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Abstract. CERNBox is the cloud collaboration hub at CERN. The service has
more than 37,000 user accounts. The backup of user and project spaces data is
critical for the service. The underlying storage system hosts over a billion files
which amount to 12PB of storage distributed over thousands of disks with a two-
replica layout. Performing a backup operation over this vast amount of data and
number of files is a non-trivial task. The original CERNBox backup system (an
in-house event-driven file-level system) has been reconsidered and replaced by
a new distributed and scalable backup infrastructure based on the open source
tool RESTIC. The new system, codenamed cback, provides features needed
in the HEP community to guarantee data safety and smooth operation from
the system administrators. Daily snapshot-based backups of all our user and
project areas along with automatic verification and restores are possible with
this the new development. The backup data is also de-duplicated in blocks and
stored as objects in a disk-based S3 cluster in another geographical location
on the CERN campus, reducing storage costs and protecting critical data from
major catastrophic events. We report on the design and operational experience
of running the system and future improvement possibilities.

1 Introduction

At CERN, the Storage Group provides daily backups for all data stored in CERNBox[1–3].
The existing event-driven backup system has been running successfully since years but the
lack of features (not snapshot based, not automatic verification, not resilient against disas-
ter scenarios,...) and operational costs triggered the kick-start of a new project in 2019 to
rethink our backup strategy towards a more feature-rich (snapshot based, scalable, backup
verification, different geographical location,...) and cost effective solution.

CERNBox currently hosts over 1.6 billion files and 12PB of storage data distributed in
8 clusters, 93 servers and 4400 hard disks. Each file is stored in 2-replica layout across
two different servers. When the data to be backed up is in the order of billions of files, at
Petabyte volume scale, the process of having daily snapshot-based backups turns quickly
into a challenge. The time factor is crucial and techniques as backup parallelization have to
be explored to optimize the available time. Other important factor is minimising the footprint
of the backup in terms of space occupancy to reduce the cost of the underlying infrastructure.
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Strategies like file de-duplication and efficient disk layouts have therefore to be considered.
Other factors like reducing the impact of the backup process in the running service cannot be
overseen. A clear and revised disaster recovery plan together with a reliable and verifiable
backup system is an important part of the service. In this study we introduce an example
of how to address this challenge using a backup orchestration system based on open source
technology which can be integrated in dynamic and complex storage environments.

A backup system is more than merely copying data from one place to another and there-
fore proper analysis is needed as for the service itself. In the process of finding the most
suitable backup solution, the following aspects should be taken into consideration.

2 Backup Analysis

The storage of the backup data requires resources and depending of its size, this could in-
crease the cost exponentially. It is important to backup the essential data for the service and
to filter out data that is not relevant or that can be recovered from other sources.

While deciding about the placement of the backup data, the main underlying question
should be “Is the backup data safe in case of a disaster?”. Storing the backup in the same
physical place of the original data would not help in case of flooding or a fire. For critical
backups, more than one backup can be considered, ideally stored in different geographical
locations. Software disaster and bugs in storage systems could cause irreversible data cor-
ruption and need to be taken into consideration, specially if source data and backup data are
stored using the same technology.

To reduce the storage footprint of the backup data a retention policy could be put in place
in order to delete the old backups. This policy needs to be agreed within the organization
taking into account the storage costs and the particular usage of the data. In the case of
backups that involve personal data, a fine grained deletion may be required by data protection
laws. One of the questions that could be raised to define the retention policy could be “is still
useful a backup made 1 year ago?”.

A good practise of managing a backup systems is to perform periodical backup verifica-
tion. Scheduled verification procedures that involve actual file restoration give information
about the correctness of the stored data and can be used to measure the time needed to restore.
Sporadic human verification will help to validate the automatic verification.

If there are expectations that the restore of the backup will be exercised regularly, having
automation tools in place could help to perform these tasks easily and, if required, in an
unattended way. Exposing the restore functionality to the end-users in a self-service approach
reduces the operational cost.

