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Abstract. In LHC Run 3 the ALICE Collaboration will have to cope with an
increase of lead-lead collision data of two orders of magnitude compared to the
Run 1 and 2 data-taking periods. The Online-Offline (O?) software framework
has been developed to allow for distributed and efficient processing of this un-
precedented amount of data. Its design, which is based on a message-passing
back end, required the development of a dedicated Analysis Framework that
uses the columnar data format provided by Apache Arrow. The O? Analysis
Framework provides a user-friendly high-level interface and hides the com-
plexity of the underlying distributed framework. It allows the users to access
and manipulate the data in the new format both in the traditional "event loop"
and a declarative approach using bulk processing operations based on Arrow’s
Gandiva sub-project. Building on the well-tested system of analysis trains de-
veloped by ALICE in Run 1 and 2, the AliHyperloop infrastructure is being
developed. It provides a fast and intuitive user interface for running demand-
ing analysis workflows in the GRID environment and on the dedicated Analysis
Facility. In this document, we report on the current state and ongoing develop-
ments of the Analysis Framework and of AliHyperloop, highlighting the design
choices and the benefits of the new system.

1 ALICE software framework

To cope with the challenges of LHC Run 3 and to ensure a unified and coherent computing
environment from data taking up to analysis, the ALICE Collaboration is developing a new
computing software framework [1, 2]. The new framework is named 02 [3], from Online-
Offline, as it integrates both the domain of data readout and its subsequent processing. It
derives originally from ALICE High Level Trigger architecture [4], a message-passing mul-
tiprocess system, used in Run 1 and 2, and consists of three major components, the transport
layer, the data model and the data processing layer. The transport layer of the system, a com-
ponent that provides inter-process communication, is implemented using the FairMQ [5] mes-
sage passing toolkit, defining the core blocks of the architecture in terms of FairMQDevices
(devices) and their communication in a medium-agnostic way. A shared-memory-backed
message passing transport for devices running on the same computing node is available. On
top of the transport layer, ALICE implements the O? data model, a programming-language-
agnostic extensible description of messages being exchanged, allowing efficient transport
and mapping to data objects stored in shared or GPU memory, where required. Various
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data formats and serialization methods are provided, including specialized formats used by
subdetectors. In particular, the Apache Arrow [6] columnar format is supported, as are
ROOT-serializable [7] objects, such as histograms, that play a central role in physics analysis.
Apache Arrow provides an efficient contiguous in-memory layout for large amounts of data
and libraries that implement zero-copy streaming and inter-process communication. The Ar-
row format is widely used in opensource and commercial data analysis tools, which, together
with its technical merits, makes it a natural choice for the analysis framework, ensuring in-
teroperability. Finally, the Data Processing Layer (DPL) [8], developed since 2017, has been
introduced to hide the complexity of the abstract transport layer and low-level data model.
It allows concise logical descriptions of a set of data processors and their interconnections,
which defines a certain data analysis workflow. The DPL automatically builds the workflow
topology based on interdependencies between data processors, including user-defined ones.
It hides the underlying complexity of connecting data producers to data consumers thus en-
suring correct multiplexing and pipelining where needed.

ALICE in Run 3 will run in so-called continuous data-taking mode, with the unit of in-
formation being a snapshot of data in a 10 ms-long time window, dubbed timeframe. The
timeframe represents the minimal processing unit at all stages of the data processing, from
the data taking, synchronous reconstruction, asynchronous reconstruction phase phase, and
up to the final analysis. Each timeframe is processed independently. The result of asyn-
chronous reconstruction is the Analysis Object Data (AOD) format, with the best calibration
available. During processing the content of an AOD timeframe is kept contiguously in shared
memory allowing efficient application of both parallel execution and pipelining, sharing I/O
cost between the devices in the workflow. AODs are stored as ROOT trees, which is a natural
choice as they map directly on columnar in-memory layout. ROOT I/O also allows for bulk
reading and writing, which is essential for pipelining. Because of the continuous nature of
the data taking in Run 3, vertex-to-track association, for example, is no longer unambigu-
ous, and thus collisions and tracks are represented as separate tables, connected by an index.
This maps naturally on a "flattened" structure-of-arrays data format, which was chosen for its
efficiency in leveraging modern hardware capabilities. Thus the analysis data model differs
considerably from the hierarchical "event contents" of Runs 1 and 2.

