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Abstract. To sustain the harsher conditions of the high-luminosity LHC, the
CMS collaboration is designing a novel endcap calorimeter system. The new
calorimeter will predominantly use silicon sensors to achieve sufficient radia-
tion tolerance and will maintain highly-granular information in the readout to
help mitigate the effects of pileup. In regions characterised by lower radia-
tion levels, small scintillator tiles with individual on-tile SiPM readout are em-
ployed. A unique reconstruction framework (TICL: The Iterative CLustering)
is being developed to fully exploit the granularity and other significant detec-
tor features, such as particle identification and precision timing, with a view
to mitigate pileup in the very dense environment of HL-LHC. The inputs to
the framework are clusters of energy deposited in individual calorimeter lay-
ers. Clusters are formed by a density-based algorithm. Recent developments
and tunes of the clustering algorithm will be presented. To help reduce the ex-
pected pressure on the computing resources in the HL-LHC era, the algorithms
and their data structures are designed to be executed on GPUs. Preliminary re-
sults will be presented on decreases in clustering time when using GPUs versus
CPUs. Ideas for machine-learning techniques to further improve the speed and
accuracy of reconstruction algorithms will be presented.

1 Introduction

The significant increase in the instantaneous and integrated luminosity comes at the price of
almost an order of magnitude increase in the number of multiple proton-proton collisions in
the same or neighbouring bunch crossings (referred to as pileup), and the significant increase
of the radiation levels. Both of these effects pose major challenges for the experiments, which
need to be upgraded to cope with the harsher data taking conditions. One of the major CMS
upgrades is the replacement of the current electromagnetic and hadronic endcap calorimeters
with a high granularity calorimeter (HGCAL) [3].

The design of the CMS endcap calorimeter upgrade was motivated by the physics re-
quirements in this region, while preserving radiation tolerance under the harder HL-LHC
conditions. The region covered by the endcap calorimeters (1.5 < |η| < 3.0) is essential for
the success of the LHC physics program, where processes initiated by vector boson fusion
and exotic signals play a major role. Therefore, the upgraded detector should provide the
necessary capabilities to identify single objects with kinematic thresholds similar to the cur-
rent ones, powerful jet flavour identification (e.g., quark-gluon separation), high-pT particle
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identification (“tagging”) where the decay products of the initial particle are often merged
into a single jet, and more.

Taking all these motivations under consideration, the most promising detector upgrade is
an imaging calorimeter with very fine lateral and longitudinal segmentation, complemented
by precision timing capabilities. HGCAL is a sampling calorimeter using extensively silicon
sensors (∼ 6M channels) as active material to achieve radiation tolerance, with the additional
benefit of a very high readout granularity. In regions with lower radiation levels, small plastic
scintillator tiles with individual SiPMs readout are employed.

2 HGCAL geometry

Each endcap consists of 50 sensor+absorber layers with a total thickness of about 10 λI . The
first 28 layers form the electromagnetic section, CE-E (about 25 X0 and 1.3λI). The active
element consists solely of silicon sensors of different thicknesses (120, 200, 300 µm) and
cell sizes (∼0.5, ∼1.2 cm2). The hadronic section, CE-H, is composed of 12 fine sampling
layers followed by 10 layers with twice as thick absorbers. In the first eight layers of CE-H,
silicon sensors of thickness of 200 or 300 µm, and size of a cell ∼1.2 cm2, alone are used. In
the remaining layers, some of the area at larger radius, where the radiation dose is smaller,
is instrumented with scintillator tiles. In order to reliably operate the silicon sensors and the
scintillator tiles after irradiation, the entire HCGAL detector will be operated at −30◦C.

3 HGCAL Local Reconstruction

The HGCAL local reconstruction is designed to be fast and flexible. It proceeds by recon-
structing the deposited energy in each single cells and calibrating that to an absolute elec-
tromagnetic scale. The product of these steps are the so called “RecHits”, which will serve
as the building blocks of the particle shower reconstruction. For the time being, this step is
performed on every triggered event globally in the whole HGCAL detector. Events with 200
pileup interactions at HL-LHC operation are expected to produce about ∼ O(105) RecHits
in the HGCAL detector, constituting a very challenging task for the software reconstruc-
tion. In addition, the speed requirements at HLT make many of the most-efficient algorithms
unsuitable for particle shower reconstruction in HGCAL. Taking these requirements into con-
sideration, it is vital to develop novel reconstruction algorithms which are designed to explore
the recent developments in computing resources (e.g., heterogeneous computing).