A backup system should cope with the growing trends of the service. If the service is
ready to scale, the backup system should be able to scale as well.

Nowadays, a great effort is taken to protect the services and applications against security
incidents (targeted attacks, data leaks, ...). The same principles can be applied to the security
of the backups. Mechanisms such as encryption ensures that the data is not readable in case
it was compromised.

Last but not least, it is important to evaluate the risks of executing the backup on running
services and to try to identify and minimize potential impacts on the users experience.

2.1 CERNBox and EOS

CERNBox is a cloud collaboration hub for CERN community: it allows syncing and sharing
files on all major mobile and desktop platforms (Linux, Windows, Mac OS, Android, iOS)
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aiming to provide offline availability for the data stored in the CERN EOS [4, 5] infrastruc-
ture. In addition, it satisfies the high demand in the community for an easily accessible cloud
storage solution, an alternative to popular services like Dropbox or Google Drive. Integration
of the CERNBox service with the EOS storage back-end was a step forward for providing
synchronization and sharing capabilities for scientific and engineering use cases. CERNBox
provides the integration and sharing capabilities with the LHC data analysis tools and trans-
fer services; promoting a new integrated way of accessing data for scientific research. The
core of the service is a sharing system based on components provided by the ownCloud[1]
open software stack. CERNBox provides a service layer on top of storage systems already
provided by the CERN Storage group and offers various modern ways to access data on cloud
storage (see Figure 1):

Figure 1. CERNBox Architecture

As depicted in figure 1, CERNBox allows accessing files via a Sync client software run-
ning on PCs and Macs, mobile application for portable devices (Android, iOS) as well as
through the web interface. Files can be also accessed via the protocols already provided by
EOS (WebDAV, XRootD). Permissions are propagated from the ownCloud system to the EOS
access control list (ACL) stored as metadata attributes.

EOS, the LHC Disk Storage

EOS is used as the storage for the CERNBox service. It provides a replicated data stor-
age with different ways to access the data: through a FUSE mount, XROOTD [8] protocol
and WebDAV protocol. To ensure consistency across synchronization clients, from the web
access and from FUSE or XROOTD clients, EOS storage extends the standard WebDAV pro-
tocol to include the synchronization semantics used by ownCloud, therefore a change made
using the EOS command line interface is synchronized automatically to an end user computer
through ownCloud synchronization clients. In the (Figure 2) the EOS Architecture is shown.

User requests are managed by the EOS manager node (named mgm) which are redirected
to the source or destination file server (fst) depending of the type of request. The name
space information is stored in a 3 node cluster using RocksDB variant developed at CERN,
codenamed QuarkDB [9].

EOS provides a FUSE interface, so users can mount a particular remote directory in
EOS as a local folder in their workstation. The fact of having remote resources in a local
folder allows the use of tools for data analysis that only work in local file-systems. As a
consequence, physicists could use analysis frameworks like ROOT to analyze the raw data.
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Figure 2. EOS Architecture

This is one of the innovative use cases that CERNBox provides to the scientific community,
the ability to interact with high valuable data in a non-disruptive and automatic way.

2.2 Legacy backup system limitations

CERNBox legacy backup is an in-house developed, event-based system. The backup is done
by file and there is no concept of snapshots. Therefore, restoring a folder as it was in a
certain moment is a complex task. The process of restoring files is triggered via support
ticket and performed by the service operators. The backup repository is stored using the
same technology (EOS) and in the same physical data center as the source data. This is not
ideal as both source data and backup data could be compromised during a natural or software
disaster scenarios.

2.3 CERNBox tree structure

CERNBox storage is organized in 8 different EOS physical clusters, and the data organization
is represented in the following structure:

eos/
home-a/(physical instance)
agustin/
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2.2 Legacy backup system limitations

CERNBox legacy backup is an in-house developed, event-based system. The backup is done
by file and there is no concept of snapshots. Therefore, restoring a folder as it was in a
certain moment is a complex task. The process of restoring files is triggered via support
ticket and performed by the service operators. The backup repository is stored using the
same technology (EOS) and in the same physical data center as the source data. This is not
ideal as both source data and backup data could be compromised during a natural or software
disaster scenarios.