The DPL hides most of the underlying complexity of the framework. In fact, the DPL
is used almost everywhere in ALICE computing system, including the simulation and recon-
struction, as it is a very convenient tool for building and extending generic data processing
pipelines. In order to fully exploit the potential of the DPL also for physics analyses, addi-
tional developments were required, resulting in the creation of the Analysis Framework as
an extension of the DPL. In Run 1 and 2, ALICE developed a system of analysis trains to
optimize the usage of computing resources [9]. The train infrastructure relied on interactive
web tools that allowed the user to configure analysis tasks (or wagons) that are expected to
be run on the same data sets. A similar system, based on the React framework [10] (front
end) and integrated in the Monalisa monitoring and control system [11] (back end), will be
used for Run 3. The system, called AliHyperloop, can benchmark each analysis in terms of
functionality and resource consumption and then compose trains that are later submitted to
the GRID or a dedicated Analysis Facility - a specialized Grid site with CPU and disk re-
sources adjusted for analysis needs and small fraction of data pre-staged locally. AODs will
be collected on specialised Analysis Facilities which shall be capable of processing 10 PB
of data within a time scale of one day, which corresponds to an analysis throughput of about
115 GB/s [12]. The system assures bookkeeping of analysis configurations. It also interacts
with the Grid submission infrastructure to provide job monitoring and resubmission, as well
as merging the final output files. The production of derived filtered data sets will also rely on
the the same system.
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Figure 1. Schematic (partial) of AOD tables connections, including both new Run 3 and Run 2 data
converted to Run 3 format representations. Tables in gray are present on disk or can be calculated from
those present on disk. Tables in orange are tables present in simulated data. Tables in green can be
calculated from those on disk using calibration data. Directed arrows indicate index connections.

2 DPL Analysis Framework
2.1 Core design

The analysis data model in Run 3 is a collection of flat tables, arranged in a relational
database-like structure using index connections. The definition of a particular table includes
all the necessary metadata needed by the framework to handle it through the DPL. Using
the same tools, end users can define their derived data tables that will behave in the same
way. The preliminary structure of the data model is schematically presented in Fig. 1. Any
self-contained cluster of data, like the one containing the information about collisions or the
tracks, is represented as a single table. The information stored in separate tables can be com-
bined by performing join operations (similar to that in SQL). By adopting this approach, one
can limit the amount of the data read into memory based on the workflow requirements.
Individual tables are represented as distinct C++ types, defined by their list of columns
backed by Arrow ChunkedArrays in memory. The table class provides an iterator interface
similar to standard C++ containers, that allows users to access table rows sequentially, es-
sentially iterating over all columns simultaneously, and also provides an OOP-like accessor
to the row contents. A database-like structure allows implementation of various zero-copy
operations such as joining (merging column lists of compatible tables) and grouping (extract-
ing a subset of rows that have a particular value in a certain column). Index columns define
pre-existing connections between tables that can be followed to access the information from
related tables. Additionally, index tables can be dynamically created to define new connec-
tions required by a particular physics analysis, such as, for example a table for rare decay
candidates, containing indices referring to a pair or triplet of tracks. This also allows the
Framework to create indices in opposite directions or cross-indices on the fly. For example
tables for triggered detectors data have index to the bunch crossings (BCs) table, as triggers
are tied to bunch crossings, but not specific collisions. The collisions table has index to the
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BCs table as well. These connections make it possible to automatically construct on demand
an index table relating triggered detectors tables to collisions directly.

The analysis workflow is a modular and flexible collection of interconnected DPL data
processors. Continuing from the Run 1 and 2 train system individual worfklows that are com-
bined into a train are known as wagons. It expands on the previous approach with sequential
Analysis Tasks [13] adopted in Run 1 and 2 by adding multi-process capability. Thanks to
the possibility of processing input data in a sequential manner through pipelines, common
tasks (e.g. file reader, writer, calibration and quality filtering tasks) can be shared among
different analyses. The DPL workflow merging feature is particularly useful in this regard,
as different analysis workflows can be dynamically built based on user input and deployed
in any available computing environment. The final merged workflow can be serialized using
JSON.

The particular data processors, known as fasks for similarity with the previous analysis
framework, are created by the end users and provide a C++ structure with conventionally
defined callbacks and declarations of inputs/outputs. Any table known by DPL can be used
as input, including user-defined tables, allowing to build complicated multi-staged analysis
algorithms from self-contained blocks. Outputs can be transient (intended for further pro-
cessing) or persistent (intended for storage, like skims, i.e. small filtered subsets of data kept
for further processing) derived data tables, as well as analysis objects, like histograms. A
dedicated HistogramRegistry output template is provided to easily define collections of
histograms of various dimensions produced by a given task, accompanied by a more generic
OutputObj that allows to wrap any ROOT-serializable object. Arguments of the main call-
back are parsed as data subscriptions, and can be used to declare various in-place operations
such as joining, grouping and filtering. Joining merges column lists of compatible tables,
to allow accessing, for example track covariance matrix information in addition to the basic
track information. Grouping allows users, by relying on pre-defined index, to access parts of
the grouped table (for example the track information table) that correspond to certain rows in
the grouping table (for example the collisions table). This is possible for any tables, related
by index, if the index column of the table is sorted. Filtering is an operation that exposes
to the user only those rows in a table that pass certain criteria. It leverages the bulk opera-
tions mechanism, described in the next section. All these operations are zero-copy, only the
user-facing wrapper object is modified in each case.

