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Abstract. Across the years, being the backbone of numerous data management
solutions used within the WLCG collaboration, the XRootD framework and
protocol became one of the most important building blocks for storage solutions
in the High Energy Physics (HEP) community. The latest big milestone for
the project, release 5, introduced multitude of architectural improvements and
functional enhancements, including the new client side declarative API, which
is the main focus of this study. In this contribution, we give an overview of the
new client API and we discuss its motivation and its positive impact on overall
software quality (coupling, cohesion), readability and composability.

1 Introduction

The XRootD [1] project aims at providing low latency and scalable data access for large
scientific data sets and is based on a scalable, plug-in centric architecture and a commu-
nication protocol. It has been designed with particular emphasis for geographically dis-
tributed, file-based repositories. The software suite allows the deployment of federated
data clusters and provides important features like access control and WAN data distribution.
For almost 10 years now, the XRootD framework has been very successful at facilitating data
management of LHC experiments and grew into one of the most important storage technolo-
gies in the High Energy Physics (HEP) community. It comes with no surprise that XRootD
development is largely driven by the use cases coming from the WLCG project, as it is the
backbone of numerous software defined storage solutions (like EOS [2] and DPM [3]) used
to accommodate the vast amount of data registered by the LHC experiments at CERN, most
notably Atlas [4], CMS [5], LHCb [6] and Alice [7]. One of the key components of the
XRootD framework is the C++ client, which is fundamental not only to the command line
utilities like xrdcp and xrdfs, but also to XCache (a XRootD file-based caching proxy) [8]
[9], XrootdFS (a FUSE based mountable file system) [10] and EOS (the storage service of
choice at CERN). In addition, the XRootD client is employed to provide remote data ac-
cess in many physics analysis frameworks like ROOT [11] and in data movers like FTS [12].
With latest major release (5.0.0) the XRootD framework brought multitude of architectural
improvements and functional enhancements, including the new client side declarative API,
which is the main focus of this study. This paper first outlines the motivation for introducing
the declarative API into the XRootD client library, and discusses the property of composabil-
ity. As case study we consider a ZIP archive metadata parser. Subsequently, the syntax and
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fundamental concepts required to understand and use the new API are explained. Finally,
we conclude the paper with results of applying some common software metrics (cohesion,
coupling, cyclomatic complexity) to the software developed using the new declarative API
and we provide a short summary.

2 Motivation

2.1 The Object Oriented APIs

Before XRootD5 has been released, there were just two types of APIs available in the client,
an Object Oriented (OO) synchronous API (see List. 1) and an OO asynchronous API (see
List. 2). The OO synchronous API is easy to use, the code readability is very good, but there
is virtually no composability [13]. In other words, it is not possible to chain the remote ac-
cess operations together. Let us consider now an example where the user would like to read in
parallel from multiple files. A major limitation of the synchronous API is that concurrent ac-
cess could be achieved only by adding more threads to take advantage of core parallelization,
which will increase context management overhead.

Listing 1. Synchronous OO API
1 F i l e f ;
2 f . Open ( u r l , OpenFlags : : Read ) ;
3 f . Read ( o f f s e t , l e n g t h , b u f f e r ) ;
4 f . C lose ( ) ;

The OO asynchronous API allows to chain the remote access operations however code
readability is poor (the flow control is not clearly expressed). Moreover, it requires significant
amount of boilerplate code, because each of the asynchronous operations requires a special
custom callback object.

Listing 2. Asynchronous OO API
1 F i l e f ;
2 / / read & c l o s e o p e r a t i o n s are c a l l e d from t h e c a l l b a c k
3 f . Open ( u r l , OpenFlags : : Read , c u s t o m _ c a l l b a c k ) ;

