulated in the SMEFT (marked
in red color) and the conventional form factors hV4 respecting only U(1)em (marked in blue color), de-
rived from analyses of the reactions pp(q q̄)→Zγ→`¯̀γ and pp(q q̄)→Zγ→νν̄γ at the LHC (13TeV)
and the 100TeV pp collider, with the indicated integrated luminosities. As discussed in the text, the
form-factor limits (in blue color) are included for illustration only, as they do not respect the full SM
gauge symmetry, and hence are invalid.

much stronger than those given by our improved form factor approach (3.5). The comparison
of Table 8 demonstrates the importance of using our consistent form factor approach (3.5)
based on the fully gauge-invariant SMEFT formulation.

4.6 Correlations between the nTGC Sensitivities at Hadron Colliders

In this Section, we analyze the correlations between the sensitivities of probes of the nTGCs
at hadron colliders using both the dimension-8 SMEFT operator approach and the improved
formulation of the form factors presented earlier.

We first analyze the correlations of sensitivity reaches between each pair of the nTGC form
factors (h4, h

Z
3 ), (h4, h

γ
3), and (hZ3 , h

γ
3) at the LHC(13TeV) and the 100TeV pp collider. We

compute the contributions of a given pair of form factors to the following global χ2 function:

χ2 =
∑
bin

S2
bin

Bbin

=
∑
bin

(σbin−σbin
0 )2

σbin
0

×(L×ε) =
∑
bin

(σbin
1 +σbin

2 )2

σbin
0

×(L×ε), (4.21)

where σbin
0 is the SM contribution, and (σbin

1 , σbin
2 ) are the (interference, squared) terms of the

form factor contributions. These cross sections are computed for each bin and then summed
up. We minimize the χ2 function (4.21) for each pair of form factors at each hadron collider
with a given integrated luminosity L, assuming an ideal detection efficiency ε=1.

We present our findings in Fig. 5. Panels (a) and (b) show the correlation contours of the
form factors (h4, h

Z
3 ) (solid curve) and (h4, h

γ
3) (dashed curve) at the 95%C.L., and panels (c)

and (d) depict the correlation contours of the form factors (hZ3 , h
γ
3) at the 95%C.L. Panels (a)

and (c) show the correlation contours for the LHC with different integrated luminosities L =

(140, 300, 3000)fb−1 (marked by the blue, green, and red colors, respectively), and panels (b)
and (d) depict the correlation contours for the 100TeV pp collider with different integrated
luminosities L = (3, 10, 30)ab−1 (marked by the blue, green, and red colors, respectively).

Inspecting Figs.5(a) and (b), we see that each elliptical contour has its axes nearly aligned

29



LHC(13TeV)

h3
Z solid curves
h3
γ dashed curves(a)

140fb-1

300fb-1

3ab-1

-20 -10 0 10 20

-2

-1

0

1

2

h4×10
6

h 3V
×
10
4

pp(100TeV)

h3
Z solid curves
h3
γ dashed curves(b)

140fb-1

300fb-1

3ab-1

-10 -5 0 5 10
-10

-5

0

5

10

h4×10
9

h 3V
×
10
7

LHC(13TeV)

(c)

140fb-1

300fb-1

3ab-1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

h3
Z×104

h 3γ
×
10
4

pp(100TeV)

(d)

3ab-1

10ab-1

30ab-1

-10 -5 0 5 10
-10

-5

0

5

10

h3
Z×107

h 3γ
×
10
7

Figure 5: Correlation contours of the sensitivity reaches (95%C.L.) for the indicated pairs of nTGC
form factors at the LHC (13TeV) [ panels (a) and (c)] and a 100TeV pp collider [ panels (b) and (d)].
Panels (a) and (b) show the correlation contours of (h4, h

Z
3 ) (solid curves) and (h4, h

γ
3) (dashed

curves), and panels (c) and (d) depict the correlation contours of (hZ3 , h
γ
3).

with the frame axes, which shows that the form factors (h4, h
V
3 ) have rather weak correla-

tion. This feature can be understood by examining the structure of the χ2 function (4.21).
For a qualitative understanding of such correlation features, here we simplify Eq.(4.21) by
considering a single bin analysis. Since the squared term σ2 in Eq.(4.17b) dominates over the
interference term σ1, from Eq.(4.21) we have χ2∼ [(σ2)2/σ0](L×ε)∝(σ2)2 , where the SM cross
section σ0 does not contain any new physics parameter and is thus irrelevant to the correlation
issue. Since each elliptical contour has a fixed value of χ2, the cross section σ2 is given by
σ2∼

√
χ2σ0/(L×ε) . We note that σ2 is a quadratic function of the form factors, so we can

use the usual statistical method [33][31] to analyze the quadratic function of σ2 , which suffices
for examining the correlation property of each elliptical contour.
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Using Eqs.(4.16) and (4.17b), we express the quadratic form of σ2 as follows, exhibiting
explicitly the energy-scaling behavior of each term:

σ2 = s̄3 σ̄44
2 (h4)

2 + s̄2 σ̄33
2V (hV3 )2 + s̄2 σ̄43

2V (h4h
V
3 ) + s̄2 σ̄33

2ZA(hZ3 h
γ
3) , (4.22)

where s̄= ŝ/M2
Z is a scaled dimensionless energy factor and σ̄ij2 denotes the coefficient of each

leading cross-section term in Eq.(4.16) in the high-energy expansion.

To examine the correlations between hV3 and h4, only the first three terms of Eq.(4.22) are
relevant. Denoting the form factors (hV3 , h4) = (x, y) ≡ X, we can express the relevant terms
of Eq.(4.22) in the following quadratic form:

σ2(x, y) = Ax2+By2+ 2Cxy = XV −1XT , (4.23a)

V −1 =

(
A C

C B

)
, (4.23b)

where the coefficients (A, B, C)≡ (s̄2 σ̄33
2V , s̄

3 σ̄44
2 ,

1
2
s̄2 σ̄43

2V ). The correlation contour of (x, y)

is clearly an elliptical curve. For the above quadratic form σ2(x, y) = XV −1XT with two
parameters X=(x, y), we express the covariance matrix as follows [33]:

V =

(
σ̂2
x ρ σ̂x σ̂y

ρ σ̂x σ̂y σ̂2
y

)
, (4.24)

where (σ̂x, σ̂y) are related to the errors in the parameters (x, y). The inverse of the covariance
matrix V is derived as

V −1 =


1

(1−ρ2)σ̂2
x

− ρ

(1− ρ2)σ̂x σ̂y

− ρ

(1− ρ2)σ̂x σ̂y

1

(1−ρ2)σ̂2
y

 =

(
A C

C B

)
, (4.25)

with the correlation parameter ρ given by

ρ = −C/
√
AB , (4.26)

where (σ̂x, σ̂y) are connected to (A,B,C) through the relations, σ̂x = [(1−ρ2)A]−
1
2 and σ̂y =

[(1−ρ2)B ]−
1
2 . Thus, using Eq.(4.23) we compute the correlation parameter (4.26) for the

(hV3 , h4) contour as follows:

ρ(hV3 , h4) = − σ̄43
2V

2
√
σ̄33

2V σ̄
44
2

s̄−
1
2 . (4.27)

In the above, (σ̄44
2 , σ̄

33
2V , σ̄

43
2V ) correspond to the leading-energy terms of the cross sections

(4.16b)-(4.16f). We see from Eqs.(4.16b)-(4.16d) and Eqs.(4.16e)-(4.16f) that the cross section
coefficients (σ̄44

2 , σ̄
33
2V ) of the leading energy terms are always positive and the cross section

coefficients σ̄43
2V of the leading energy terms are positive for any quark flavor. Hence, we
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deduce that the correlation parameter ρ(hV3 , h4)< 0 in Eq.(4.27), but it is suppressed by a
large energy factor 1/

√
s̄ . This means that the apex of the contour (where the slope y′= 0)

must lie on the left-hand side (LHS) of the y axis. These features explain why the orientations
of the contours in Figs.5(a) and (b) are not only nearly vertical, but also are aligned slightly
towards the upper-left direction. Moreover, the deviation of the orientation of each contour
from the vertical axis of Fig.5(b) is almost invisible because of the more severe suppression by
the energy factor 1/

√
s̄ at the 100TeV pp collider than at the LHC.