A Configurable template is provided to define externally-configurable parameters,
ranging from single values of simple types, to one- and two-dimensional arrays and even C++
structures. AliHyperloop provides a visual interface for building the workflow configurations,
and means to compare it between different train runs. Naturally, workflow configurations can
be serialized using JSON.

The user analysis of input data is defined in stages, using individual tasks as building
blocks. Each stage consumes input tables and produces derived data for the next stage in form
of tables and analysis objects. For a workflow to be correctly formed, all input requirements
need to be satisfied. This approach provides natural pipelining of data processing. The web-
based analysis tools automatically adds service tasks at certain stages, that provide certain
common information like particle identification (PID) decisions or track selection flags, when
deploying a workflow.

2.2 Bulk operations and declarative analysis features

In LHC Run 3, one of the big challenges for ALICE computing is represented by the con-
straints on disk-space resources for storage. The new AOD data format provides a significant
reduction in required storage in a number of ways. Run 3 AODs are based on the ROOT
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namespace o2::aod {
namespace track {
// declaration of expression-based column - this is defined internally and created automatically,
// it is only present in the listing to illustrate the expression DSL
DECLARE_SOA_EXPRESSION_COLUMN(Eta, eta, float, //! Pseudorapidity
-1.f * nlog(ntan(0.25f * static_cast<float>(M_PI) - 0.5f * natan(aod::track::tgl))));
}
using TracksWithCovariance = soa::Join<aod::Tracks, aod::TracksCov>;

}

// declaration of analysis task
struct Task {
// configurable parameters can be provided, for example, via command line or a JSON file
Configurable<float> ptlow{"ptlow",0.5f,""};
Configurable<float> ptup{"ptup",2.0f,""};
// filters, that refer to the same table, will be automatically logically combined with &&
Filter ptFilter_a = aod::track::pt > ptlow;
Filter ptFilter_b = aod::track::pt < ptup;
Filter posZfilter = nabs(aod::collision::posZ) < 10.0f;
// HistogramRegistry allows to define framework-managed output histograms
// Configurable parameters can be used to define histogram axes binning
HistogramRegistry registry{
"registry",

{"eta_vs_Z", ";#eta;Z_{vtx};entries",
{HistType::kTH2F, {{101, -2.01, 2.01}, {101, -10.1, 10.1}}}}
}
};
// this process signature requests filtered collisions, one by one
// and corresponding tracks, joined with extra information, and grouped by collisions,
// tracks are filtered as well - the filters, defined above, are automatically applied
// to compatible tables marked with soa::Filtered<>
void process(soa::Filtered<aod::Collisions>::iterator const& collision,
soa::Filtered<TracksWithCovariance> const& tracks,
aod: :BCs const&)

{
// get bunch crossing information through index connection
LOGF (INFO, "BC = %11", collision.bc().globalBC(Q));
for (auto& track : tracks) {
// 'track' can be used to access different track properties, available in Tracks
// and TracksCov tables
// registry provides fast access to managed histogramss
registry.fill(HIST("eta_vs_Z"), track.eta(), collision.posZ());
}
}
};

Listing 1: An example of an analysis task definition, showcasing various declarative
and imperative analysis features: data subscription with join and grouping, definition
of expression-based table extensions, definition of configurable parameters, definition of
expression-based filters, using table row accessors in a for loop, accessing connected ta-
ble information through index. More detailed examples are available in O? tutorials, under
Analysis/Tutorials/src in main repository[3].

