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Abstract. The ATLAS detector requires a huge infrastructure consisting of nu-
merous interconnected systems forming a complex mesh which undergoes con-
stant maintenance and upgrades. The ATLAS Technical Coordination Expert
System provides, by the means of a user interface, a quick and deep under-
standing of the infrastructure, which helps to plan interventions by foreseeing
unexpected consequences, and to understand complex events when time is cru-
cial in the ATLAS control room. It is an object-oriented expert system based
on the knowledge composed of inference rules and information from diverse
domains such as detector control and safety systems, gas, water, cooling, venti-
lation, cryogenics, and electricity distribution.
This paper discusses the latest developments in the inference engine and the im-
plementation of the most probable cause algorithm based on them. One example
from the annual maintenance of the 15◦C water circuit chillers is discussed.

1 Introduction

The ATLAS [1] Expert System [3] is a simulating and diagnostic object oriented expert sys-
tem, created by ATLAS Technical Coordination to increase the knowledge base of the ATLAS
experiment infrastructure, to allow easier transfer of knowledge between experts for specific
domains and to help in the preparation of interventions. It describes parts of the experiment
infrastructure like gas, cooling, cryogenics, ventilation, electricity distribution, and detector
safety systems. It also represents their interactions with sub-detector systems (inner detector,
calorimeters, Muon and magnets) resulting in a complex mesh of entities which are con-
nected by various types of relationships. It is designed for being also used by non-experts
to learn about the infrastructure and to plan interventions evaluating the possible impact on
other systems of the experiment. Its requirements can be found in [3].

The ATLAS Expert System has become an important tool in Technical Coordination as
part of the standard procedure conducted prior to interventions and it is used in the ATLAS
Control Room in many situations [4]. The knowledge base is constantly updated tracking
changes in the infrastructure during the phase-I upgrades of the ATLAS detector like the
replacement of the Small Wheel of the Muon sub-detector by the New Small Wheel [2]. The
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Figure 1. Expert System welcome page

update process is carried out manually following new documentation and being supervised
by experts of each area.

Additionally, it can help diagnosing the cause of an unexpected situation. This could be
a situation where alarms have been triggered due to the power loss of a specific system and
the reason is not immediately apparent. In this case, the Expert System is an excellent tool to
understand what could have caused that situation.

1.1 User interface description

The ATLAS Expert System user interface consists of a web based application which contains
a virtual representation of the ATLAS experiment. The welcome page depicted in Fig. 1
contains links to general descriptions of systems such as electricity and cryogenics.

The system structure is presented to the user in form of flow chart like diagrams similar
to those used in SCADA systems. Fig. 2 shows on the right a partial view of the electrical
distribution page. The upper blue bar contains from left to right the menu icon, the page’s
title, the number of triggered alarms and affected systems, the language options, the button to
reset the simulation, the search box, and simulation time constraints. Below the blue bar there
are two areas which follow the convention of a yellow background for surface buildings and
a blue one for underground caverns. On the left of Fig. 2 there are two boxes representing an
individual system (top) and a group of systems (bottom).

Individual systems have usually only one state and accept as user input the command
to set it to enabled or disabled. This is realized by toggling the left switch in their boxes.
Once an action is taken, the simulation is executed and the user is immediately presented
with the consequences. Information can be also accessed through the search functionality
and list-oriented interfaces which provide more detailed information about the systems and
their relations.

2 Architecture updates

The Expert System has three separate components from a technical perspective as explained
in [4]: the database and the python server in the back-end and the web application in the
front-end.

The database used is the ATLAS TDAQ object oriented configuration database also called
Object Kernel Support (OKS) [5]. This software component is expected to stay maintained
during the life time of the experiment. To simulate the ATLAS infrastructure many categories
of differently behaving entities are required such as racks, computers, alarms, etc. These
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Figure 2. Top: Expert System simulation interface, partial view of electrical distribution. Bottom:
example of a switchboard (upper box) and of a group of racks (lower box)

categories are defined in the database as classes and each object instantiates a class. A python
server runs the inference logic with information from the database: it loads elements with
their relationships and interacts with the web application receiving user input and providing
scenarios as answers.