Then, we use Eq.(4.21) to perform the exact χ2 analysis for the form factors (hZ3 , h
γ
3). The

(hZ3 , h
γ
3) contours are plotted in Figs.5(c) and (d) for the LHC and the 100TeV pp collider

respectively, which show strong correlations and are oriented towards the upper-left quadrant,
very different from the contours in Figs. 5(a) and (b). To understand the correlation features
of Figs.5(c) and (d), we examine the relevant leading energy terms in the cross section (4.22)
that include the form factors (hZ3 , h

γ
3) and their products. From Eq.(4.22), we find that the

cross section σ2 contains the following leading energy-dependent contributions:

σ2(hZ3 , h
γ
3) = s̄2 σ̄33

2Z (hZ3 )2 + s̄2 σ̄33
2A(hγ3)

2 + s̄2 σ̄33
2ZA(hZ3 h

γ
3)

= Ax2 +By2 + 2Cxy = XV −1XT , (4.28a)

(A, B, C) ≡ (s̄2 σ̄33
2Z , s̄

2 σ̄33
2A,

1
2
s̄2 σ̄33

2ZA), (4.28b)

where we denote the form factors (hZ3 , h
γ
3)≡ (x, y)≡X and the matrix V −1 takes the form of

Eq.(4.23b). Thus, using σ2 formula in Eq.(4.28), we compute the correlation parameter (4.26)
for the (hZ3 , h

γ
3) contour as follows:

ρ(hZ3 , h
γ
3) = − σ̄33

2ZA

2
√
σ̄33

2Z σ̄
33
2A

s̄0 . (4.29)

This shows that the correlation parameter ρ is of O(s̄0) and not suppressed by any energy
factor, unlike the case of Eq.(4.27) which is suppressed by 1/

√
s̄ . From Eqs.(4.16c)-(4.16d) and

Eq.(4.16g), we deduce that σ̄33
2Z σ̄

33
2A>0 and σ̄33

2ZA>0 always holds which lead to ρ(hZ3 , h
γ
3)<0.

These facts explain why the correlation between (hZ3 , h
γ
3) is large and all the contours of

Figs. 5(c) and (d) are oriented towards the upper-left quadrant.

We then consider the nTGC formulation using the dimension-8 SMEFT operators as given
in Section 2 and study correlations of the sensitivity reaches between each pair of the nTGC
operators. We first study the correlations between the pairs of nTGC operators (OG+,OB̃W )

and (OG+,OG−). We perform the χ2 analysis using Eq.(4.21) and present the findings in Fig. 6
for the LHC (13TeV) [panel (a)] and the 100TeV pp collider [panel (b)] for a set of sample
integrated luminosities, respectively. In each panel, the (OG+,OB̃W ) correlations are shown by
the contours in solid curves, whereas the (OG+,OG−) correlations are depicted by the contours
in dashed curves. We see that the correlations of the operators (OG+,OB̃W ) and (OG+,OG−)
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Figure 6: Correlation contours of the sensitivity reaches (95%C.L.) for the indicated pairs of nTGC
operators at the LHC (13TeV) [ panel (a)] and a 100TeV pp collider [ panel (b)]. Panels (a) and (b)
show the correlation contours of (OG+, OB̃W ) (solid curves) and (OG+, OG−) (dashed curves).

are rather weak, similar to the case of the (h4, h
V
3 ) contours in Figs. 5(a) and (b).

The correlation features of the contours in Fig. 6 can be understood in the following way.
Using the relations in Eq.(3.6), we here denote (x, y) = (h4, h

V
3 ) = (r4x̄, r

V
3 ȳ) and (x̄, ȳ) =

([Λ−4
V ], [Λ−4

G+]), where V = Z,A and (Λ−4
Z , Λ−4

A ) ≡ (Λ−4

B̃W
, Λ−4

G−). With these, we express the
leading cross section σ2 in Eqs.(4.22) and (4.23a) as follows:

σ2(x̄, ȳ) = Ax̄2 +Bȳ2 + 2Cx̄ȳ = XV −1XT
, (4.30a)

(A, B, C) ≡
(
s̄2(rV3 )2σ̄33

2V , s̄
3r2

4σ̄
44
2 ,

1
2
s̄2rV3 r4σ̄

43
2V

)
, (4.30b)

where X ≡ (x̄, ȳ) and the matrix V −1 takes the form in Eq.(4.23b). Thus, using Eq.(4.30), we
compute the correlation parameter (4.26) for (x̄, ȳ) =

(
[Λ−4

V ], [Λ−4
G+]
)
as follows:

ρ
(
[Λ−4

V ], [Λ−4
G+]
)

= −sign(rV3 r4)
σ̄43

2V s̄
− 1

2

2
√
σ̄33

2V σ̄
44
2

= sign(rV3 r4)ρ(hV3 , h4), (4.31)

where the correlation parameter ρ(hV3 , h4)<0 is derived in Eq.(4.27). According to Eq.(3.7b),
we have sign(rZ3 r4)< 0 and sign(rγ3r4)> 0. Thus, we can infer the signs of the corresponding
correlation parameters:

ρ
(
[Λ−4

B̃W
], [Λ−4

G+]
)
> 0 , ρ

(
[Λ−4

G−], [Λ−4
G+]
)
< 0 . (4.32)

These nicely explain why in Fig. 6 the orientations of the correlation contours (solid curves) of
the operators (OG+, OB̃W ) are slightly aligned towards to the right-hand-side of the vertical
axis, whereas the orientations of the correlation contours (dashed curves) of the operators
(OG+, OG−) are slightly aligned towards to the left-hand-side of the vertical axis. Their devia-
tions from the vertical axis are rather small because of the energy suppression factor 1/

√
s̄ in
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Figure 7: Correlation contours of sensitivity reaches (95%C.L.) for the indicated pairs of nTGC
operators at the LHC (13TeV) [ panels (a) and (c)] and the 100TeV pp collider [ panels (b) and (d)].
Panels (a) and (b) show the correlation contours of (O

B̃W
, OG−), whereas panels (c) and (d) depict

the correlation contours of (OC+, OB̃W ) (solid curves) and (OC+, OG−) (dashed curves).

Eq.(4.31), and they become even smaller for the contours of Fig. 6(b) at a 100TeV pp collider,
as expected.

Next, we study the correlations between the nTGC operators (O
B̃W

,OG−) and (OC+, OG−).
We perform a χ2 analysis using Eq.(4.21) and present the findings in Fig. 7. Using the rela-
tions (3.6b)-(3.6c) we find [Λ−4

B̃W
]∝ hZ3 and [Λ−4

G−]∝ hγ3 . So we expect that the (O
B̃W

,OG−)

contour should be related to the (hZ3 , h
γ
3) contour. Inspecting the contours in Figs. 5(c)-(d)

and Figs. 7(a)-(b), we see that they all exhibit significant correlations, but in Figs. 7(a)-(b)
the contours are aligned along different directions from those of Figs. 5(c)-(d). We can under-
stand this difference in the following way. For convenience, we define (x, y)=(rZ3 x̃, r

γ
3 ỹ) with

X̃ ≡ (x̃, ỹ) = ([Λ−4

B̃W
], [Λ−4

G−]). With these and using Eq.(4.28), we express the leading terms of
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the cross section σ2 as follows:

σ2(x̃, ỹ) = Ax̃2+Bỹ2+ 2Cx̃ỹ = X̃ V −1X̃T , (4.33a)

(A, B, C) =
(
s̄2(rZ3 )2 σ̄33

2Z , s̄
2(rγ3 )2 σ̄33

2A,
1
2
s̄2rZ3 r

γ
3 σ̄

33
2ZA

)
, (4.33b)

where the matrix V −1 takes the form of Eq.(4.23b). From the above, we compute the correlation
parameter (4.26) for the operators (O

B̃W
,OG−) as follows:

ρ
(
[Λ−4

B̃W
], [Λ−4

G−]
)

= −sign(rZ3 r
γ
3 )

σ̄33
2ZA s̄

0

2
√
σ̄33

2Z σ̄
33
2A

= sign(rZ3 r
γ
3 )ρ(hZ3 , h

γ
3). (4.34)

Because Eq.(3.7b) gives sign(rZ3 r
γ
3 )< 0, we deduce ρ

(
[Λ−4

B̃W
], [Λ−4

G−]
)

=−ρ(hZ3 , h
γ
3) =O(s̄0)> 0 .

This explains why the contours of (O
B̃W

,OG−) in Figs. 7(a) and (b) exhibit strong correlations
[similar to those in Figs. 5(c) and (d)], but have their orientations aligned towards the upper-
right quadrant [unlike Figs. 5(c) and (d), in which all the contours are oriented towards the
upper-left quadrant].

Finally, we examine the correlations of the fermionic contact operator OC+ with the nTGC
operatorsO

B̃W
andOG−. SinceOC+ is a combination of two other operators OC+=OG−−OB̃W

viathe equation of motions (2.3a), it is connected to both of the form factors (hZ3 , h
γ
3), which

would complicate the correlation analysis in the form factor formulation (4.16). Instead, we
analyze directly the contributions of the operators (OC+,OG−,OB̃W ) to the helicity ampli-
tudes (2.8)-(2.9). As shown by Eq.(2.9), the operator OC+ has a nonzero left-handed coupling
c′L(C+)=−T3 only. So for examining its correlations with OG− and O

B̃W
, the contributions of

OG− and O
B̃W

from the left-handed-quark couplings c′L(G−) and c′
L(B̃W )

play key roles. Thus,
we can express as follows the relevant helicity amplitudes (2.8)-(2.9) containing left-handed
(right-handed) initial-state quarks:

T8L = T 8L×
{
c′L(C+)[Λ

−4
C+] + c′

L(B̃W )
[Λ−4

B̃W
] + c′L(G−)[Λ

−4
G−]
}

= T 8L(fL0x+ fL1y1 + fL2y2) , (4.35a)

T8R = T 8R×
{
c′
R(B̃W )

[Λ−4

B̃W
] + c′R(G−)[Λ

−4
G−]
}
≡ T 8R (fR1y1+fR2y2) , (4.35b)

where T 8L (or T 8R) is the remaining common part of the helicity amplitudes (2.8)-(2.9) after
separating out the coupling c′Lj (or c′Rj) and the cutoff factor [Λ−4

j ]. In the above, we have
defined (x, y1, y2)≡([Λ−4

C+], [Λ−4

B̃W
], [Λ−4

G−]) and

fL0 = c′L(C+) = −T3 , fL1 = c′
L(B̃W )

= T3−Qs2
W , fL2 = c′L(G−) = −Qs2

W , (4.36a)

fR1 = c′
R(B̃W )

= −Qs2
W , fR2 = c′R(G−) = c′L(G−) = fL2 ≡ f2 . (4.36b)

With the above, we perform a χ2 analysis based upon Eq.(4.21). We present the correlation
contours of (OC+,OB̃W ) and (OC+,OG−) in Figs. 7(c) and (d) for the LHC and the 100TeV
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pp collider, respectively. We find that all these contours exhibit strong correlations. In partic-
ular, the (OC+,OB̃W ) contours (solid curves) are oriented towards the upper-right quadrant,
whereas the (OC+,OG−) contours (dashed curves) are oriented towards the upper-left quad-
rant.