2.2 Use cases

The development of the XRootD client declarative API has been driven by two major use
cases: the client erasure coding (EC) [14] plugin for the Alice O2 project [15] and a ZIP
archive metadata parser. The former requires extensive parallel remote access to multiple
devices for every implemented operation. The later needs to issue consecutive reads in order
to parse the ZIP archive metadata. In order to illustrate the difficulties of using the OO
asynchronous API, we will consider the logical open operation of an erasure coded file. In
our implementation, the first component of a logical EC open are parallel open requests to n
data and p parity stripes (in total n+p requests), of which n have to be successful. The second
component, is an open, followed by a read, and then followed by a close of a metadata file.
Any error happening during metadata retrieval can be recovered at a different location holding
redundant copy of the metadata file. To implement this logic using the asynchronous OO API,
five custom callbacks have to be provided in order to ensure chaining of the asynchronous
operations, which is a significant amount of boilerplate code (see List. 3). Moreover, the
program is difficult to understand as significant fraction of the logic is hidden in the callback
objects. For instance, other than for the comment, it is not clear from inspecting the EcOpen
function that the metadata are being actually read.
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Listing 3. Logical open operation of an erasure coded file

1 / *CUSTOM CALLBACKS DEFINITIONS * /
2 s t r u c t e c o p e n _ c b _ t { / * i m p l e m e n t a t i o n * / } ;
3 s t r u c t p a r o p e n _ c b _ t { / * i m p l e m e n t a t i o n : n o t i f y ecopen c a l l b a c k * / } ;
4 s t r u c t openmd_cb_t { / * i m p l e m e n t a t i o n : i s s u e read * / } ;
5 s t r u c t readmd_cb_t { / * i m p l e m e n t a t i o n : i s s u e c l o s e * / } ;
6 s t r u c t c l o s e m d _ c c b _ t { / * i m p l e m e n t a t i o n : n o t i f y ecopen c a l l b a c k * / } ;
7
8 / * OPEN FOR READING * /
9 void EcOpen ( / * arguments * / )

10 {
11 / * A l l o c a t e c a l l b a c k s * /
12 auto ecopen_cb = new e c o p e n _ c b _ t ( / * argument s * / ) ;
13 auto pa ropen_cb = new p a r o p e n _ c b _ t ( ecopen_cb , / * arguments * / ) ;
14 auto openmd_cb = new openmd_cb_t ( ecopen_cb , / * arguments * / ) ;
15 auto readmd_cb = new readmd_cb_t ( ecopen_cb , / * arguments * / ) ;
16 auto c losemd_cb = new c l o s e m d _ c b _ t ( ecopen_cb , / * arguments * / ) ;
17 / * Open s t r i p e s * /
18 f o r ( auto &f : s t r i p e s )
19 f . Open ( / * arguments * / , pa ropen_cb ) ;
20 / * Read t h e me tada ta f i l e * /
21 m e t a d a t a . Open ( / * arguments * / , openmd_cb ) ;
22 }

After analysing the extra code that had to be written in order to chain the OO operations,
we have extracted the common patterns (e.g. callback classes), applied significant amount of
template meta-programming and flavored it with a pinch of operator overloading. As a result
we got a new declarative API that is in line with the modern C++ programming practices
(ranges v3 inspired, support for lambdas and std::futures), offers greater code readability and
genuine composability.

3 The declarative API

Let’s consider what would be a good model for asynchronous remote I/O programming. As
in case of any other software engineering problem, we would like to be able to decompose
larger tasks into smaller ones. For instance, we would like to be able to decompose a file
update operation into an open, a write and a close. Afterwards, we can finally program each
of the primitive I/O operations. However, there is one more critical step, we have to be able to
compose those smaller operations back together into the original, bigger problem. The most
important thing is that those operations have to be trivially composable, if the programmer
has to know the internals of an operation implementation in order to be able to compose
it with another one then all is lost [13]. In addition, it is critical that the operations are
lazy evaluated, meaning one can first declare the operations, compose them into a pipeline
and only then execute the whole pipeline. Finally, the remote I/O operations have to be
associative in order to be really composable (meaning that object updt1 and updt2 in listing 4
are equivalent).

Listing 4. Operations associativenes (pseudo code, operator| is used as composition)

1 auto opn_wrt = Open | Wri te ;
2 auto w r t _ c l s = Wri te | Close ;
3 auto upd t1 = opn_wrt | Close ;
4 auto upd t2 = Open | w r t _ c l s ;
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3.1 Rules of pipelining

Now, let us dive into the new XRootD declarative API and let us start the tour with the
most important topic, which is composability. In XRootD client all the I/O operations can
be composed with the | operator. We will call all the basic operations (remote counterparts
of POSIX open, read, write, etc.) as primitive and all the results of composing two or more
operations as composed. Another useful concept that we will need is the Pipeline utility class,
it is a general-purpose polimorphic I/O operation pipeline wrapper. In other words, instances
of Pipeline can store any I/O operation (primitive or composed). The last thing we need to
know to create our first pipeline (see List. 5) is that each I/O operation needs a context (or a
handle if you will), in most cases this will be the File or FileSystem object.