The front-end user interface is a web application built in PHP and standard JavaScript.
Diagrams are built using a dynamic in-system diagram builder framework based on the MX-
Graph [6] library. The python server, the web server and the client side communicate with
each other using widely-used technologies like JSON, asynchronous JavaScript communica-
tion, and HTTP. Recent changes to the server architecture include the usage of the Python
Networkx [8] graphs and networks library which is used for processing the mesh of systems
in the database as a graph composed of nodes and edges. This allows the usage of state of
the art algorithms for traversing the graph, detecting cycles, selecting parents, calculating the
centrality, and detecting isolated components.

2.1 Knowledge representation and inference Engine

Each type of object, which is stored in the database within a database class, has different
types of relationships. When a simulation is triggered, the server calculates each object’s
state based on the state of its parent objects.

For example physical racks are described as objects using the class Rack. These objects
can be related to the following nodes: power sources (poweredBy), computers contained
inside the rack (contains), local batteries time span (lifespan), interlocks (interlockedBy) or
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Figure 3. Depending objects breadth-first propagation order

cooling requirements (waterFrom). Each one of these nodes is solved applying a set of rules.
The individual resolution of every node contributes to the final state of the object.

A graph representation is constructed with all the objects in the database using the Net-
workx MultiDiGraph object where the edges correspond to the relationships. When a simu-
lation is triggered by the change of state of any element, that change is propagated over the
dependent objects traversing the graph using the breadth-first algorithm as shown in Fig. 3.
Due to circular dependencies between some of the dependent objects, the process is repeated
as many times as required for achieving a stable state. After the simulation has stabilized it is
assumed that the final state has been reached and the new state is sent to the user interface.

3 Simulation example: annual water maintenance

Annual interventions are mandatory for the infrastructure maintenance and safety. Although
they are carried out every year, errors may occur due to oversights in routine procedures.
Before interventions the Expert System is used to evaluate the consequences which allows to
take counter measures to minimize the impact. Information about the behaviour of the system
is collected during all interventions and serves to improve procedures and the accuracy of the
Expert System knowledge base.

The annual maintenance of chilled water requires the stop of the 2500 kW chillers located
in SUX1 that take water from the primary circuit and chill the secondary circuit down to 15◦C.
This mixed water is circulated down to USA15 with the help of two 22 kW pumps where it
is used by the heat exchanger of the rack cooling circuit as primary cooling for the racks. It
is also pumped again from USA15 to the UX15 cavern where it is used as primary cooling
for four cooling stations (Muon A, Muon C, Tile, LAr). The mixed water is also pumped to
SDX1 for the rack cooling.

Fig. 4 shows the water distribution page while simulating the maintenance. In the blue
bar at the top it is shown that there are 41 alarms and that 5288 systems are affected in
total. The two black squares on the right, FUPF1-00200 and FUPF1-00201, are expanded
groups displaying the two intervened (switched off) systems, HAA-1411 and HAA-1401.
Each of them is a TRANE CVGE050 centrifugal compressor that uses 625 kg of R-134a as
a refrigerant for an output cooling power of 2.5 MW. On this page one can already see the
impact of the intervention on rack cooling in SDX1, USA15, Muon A and C as well as LAr
and Tile cooling. Rack cooling groups include many racks which are critical for monitoring
and control of the detector.
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Figure 4. View of Expert System water distribution panel during simulation of annual maintenance of
chilled water

This simulation is a clear example of an intervention whose impact is usually underesti-
mated.

4 Tools

Expert System simulations allow to investigate the consequences of user proposed changes
to the infrastructure. Furthermore, they allow to investigate the potential root cause for a
scenario entered by the user. One can enter e.g. a list of alarms and search for the Most
Probable Cause (MPC). A tree representation of the database enables to make a risk analysis
using a Fault Tree approach.