2.3 CERNBox tree structure

CERNBox storage is organized in 8 different EOS physical clusters, and the data organization
is represented in the following structure:

eos/
home-a/(physical instance)
agustin/

alberto/
home-b/ (physical instance)
home-r/ (physical instance)
rvalverd/

project-a/(physical instance)
atestproject/

Users data is stored in different physical instances depending on the starting letter of the
username or project name. This structure gives flexibility in terms of backup organisation.
The backup of home and project folders can be treated in an isolated way. Therefore, the
backups can run concurrently as they can live in separate backup sets. This is clearly an
advantage compared to the approach of backing up at the starting-letter level.

3 New backup solution: cback [10]

3.1 restic: the foundation

restic [11] is an open source technology to perform backups. It provides a simple command
line interface that opens the door to an advanced backup functionalities. It diverges from
the traditional backup systems that tend to be heavy, complex and very opaque. The tool is
operated via a few commands and offers all the features expected by a modern backup sys-
tem: de-duplication, encryption, backup verification, backup purging and restore flexibility.
Similarly to git, it uses a repository structure to save the snapshot based backups. One of the
key features of restic is called Content Defined Chunking [15]. This characteristic is espe-
cially noticeable when backing up small modifications of big files because only the chunks
with the modifications are uploaded. This functionality allows an efficient usage of the avail-
able bandwidth. restic is also compatible with several storage back-ends, including S3 based
back-ends.

3.2 Overview

cback is a highly scalable orchestration system for restic developed at CERN that provides all
the tooling needed to manage the whole life-cycle of backup data: from backup and restore,
to verification and retention policy management. Although cback is optimized to be used as
a CERNBox backup, it can be used to backup arbitrary local or network file systems. The
system is composed by stateless agents that perform all the different tasks provided by the
system: backup, restore, prune, and verify. All the agents are coordinated through a central
database which contains the job definitions.

Unlike normal backup systems, cback is meant to run as an always-running backup sys-
tem, which means that the backup agents are looking for new jobs to process continuously
in a configured interval. The main benefit of this approach is that it helps to distribute the
backup activity in time and avoids user visible impact.

The main component of cback is the cback backup agent, which is responsible of execut-
ing the backup jobs. The restore jobs are handled by the cback restore and analogously cback
prune performs the pruning/purging based on the configured retention policy. Additionally,
the cback verify agent is responsible of performing the backup verification jobs. The cback
switch component is responsible of changing the status of the backup jobs that need to be
performed again. This decisions are based on job expiration parameters that indicates the
validity of a successfully completed job.
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3.3 Structure of the backup repository and caching policy

In cback, every backup jobs has a different backup repository. This granularity helps in keep-
ing the backup repositories smaller and easy to operate. Thanks to this isolation between the
different repositories, potential issues affecting one repository only affect the data contained
in that particular repository. With this layout, applying data life cycle policies to the user
backup repositories is a trivial task. Another benefit of this setup is that allows to perform a
priority-based restore in the aftermath of a disaster event, which would allow restoring critical
data in the first place required for business continuity.

restic uses by default a local cache to store a copy of the repository indexes and meta
data in order to speed-up the backup process while looking for changes in the source folder.
The size of this cache can vary from a couple of megabytes to even gigabytes depending of
the backup data volume. The nodes where the agents run have a limited local storage and it
was not feasible to preserve a copy of the cache for all repositories. Investigating this issue
further, we found that the impact of the cache was specially noticeable in long backup jobs,
and in this type of jobs, the time to re-create the cache was minimal compared with the time
to perform the backup. Therefore, the decision of removing the cache after each backup
was taken in order to preserve the stateless status of the backup agents and to minimize the
requirements on local storage.

3.4 Data flow diagram

Figure 3 identifies different cback components and services and illustrates the process of data
movement.