tree format that provides a good compression ratio. Additionally, floating point values are
truncated to their respective uncertainties. Finally, only a minimal set of values is stored,
while the others are calculated on-the-fly based on the analysis needs. This leads to reduc-
tion in the AOD size in terms of disk space by a factor of five or better, as measured with
converted Run 1/2 data. Still, it is estimated that one month of Pb—Pb data-taking would
lead to about 4 PB of AODs. This means that every analysis will require additional steps
to "unpack" the AOD, and extend it by including the additional variables. Two approaches
are used in this regard. Tables allow one to define so-called dynamic columns that are C++
lambda functions tied to a table row. Their argument list can be fully or partially bound to
other material columns defined in the same table. From the end-user perspective, dynamic
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columns are accessed in exactly the same way as material (i.e. with values stored in memory)
columns and their definition can also include external arguments as function parameters. A
Domain Specific Language (DSL), based on C++ expressions, is defined and used to declare
recipes for materializing new columns calculated from pre-existing ones using Arrow’s Gan-
diva sub-project [14]. From the user perspective, it provides a way to define new columns
directly with formulas written in C++, as shown in lines 4-5 in Listing 1. Dynamic columns
do not correspond to any memory and their values are calculated on demand, by calling a
user-defined function, and thus have only CPU cost. In contrast, expression columns are pre-
calculated once per timeframe and become available to the full workflow in shared memory.
CPU cost is thus shared between all the tasks, however memory usage may be quite signif-
icant, especially for long tables such as the track table. This approach is preferable in cases
where the calculation involves high CPU cost functions such as trigonometrical functions.

For some values that are commonly used by most analyses, such as track momentum
components, these recipes are predefined in the data model. At workflow deployment, the
DPL provides a hook to insert automatically common data processors (e.g. file readers), that
may be required by a particular workflow. A special data processor dedicated to applying the
materialization recipes is also added if the corresponding tables are requested. These recipes,
dubbed expression columns, can also be defined by users and combined into table extensions.
These will not be created automatically, unless a user specifically requests their materializa-
tion. Such extensions can either be local for the particular user task or made available to the
whole workflow through shared memory, in which case they need to be predefined. Another
application of the expression engine is related to operations of filtering and partitioning of the
tables. Boolean-valued expressions can be used to define conditions that are either applied
to input data upfront for prefiltering, or to define subtables, which are available as separate
entities in addition to full input collection. Internally, expression-based recipes are translated
into a tree representation, which also allows the Framework to inject values of configuration
parameters when they become available at run time. These representations are later trans-
lated to Gandiva, which converts them into executable code using just-in-time compilation.
This code is then applied in a single pass to a given table, one time per timeframe. Users are
encouraged to offload common operations to expression-based mechanisms as much as possi-
ble to guarantee efficient vectorized processing. A code example, taken from the O? tutorials,
that showcases various declarative and traditional analysis tools is provided in Listing 1.

A dedicated declarative tool to iterate over combinations of analysis entities, such as
tracks, has been developed to limit the use of CPU-consuming double or triple "loops" and
avoid the memory cost of creating a combinations table. Another important benefit of using
Apache Arrow as an in-memory storage format for the data is its interoperability. Arrow is
used in many modern data analysis tools and machine learning packages and its usage opens
a lot of possibilities in terms of post-processing of the O? outputs and integration of those
external tools in user analysis code.

3 Future developments and conclusions

Since it appearance in 2019, the DPL-based O? Analysis Framework underwent a rapid de-
velopment during 2020 and it now provides the tools to reproduce a large fraction of analyses
using Run 1 and 2 data converted into Run 3 AOD format. By the end of 2021, the O?
framework is expected to be used also for new Run 1 and 2 analyses using converted data, as
it will guarantee a more efficient use of disk space and CPU resources. Most of the legacy
analysis code already can be easily ported in O? with minor changes, with exception of some
special cases. This will also encourage the development of new analysis code that exploits
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the declarative capabilities of the framework. The data model will be further expanded, in-
troducing more advanced grouping and search operations, and additional index functionality
like self-indexing tables. More column types and more ways to express complex relations
between tables will be also added. The expression DSL will be extended with more mathe-
matical functions and conditional expressions will be added. Thanks to these developments,
complex algorithms will be implemented with few lines of code, ensuring that the hardware
capabilities will be leveraged. The combinations engine is also being extended, to allow, for
example, efficient event mixing required by correlation analyses.

Additionally, the utilities that automatically attach tasks/wagons will be expanded. User-
defined bulk data processors for common analysis tasks like PID, centrality estimation and
others will be declared as service tasks, ensuring they are added to the workflow when needed,
and that they are dynamically configured such that only required outputs are produced.

In the future, the activities will focus on the optimization and development of new declar-
ative analysis features based on analysis requirements. The integration of machine learning
tools in the framework, for both training and application of models within a user-defined
analysis task, is already underway.

Last but not least, optimization for multi-core computing environments is is ongoing, in
order to fully exploit available hardware, in particular the dedicated Analysis Facility.
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