3.1 Layer cluster formation: the CLUE algorithm

One of the fundamental ingredients of the HGCAL reconstruction is the collection of RecHits
in the same HGCAL layer that originate from the same particle, broadly known as cluster-
ing, to form the “Layer Clusters” (LC). The CLUE (CLUsters of Energy) [9] algorithm is
a fast and GPU-friendly density-based algorithm designed for high granularity calorimeters
that is fully compatible with the HGCAL geometry. It features linear scalability and easy
parallelization, and aims at reducing the computational challenge of TICL reconstruction by
one order of magnitude, as it builds small clusters (∼ 10 hits per cluster).

To achieve fast performance, CLUE starts by organizing the RecHits by their proximity
in a fixed grid in the η−φ space, and uses a spatial index for efficient neighbourhood queries.
Therefore, for each HGCAL layer, a fixed-grid spatial index is constructed, registering each
RecHit according to their η − φ coordinates. Then, the clustering procedure can be summa-
rized in three main steps. First, CLUE calculates the local energy density of each RecHit,
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defined as:
ρi =

∑
j: j∈Ndc (i)

χ(di j)E j (1)

where dc is a cutoff distance that can be chosen based on the shower size and the lateral
granularity of HGCAL, E j is the weight of point j, and χ(di j) a convolution kernel, which in
the current implementation has the form:

χ(di j) =



1 di j = 0
0.5 di j ≤ dc.

0 di j > dc

(2)

In the next step, CLUE computes for each RecHit the quantity δ, i.e. the distance to
the closest RecHit with higher ρ, and establishes a connection between these two RecHits
(important for parallelizing the algorithm).

At the final step, the RecHits are labelled as "seeds", "followers", and "noise". RecHits
with ρ > ρc and distance δ > δc are promoted to be seeds, whereas RecHits with ρ < ρc and
distance δ > δo are denoted to be “noise”. All other RecHits are associated to their closest
hit with higher local density, as their follower. The parameters ρc, dc, δc, and δ0 are tuned
based on physics arguments. The current configuration for silicon and scintillator sensors is
summarized in Table 1. With the proposed tuning, the algorithm is extremely robust against
noise, and is able to cluster almost all of the particle’s deposited energy in the sensitive layers.

ρc dc δc δ0
silicon 9 × σNoise 1.3 [cm] 1.3 [cm] 2.6 [cm]
scintillator 9 × σNoise 0.0315 [η × φ] 0.0315 [η × φ] 0.063 [η × φ]

Table 1. Summary of the current values of CLUE’s tunable parameters. The term σNoise refers to the
standard deviation of the expected noise distribution.

4 Particle shower reconstruction in HGCAL: "TICL"

The design of HGCAL has great potential for the application of advanced pattern recognition
techniques. The possibility of a five-dimensional (x, y, z, energy and time) particle shower re-
construction is ideally suited for particle flow algorithms. However, the large channel count
and the severe pileup conditions are some of the challenges that require breakthroughs in
many areas of the reconstruction chain to fully exploit the HGCAL potential, without jeop-
ardising the overall reconstruction timing. The success of this program relies on a coherent
effort in all these areas which translates into designing a versatile reconstruction framework
to explore, test and validate new approaches.

4.1 The iterative clustering framework

Motivated by the requirements discussed above, "The Iterative CLustering" (TICL) frame-
work was developed. TICL is a modular reconstruction framework designed to fully exploit
the HGCAL potential by processing the LCs built by CLUE and returning particle properties
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and identification probabilities. Figure 1 illustrates the TICL building blocks (components).
The highly modular structure of TICL enables the study of different approaches for each step
of the reconstruction chain, by simply modifying only the relevant parts. Moreover, TICL
follows an iterative approach; separate TICL configurations (“iterations”) can be designed to
reconstruct different particle species. Lastly, TICL is conceived with parallel processing in
mind, suitable for the upcoming era of heterogeneous computing in high energy physics. In
the remaining section, we present in more detail some of the key ingredients of TICL.

Figure 1. Illustration of the building blocks of TICL. Each box corresponds to a different component
of the TICL framework, and the arrows indicate possible connections between the components. The
dotted lines represent the alternative approaches to build Tracksters under study.