To understand the qualitative features of the correlation contours in Figs. 7(c) and (d), we
examine the cross section σ2, which contains the squared part of the dimension-8 contributions
and dominates the χ2 function. From Eq.(4.35), we derive the cross section σ2 as follows:

σ2(x, y1, y2) = (fL0x+fL1y1+f2y2)2
〈
|T 8L| 2

〉
+ (fR1y1+f2y2)2

〈
|T 8R| 2

〉
=
[
(fL0x+fL1y1+f2y2)2+(fR1y1+f2y2)2

]〈
|T 8| 2

〉
, (4.37)

where we have defined the notations
〈
|T 8L| 2

〉
=
∫

PS
|T 8L| 2 and

〈
|T 8R| 2

〉
=
∫

PS
|T 8R| 2 with

∫
PS

denoting the phase space integration for the final state. From the squared term of the cross
section (2.15), we can further deduce the equality

〈
|T 8L| 2

〉
=
〈
|T 8R| 2

〉
≡
〈
|T 8| 2

〉
, which is used

in the last step of Eq.(4.37).

For analyzing the correlations, the overall factor
〈
|T 8| 2

〉
is irrelevant. So we define the fol-

lowing rescaled cross sections for the convenience of analyzing the two-parameter correlations:

σ̄2(x, y1) ≡ σ2(x, y1, 0)/
〈
|T 8| 2

〉
, σ̄2(x, y2) ≡ σ2(x, 0, y2)/

〈
|T 8| 2

〉
. (4.38)

Thus, σ̄2(x, y1) and σ̄2(x, y2) are expressed in the following quadratic form:

σ̄2(x, y1) = Ax2 +B1y
2
1 + 2C1xy1 ≡ X1V

−1
1 XT

1 , (4.39a)

σ̄2(x, y2) = Ax2 +B2y
2
2 + 2C2xy2 ≡ X2V

−1
2 XT

2 , (4.39b)

where we have defined X1≡(x, y1) and X2≡(x, y2) as well as the following notations,

(A, B1, C1) ≡ (f 2
L0, f

2
L1+f 2

R1, fL0fL1), (4.40a)

(A, B2, C2) ≡ (f 2
L0, 2f 2

2 , fL0f2), (4.40b)

V −1
1 =

(
A C1

C1 B1

)
, V −1

2 =

(
A C2

C2 B2

)
. (4.40c)

Thus, we can deduce the following correlation parameter for the two cases:

ρ1(x, y1) =
−C1√
AB1

=
−sign(fL0fL1)√

1+f 2
R1/f

2
L1

> 0 , (4.41a)

ρ2(x, y2) =
−C2√
AB2

= − 1√
2

sign(fL0f2) < 0 , (4.41b)

where (x, y1)≡ ([Λ−4
C+], [Λ−4

B̃W
]) and (x, y2)≡ ([Λ−4

C+], [Λ−4
G−]). Using the coupling formula (4.36),

we derive fL0fL1 =−T3(T3−Qs2
W )< 0 and fL0f2 =T3Qs

2
W > 0 , where each inequality holds for

both up-type and down-type quarks. From these, we deduce that the operators (OC+,OB̃W )
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are correlated positively, whereas the operators (OC+,OG−) are correlated negatively. More-
over, Eq.(4.41) shows that both correlation parameters are of O(s̄0) and not suppressed by any
energy factor. This predicts strong correlations for the operators (OC+,OB̃W ) and (OC+,OG−),
respectively. These features are indeed reflected in Figs. 7(c) and (d). We see that the corre-
lation contours of (OC+, OB̃W ) (solid curves) are oriented towards the upper-right quadrant
due to the positive correlation parameter ρ1(x, y1)> 0 given by Eq.(4.41a), whereas the cor-
relation contours of (OC+, OG−) (dashed curves) are aligned towards the upper-left quadrant
due to the negative correlation parameter ρ2(x, y2)<0 given by Eq.(4.41b).

4.7 Comparison with the Existing LHC Bounds on nTGCs

In this subsection, we make direct comparison with the published LHC measurements of
nTGCs through the reaction pp(q q̄)→ Zγ with Z→ ν ν̄ by the ATLAS [19] and CMS [18]
collaborations using the conventional nTGC form factor formula (3.1). The CMS collabora-
tion analyzed 19.6 fb−1 of Run-1 data at

√
s = 8TeV [18], whereas the ATLAS collaboration

analyzed 36.1 fb−1 of Run-2 data at
√
s = 13TeV [19]. They obtained the following sensitivity

bounds (95%C.L.) on the form factors:

CMS: hZ3 ∈ (−1.5, 1.6)×10−3, hγ3 ∈ (−1.1, 0.9)×10−3,

hZ4 ∈ (−3.9, 4.5)×10−6, hγ4 ∈ (−3.8, 4.3)×10−6; (4.42a)

ATLAS: hZ3 ∈ (−3.2, 3.3)×10−4, hγ3 ∈ (−3.7, 3.7)×10−4,

hZ4 ∈ (−4.5, 4.4)×10−7, hγ4 ∈ (−4.4, 4.3)×10−7. (4.42b)

We see that the CMS and ATLAS analyses both obtained much stronger bounds on (hZ4 , h
γ
4)

than on (hZ3 , h
γ
3), i.e., by factors ∼(210− 380) at CMS (Run-1) and ∼(710−860) at ATLAS

(Run-2). In comparison, we see in Table 7 using our SMEFT form factor formulation (3.5) that
the LHC sensitivity bounds on hV4 are stronger than those on hV3 only by factors of about 20.
Our Table 8 further demonstrates that using the conventional form factor formulation (3.1)
would generate spuriously stronger hV4 bounds (marked in blue) at the LHC (13TeV) than
the SMEFT bounds (marked in red) by a factor of about 20, and thus much stronger than
the hV3 bounds by a large factor of ∼ 20×20 = 400, which agrees with the ATLAS results
in Eq.(4.42b) within a factor of 2 .5 Unfortunately, this means that the strong experimental
bounds (4.42) on (hZ4 , h

γ
4) are unreliable because they were obtained by using the conventional

form factor formulation (3.1), which does not respect the SM electroweak gauge symmetry of
SU(2)L⊗U(1)Y as incorporated in the SMEFT.

To study quantitatively the conventional parametrization (3.1) including the nTGC form
5Since our analyses in Tables 7-8 have used as input the full Run-2 integrated luminosity of 140 fb−1 as well

as different kinematic cuts for each bin, unlike the experimental analyses of ATLAS [19] and CMS [18], such a
minor difference in the bounds could be expected.
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factors (hV3 , h
V
4 ) only, we denote their contributions to the total cross section by σ̃(Zγ) =

σ0 + σ̃1 + σ̃2 , where σ̃1 is the interference term and σ̃2 is the squared contribution. This is
similar to what we did around Eq.(4.18). We find that σ̃2 always dominates over σ̃1 for both
the LHC and the 100TeV pp collider. Using the conventional form factor formula (3.1), we
derive the squared contribution σ̃2 as follows:

σ̃2 =

e4(XV
LR)2(ŝ−M2

Z)3

[
4(hV3 )2

(
M2
Z

ŝ
+ 1
)

+ 4hV3 h
V
4

(
1− ŝ

M2
Z

)
+(hV4 )2

(
1− ŝ

M2
Z

)2]
768πs2

W c
2
WM

6
Z ŝ

, (4.43)

where the coupling factor (XV
LR)2 is defined as

(XV
LR)2 ≡ (XV

L )2+(XV
R )2, XZ

L,R ≡ xZL,R , Xγ
L,R ≡ −

cW
sW

xAL,R , (4.44a)

(xZL , x
Z
R) = (T3−Qs2

W , −Qs2
W ), (xAL , x

A
R) = −Qs2

W (1, 1). (4.44b)

Defining a scaled dimensionless energy parameter s̄ = ŝ/M2
Z and making the high-energy

expansion for s̄�1 , we can compare the leading energy-dependence of each term of σ̃2 with
that of σ2 , as follows:

σ̃2 ≈
e4(XV

LR)2
[
(hV4 )2 s̄4− 4hV4 h

V
3 s̄

3+ 4(hV3 )2 s̄2
]

768πs2
W c

2
WM

2
Z

, (4.45a)

σ2 ≈
e4
[
T 2

3 (hZ4 )2 s̄3+ 8T3X
V
L h

Z
4 h

V
3 s̄

2+4(XV
LR)2(hV3 )2 s̄2

]
768πs2

W c
2
WM

2
Z

, (4.45b)

where the cross section σ2 is given by our SMEFT form factor formula (3.5). We note that the
form factors (hZ4 , h

γ
4) in the above cross section σ2 should obey the condition (3.4b) due to

the underlying electroweak gauge symmetry of the SM that is respected by the corresponding
dimension-8 nTGC operators. We have used the relation (3.4b) to combine the hγ4 contribution
with that of hZ4 . To examine the correlation of (hγ3 , h

γ
4) from Eq.(4.45b), we can use Eq.(3.4b)

to replace hZ4 by hγ4 . Inspecting Eq.(4.45), we see that both the (hV4 )2 and (hV4 h
V
3 ) terms in σ̃2

have higher energy dependences than those of σ2 by an extra factor s̄1, which leads erroneously
to much stronger bounds on hV4 .