Listing 5. Simple pipeline example: open, read and close
1 F i l e f ;
2 P i p e l i n e p = Open ( f , u r l , OpenFlags : : Read )
3 | Read ( f , o f f , l en , buf )
4 | Close ( f ) ;

Pipelines obey certain rules. First of all, as we mentioned before, the operations within
a pipeline are associative. Secondly, defining a pipeline does not trigger it (in a sense, it is
lazy evaluated). Thirdly, once executed, operations in the pipeline are performed strictly from
left to right (in our example it is first the Open, then the Read, and then the Close). Finally,
if during the execution an operation fails the pipeline stops, and subsequent operations are
ignored.

3.2 Executing a pipeline

A pipeline can be executed either using the Async or WaitFor functions. The Pipeline ob-
ject needs to transfer the ownership of the underlying operations pipeline to the executing
routine. The Async function (as the name suggests) triggers asynchronous execution of the
pipeline and returns a std::future to the final status that is the outcome of carrying out the I/O
operations in the given pipeline (see List. 6).

Listing 6. Execute pipeline with Async
1 auto f t r _ s t a t u s = Async ( s t d : : move ( p ) ) ;

The WaitFor function triggers synchronous (blocking) execution of the pipeline and re-
turns the final status that is the outcome of carrying out the I/O operations in the given pipeline
(see List. 7).

Listing 7. Execute pipeline with WaitFor
1 auto s t a t u s = WaitFor ( s t d : : move ( p ) ) ;

3.3 Handlers

Any operation can (but does not have to) be assigned with a handler using the » operator.
In a simple case the result of an operation can be directed to an instance of std::future (see
List. 8).

Listing 8. Direct operation response to a std::future
1 F i l e f ;
2 s t d : : f u t u r e <ChunkInfo> r s p ;
3 Async ( Open ( f , u r l , OpenFlags : : Read ) | Read ( f , o f f , l en , buf ) >> r s p ) ;
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5 / / l a t e r on use t h e f u t u r e
6 t r y
7 {
8 / / use t h e r e s p o n s e
9 ChunkInfo chunk = r s p . g e t ( ) ;

10 }
11 ca tch ( P i p e l i n e E x c e p t i o n &ex )
12 {
13 / / i f t h e read r e q u e s t f a i l e d we w i l l g e t an e x c e p t i o n
14 XRootDStatus &s t a t u s = ex . G e t E r r o r ( ) ;
15 }

In more complex cases, an I/O operation can be handled by a function, functor or lambda
(see List. 9).

Listing 9. Handle operation with lambda
1 F i l e f ;
2 Wai tFor ( Open ( f , u r l , OpenFlags : : Read ) >>
3 [ ] ( XRootDStatus &s t )
4 {
5 / / h a n d l e r e s p o n s e
6 } ) ;

Finally, an I/O operation can be handled also with a packaged_task and for backwards
compatibility also with an instance of ResponseHandler (an XRootD4 style handler).

3.4 Forwarding values between handlers and operations

In order to facilitate forwarding values between handlers and operations the Fwd class has
been provided. Fwd is an argument wrapper accepted by any I/O operation. Initially, a Fwd
instance contains no value and can be assigned with one for example in an operation handler.
To illustrate the usefulness of forwarding values, let us consider following example. Let us
assume that there is a file (not to big) of unknown size and that there is a need to read the
file with a single read request. In order to implement this scenario, we will forward two
values from the handler of an Open operation that has the stat information of the given file as
arguments to the Read operation (see List. 10).

