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Neutrino charged-current quasielastic-like scattering, a reaction category extensively used in neutrino
oscillation measurements, probes nuclear effects that govern neutrino-nucleus interactions. This Letter
reports the first measurement of the triple-differential cross section for νμ quasielastic-like reactions
using the hydrocarbon medium of the MINERvA detector exposed to a wideband beam spanning
2 ≤ Eν ≤ 20 GeV. The measurement maps the correlations among transverse and longitudinal muon
momenta and summed proton kinetic energies, and compares them to predictions from a state-
of-art simulation. Discrepancies are observed that likely reflect shortfalls with modeling of pion and

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

PHYSICAL REVIEW LETTERS 129, 021803 (2022)

0031-9007=22=129(2)=021803(7) 021803-1 Published by the American Physical Society

https://orcid.org/0000-0003-2880-4687
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.021803&domain=pdf&date_stamp=2022-07-06
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


nucleon intranuclear scattering and/or spectator nucleon ejection from struck nuclei. The separate
determination of leptonic and hadronic variables can inform experimental approaches to neutrino-energy
estimation.

DOI: 10.1103/PhysRevLett.129.021803

Current and future long baseline neutrino experiments
[1–4] seek to delineate the neutrino mass ordering and to
quantify the presence of charge-parity violation in the
neutrino sector. These experiments will use neutrinos of
energies from 0.3 to 4 GeV and higher if tau-neutrino
appearance is explored [5]. Accurate models of neutrino-
nucleus interactions are required to relate the energies of
visible final-state particles of events observed in the
detectors to the initiating true neutrino energies that under-
write the oscillations of neutrino flavor. A leading con-
tributor to charged-current neutrino interactions at these
energies is the quasielastic-like channel:

νμ þA → μ− þ nucleonsþ A0: ð1Þ

Charged-current neutrino interactions within nuclei, even
those with apparent two-body quasielastic final states, are
altered by a number of poorly understood effects: The
struck nucleons of the initial state are bound and in motion
[6,7]; short-range multinucleon processes give rise to
enhanced reaction rates relative to scattering on free
nucleons [8–13], and hadrons produced in the parent νμ
interactions with nucleons undergo intranuclear final-state
interactions (FSI) within the target nuclei. While the
reaction νμ þA → μ− þ pþA0, wherein nearly all
final-state energy is visible, is thought to be the main
contributor to the quasielastic-like channel [Eq. (1)] a
significant number of events may have energy deposited
in undetected neutrons or light nuclear fragments. Final
states of the latter kind complicate the task of inferring
neutrino energy from samples of quasielastic-like events.
The reaction of Eq. (1) has received repeated exper-

imental scrutiny; however only single- or double-differ-
ential cross sections in muon kinematics have been
reported, mostly carried out with νμ of incident energies,
Eν, of sub-GeV to few GeV [14–31]. This Letter reports a
new measurement of the quasielastic-like channel in which
the final-state muon transverse (pt) and longitudinal (pk)
momenta are measured in each event simultaneously with
the total “available” (calorimetrically visible) recoil energy
(Eavailable) used in previous analyses of data from
MINERvA [13,32,33]. Since the signal requires final state
muon plus nucleons only, Eavailable is the sum of the kinetic
energies of all protons, denoted ΣTp.
Under the assumption of a stationary target neutron in

νμ þ nðboundÞ → μ− þ p, energy transfer also can be
inferred to be

qðQEÞ0 ≡m2
p − ðmn − EbÞ2 −m2

μ þ 2ðEμ − pμ cos θμÞEμ

2ðmn − EbÞ − Eμ þ pμ cos θμ
:

ð2Þ

Here, mμ, mp, and mn are the masses of the muon, proton,
and neutron, Eb is the average binding energy of 34 MeV
[6,34,35], and Eμ, pμ, and θμ are the muon energy,
momentum, and angle with respect to the neutrino beam.