We first make a one-parameter analysis and derive the bound on each form factor coefficient
hVj individually (where j=3, 4 and V =Z, γ ) using the conventional form factor parametriza-
tion (3.1). To make a more precise comparison with the ATLAS bounds (4.42b), we adopt the
same kinematic cut on the transverse momentum of the final-state photon, P γ

T >600GeV, and
the same integrated luminosity L = 36.1 fb−1 as in the ATLAS analysis [19]. For illustration,
we ignore the other detector-level cuts and the systematic errors, and choose a typical detec-
tion efficiency ε=75% .6 With these, we derive the following bounds on the nTGCs (95%C.L.)

6We thank our ATLAS colleague Shu Li for discussing the typical detection efficiency of the ATLAS
detector [19].
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when using the conventional form factor parametrization (3.1):

|hZ3 | < 3.0×10−4, |hγ3 | < 3.4×10−4, |hZ4 | < 4.4×10−7, |hγ4 | < 4.9×10−7, (4.46)

and note that the squared nTGC contributions dominate the sensitivity. Comparing the above
estimated bounds (4.46) with the ATLAS experimental bounds (4.42b), we see that they agree
well with each other: the agreements for hZ4 are within about 2% and the agreements for
(hγ4 , h

Z
3 , h

γ
3) are within about (8−13)% . This means that by making plausible simplifications

we can reproduce quite accurately the experimental bounds (4.42b) established by the ATLAS
collaboration [19] using the conventional form factor formulation in Eq.(3.1).

Next, we analyze the correlation contours for (hγ3 , h
γ
4) and (hZ3 , h

Z
4 ), respectively, using

the conventional form factor parametrization (3.1), which can be compared to the correlation
contours obtained by using our SMEFT form factor formulation (3.5). Fig. 8 displays the cor-
relation contours at 95%C.L. for LHC Run-2. Panels (a) and (b) show the correlation contours
based on the SMEFT form factor formula (3.5), where the blue (red) contours correspond to
inputting integrated LHC luminosities of 36.1fb−1 (140fb−1). Panels (c) and (d) present the
correlation contours based on the conventional form factor parametrization (3.1), where the
red and blue contours are given by our theoretical analysis with the assumed detection effi-
ciencies ε= 100% and ε= 75% respectively. For comparison, we show in panels (c) and (d)
the experimental contours as extracted from the ATLAS results [19] based on the conventional
form factor formula (3.1), where the black solid curves depict the observed bounds and the
black dashed curves show the expected limits. It is impressive to see in panels (c) and (d)
that our theoretical contours agree well with the experimental contours obtained by using the
conventional form factor parametrization (3.1).

We note that the correlation contours of panels (a) and (b) in Fig. 8 have very different
features from those of panels (c) and (d), which can be understood as follows. For convenience,
we denote X = (x, y)≡ (hV3 , h

Z
4 ). Thus, we can express the cross sections of Eqs.(4.45a) and

(4.45b) as follows:
σ̃2 ∝ Ãx2+ B̃y2+ 2C̃xy ≡ XṼ −1XT , (4.47a)

σ2 ∝ Ax2+By2+ 2Cxy ≡ XV −1XT , (4.47b)

where we have defined the following notations,

(Ã, B̃, C̃) = (4 s̄2, s̄4, −2s̄3), (4.48a)

(A, B, C) =
(
4 s̄2(XV

LR)2, s̄3T 2
3 , 4 s̄2XV

L T3

)
, (4.48b)

Ṽ −1 =

(
Ã C̃

C̃ B̃

)
, V −1 =

(
A C

C B

)
. (4.48c)

With these we can compute the correlation parameter of the form factors in each case:

ρ̃ =
−C̃√
ÃB̃

= 1> 0 , ρ =
−C√
AB

= − 2 sign(T3)XV
L

|XV
LR|

s̄−
1
2 < 0 . (4.49)
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Figure 8: Correlation contours of the sensitivity reaches (95%C.L.) for the indicated pairs of nTGC
form factors at the LHC (13TeV). Panels (a) and (b) present the correlation contours for (hγ3 , h

γ
4)

and (hZ3 , h
Z
4 ) respectively, by using our SMEFT form factor formula (3.5), where in each panel the

red contour inputs the full integrated luminosity 140 fb−1 of Run-2 and the blue contour inputs a
partial integrated luminosity 36.1 fb−1 as in the ATLAS analysis [19]. Panels (c) and (d) compare the
theoretical correlation contours (red and blue colors) with the experimental contours (black color) from
the ATLAS analysis [19], where we derived the red and blue contours by using the conventional form
factor formula (3.1) and by assuming an ideal detection efficiency ε= 100% (for red contours) or a
reduced detection efficiency ε=75% (for blue contours). The ATLAS contours are shown by the black
solid curves (observed) and the black dashed curves (expected).
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The fact of ρ̃ = O(s̄0)> 0 explains why the (hV3 , h
V
4 ) contours in Figs. 8(c) and (d) exhibit

strong correlations and have their orientations aligned towards the upper-right quadrant. On
the other hand, from Eq.(4.44) we find that sign(T3)XV

L >0 holds for the initial-state quarks
being either up-type or down-type, and thus Eq.(4.49) gives ρ < 0 . This means that the
(hV3 , h

V
4 ) contours in Figs. 8(a) and (b) should have their orientations towards the upper-left

quadrant, but this correlation is almost invisible because ρ=O(s̄−
1
2 ) receives a large energy-

suppression factor at the LHC. Thus, the correlation features of the (hV3 , h
V
4 ) contours are

well understood both for Figs. 8(a)-(b) [based on the SMEFT form factor formula (3.5)] and
for Figs. 8(c)-(d) [based on the conventional form factor formula (3.1)].

Our quantitative comparisons in Figs. 8 are instructive and encouraging. We suggest that
the ATLAS and CMS colleagues perform a systematic nTGC analysis based on the new
SMEFT form factor formula (3.5), using the full Run-2 data set. Moreover, we note that in
Refs. [18]-[19] the CMS and ATLAS collaborations analyzed the correlations between the form
factors (hV3 , h

V
4 ) and found strong correlations. We have reproduced this feature in Figs. 8(c)-

(d), but we note that those correlation contours differ substantially from our new correlation
contours in Figs. 8(a)-(b). Based upon the above analysis, we suggest that the CMS and
ATLAS collaborations should make updated analyses on the (hV3 , h

V
4 ) correlations using our

new SMEFT form factor formulation with their full Run-2 data sets. We anticipate that such
new analyses should yield results similar to the theoretical predictions for LHC Run-2 given
in Table 7 and Figs. 8(a)-(b).

5 Comparison with Probes of nTGCs at Lepton Colliders

In this Section we first summarize the sensitivity reaches of nTGC new physics scales at high-
energy e+e− colliders found in our previous work [5]. Then we analyze the sensitivity reaches
of the nTGC form factors at these e+e− colliders. Finally, we compare these sensitivity limits
with those obtained for the hadron colliders as given in Section 4 of the present study.