4.1.1 A TICL iteration

A fundamental TICL ingredient is the “iteration”, that combines information from the various
TICL components to reconstruct the particle shower, which within TICL, is referred to as a
“Trackster”. The skeleton of a TICL iteration can be summarised as follows:

• Building blocks: the LCs returned by CLUE

• Seeding regions: identify the spatial regions of interest and the layer clusters compatible
with these regions. A seeding region can be global, i.e. it spans the full HGCAL accep-
tance, or local (e.g., a small region around a track propagated to the HGCAL entrance
surface).

• Pattern recognition: the algorithm that links together layer clusters among different layers
to reconstruct the particle shower i.e., a Trackster. Section 4.1.2 presents details of the
current implementation.

• Linking and classification: identify the Trackster type and improve the energy measure-
ment with the aid of traditional or machine-learning-based techniques.

• Masking: option to mask the layer clusters used in this iteration. This results in a signifi-
cant reduction of the combinatorics in later iterations, which comes with the advantage of
less computing requirements and improved reconstruction performance.

The overall goal of TICL is to follow an iterative approach: first reconstruct simpler objects
(e.g., electrons), mask the layer clusters used in this iteration, then reconstruct more compli-
cated ones.
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The overall goal of TICL is to follow an iterative approach: first reconstruct simpler objects
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4.1.2 A TICL Trackster

A TICL Trackster aims to link the LC associated to each TICL iteration. It is a Direct
Acyclic Graph [6] created by a pattern recognition algorithm, which links LCs to form three-
dimensional objects (i.e., the reconstructed particles’ showers). Therefore, each vertex of the
graph is a LC, and the connections between the vertices are the edges of the graph.

The pattern recognition method currently implemented in TICL is based on the Cellular
Automaton (CA) algorithm [7]. The CA algorithm aims to group entities with similar proper-
ties (e.g., LCs associated with the same particle) by exploring information between the entity
under question and the entities in its neighbourhood. Usually, a fixed rule is applied to all en-
tities simultaneously. The CA implementation in HCGAL reconstruction can be streamlined
in three steps.

The first step is responsible for the generation of “doublets”, i.e., connections between
successive LCs. For a LC in the HGCAL layer N, LCN , a search window in layer N + 1
is defined. The search window is obtained by projecting the spatial dimensions of LCN in
η − φ to layer N + 1. To account for the lateral shower evolution, in conjunction to the
HGCAL design specifications, the search window is extended by ∆η × ∆φ of 0.05 (0.1) for
|η| < 2.1 (|η| ≥ 2.1). This is graphically shown in Fig. 2 (a). LCs contained in the search
region are connected to LCN , and form doublets. Timing information [2] is used, whenever
it is available, to reject LCs originating from pileup interactions. To account for detector
inefficiencies or shower properties, the doublet formation could be carried out even for LCs
belonging to non-consecutive layers. The maximum number of missing layers is a tunable
parameter and can vary between iterations. Additional selection on the minimum number of
RecHits to form a LC can be also applied to suppress LCs stemming from noise.

The second step in the pattern recognition is the doublet linking. Doublets are linked
if two angular requirements are satisfied: an angular compatibility between each outermost
doublet and the origin of the seeding region, and a minimal alignment condition between the
two doublets. The two conditions are illustrated in Fig. 2 (b). The angular requirements may
vary between different iterations.

β
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Figure 2. (left) Basic principle of the pattern recognition algorithm used in TICL. Illustration of the
angular requirements between doublets; compatibility between the outermost doublet and the origin of
the seeding region (centre), and minimal alignment condition between the two doublets (right).

The third and final step in the pattern recognition is to connect all doublets satisfying the
above angular requirements to form a Trackster. Ideally a single Trackster should be created
for each particle interacting with HGCAL. An event display of two tracksters originating
from two electrons is shown in Fig. 3.
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Figure 3. Event display of two tracksters originating from two electrons. The yellow (red) segments
connect the edges of a doublet between two (non-)adjacent layers.