The qðQEÞ0 of Eq. (2) is the quantity added to the recon-
structed muon energy by T2K to estimate neutrino energy
of quasielastic-like events, while ΣTp is the amount added
to the muon energy by NOvA to form its neutrino energy
estimator for events with quasielastic-like topologies.
Combined T2K-NOvA analyses will be credible to the
extent that interaction models correctly predict the relation-
ship between these quantities. The measurements of this
Letter elicit the correlations among the kinematic variables
of quasielastic channels, thereby confronting the models
with information of a kind that heretofore has not been
available.
The analysis uses high-statistics samples of νμ charged-

current interactions recorded by the MINERvA detector
[36] exposed to the wideband, medium energy NuMI beam
[37] at Fermi National Accelerator Laboratory. In the NuMI
beam, 120 GeV protons impinging upon a carbon target
produce pions and kaons that are subsequently charge-
selected, focused by a magnetic horn system, and directed
into a pipe where they decay. The resulting neutrino flux is
calculated using a GEANT4 simulation of the beam optics
with input from hadronic interaction data relevant to the
beam and materials [38]. The neutrino flux is constrained
by previous measurements of neutrino elastic scattering
from atomic electrons, νe− → νe− [39]. This constraint
reduces the normalization uncertainty from 7.8% to 3.9%
for muon neutrinos of energies between 2 and 20 GeV. The
neutrino interactions occur in the central scintillator tracker
of the MINERvA spectrometer, which has a mass fraction
of 88.5% carbon, 8.2% hydrogen, 2.5% oxygen, and trace
amounts of other elements. Primary vertices of selected
events are restricted to a central 5.3 ton region. The spatial
resolution of the tracker enables reconstruction of final-
state protons and Michel electrons from the πþ →
μþðνμÞ → eþðνeν̄μÞ decay chain, as well as the tracks of
muons. The magnetized MINOS near detector, located
downstream of MINERvA, is used to determine the charge
and momenta of exiting muons. The scintillator tracker and
the surrounding sampling calorimeters enable calorimetric
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measurement of ΣTp and of photon showers from π0 → γγ.
Occasionally, final-state neutrons leave a small amount of
energy that is tagged as a photon or included in ΣTp; the
reference simulation predicts and corrects for this effect.
The average ΣTp for protons is ≈250 MeV; neutrons
contribute less than 10 MeV of energy in 74% of events
and an average of 85 MeV for the rest.
The MINERvA detector response is simulated using

GEANT4 [40] version 4.9.4p2 with the QGSP_BERT
physics list. The optical and electronics performance is
also simulated. Through-going muons are used to deter-
mine the absolute energy scale. Full descriptions of
calibrations are given in Refs. [36,41]. The absolute energy
response to charged hadrons is set according to measure-
ments using a charged particle test beam [42] and a scaled-
down version of the MINERvA detector. The effects of
accidental activity as a function of beam intensity are
simulated by overlaying hits from data in both MINERvA
and MINOS.
The reference signal and background models for this

analysis are based on a modified version of the GENIE [43]
v.2.12.6 event generator. Quasielastic interactions are
modeled using the Llewellyn Smith formalism [44] with
BBBA05 vector form factors [45] and an axial-vector form
factor based on a z-expansion fit to deuterium data [46].
Resonance production is simulated using the Rein-
Sehgal model [47] with a dipole axial mass of MRES

A ¼
1.12 GeV=c2. The nuclear initial state is a relativistic Fermi
gas model [48] with kF ¼ 0.221 GeV=c and with a Bodek-
Ritchie high momentum tail [49]. Multinucleon quasielas-
tic-like interactions are simulated by the “Valencia model”

described in Refs. [10,11,50]. Intranuclear final-state inter-
actions of produced hadrons are modeled using the
INTRANUKE-HA package [51].
To better describe MINERvA data, a number of mod-

ifications are made in the reference model that are collec-
tively denotedMINERvA tune v4.4.1. The quasielastic cross
section is modified as a function of energy and three-
momentum transfer based on the random phase approxima-
tionof theValenciamodel [52,53] appropriate for a Fermi gas
[54,55] to account for long-range correlations between
nucleons. To account for an observed excess in specific
regions of three-momentum transfer and ΣTp, the multi-
nucleon cross section is increased based on fits toMINERvA
data [13] from a lower energy beam configuration.
Additionally, based on fits to νμ-hydrogen data [56], the
nonresonant charged-current pion production is decreasedby
43%, the overall baryon-resonance pion production is
increased by 15%, and MRES