At high-energy e+e− colliders, we found in Ref. [5] that the reaction e+e−→ Zγ with
hadronic decays Z→ q q̄ gives greater sensitivity reach than the leptonic and invisible de-
cays Z→ ` ¯̀, ν ν̄ . Therefore we choose for comparison the sensitivity reaches obtained using
hadronic Z decays, and consider the e+e− collision energies

√
s = (0.25, 0.5, 1, 3, 5) TeV with a

benchmark integrated luminosities L = 5ab−1. These results are summarized in the upper half
of Table 9 for the new physics scale Λ of each dimension-8 nTGC operator or related contact
operator (OG+, OG−, OB̃W , OC+) at the 2σ level, where each entry has two limits which cor-
respond to the (unpolarized, polarized) e∓ beams. For the polarized e∓ beams, we choose the
benchmark polarizations (P e

L, P
ē
R) = (0.9, 0.65). For comparison, we summarize in the lower

half of Table 9 the sensitivity reaches of Λ via the reaction pp(q q̄)→Zγ with Z→ ` ¯̀, ν ν̄ at
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√
s (TeV) L (ab−1) ΛG+ ΛG− Λ

B̃W
ΛC+

e+e−(0.25) 5 (1.3, 1.6) (0.90, 1.2) (1.2, 1.3) (1.2, 1.6)

e+e−(0.5) 5 (2.3, 2.7) (1.4, 1.7) (1.8, 1.9) (1.8, 2.2)

e+e−(1) 5 (3.9, 4.7) (1.9, 2.5) (2.5, 2.6) (2.6, 2.9)

e+e−(3) 5 (9.2, 11.0) (3.4, 4.3) (4.3, 4.5) (4.4, 5.2)

e+e−(5) 5 (13.4, 15.9) (4.4, 5.6) (5.7, 5.9) (5.7, 6.8)

0.14 3.3 1.1 1.3 1.4
LHC(13) 0.3 3.6 1.2 1.4 1.5

3 4.2 1.4 1.7 1.7
3 23 4.6 5.6 5.9

pp(100) 10 26 5.1 6.1 6.5
30 28 5.5 6.7 7.1

Table 9: Comparisons of 2σ sensitivities to the new physics scale Λ (in TeV) for each dimension-
8 nTGC operator or related contact operator (OG+, OG−, OB̃W , OC+), at e+e− colliders of
different collision energies, and at the LHC and the pp (100TeV) collider. The reactions
e−e+→ Zγ→qq̄γ and pp(q q̄)→Zγ→`¯̀γ, νν̄γ are analyzed for the lepton and hadron col-
liders respectively. For the e+e− colliders, each entry corresponds to (unpolarized, polarized)
e∓ beams, where we choose the benchmark e∓ beam polarizations as (P e

L, P
ē
R) = (0.9, 0.65).

the LHC (13TeV) and the 100TeV pp collider, based on Tables 4 and 5 of Section 3.

From the comparison in Table 9, we see that the the sensitivity reaches for the nTGC
operator OG+ (and also the contact operator OC−) at the LHC (13TeV) with integrated lumi-
nosities L= (0.14, 0.3, 3) ab−1 are higher than those of e+e− colliders with collision energies
√
s= (250, 500)GeV, and are comparable to those of an e+e− collider of energy

√
s = 1TeV,

but much lower than that of the CLIC with
√
s = (3− 5)TeV. On the other hand, the sensi-

tivity reaches of the 100TeV pp collider with an integrated luminosity L = 3ab−1 can surpass
those of all the e+e− colliders with collision energies up to (3− 5)TeV.

We consider next the other three dimension-8 operators (OG−, OB̃W , OC+). Table 9 shows
that the LHC has sensitivities to Λ that are comparable to those of e+e− colliders with
√
s = (250, 500)GeV, but are clearly lower than those of e+e− colliders with collision energies
√
s > 1TeV. On the other hand, we find that the sensitivities of the 100TeV pp collider with

an integrated luminosity L= 3ab−1 are significantly greater than those of the e+e− colliders
with energy

√
s 6 3TeV. Moreover, a 100TeV pp collider with an integrated luminosity L =

(10−30)ab−1 has sensitivities comparable to those of an e+e− collider with
√
s = 5 TeV, while

a 100TeV pp collider with an integrated luminosity of 30ab−1 would have higher sensitivities
than an e+e− collider with

√
s = 5TeV. In passing, we find that our collider limits given
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√
s (TeV) L (ab−1) |h4| |hZ3 | |hγ3 |

e+e− (0.25) 5 (3.9, 2.0)×10−4 (2.7, 2.3)×10−4 (4.9, 1.6)×10−4

e+e− (0.5) 5 (3.8, 1.9)×10−5 (6.2, 5.2)×10−5 (10, 3.7)×10−5

e+e− (1) 5 (4.5, 2.3)×10−6 (1.5, 1.2)×10−5 (2.3, 1.0)×10−5

e+e− (3) 5 (1.6, 0.84)×10−7 (1.7, 1.4)×10−6 (2.5, 1.0)×10−6

e+e− (5) 5 (3.6, 1.8)×10−8 (5.8, 4.9)×10−7 (8.9, 3.4)×10−7

0.14 9.6×10−6 1.9×10−4 2.2×10−4

LHC(13) 0.3 7.5×10−6 1.5×10−4 1.8×10−4

3 3.8×10−6 0.80×10−4 0.97×10−4

3 4.0×10−9 6.1×10−7 7.2×10−7

pp(100) 10 2.6×10−9 4.2×10−7 4.9×10−7

30 1.9×10−9 3.0×10−7 3.5×10−7

Table 10: Sensitivity reaches on the nTGC form factors at the 2σ level of e+e−colliders with different
collision energies, compared with those of the LHC and the pp (100TeV) collider. The reactions
e−e+→ Zγ → qq̄γ and pp(q q̄)→ Zγ → `¯̀γ, νν̄γ are considered for the lepton and hadron
colliders respectively. For the e+e− colliders, each entry corresponds to (unpolarized, polarized)
e∓ beams. As benchmarks for the e∓ beam polarizations we choose (P e

L, P
ē
R) = (0.9, 0.65).

in Table 9 are much stronger than the unitarity limits of Table 1 and Fig.1. This shows that
the perturbation expansion in the SMEFT formulation is well justified for the present collider
analyses of probing the nTGCs.

Next, we analyze the probes of nTGCs at e+e− colliders using the form factor formulation
we described in Section 3. According to the relations we derived in Eq.(3.6), can translate our
sensitivity reaches on the new physics scale Λj of each dimension-8 operator Oj to that of the
related form factor hVj . The corresponding sensitivities on the form factors (h4, h

Z
3 , h

γ
3) are

presented in the upper half of Table 10. For comparison, we also show the sensitivities of the
LHC (13TeV) and a 100TeV pp collider in the lower half of Table 10.

We see from Table 10 that the LHC has sensitivities for the form factor |h4| that are higher
than those of the e+e− colliders with

√
s = (250, 500)GeV by a factor of O(10−102), but

has comparable sensitivities to that of an e+e− collider with
√
s = 1TeV, whereas the LHC

sensitivities are lower than those of the e+e− colliders with
√
s = (3− 5)TeV by a factor of

O(10 − 102). On the other hand, a 100TeV pp collider would have much higher sensitivities
than all the e+e− colliders with

√
s65TeV, by factors ranging from O(10−105). We also see

that a 100TeV pp collider has a sensitivity for probing the form factor h4 that is better than
that of the LHC by a factor O(103).

Similar features hold for the form factors (hZ3 , h
γ
3), as can be seen by inspecting Table 10.

We find that an e+e− collider of any given collision energy
√
s has comparable sensitivities
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Figure 9: Normalized angular distributions in φ∗ for e+e−→ Zγ with Z→ dd̄, as generated by
h4 in our form factor formulation (3.5) in panels (a) and (b), and as generated by (hZ4 , h

γ
4) in the

conventional form factor formulation (3.1) with hV5 = 0 in panels (c) and (d). The panels (a) and
(c) correspond to the e+e− colliders with

√
s = 250GeV and the panels (b) and (d) correspond to√

s = 3TeV.

for probes of (hZ3 , h
γ
3), with the differences being less than a factor of 2. We see also that the

sensitivities improve from O(10−4) to O(10−7) when the collider energy increases from
√
s =

0.25TeV to 5TeV. We further note that the LHC and 100TeV pp colliders have comparable
sensitivities to (hZ3 , h

γ
3) for any given integrated luminosity. When the integrated luminosity

of the LHC (or the 100TeV pp collider) increases over the range from L= (0.14− 3)ab−1 [or
L=(3− 30)ab−1], we see that the sensitivities to the form factors (hZ3 , h

γ
3) increase by about

a factor of 2. Comparing the sensitivity reaches of the e+e− and hadron colliders in Table 10,
we find that the sensitivities of the LHC are comparable to those of a 0.25TeV e+e− collider,
but lower than those of e+e− colliders with

√
s =(0.5−1)TeV by a factor of O(10), and lower

than those of e+e− colliders with
√
s= (3− 5)TeV by factors of O(102−103). On the other

hand, the sensitivities of the pp(100TeV) collider for probing (hZ3 , h
γ
3) are generally higher

than those of the 250GeV e+e− collider by a factor of O(103), higher than those of the 0.5TeV
to 1TeV e+e− colliders by a factor of O(102), and higher than those of the 3TeV e+e− collider
by a factor of O(10), while they are comparable to those of a 5TeV e+e− collider.

Finally, it is instructive to present the φ∗ angular distributions for the form factor hV4 . In the
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√
s (TeV) 0.25 0.5 1 3 5

|h4| 3.9×10−4 3.8×10−5 4.5×10−6 1.6×10−7 3.6×10−8

|hZ4 | 8.9×10−5 4.2×10−6 2.5×10−7 3.0×10−9 3.9×10−10

|hγ4 | 6.7×10−4 3.2×10−5 1.9×10−6 2.3×10−8 2.9×10−9

Table 11: Comparisons of the 2σ sensitivities to probing the form factor h4 of our SMEFT formula-
tion (3.5) (marked in red color) and the conventional form factors (hZ4 , h

γ
4) that take into account only

U(1)em gauge invariance (marked in blue color), as derived by analyzing the reaction e+e−→Zγ→q q̄γ
at various e+e− colliders with L= 5 ab−1 and unpolarized e∓ beams. As discussed in the text, the con-
ventional form-factor limits (blue color) are included for illustration only, as they do not respect the
full SM gauge symmetry, and hence are invalid.

gauge-invariant form factor formulation given in Eq.(3.5), we have imposed the constraints
(3.4a)-(3.4b). Hence, the form factor hV5 is not independent, and should be replaced by
hV5 = −hV4 /2, according to Eq.(3.4a). Moreover, Eq.(3.4b) shows that hγ4 is not independent,
so the form factors (hV4 , h

V
5 ) reduce to a single parameter h4(≡ hZ4 ) as shown below Eq.(3.4).