4.1 Most Probable Cause

The Expert System can search the MPC for a user provided scenario traversing the graph
representing the dependencies in a reversed direction. The scenario is provided to the MPC
algorithm as a list of elements. In this context, objects that can cause a change of state of
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Figure 5. MPC algorithm performance. Left: Average processing time vs maximum number of results.
Right: F4-score vs maximum number of results

other objects are named parents. The cause is calculated in an exhaustive manner searching
for the common parents of all the elements in the list. These parents are then filtered for those
that affect all elements on the list but only those on the list.

The common parents are selected running the breadth-first algorithm starting from each
object provided by the user and filtering the parents which are present in all the results.
Furthermore, the MPC can be executed in a non-exhaustive way filtering the parents that
affect all but not exclusively the elements listed by the user. It is intended for the users who
might not have the full picture of the affected systems. The MPC algorithm demonstrates
the best performance if before the processing the objects are ordered by the score of their
contribution. The score is given by eigenvector centrality, a measure of the influence of a
node in a network.

The MPC algorithm uses two parameters. First, the maximum number of attempts which
is the number of parents that will be processed. Second, the number of results shown to the
user. Fig. 5 reveals on the right of the plot a stabilization of the F4-score showing a value of
0.7 after 8 results. The F4-score is a measure for the quality of the results.

The F4-score is calculated by Eq 1 where β is equal to 4. Precision is the number of
correctly identified positive results divided by the number of all positive results including
those not identified correctly. The recall is the number of correctly identified positive results
divided by the number of all samples that should have been identified as positive.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(1)

The left part of the plot in Fig. 5 indicates that the number of attempts does not strongly affect
the maximum results and consequently also not the quality of the results. Therefore, increas-
ing the maximum number of results would increase the processing time without significantly
improving the quality of the results. A number of 8 maximum results and 30 tries has been
established as the best parameter set for the algorithm in terms of time vs accuracy with an
average time of 37 s and a F4-score of 0.7.

Fig. 6 shows the MPC tool output after entering the list of 41 alarms which were triggered
during the annual maintenance of the chilled water production system. The result is calculated
to be HAA-1411 and HAA-1401 which correctly reflects the real root cause. The process is
more time consuming compared with the normal simulation, around 10 minutes compared to
typically a few seconds. It is a huge improvement compared to the brute force approach of
the Fault Tree Analysis (FTA, explained in the following paragraph) which requires several
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Figure 6. Screenshot of the MPC result for a potential scenario occurring during the annual mainte-
nance of the chilled water circuit

days of computation time for the entire database. The results are stable and reproducible. The
state of other elements of the database does not influence the speed of the algorithm, and the
same result is obtained each time. In order to speed up the simulation further, the result could
be stored in a pre-computed cache of expected scenarios, that could be presented to the user
with very little latency. This option is being explored at the moment.

The search for the MPC can be used to understand many situations in the control room
and by safety system experts in the early steps of critical situations, when time is essential
and the cause of a failure is not well understood.

4.2 Fault Tree Analysis

The FTA can estimate the probability of failure of every object [3]. The principal components
of a given system can be deduced by reducing the reliability of a different node each time.
This algorithm consists mostly of calculating the probability of failure for each element in
the tree and of sorting the results afterwards in a meaningful way. It either does not take into
account the coincidence of 2 elements. The algorithm is computationally intensive. Although
this is a problem that can be solved with the computing power available today.

5 Conclusions

The ATLAS Technical Coordination Expert System describes and simulates the most relevant
parts of the ATLAS infrastructure. It has been proved that it describes the detector’s behaviour
with a high degree of accuracy as it has been used extensively for preparing and evaluating the
impact of interventions during LS2. Furthermore, the Expert System has been updated with
the information collected during maintenance interventions and integrating upgrades of the
infrastructure during LS2. The recent development of the Most Probable Cause tool extends
the area of application of the Expert System to the analysis of ongoing events. The probable
cause of failure is deducted quickly and with high reliability.
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