Figure 3. Data flow
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As shown in Figure 3, the backup (blue arrows) reads the data from the EOS fuse mount,
which communicates with the EOS manager to get the physical node and location of the
requested file. Depending on the job configuration, cback transfers the data to the suitable S3
endpoint. For restore jobs (dark green arrows), the process is the opposite, but in this case,
depending on the restore destination parameter, the data can be placed locally on the restore
agent or remotely in EOS using again the fuse mount. The other cback agents work directly
against the S3 endpoints, without any interaction with EOS. In all cases, the centralized cback
database is used for coordination.

3.5 Backup Optimizations

Backup only when needed

Thanks to some optimization of the CERNBox source storage back-end (EOS), cback can
decide if a backup is required or should be skipped. EOS provides a recursive ctime attribute,
which is compared with the time stamp of the last backup stored. If this value is not newer,
the backup is not performed at all. This avoids traversing the file system there are no changes.
This feature is also supported in source file systems based on Ceph [12] fuse implementation
(CephFS) thanks to the extended recursive attributes.

Avoid file opens

restic performs a fopen system call to open files when detecting changes. The file opening
over a network file system like EOS means opening the file directly on an remote disk. This
remote opening increases the latency of the detection phase of the backup because each file
is opened for a short period. This round-trip per file is non negligible. We have observed
that millions of files were opened for a very short period of time before being closed when
running the restic backup. The code path in restic that was responsible for this behaviour was
identified and improved. This optimizations has been merged in the upstream project[17] for
the benefit of the restic community.

The proposed optimization drastically reduces the backup discovery time (between 30%
and 50%) on network file systems (including EOS).

3.6 Metrics and service insights

cback is able to send metrics about the result of the different processes to Graphite [13] based
endpoints. These metrics include the result of the process, and counters regarding the number
of files or size of the data added to the backup repositories. Figure 4 shows the variability in
terms of file/directories been considered per backup job.

Figure 5 depicts the duration of all jobs executed in 7 days which confirms that all backup
jobs are performed in less that 24h (red marker).

4 Architecture

The architecture of cback is simple, just a database and an job executor and management
agent. The database acts as control plane to set job definitions and track status. The agent
executes and manage all the defined jobs and takes different role depending of the task to
perform. Most of the type of agents act as a wrapper to restic internal commands. Every
agent can run in same or different nodes and can be scaled as needed (no persistent data is
stored locally). cback agents have the possibility of running the job in a interactive way or in
a unattended and continuous mode.
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Figure 4. Data added/deleted in 24h, 1h-summarized

Figure 5. Backup job duration (7d)

In figure 7, a diagram of the architecture specifically for the deployment of CERNBox
backup is shown. Stateless agents (center) are coordinated via a centralised database and
they select jobs based on a pulling method. Each backup job stores the data on a different
repository, which corresponds to a different S3 bucket.

4.1 Operation

For the CERNBox backup system, all the cback components are running in agent mode,
which means that they are running continuously working in an unattended way in the back-
ground.

8

EPJ Web of Conferences 251, 02071 (2021)	 https://doi.org/10.1051/epjconf/202125102071
CHEP 2021



Figure 4. Data added/deleted in 24h, 1h-summarized

Figure 5. Backup job duration (7d)

In figure 7, a diagram of the architecture specifically for the deployment of CERNBox
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4.1 Operation

For the CERNBox backup system, all the cback components are running in agent mode,
which means that they are running continuously working in an unattended way in the back-
ground.

Figure 6. cback summary dashboard

Figure 7. cback Architecture

The backup agents query every 60 seconds the database for jobs to be in Pending status.
If they exists, one job is selected based on a configured policy (random, older). The cback
backup agent extracts the job definition, and performs the backup from the source on EOS
fuse view to the specified destination. The appropriate S3 configuration is loaded dynamically
from disk depending of the specified S3 endpoint. Once the backup is finished, the cback
backup agent updates the database with information of the new status of the backup. At the
end of the process, a set of metrics is sent to CERN’s Graphite instances and presented in
Grafana [14] dashboards.