We can then derive the interference cross section σ1 contributed by h4 and the normalized
angular distribution f 1

φ∗
as follows:

σ1 =
e2
(
− 1

2
+ s2

W

)
(s−M2

Z)

8πsW cWv
2 s

h4 , (5.1a)

f 1
φ∗ =

1

2π
− 3π(f 2

L−f 2
R)(M2

Z + 5s) cosφ∗
256(f 2

L+f 2
R)MZ

√
s

+
s cos 2φ∗
8πM2

Z

. (5.1b)

We see that the interference cross section scales as σ1 ∝E0 , while the angular distribution
f 1
φ∗

has the leading term cos 2φ∗ enhanced by E2 and the subleading term cosφ∗ enhanced
by E1 for large energy

√
s = E . We plot the angular distribution f 1

φ∗
in Fig. 9(a) and 9(b)

for the e+e− collider energies
√
s = 250GeV and 3TeV, respectively. In each panel, the h4

contribution is depicted by the red solid curve, and the SM contribution is shown as the
black dashed curve which is almost flat. We also observe that cosφ∗ and cos 2φ∗ terms in the
function f 1

φ∗
in Eq.(5.1b) have opposite signs. They are comparable for lower collision energy

√
s = 250GeV, but cos(2φ∗) becomes dominant for a large collision energy

√
s = 3TeV. We

can evaluate the numerical coefficients of f 1
φ∗
, as follows:

f 1
φ∗ =

1

2π
− 0.485 cosφ∗ + 0.299 cos 2φ∗ , for

√
s = 250GeV, (5.2a)

f 1
φ∗ =

1

2π
− 5.67 cosφ∗ + 43.1 cos 2φ∗ , for

√
s = 3TeV. (5.2b)

This explains why panel (a) of Fig. 9 exhibits a significant cancellation between the cosφ∗

and cos(2φ∗) terms, whereas in panel (b) the cos(2φ∗) term dominates and thus the red curve
exhibits interesting cos(2φ∗) behavior.
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Figure 10: Sensitivity reaches for the new physics scale Λ of the nTGC operators at the hadron
colliders LHC (13TeV) and pp (100TeV) in plot (a) and e+e− colliders with collision energies

√
s =

(0.25, 0.5, 1, 3, 5)TeV in plot (b). In each plot, the (2σ, 5σ) sensitivities are shown in (light, heavy)
colors, respectively.

For comparison, we consider the conventional form factor formulation (3.1) with hV5 =

0, where (hZ4 , h
γ
4) are treated as two independent parameters. In this case we derive the

following interference cross sections (σ̃Z1 , σ̃
A
1 ) contributed by (hZ4 , h

γ
4) and their normalized

angular distributions (f̃ 1Z
φ∗
, f̃ 1A

φ∗
):

(σ̃Z1 , σ̃
A
1 ) =

e4(s−M2
Z)2

128πM4
Z s

(
1−4s2

W

s2
W c

2
W

hZ4 ,
2

sW cW
hγ4

)
, (5.3a)

f̃ 1Z
φ∗

=
1

2π
− 3π(f 2

L−f 2
R)(3s+M2

Z)

128MZ(f 2
L+f 2

R)
√
s

1−4s2
W +8s4

W

1−4s2
W

cosφ∗ , (5.3b)

f̃ 1A
φ∗

=
1

2π
− 3π(f 2

L−f 2
R)(3s+M2

Z)

128MZ(f 2
L + f 2

R)
√
s

(1−4s2
W ) cosφ∗ . (5.3c)

We see that the interference cross sections in (5.3) scale as (σ̃Z1 , σ̃
A
1 )∝E2 , while the angular
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Figure 11: Sensitivity reaches for the nTGC form factors (h4, h
Z
3 , h

γ
3) at the hadron colliders LHC

(13TeV) and pp (100TeV) in plot (a) and at e+e− colliders with collision energies
√
s = (0.25, 0.5,

1, 3, 5)TeV in plot (b). In each plot, the ( 2σ, 5σ) sensitivities are shown in (heavy, light) colors,
respectively.

distributions (f 1Z
φ∗
, f 1A

φ∗
) have leading terms ∝ cosφ∗ enhanced by E1 for large energy

√
s =E1 .

We also note that the distribution f 1A
φ∗

is much suppressed relative to f 1Z
φ∗

due to the small
factor (1−4s2

W )�1. We plot the angular distributions (f 1Z
φ∗
, f 1A

φ∗
) of Eq.(5.3c) as the blue solid

curves in Fig. 9(c)-(d), while the squared distributions (f 2Z
φ∗
, f 2A

φ∗
) and the SM distribution f 0

φ∗

are plotted as the green solid curves and black dashed curves, respectively. As expected, the
distributions (f 2Z

φ∗
, f 2A

φ∗
) and f 0

φ∗
are dominated by the constant term and thus nearly flat.

We stress that Eq.(5.3) and the corresponding Figs. 9(c)-(d) are incorrect because the con-
ventional form factor formulation (3.1) with hV5 = 0 does not obey the consistency conditions
(3.4) imposed by the spontaneous breaking of the electroweak gauge symmetry SU(2)L⊗U(1)Y
of the SMEFT. In the following we further show that the conventional form factor formulation
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also leads to erroneously strong sensitivity limits on the form factors (hZ4 , h
γ
4).

Following the steps leading to Eq.(4.11), we construct the following observables (O1, Õ1)

for probing the form factors:

O1 =

∣∣∣∣σ1

∫
dφ∗ f

1
φ∗× sign(cos2φ∗)

∣∣∣∣ , (5.4a)

Õ1 =

∣∣∣∣σ̃1

∫
dφ∗ f̃

1
φ∗× sign(cosφ∗)

∣∣∣∣ . (5.4b)

From the above formulae (5.1a) and (5.3), we deduce that energy-dependences of the observ-
ables are O1(h4)∝E2 and Õ1(hV4 )∝E3 . This shows that in the conventional form factor
formulation Õc

1 has an erroneously large energy-dependence (E3 instead of E2), leading to
incorrectly strong sensitivities to the form factors (hZ4 , h

γ
4). We present these incorrect sen-

sitivities in blue color in Table 11. For comparison, we also show in this Table the correct
sensitivities (red color) to the form factors h4, as derived within our consistent form factor
formulation (3.5) with the constraints (3.4a) and (3.4b). From this comparison, we see that
for the form factor hZ4 the conventional sensitivities (blue color) are erroneously stronger than
our new sensitivities (red color) by a factor of 5 for the collider energy

√
s = 250GeV, by a

factor of O(10−20) for the collider energies
√
s = (0.5−1)TeV, and by a factor of O(102) for

the collider energies
√
s = (3−5)TeV.

Finally, for an intuitive comparison and overview, we summarize in Fig. 10 the sensitivity
reaches for the new physics scales of the dimension-8 nTGC operators at the hadron colliders
[panel (a)] and the e+e− colliders [panel (b)] from Tables 4-5 and Table 9. We present these
limits at both the (2σ, 5σ) levels, which are indicated by the (light, heavy) colors respec-
tively. In Fig. 10(b) we only plot the sensitivity reaches for e−e+ collisions with unpolarized
electron/positron beams. We note that according to Table 9, adding the e−/e+ beam polar-
izations can increase the sensitivity reaches on the new physics scale by about 20% for OG+

and OC+, and by about 5% for O
B̃W

. Also, we summarize in Fig. 11 the sensitivity reaches
for probing the nTGC form factors (h4, h

Z
3 , h

γ
3) at the hadron colliders [panel (a)] and the

e+e− colliders [panel (b)] from Table 7 and Table 10, where the (2σ, 5σ) limits are marked by
the (light, heavy) colors, respectively. In Fig. 10(b) we present only the sensitivity reaches for
e−e+ collisions with unpolarized electron/positron beams. We note that according to Table 10,
adding the e−/e+ beam polarizations can increase the sensitivity reaches for the nTGC form
factors by about 100% for h4, by about 20% for hZ3 , and by about 160% for hγ3 .