Listing 10. Forwarding values
1 F i l e f ;
2 Fwd<u i n t 3 2 _ t > l e n ; / / we w i l l a s s i g n v a l u e s l a t e r
3 Fwd<char*> buf ; / / on i n t h e open h a n d l e r
4 P i p e l i n e p = Open ( f , u r l , OpenFlags : : Read ) >>
5 [ len , buf ] ( XRootDStatus &s t , S t a t I n f o &i n f )
6 {
7 i f ( ! s t . IsOK ( ) ) re turn ;
8 / / f o rward t h e l e n g t h and b u f f e r
9 l e n = i n f . G e t S i z e ( ) ;

10 buf = new char [ i n f . G e t S i z e ( ) ] ;
11 }
12 | Read ( f , 0 , l en , buf ) / / use fo rwarded argument s
13 | Close ( f ) ;

3.5 Control directives

There are four control directives that allow to alter pipeline execution: Pipeline::Stop,
Pipeline::Repeat, Pipeline::Ignore and Pipeline::Replace. All of those directives must be
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called from within an operation handler body. The Pipeline::Stop forces the pipeline to be
stopped, the user may optionally provide the final status as an argument (defaults to success).
The Pipeline::Repeat forces the current operation to be repeated (e.g. repeat read operation
until the end-of-file, see List. 11). The Pipeline::Ignore makes the pipeline ignore an opera-
tion failure and resumes execution at the operation next in turn (e.g. ignore a read error and
proceed to Close, see List. 11).

Listing 11. Control directives: print file content to stdout
1 F i l e f ;
2 Fwd<u i n t 6 4 _ t > o f f = 0 ;
3 u i n t 3 2 _ t l e n = 1024 ;
4 char * buf = new char [ l e n +1 ] ;
5
6 P i p e l i n e p = Open ( f , u r l , OpenFlags : : Read )
7 | Read ( f , o f f , l en , buf ) >>
8 [ o f f ] ( XRootDStatus &s t , ChunkInfo &ch )
9 {

10 i f ( ! s t . IsOK ( ) )
11 P i p e l i n e : : I g n o r e ( ) ; / / proceed t o c l o s e
12 i f ( ch . l e n g t h == 0) re turn ; / / EOF
13 auto l e n = ch . l e n g t h ;
14 auto buf = ch . b u f f e r ;
15 buf [ l e n ] = 0 ;
16 s t d : : c o u t << buf ;
17 / / a d j u s t t h e o f f s e t
18 o f f = * o f f +1024;
19 / / r e p e a t u n t i l EOF
20 P i p e l i n e : : Repea t ( ) ;
21 }
22 | Close ( f ) ;

The Pipeline:Replace is overloaded and can be used either to replace the current operation
with a different one or to replace the whole pipeline. This facility allows to define composed
I/O operations and whole pipelines in a recursive way (e.g. recursively try opening redundant
file replicas, see List. 12).

Listing 12. Recursively try replicas.
1
2 auto TryOpen ( F i l e &f , c o n s t s t d : : v e c t o r < s t d : : s t r i n g > &u r l s , s i z e _ t i =0)
3 {
4 re turn Open ( f , u r l s [ i ] , OpenFlags : : Read ) >>
5 [&f ,& u r l s , i ] ( XRootDStatus &s t )
6 {
7 i f ( s t . IsOK ) re turn ; / / we found a v a l i d r e p l i c a
8 i f ( i+1>= u r l s . s i z e ( ) ) re turn ; / / t h e r e are no more r e p l i c a s t o t r y
9 / / r e c o v e r e r r o r a t n e x t r e p l i c a

10 P i p e l i n e : : Rep lace ( TryOpen ( f , u r l s , i + 1 ) ) ;
11 } ;
12 }

3.6 Special operations: Parallel and Final

The XRootD client declarative API provides two special operations Parallel, which allows
parallel execution of asynchronous component I/O operations and Final that provides a stan-
dard place for resource deallocation. The Parallel operation accepts multiple I/O operations
as arguments or a container of I/O operations (see List. 13). Moreover, one of the three
available policies might be chosen for a Parallel operation: Any - it is enough if just one of
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3.6 Special operations: Parallel and Final

The XRootD client declarative API provides two special operations Parallel, which allows
parallel execution of asynchronous component I/O operations and Final that provides a stan-
dard place for resource deallocation. The Parallel operation accepts multiple I/O operations
as arguments or a container of I/O operations (see List. 13). Moreover, one of the three
available policies might be chosen for a Parallel operation: Any - it is enough if just one of

the component operations is successful for the Parallel operation to be successful, Some - it
is enough if just N of the component operations are successful for the Parallel operation to
be successful, and AtLeast - same as Some and in addition it is guaranteed that the comple-
tion handler of the Parallel operation will be called only when all component operations are
resolved.