4.1.3 The current TICL configuration

There are currently five prototype iterations, which differ in the values adopted for the fol-
lowing parameters:

• layer range, to account for the different longitudinal extension of particle showers;

• minimum size of the input LCs, to suppress the noise;

• seeding region, for showers originating from a charged particle;

• maximum layer distance between a doublet edges;

• maximum time difference between two LCs in a doublet, to filter out LCs stemming from
pile-up;

• maximum angle between each outermost doublet and the origin of the seeding region, to
account for the different transverse extension of particle showers;

• maximum angle between two doublet directions;

• minimum number of layers in a trackster.
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Given that LCs used to build a trackster in a given iteration are masked in the subsequent
iterations, the order of the iteration execution is of crucial importance. Currently they follow
this order:

1. a track-seeded electromagnetic iteration ("TrkEM"), targeting e±;

2. an electromagnetic iteration ("EM") targeting γ;

3. a track-seeded iteration ("TrkHAD") targeting charged hadrons;

4. an hadronic iteration ("HAD") targeting neutral hadrons;

5. a MIP iteration ("MIP") focusing on particles that deposit a very small amount of en-
ergy in HGCAL, such a muons.

The trackster provenance from different iterations allows to perform a preliminary Particle
Flow interpretation of the TICL products:

• all tracksters reconstructed in the EM iteration are labelled as photons;

• all tracksters reconstructed in the HAD iteration are labelled as kaons long;

• tracksters from the TrkEM iteration:

– if there is another trackster coming from the TrkHAD iteration that is seeded by the very
same track, the tracksters are merged and labelled as charged hadron;

– search the most compatible trackster (in η − φ and pT space) with the seeding track and
label as electron;

– remaining additional trackster are labelled as photons;

• tracksters from the TrkHAD iteration are labelled as charged hadrons;

• all general tracks which have not been used by TICL are promoted as charged hadrons.

4.1.4 Runtime

An assessment of the current TICL configuration runtime within a realistic event reconstruc-
tion has been performed. It accounts for the 4.3% of the total time required by the CMS
reconstruction of a tt event at a center-of-mass energy of 14 TeV in a PU-200 environment.

4.2 Particle shower identification

The final goal of TICL is to identify the type of particle that initiated the shower and precisely
estimate shower energy. To this end, advanced machine learning (ML) techniques are utilised
to develop a particle identification (PID) algorithm. The tracksters produced by TICL are
used as inputs to a Convolutional Neural Network (CNN): each trackster is represented as
a three-dimensional image of 50 × 10 × 3, where each dimension represents the number of
HGCAL layers per endcap, the maximum number of LC on each layer ordered by decreasing
energy, and the number of features (energy, η, φ) of each LC. In this representation, each pixel
of the image corresponds to an LC that belongs to the Trackster. Zero-padding is applied
in layers with less than 10 LC, whereas in layers with more than 10 LC, low energy LC
are removed. A preliminary performance study has been conducted on a two-class model:
particles generating an electromagnetic or hadronic shower. The dataset consisted of 24k
events (12k per particle type) : 70% has been used for training, 20% for validation and the
remaining 10% for testing. The CNN was trained for 15 epochs (passes of the algorithm
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through the entire dataset), using the sum of categorical cross-entropy and mean squared
error as loss function to account for particle ID and energy regression. In order to have the
value of the two functions of the same order of magnitude during training, the energies of
the Tracksters were normalised with respect to the data sample. The CNN was trained with
Tensorflow [11] on a PU=0 sample, and applied both on a PU=0 and 200 sample. Results
are shown in Figure 4 and demonstrate the robustness of the algorithm in the two extreme
scenarios.

Figure 4. Confusion matrix of the CNN for a PU=0 (left) and PU=200 (right) scenario.

5 Conclusions

Reconstruction in High Granularity Calorimeters at HL-LHC poses many unprecedented
challenges, therefore a novel reconstruction algorithm for imaging calorimeters has been de-
veloped in CMS: "TICL".

The current TICL configuration within a realistic environment (
√

s = 14 TeV at PU=200)
accounts for the 4.3% of the total time required by the CMS reconstruction of a tt event. Being
developed with parallelism in mind, the runtime is expected to improve on heterogeneous
architectures (e.g. GPUs).

TICL provides a fertile ground for application of neural networks and other machine
learning algorithms. First results from a CNN are extremely encouraging: single particle
identification between EM and HAD is higher than 90% and stable against different PU sce-
narios.

Next developments will focus on the:

• systematic tuning of thresholds/cuts per TICL iteration,

• improvement of ParticleFlow-objects interpretation,

• local purification of Tracksters from PU contributions.
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