The reason that the effects of beam polarization for probing the nTGC form factors in
e−e+ collisions appear much stronger than those for probing the new physics cutoff scales
of the dimension-8 nTGC operators can be understood as follows. We note that the relation
between the polarized and unpolarized cross sections of the SM backgrounds is given by [5]:

σ0(P e
L, P

ē
R) = 4

P e
LP

ē
Rc

2
L+(1−P e

L)(1−P ē
R)c2

R

c2
L+ c2

R

σ0(0.5, 0.5) , (5.5)

48



where P e
L (P ē

R) denotes the fraction of left-handed (right-handed) electrons (positrons) in the
e− (e+) beam and PL +PR =1 holds for both e− and e+ beams.7

According to Ref. [5], we construct the following three kinds of O1 observables and extract
the different signal terms of O(Λ−4) in the differential cross section:

OA =

∫
dθdθ∗dφ∗

d3σ1

dθdθ∗dφ∗
sign(cosφ∗) , (5.6a)

OB =

∫
dθdθ∗dφ∗

d3σ1

dθdθ∗dφ∗
sign(cosφ∗)sign(cosθ)sign(cosθ∗) , (5.6b)

OC =

∫
dθdθ∗dφ∗

d3σ1

dθdθ∗dφ∗
sign(cos2φ∗) . (5.6c)

For these observables, we can deduce the following:

OA(G+) = A× 1
2
cLP

e
LP

ē
R(5s+M2

Z)Λ−4
G+ , (5.7a)

OA(j) = A× 3[cLxLP
e
LP

ē
R+cRxR(1−P e

L)(1−P ē
R)](s+M2

Z)Λ−4
j , (5.7b)

OB(G+) = B× 1
2
cLP

e
LP

ē
R(5s+M2

Z)Λ−4
G+ , (5.7c)

OB(j) = B× 3[cLxLP
e
LP

ē
R−cRxR(1−P e

L)(1−P ē
R)](s+M2

Z)Λ−4
j , (5.7d)

OC(G+) = C× 1
2
cLP

e
LP

ē
R sΛ−4

G+ , (5.7e)

OC(j) = C×[cLxLP
e
LP

ē
R−cRxR(1−P e

L)(1−P ē
R)]M2

ZΛ−4
j , (5.7f)

where the index j denotes the operators (OG−,OB̃W ,OC+), respectively. The values of the
coefficients (A, B, C) in these formulae are given by the numerical results for the observables
in Eq.(5.6). The dependence of each sensitivity limit on the polarization choice is determined
by the relation between the left- and right-handed couplings. The most sensitive observable for
probing OG+ (h4) is OC , while the most sensitive observable for probing O

B̃W
(hZ3 ) and OC+

is OA. For probing OG− (hγ3), the most sensitive observable is OB in the case of unpolarized
beams, and is OA in the case of polarized beams [for the choice (P e

L, P
ē
R) = (0.9, 0.65)]. We

note that the sensitivity limits for the nTGC form factors scale as (hV3 , h
V
4 ) ∝ OX (where

X = A,B,C), and that the new physics cutoff reaches of the dimension-8 nTGC operators
behave like Λ∝O1/4

X . Hence, the improvements from the beam polarizations can be significant
for the form factors, but become rather mild for the cutoff scales of the dimension-8 operators.

For convenience, we express a given observable OX≡OX/Λ
4
j for the dimension-8 operator

formulation and OX≡OXh
V
i for the form factor formulation. We may estimate the significance

by Z ' S/
√
B . If we require the significances of the polarized and unpolarized cases to be

7Note that the degree of longitudinal beam polarization for e− or e+ is defined as P̂ =PR−PL [5]. Thus,
the left-handed and right-handed fractions of e− and e+ in the beam can be expressed as P eL,R = 1

2 (1 ∓ P̂ e)
and P ēL,R = 1

2 (1 ∓ P̂ ē), respectively. For instance, unpolarized e− and e+ beams have vanishing degrees
of polarization (P̂ e, P̂ ē) = 0 , whereas a polarized e− beam with fraction P eL = 90% has P̂ e = −0.8 and a
polarized e+ beam with fraction P ēR = 65% has P̂ ē=0.3 .

49



equal, Zpol =Zunpol , we can derive the following ratio of the polarized/unpolarized limits on
the dimension-8 cutoff scales and on the form factors, respectively:

RΛj
=

Λj(pol)

Λj(unpol)
=
[
RX(P e

L, P
ē
R)
]1/4

, RhVi
=

hVi (unpol)

hVi (pol)
= RX(P e

L, P
ē
R), (5.8)

where the ratio RX(P e
L, P

ē
R) is defined as

RX(P e
L, P

ē
R) ≡ OX(P e

L, P
ē
R)

OX(0.5, 0.5)

√
σ0(0.5, 0.5)

σ0(P e
L, P

ē
R)

. (5.9)

From the above, we derive the following estimate of the ratio RX for each observable OX :

RA =
2
∣∣cLxLP e

LP
ē
R + cRxR(1−P e

L)(1−P ē
R)
∣∣

|cLxL + cRxR|

√
c2
L+ c2

R

P e
LP

ē
Rc

2
L+(1−P e

L)(1−P ē
R)c2

R

, (5.10a)

RB,C =
2
∣∣cLxLP e

LP
ē
R− cRxR(1−P e

L)(1−P ē
R)
∣∣

|cLxL− cRxR|

√
c2
L+ c2

R

P e
LP

ē
Rc

2
L + (1−P e

L)(1−P ē
R)c2

R

, (5.10b)

where (cL, cR)=(T3−Qs2
W ,−Qs2

W ) denote the Z coupling factors with the (left, right)-handed
electrons, and the coupling coefficients (xL, xR) are given by

(xL, xR) = −Qs2
W (1, 1), (for OG−), (5.11a)

(xL, xR) = (T3−Qs2
W , −Qs2

W ), (for O
B̃W

), (5.11b)

(xL, xR) = −T3(1, 0), (for OG+,OC+). (5.11c)

Because the coupling coefficient xR= 0 for OG+(h4) and OC+, we can reduce the significance
ratio (5.10) to the following form and compute its value for (P e

L, P
ē
R)=(0.9, 0.65):

RX(P e
L, P

ē
R) = 2P e

LP
ē
R

√
c2
L+ c2

R

P e
LP

ē
Rc

2
L+(1−P e

L)(1−P ē
R)c2

R

, (5.12a)

RX(0.9, 0.65) ' 2.0, (5.12b)

where X =A,B,C. Thus, we deduce the following ratios for the operators (OG+,OC+) and
the form factor h4:

RΛG+
= RΛC+

=
[
RX(0.9, 0.65)

]1/4 ' 1.2, (5.13a)

Rh4
= RX(0.9, 0.65) ' 2.0. (5.13b)

This means that the e−/e+ beam polarizations can enhance the sensitivity reach for the cutoff
scale ΛG+ by about 20%, and enhance the sensitivity reach for the form factor h4 much more
significantly, namely by about 100%, which explains the features shown in Tables 9-10 and
Figs.10-11.

We further note that the coupling coefficients xL,R=cL,R for the nTGC operator O
B̃W

and
form factor hZ3 . We find that to enhance the polarization effects for probing O

B̃W
and hZ3 , the
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most sensitive observable is OA. Thus, we simplify the significance ratio (5.10) to the following
form and compute its value for (P e

L, P
ē
R)=(0.9, 0.65):

RA(P e
L, P

ē
R) = 2

√
P e
LP

ē
Rc

2
L+(1−P e

L)(1−P ē
R)c2

R

c2
L+ c2

R

, (5.14)

RA(0.9, 0.65) ' 1.2 . (5.15)

With these, we deduce the following ratios for the operator O
B̃W

and the form factor hZ3 :

RΛ
B̃W

=
[
RA(0.9, 0.65)

]1/4 ' 1.05, (5.16a)

RhZ3
= RX(0.9, 0.65) ' 1.2 . (5.16b)

This shows that the beam polarizations can increase mildly the sensitivity reach for the cutoff
scale Λ

B̃W
by about 5%, and increase the sensitivity reach for the form factor hZ3 by a larger

amount of 20%, which agree with the features shown in Tables 9-10 and Figs.10-11. Finally,
we note that the enhancement ratio (5.9) does not apply to the cases of OG− and hγ3 because
there OB is the most sensitive observable for the unpolarized case and OA is the most sensitive
observable for the polarized case. Thus, we define the corresponding ratio RAB(P e

L, P
ē
R) of sig-

nificances between the polarized and unpolarized cases and compute its value RAB(0.9, 0.65):

RAB(P e
L, P

ē
R) ' OA(P e

L, P
ē
R)

OB(0.5, 0.5)

√
σ0(0.5, 0.5)

σ0(P e
L, P

ē
R)

, (5.17a)

RAB(0.9, 0.65) ' 2.6 . (5.17b)

From these we derive the significance ratios for the operator OG− and the form factor hγ3 :

RΛG−
=
[
RAB(0.9, 0.65)

]1/4 ' 1.27, (5.18a)

Rhγ3
= RX(0.9, 0.65) ' 2.6 . (5.18b)

We see that the beam polarization effects can raise the sensitivity reach for the cutoff scale
ΛG− by about 27%, and raise the sensitivity reach for the form factor hγ3 by about 160%, which
agree with the results presented in Tables 9-10 and Figs.10-11.

6 Conclusions

Neutral triple-gauge couplings (nTGCs) provide an important window for probing new physics
beyond the SM. In this work, we have studied systematically the prospective experimental sen-
sitivities to nTGCs at the 13TeV LHC and a future 100TeV pp collider, using the SMEFT ap-
proach to classify and characterize the nTGCs that can arise from gauge-invariant dimension-8
operators.