Listing 13. Parallel execution.
1
2 / / I s s u e two read r e q u e s t s a t o f f s e t s :
3 / / ‘ o f f 1 ‘ and ‘ o f f 2 ‘ o f s i z e ‘ l en ‘
4 auto ParReadArgs ( F i l e &f i l e , u i n t 6 4 _ t o f f1 , u i n t 6 4 _ t o f f2 ,
5 u i n t 3 2 _ t len , void * buf1 , void * buf2 )
6 {
7 re turn P a r a l l e l ( Read ( f i l e , o f f1 , l en , buf1 ) , / / f i r s t read r e q u e s t
8 Read ( f i l e , o f f2 , l en , buf2 ) ) ; / / second read r e q u e s t
9 }

10
11 / / I s s u e a read r e q u e s t f o r e v e r y b u f f e r t h a t
12 / / has been p r o v i d e d by t h e u s e r
13 auto ParReadCont ( F i l e &f i l e ,
14 s t d : : v e c t o r <u i n t 6 4 _ t > &o f f s ,
15 s t d : : v e c t o r <b u f f e r _ t > &b u f s )
16 {
17 s t d : : v e c t o r <P i p e l i n e > r e a d s ; r e a d s . r e s e r v e ( b u f s . s i z e ( ) ) ;
18 f o r ( s i z e _ t i =0; i <b u f s . s i z e ( ) ;++ i )
19 / / add a n o t h e r read r e q u e s t
20 r e a d s . emplace_back ( Read ( f i l e , o f f s [ i ] , b u f s [ i ] . s i z e ( ) , b u f s [ i ] . d a t a ( ) ) ) ;
21 re turn P a r a l l e l ( r e a d s ) ;
22 }

The Final operation is always guaranteed to be executed even if the pipeline has been
stopped prematurely due to an error. Moreover, Final MUST always be the last operation in
the pipeline. The Final utility has been introduced in order to facilitate resource management
(see List. 14).

Listing 14. Final utility.
1 auto f = s t d : : make_shared<F i l e > ( ) ;
2 P i p e l i n e p = Open (* f , u r l , OpenFlags : : Read )
3 | Read (* f , o f f , l en , buf )
4 | Close (* f )
5 | F i n a l ( [ f ] ( XRootDStatus &)
6 {
7 / / make s u r e ‘ f ‘ i s d e a l l o c a t e d o n l y a f t e r
8 / / a l l t h e p i p e l i n e ’ s o p e r a t i o n s have been
9 / / e x e c u t e d , no m a t t e r i f t h e r e was an e r r o r

10 / / or n o t
11 } ) ;
12 Async ( s t d : : move ( p ) ) ;

4 Case study and results

As a case study we will consider the ZIP archive class of the XRootD client. In particular, we
will focus on the ZIP archive open routine that aims at opening the file and then at parsing
the ZIP metadata [16]. The routine estimates the offset of the metadata based on the sizes of
individual metadata records. However due to a variable-size user added comment the chosen
offset might be invalid and as a result several reads might be needed. The ZIP archive open
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Figure 1. OO API impl: control flow
graph

Figure 2. Declarative API impl: control
flow graph

routine has two implementations: first that uses the old XRootD4 OO asynchronous API (Zi-
pArchiveReader) and second based on the new XRootD5 declarative API (ZipArchive) [17].
In order to compare the two implementations we applied some standard software metrics to
both software routines.

4.1 Cyclomatic complexity

Cyclomatic complexity is a metric that allows to determine the number of linearly indepen-
dent paths within a section of source code. Two paths are considered as linearly independent
if and only if an edge exists that belongs to only one of those paths. [18] Cyclometric com-
plexity M is resolved based on a control flow graph of the given section of source code. The
cyclometric complexity of the ZIP archive open routine implemented using the XRootD4 OO
API and XRootD5 declarative API have been determined respectively to M=14 based on the
control flow graph shown in Figure 1 and to M=8 based on the control flow graph shown
in Figure 2. The significantly lower cyclometric complexity of the implementation that em-
ployed the new declarative API implies easier code maintainability and is due to greatly sim-
plified error handling. Finally, lower cyclometric complexity means there are fewer execution
paths that need to be accounted for in the test suite.