A is set to 0.94 GeV.
Samples for measuring quasielastic-like interactions and

their backgrounds require a muon track that starts in the
fiducial volume and is identified in MINOS as negatively
charged. All other tracked particles originating from the
interaction vertex at the beginning of the muon track must
have dE=dx consistent with a proton. Signal and back-
ground samples are formed by counting the number of
Michel electron candidates within 600 mm long, 600 mm
diameter cylinders centered on the neutrino vertex and on
endpoints of tracked particles, and by counting isolated
clusters constructed from two-dimensional clusters with at
least 1 MeV visible energy. The former identify πþ, and
the latter identify photons from π0 decays. Clusters with an
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FIG. 1. The flux-averaged triple-differential cross section for quasielastic-like events, d3σ=dpkdptdΣTp, shown as points with colored
error bands for designated intervals of pk in panels of pt. Note the use of scaling factors and log scale to elicit the trends and consistency
across all pk. The predictions of the reference model MINERvA tune v4.4.1 are shown as lines in each panel.
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energy less than 10 MeV per hit are assumed to be caused
by neutrons producing low energy protons and are not used.
Events that contain either a πþ (67%), a π0 (19%), or

both (14%), comprise the dominate backgrounds to the
quasielastic-like signal. Four exclusive samples are
assembled using the criteria of 0 or ≥ 1 Michel electrons,
and ≤ 1 or ≥ 2 isolated clusters. Sample Awith no Michel
electrons and ≤ 1 isolated cluster is the signal sample.
Sample B has a Michel electron but ≤ 1 isolated cluster and
is rich in single πþ events. Sample C comprises events with
≥ 2 isolated clusters but no Michel electrons, and is mostly
single π0 events. Sample D events have both Michel
electrons and ≥ 2 isolated clusters, and is mostly events
with multiple pions. Details of these four samples are given
in Ref. [25]. Sample A has 1.3 × 106 selected events with a
predicted background of 0.4 × 106. Samples B–D contain
0.23 × 106, 0.22 × 106, and 57 000 events.
For each bin of pt and ΣTp, a joint fit to the above-listed

four samples is used to determine scale factors applied to
the signal sample (A) and to each of the backgrounds
[single πþ (B), single π0 (C), and multipion (D)]. The fit
minimizes a χ2 over the four scale factors using a singular
value decomposition that drops singular values with con-
dition number < 10−3 to avoid numerical instability and
forbids negative scale factors for any component. The
background-subtracted event rate is unfolded using an
iterative technique [57] from the RooUnfold framework
[58] that is regularized by the number of iterations. A
regularization of 10 iterations was chosen by generating
randomly fluctuated pseudodata samples with a number of
different underlying physics models to ensure fidelity with
different assumed data models. The statistical covariance
matrix is scaled to account for the finite Monte Carlo
statistics in the true-to-reconstructed migration matrix. The
unfolded 3D distribution is then corrected for the predicted
event loss from selection inefficiencies and detector effects.
The average efficiency is between 40% and 75% over all
bins. The triple-differential cross section is obtained by
normalizing the distribution according to the number of
neutrinos incident on the detector and the number of
scattering centers. The final result is shown in Fig. 1. To
zeroth order, Fig. 1 shows that the reference simulation
(solid lines of different colors in the panels) describes the
general trends in the data points. Upon closer inspection,
discrepancies are apparent. In the lower pt range of the
uppermost panels, for example, the prediction exceeds the
data for all pk for ΣTp ≥ 0.2 GeV. For clarity, the pjj curves
are presented separated in the Supplemental Material [59].
Figure 2 shows the average ΣTp in each pt − pk bin. The

average recoil energy in data falls ∼50 MeV below the
reference model at low pt, ≲0.5 GeV=c, then rises to be
comparable to the model ∼0.9 GeV=c, and finally exceeds
the model prediction in the highest pt bin. The abrupt
change in the highest pt bins may be due to a cutoff in the
Valencia multinucleon model that eliminates this process