In Section 2.1 we first considered a set of CP-conserving dimension-8 nTGC operators and
the related contact operators in Eq.(2.2). Then, in Section 2.2 we derived their contributions
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to the scattering amplitudes of the partonic process q̄ q→Zγ in Eqs.(2.7) and (2.8). With
these, we computed the corresponding total cross sections including the SM contribution,
the interference term of O(1/Λ4), and the squared term of O(1/Λ8), as in Eqs.(2.12) and
(2.15), where Λ is the new physics cutoff scale defined in Eq.(2.1). We further presented in
Eq.(2.14), Eq.(2.17), and Fig. 3 their contributions to the differential angular distributions, in
comparison with that of the SM. In Section 2.3 we analyzed the perturbative unitarity bounds
on the nTGCs, as shown in Table 1 and Fig.1, which are much weaker than the collider limits
presented in Sections 4-5. Hence, the perturbation expanison is well justified for the current
collider analyses.

In Section 3 we presented a new form factor formulation of the neutral triple gauge ver-
tices (nTGVs) ZγV ∗ (with V = Z, γ), by mapping them to the dimension-8 nTGC opera-
tors of the SMEFT that incorporate the spontaneously-broken electroweak gauge symmetry
SU(2)L⊗U(1)Y of the SM. This differs from the conventional form factor parametrization of
nTGCs that takes into account only the unbroken U(1)em gauge symmetry [3][4]. Using the
SMEFT approach, we have found that a new momentum-dependent nTGC term with form
factor hV5 has to be added and the mapping with the dimension-8 SMEFT interactions enforces
new nontrivial relations (3.4a)-(3.4b) between the form factors (hV4 , h

V
5 ) and between the form

factors (hZ4 , h
γ
4). The new form factor hV5 was not included in all the previous form factor

analyses of nTGVs. We have demonstrated that including the new form factor hV5 is crucial
for a fully consistent form factor formulation of nTGVs and ensures the exact cancellation of
the spuriously large unphysical terms of O(E5) in the scattering amplitudes of q q̄→Zγ , as
shown in Eqs.(3.8b) and (3.10). In consequence, among the six general nTGC form factors
(hV3 , h

V
4 , h

V
5 ) in Eq.(3.2), we have proven that only three of them, (hZ3 , h

γ
3 , h4) with h4≡ hZ4 ,

are independent, and the correct nTGC form factor formula is given by Eq.(3.5). We have
further presented the explicit correspondence between the nTGC form factors and the cutoff
scales of the dimension-8 nTGC operators in Eqs.(3.6)-(3.7).

In Section 4, we have systematically studied the sensitivity reaches for probing the new
physics scales of the nTGC operators and for probing the nTGC form factors in the reactions
pp(q q̄)→Zγ→ `¯̀γ, νν̄γ at the LHC and the future pp (100TeV) collider. We have presented
analyses of sensitivity reaches using the interference contributions of O(Λ−4) in Section 4.2
and including the squared contributions up to O(Λ−8) in Section 4.3. We have evaluated the
prospective 2σ and 5σ sensitivities of the LHC and the future 100TeV pp collider to the
different nTGCs, and have combined the sensitivity reaches of the leptonic decay channel
Z→`+`− (Secs. 4.2-4.3) and the invisible decay channel Z→ν ν̄ (Sec. 4.4). We have presented
our findings in Tables 2 to 4 for the dimension-8 operator OG+ and the equivalent operator
OC−, and in Table 5 for the other dimension-8 operators (O

B̃W
, OG−, OC+). These sensitiv-

ity reaches are further summarized in our Fig. 10(a). From Table 4, we see that the 2σ (5σ)
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sensitivity to the scale of the operator OG+ could reach 4.4TeV (3.9TeV) at the 13TeV LHC
with 3 ab−1 integrated luminosity, and reach 30TeV (26TeV) at the 100TeV pp collider with
30 ab−1, whereas the estimated sensitivity reaches on the scales of the dimension-8 opera-
tors (O

B̃W
, OG−, OC+) shown in Table 5 are somewhat smaller. Then, in Section 4.5 we have

presented the LHC sensitivity reaches on the three independent form factors (h4, h
Z
3 , h

γ
3) in

Table 7, with a summary of these sensitivities given in Fig. 11(a). We see that the sensitivities
for probing the form factor h4 are generally higher than those of the other two form factors
(hZ3 , h

γ
3) by about a factor of 5×10−2 at the LHC and by about a factor of 10−2 at the 100TeV

pp collider. We emphasise that if the dimension-8 SMEFT relations between the different form
factors are not taken into account, one would find unrealistically strong sensitivities due to
the uncancelled large unphysical energy-dependent terms associated with the form factor h4 ,
as seen by comparing Eq.(4.20) with Eq.(4.17). Then, we explicitly demonstrated in Table 8
that the sensitivities to hZ4 and hγ4 in the conventional form factor approach (marked in blue
color) are (erroneously) higher than the correct sensitivities (marked in red color and extracted
from Table 7) by about a factor of 5×10−2 at the LHC and by about a factor of 10−2 at the
pp(100TeV) collider. Hence, it is important to use the consistent form factor approach for
the nTGC analysis as we advocated in Section 3. After these comparisons, in Section 4.6 we
analyzed the 2-parameter correlations for both the nTGC form factors and for the nTGC
dimension-8 operators. We presented in Fig.5 the correlations of each pair of the form factors
(h4, h

V
3 ) and (hZ3 , h

γ
3) at hadron colliders, where the (h4, h

V
3 ) contours in the plots (a) and (b)

have rather weak correlations due to the extra energy-suppression factor of Eq.(4.27), and the
plots (c) and (d) demonstrate large correlations between the form factors (hZ3 , h

γ
3). Then, we

presented the correlations of each pair of the nTGC operators (OG+, OB̃W ) and (OG+, OG−)

in Figs. 6(a)-(b) which are suppressed by large energy factor 1/
√
s̄ as shown in Eq.(4.31). The

correlations of each pair of the nTGC operators (O
B̃W

, OG−), (OC+, OB̃W ), and (OC+, OG−)

are presented in Figs. 7(a) to (d). These correlations are not suppressed by any energy factor
and are thus significant at both the LHC and the 100TeV pp collider. We demonstrated in
Figs. 7(c)-(d) that the correlations of the operators (OC+, OB̃W ) and (OC+, OG−) are partic-
ularly strong. Finally, in Section 4.7 we have made direct comparison with the published LHC
measurements on nTGCs in the reaction pp(q q̄)→Zγ (with Z→ ν ν̄ ) by the CMS [18] and
ATLAS [19] collaborations. Using the same kinematic cuts and integrated luminosity together
with an estimated detection efficiency as in the ATLAS analysis [19], we have applied the
conventional form factor formula (3.1) to reproduce the nTGC bounds in Eq.(4.46) and the
strong correlations of (hV3 , h

V
4 ) in Figs. 8(c)-(d), which agree well with the ATLAS results [19].

However, the (hV3 , h
V
4 ) contours of Figs. 8(c)-(d) differ substantially from those contours of

Figs. 8(a)-(b), which exhibit rather weak correlations as predicted using our new SMEFT
form factor formula (3.5). Hence, it is important to use the SMEFT form factor formulation
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described in Section 3 to analyze the LHC bounds on nTGCs.

We presented in Section 5 systematic comparisons of the sensitivity reaches for the nTGCs
between the hadron colliders (the LHC and the 100TeV pp collider) and e+e− colliders with
different energies. Table 9 summarizes the comparisons for probing the nTGCs of dimension-8
operators (OG+, OB̃W , OG−, OC+), whereas Table 10 summarizes the comparisons for probing
the nTGC form factors (h4, h

Z
3 , h

γ
3). We have summarized the above comparisons of sensitivity

reaches between the hadron colliders and lepton colliders in Figs. 6 and 10. Then, in Table 11,
we have further demonstrated that using naively the conventional form factor formula with-
out including the nontrivial constraints of the dimension-8 SMEFT approach would cause
erroneous sensitivities to (hZ4 , h

γ
4) (marked in blue color) that are stronger than the correct

sensitivities (marked in red color and extracted from Table 10) at the e+e− colliders by a factor
of O(10) for the collision energy

√
s 61TeV and by a factor of O(102) for

√
s = (3− 5)TeV.

Hence, it is important to use the consistent form factor approach of Section 3 for nTGC anal-
yses at e+e− colliders. In general, from the comparisons of Tables 9-10 and Figs. 10-11, we
find that the LHC sensitivity reaches on the nTGCs are similar to those at the e+e− colliders
with collision energy

√
s 61TeV [5]. On the other hand, a higher-energy e+e− collider with

√
s = (3−5)TeV would have greater sensitivities than the LHC to probing the new physics

scales of the nTGC operators and the corresponding nTGC form factors. However, we have
shown that the sensitivity reaches of the 100TeV pp collider would be even higher.

Overall, we have found that nTGCs provide a powerful means for probing any possible new
physics beyond the SM that could generate the dimension-8 nTGC operators in the SMEFT.
We have found that both pp and e+e− colliders have significant roles to play. We advocate as
a first step that the ATLAS and CMS experiments at the LHC apply the dimension-8 SMEFT
approach proposed here to analyze the nTGCs, in preference to the conventional form factor
approach that does not take into account the full electroweak gauge symmetry SU(2)L⊗U(1)Y

of the SM.
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