4.2 Cohesion

Cohesion is an ordinal software metric that reflects the degree to which a software module or
a class is unified around a central concept it serves. It is a measure of how strongly the encap-
sulated data are related and of how much the functionalities embedded in a single software
module have in common. High cohesion is a desirable property because it is associated with
several important characteristics of software like robustness, reusability and understandabil-
ity. [19][20]

The fundamental goal of the ZIP archive class is to extract the information about data
layout in the archive from the metadata and to serve the data itself to the end user. In the
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routine has two implementations: first that uses the old XRootD4 OO asynchronous API (Zi-
pArchiveReader) and second based on the new XRootD5 declarative API (ZipArchive) [17].
In order to compare the two implementations we applied some standard software metrics to
both software routines.

4.1 Cyclomatic complexity

Cyclomatic complexity is a metric that allows to determine the number of linearly indepen-
dent paths within a section of source code. Two paths are considered as linearly independent
if and only if an edge exists that belongs to only one of those paths. [18] Cyclometric com-
plexity M is resolved based on a control flow graph of the given section of source code. The
cyclometric complexity of the ZIP archive open routine implemented using the XRootD4 OO
API and XRootD5 declarative API have been determined respectively to M=14 based on the
control flow graph shown in Figure 1 and to M=8 based on the control flow graph shown
in Figure 2. The significantly lower cyclometric complexity of the implementation that em-
ployed the new declarative API implies easier code maintainability and is due to greatly sim-
plified error handling. Finally, lower cyclometric complexity means there are fewer execution
paths that need to be accounted for in the test suite.

4.2 Cohesion

Cohesion is an ordinal software metric that reflects the degree to which a software module or
a class is unified around a central concept it serves. It is a measure of how strongly the encap-
sulated data are related and of how much the functionalities embedded in a single software
module have in common. High cohesion is a desirable property because it is associated with
several important characteristics of software like robustness, reusability and understandabil-
ity. [19][20]

The fundamental goal of the ZIP archive class is to extract the information about data
layout in the archive from the metadata and to serve the data itself to the end user. In the

implementation employing the XRootD4 OO API, the ZIP metadata parsing functionality,
the custom asynchronous callbacks providing operation chaining and core functionality of
the class are strongly interleaved. One can easily notice a recurring pattern: an asynchronous
operation is issued, then its result is interpreted as ZIP metadata, and then subsequently the
custom completion handler chains another asynchronous operation. As a result, the XRootD4
OO API based implementation can be classified as having sequential cohesion. On the other
hand, in the implementation based on XRootD5 declarative API it has been possible to ex-
tract ZIP metadata parsing from the ZIP archive class into a separate module providing this
functionality. Moreover, there is no need for custom completion handlers that provide opera-
tion chaining as this functionality is by default available in the new API. As a result, the ZIP
archive class is focused only at its core role and hence the implementation can be classified
as having functional cohesion.

It is worth noticing that higher cohesion of the implementation employing the declara-
tive API results in better reusability (extracted ZIP parsing functionality in separate module),
more concise codebase (37% shorter compared to its counterpart) and enhanced code read-
ability and maintainability (its counterpart needed 5 custom completion handler classes).

4.3 Coupling

Coupling is a software metric indicating how closely connected two (or more) routines or
modules are. Low coupling often implies good software design, and if accompanied by high
cohesion, leads to high readability and maintainability. [19]

The problem of tight coupling of the ZIP archive class and the ZIP metadata parser that
occurred in the implementation based on XRootD4 OO API (control coupling) has been fully
resolved in the refactored version of the software that uses the new declarative API (data
coupling).

5 Conclusions

The new declarative API introduced in XRootD5 facilitates functional software design and
allows for a better-structured code, as confirmed by applying several software metrics. It
gives a standard way of composing asynchronous I/O operations, which comes in handy
especially when implementing complex remote data access schemes like erasure-coding. In
addition, it provides a set of control directives that make it possible to dynamically alter
a running I/O pipeline. The XRootD client declarative API is in line with modern C++
programming practices and facilitates use of valuable utilities like lambdas and std::futures
in the context of the framework.

The new API provides a convenient and efficient way of doing asynchronous I/O in the
present day without the need of falling back to slightly more heavyweight technologies like
stackfull boost::fibers or having to wait for compiler support for C++20 (introduces corou-
tines) on target platforms.
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