Every hour, the cback prune agent queries the database for jobs in backup Completed sta-
tus and prune status in Pending. cback prune selects a random job and applies the configured
retention policy on the backup repositories in S3 and removes old snapshots if needed. 7
daily snapshots, 5 weekly snapshots and 6 monthly snapshots are kept for CERNBox. The
cback verify agent works the same way, but querying for jobs in backup status Completed,
prune status Completed and verify status in Pending.
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The cback switch agent is the responsible of decide when a backup, prune or verify job
is outdated and needs to be performed again. For the CERNBox use case, a backup is con-
sidered outdated after 24 hours of its completion, a prune 72 hours after, and a verification
job after 30 days. The start of the next backup depends on the end time of the last one. The
advantage of this approach is that the execution of the backup jobs is naturally scattered in
time which helps to do not stress the storage back-end.

Figure 8. Backup job distribution (24h)

On Figure 8 can be observed that this model, although is simple, offers a good spread of
the jobs across the different agents. On the other hand, due to this organic way of executing
the jobs it would be difficult to have an overview of the global backup job status at any given
time. For that, the concepts of ‘backup coverage‘, ‘prune coverage‘ and ‘verify coverage‘
are used in cback command line tool. A backup coverage is a percentage that indicates the
percent of backup jobs which were completed successfully in the last 24 hours (or within the
configured backup interval). This value is computed by cback status every time is executed,
giving to the administrator a quick and easy way to, through one simple value, know the
overall status all of the backup jobs at any given moment. The same principle is used for the
prune and verify coverage (check Fig. 9).

4.2 Components

The following section covers the definition and description of the data and storage manage-
ment for cback

4.2.1 Database

cback uses a centralized MySQL/MariaDB database in order to store the current status infor-
mation of the backup and restore jobs. The database design is optimized in order to reduce
the overhead while doing basic operations. This optimization includes the aggregation of dif-
ferent entities on the same table in order to avoid an excessive use of JOINS for information
retrieval. The current database model is illustrated in the Entity Relation Diagram presented
in Figure 10.
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Figure 10. Entity Relationship Diagram

4.2.2 Backup endpoints

Doing the backup of large volumes of information undoubtedly involves the need of a huge
storage capacity.restic minimizes the the cost thanks to its de-duplication features. On the
other hand, the backup data should always be available in order to support the restore of files.
cback stores the backup in CERN S3 infrastructure, which is based on a Ceph implementation
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of AWS S3 using Rados Gateways. By default, Ceph uses replica 3 approach to store the
objects which gives you an overhead of 200 percent in respect of the original data. Due to
this, a configuration of erasure coding 4+2 is applied that gives an overhead of 50 percent
while retaining the same availability. The availability of the Rados GW S3 endpoints is
given by a dedicated load-balanced pool of nodes specifically for cback agents. As Ceph is
configured to use a rack as a failure domain, the backup data would be accessible even if two
racks are not available.

5 Further Work

5.1 Avoid tree traversal

As stated before, cback implements a feature to skip backups when not needed. This helps to
reduce the number of backup jobs that runs daily. On the other hand, in case of a single file
modification, the full tree has to be traversed which is not efficient and produces unneeded
load server side. As shown in Figure 11, vast majority of the files are unmodified during
the daily backup jobs. This is clearly a field to improve. Different options can be explored
to address this issue, like using restic’s –files-from functionality to specifically tell restic the
exact set of files that changed (this information can be gathered from source file system in
advance). Another solution can be to improve restic folder traverse logic to take benefit of
recursive mtimes and being able to discard unchanged trees.

5.2 Restore "self-service"

The possibility of running asynchronous restore jobs opens the door to expose or offer the
restore mechanism to the end users. The system could be interfaced to be used via CERNBox
web UI or command line to submit restore jobs that would be processed automatically by
cback. This would reduce the operational costs (as no action would be needed by the service
manager) and improve the user experience.