above three-momentum transfer of 1.2 GeV=c [10,11].
Predictions for GENIE v3.0.6 were produced using
NUISANCE [60].
Figures 1 and 2 show discrepancies between data and the

reference simulation that persist as a function of pk. Figure 3
displays the ratio of data to simulation at the peak pk bin, the
third from top (yellow) points in Fig. 1. Here the discrep-
ancies can be associated with three different kinematic
regions ofpt − ΣTp, enumerated below. Since the prominent
processes in each region can be identified, each discrepancy
suggests specific model developments.
Low pt, high ΣTp.—For 0 < pt < 0.4 and ΣTp ≥

0.3–0.8 GeV, the reference model predicts significant cross
section in a region where the data indicates very little cross
section. The predicted events are approximately half
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multinucleon and half low W pion production where the
pion is absorbed in FSI. Therefore, it is likely that both
processes are overpredicted. In this region, the multi-
nucleon prediction is from the Valencia model with little
effect from MINERvA tune v4.4.1. In pion production,
such an effect may arise either from overprediction of the
baryon-resonance pion production cross sections or from
too-small suppression of primary pions due to FSI. A low

Q2 suppression of resonant pion production[18,61] or a
reduction in the visible energy from these events [33], as
Fig. 2 also suggests, would improve agreement with this
data. Shifts in energy transfers have been observed in
ðe; e 0Þ data for regions of low energy transfer [34,62–70].
An overprediction of pion FSI could arise from finite
hadronic formation time [71], an effect not included in the
reference simulation. However this background arises
mostly from absorption of slow pions (pπ < 0.3 GeV=c),
hence pion formation time is unlikely to account for the
entire effect.
Moderate pt and ΣTp just above the quasielastic peak.—

For ΣTp of 0.2 GeV and 0.15 < pt < 0.55 GeV=c, where
the modifications of MINERvA tune v4.4.1 to multinu-
cleon processes are large, the data and reference model
would be in strong disagreement without these modifica-
tions. Figure 3 shows that the ratio of the data to the
reference model dips near the peak of the tune, suggesting
that the shape of the MINERvA tune v4.4.1 enhancement
may not be accurate, either in rate or in fraction of
events with a neutron in the final state. However, at
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pt > 0.55 GeV=c, where the model predicts a smaller
multinucleon contribution, the data mostly exceeds the
reference prediction, suggesting that a significant enhance-
ment to multinucleon processes at higher pt than in
MINERvA tune v4.4.1 may be needed.
High pt and low ΣTp.—At pt > 0.55 GeV=c and

ΣTp < 50 MeV, there is a significant overprediction rel-
ative to data. This region is dominated by true quasielastic
events where the final-state proton undergoes FSI and
leaves the nucleus as one or more energetic neutrons; this
suggests that too much strength is given to FSI in this
kinematic region.
Figure 4 presents the flux-averaged triple-differential

cross section d3σ=dEμdq
ðQEÞ
0 dΣTp. Here as well, signifi-

cant data versus reference model discrepancies are seen at

low qðQEÞ0 for ΣTp beyond the peak of the quasielastic
contribution. The previously noted discrepancy at low ΣTp

and high pt corresponds to a predicted peak near zero ΣTp

at high qðQEÞ0 , which is absent from the data. The cross
section in the quasielastic peak is underestimated, espe-

cially at higher qðQEÞ0 , and modified form factors could
improve this agreement [46,72–74]. This measurement
directly probes the relationship between energy estimators
used in oscillation experiments, and discrepancies with
models suggest deficiencies in modeling those estimators.
In summary, a number of modeling shortfalls for

neutrino-nucleus quasielastic-like scattering are identified
by this measurement. These imply that relationships
between the true neutrino energy of quasielastic-like events
and experimental estimators, such as Eavailable þ Eμ and

qðQEÞ0 þ Eμ, differ from those predicted by current neutrino
generators. The triple-differential cross section presented in
Fig. 4 can serve as a benchmark for neutrino-nucleus
interaction simulations employed in ongoing and future
neutrino oscillation experiments.
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