Figure 11. File stats monitoring (24h)

5.3 Multi-replica Backups and non-S3 storage backend support

Currently, cback can perform the backup in different S3 zones. Having two copies of the
backup is already possible (defining two backup jobs) but the concept of producing a config-
urable number of exact backup replicas in different S3 geographical zones can be explored.

cback only supports S3 as the back-end for the backup repositories. rclone recently imple-
mented a feature to serve restic repository from any configured back-end. This development
would enable the support for different storage systems but limiting the usage of rclone as the
unique cback back-end.
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of AWS S3 using Rados Gateways. By default, Ceph uses replica 3 approach to store the
objects which gives you an overhead of 200 percent in respect of the original data. Due to
this, a configuration of erasure coding 4+2 is applied that gives an overhead of 50 percent
while retaining the same availability. The availability of the Rados GW S3 endpoints is
given by a dedicated load-balanced pool of nodes specifically for cback agents. As Ceph is
configured to use a rack as a failure domain, the backup data would be accessible even if two
racks are not available.

5 Further Work

5.1 Avoid tree traversal

As stated before, cback implements a feature to skip backups when not needed. This helps to
reduce the number of backup jobs that runs daily. On the other hand, in case of a single file
modification, the full tree has to be traversed which is not efficient and produces unneeded
load server side. As shown in Figure 11, vast majority of the files are unmodified during
the daily backup jobs. This is clearly a field to improve. Different options can be explored
to address this issue, like using restic’s –files-from functionality to specifically tell restic the
exact set of files that changed (this information can be gathered from source file system in
advance). Another solution can be to improve restic folder traverse logic to take benefit of
recursive mtimes and being able to discard unchanged trees.

5.2 Restore "self-service"

The possibility of running asynchronous restore jobs opens the door to expose or offer the
restore mechanism to the end users. The system could be interfaced to be used via CERNBox
web UI or command line to submit restore jobs that would be processed automatically by
cback. This would reduce the operational costs (as no action would be needed by the service
manager) and improve the user experience.

Figure 11. File stats monitoring (24h)

5.3 Multi-replica Backups and non-S3 storage backend support

Currently, cback can perform the backup in different S3 zones. Having two copies of the
backup is already possible (defining two backup jobs) but the concept of producing a config-
urable number of exact backup replicas in different S3 geographical zones can be explored.

cback only supports S3 as the back-end for the backup repositories. rclone recently imple-
mented a feature to serve restic repository from any configured back-end. This development
would enable the support for different storage systems but limiting the usage of rclone as the
unique cback back-end.

6 Summary

cback is a fully-featured system that allows the execution and management of the backup for
big data sets.

With cback, the data to be backed-up is filtered to ensure that only important data is
preserved. The prunning system and techniques like de-duplication and erasure code layouts
allow to reduce the storage usage and cost.

Apart from the job definition database, all the different components of cback are stateless
and can be scaled vertically or horizontally. The backup repositories are stored in a highly
scalable distributed object storage system powered by Ceph. Data is also stored in another
geographical location and using a different storage technologies, which is a safe mechanism
against natural and software disasters.

Automatic backup verification ensures that data stored is consistent and can detect in-
tegrity issues. The backup data is transferred via secure HTTP, stored encrypted using AES-
256 and authenticated using Poly1305-AES.

cback restore can restore the files directly on the users folder that allows the possibility to
offer a self-service restore mechanism.

7 Conclusions

A multi-petabyte backup solution based on cback has been introduced and is in full operation
to protect CERNBox service agains disaster scenarios. More than 37,000 user accounts and
800 projects are backed up every day using cback.

cback complements restic backups by orchestrating its core functionalities to the scale
needed by big data sciences. cback is a fully featured and modern backup system that helps
protecting CERNBox users and project data every day. The presented solution is an example
of how to address the backup of a multi-petabyte distributed data repository. The inner work-
ings of this systems can be extended to other use cases that involve similar constraints (refer
to section 2).
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