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Abstract. Thanks to its RDataFrame interface, ROOT now supports the exe-
cution of the same physics analysis code both on a single machine and on a
cluster of distributed resources. In the latter scenario, it is common to read the
input ROOT datasets over the network from remote storage systems, which of-
ten increases the time it takes for physicists to obtain their results. Storing the
remote files much closer to where the computations will run can bring latency
and execution time down. Such a solution can be improved further by caching
only the actual portion of the dataset that will be processed on each machine
in the cluster, reusing it in subsequent executions on the same input data. This
paper shows the benefits of applying different means of caching input data in a
distributed ROOT RDataFrame analysis. Two such mechanisms will be applied
to this kind of workflow with different configurations, namely caching on the
same nodes that process data or caching on a separate server.

1 Introduction

The high amount of data collected by the LHC experiments has made distributed computing
a staple in High Energy Physics (HEP) data processing workflows for a long time, with the
WLCG [1] being the prime example of efforts in that direction. The collider is scheduled for
a major upgrade in the next years that will allow for more accurate measurements of physics
processes. The upgraded machine called HL-LHC [2] is scheduled to begin delivering data
in 2027 and will bring forth new challenges in data storage and computing. It is foreseen that
it will generate roughly thirty times more data than the LHC has produced so far. Given the
available future budget estimations and expected technological evolutions [3], experiments at
the LHC and the larger HEP community would benefit from improvements on the software.
It will be crucial to make the most out of current and future architectures. In this regard,
distributed computing will need to be revisited with new approaches, algorithms and frame-
works. For example, letting the user interactively explore their dataset even as it grows larger
and larger will be a requirement in many physics analysis groups. Services such as SWAN [4]
try to solve that need, providing a modern interactive interface for analysis through Jupyter
notebooks and the possibility to run on distributed cluster resources on demand.

In this context, ROOT RDataFrame [5] provides a high level programming model to
define analyses in terms of a computation graph that can be parallelized to run both on a
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multi core machine and a set of distributed resources. This second option enables for exam-
ple submitting RDataFrame applications through multiple tasks in a distributed computing
framework like Apache Spark [6]. This combination has already been tested in real world
scenarios [7], showing good potential in lowering user analysis runtime and providing a first
example of interactivity in this kind of workflow.

Nevertheless, it should not be forgotten that in physics analyses, whether running on a
user laptop or on a cluster of machines, the dataset size can range from a few GBs to multiple
TBs. These datasets are typically stored on some remote storage systems. For example at
CERN the EOS open storage technology [8] is widely used for this purpose. Data has to be
read remotely during analysis runtime, leading to performance penalties that can become real
bottlenecks depending also on the distance between the storage facility and the computing
nodes.

One strategy that can play a key role in this sense is to cache the input data as close as
possible to the place of processing. Over the years, different groups have presented various
approaches to this issue, many revolving around the usage of the well established XRootD
framework [9]. In particular, XRootD provides both a communication protocol for network
transactions involving reading and writing data and an extensible set of data management plu-
gins. Notably, a disk-based plugin was developed to enable caching locally on the computing
cluster [10]. This mechanism, also known as XCache, has been used in many applications
including data management systems of CERN experiments like ATLAS [11].

Similar caching approaches could be greatly beneficial in RDataFrame analyses as well,
especially if it is considered to distribute the workload over a set of distributed resources that
could offer from tens to thousands of cores. It is actually common that a physicist needs to
explore the features of a dataset over multiple subsequent application runs, each time mod-
ifying the code slightly to account for different parameters or desired statistics. In such use
cases caching would give a substantial runtime reduction to those application runs that find
an already populated cache. For example, one solution investigated in this work is XRootD
caching integration in an RDataFrame application. One possible downside to such system
is that XRootD is not aware of the internals of the ROOT data format. For that reason, it is
possible that a new caching mechanism native to ROOT could make better use of a tighter
integration between the programming model and the local storage of the computing nodes.
To this end, the TFilePrefetch [12] class provides a lightweight agent running along the main
event loop and ROOT data as it is being read from the remote storage system. Despite its po-
tential benefits over XRootD, it is still an experimental component of the ROOT framework
and needs thorough validation.

In this work, the two caching mechanisms mentioned above are tested and compared in
an RDataFrame application, to better understand benefits and drawbacks of each one.

2 Programming model of a distributed RDataFrame analysis

An RDataFrame application is expressed in a declarative way: the user specifies the transfor-
mations to be applied to the input dataset (e.g. filtering entries, adding new columns) plus the
actions to be performed in order to obtain the final results (e.g. histograms), thus constructing
a computation graph. Data parallelism can be employed to parallelize the execution of such
graphs: the same operations are applied to multiple fragments of the input dataset, before
the partial results are merged into the final one. This map-reduce pattern is implemented
by RDataFrame via threads in a local machine, but also by leveraging distributed computing
frameworks such as Spark.

This distributed functionality is provided through a Python interface to RDataFrame [13].
It wraps the computation graph in a map reduce pattern and then splits logically the input
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Figure 1. Creation of tasks in the distributed RDataFrame module. The input dataset is split
in logical ranges of entries. The list with all the ranges is sent to the Spark scheduler, which
creates one map task for each range. Each mapper reads and processes only the entries in the
range it got assigned to. The partial results coming from the mappers are aggregated in the
reduce phase and finally sent back to the user.

dataset into multiple ranges of entries (see Figure 1). The workload is thus divided into
tasks, each one made of the map function plus one logical data range, that will be sent to
the computing nodes. In the reduce phase, all the finished tasks are aggregated into the final
results, which are finally streamed back from the cluster to the user application.

With RDataFrame it is possible to read and process datasets stored in the ROOT file for-
mat, either from the local filesystem or remotely. More specifically, the I/O implementation
of this columnar format enables independent reading and writing of the dataset in smaller
chunks called clusters. A collection of clusters then represents a column of the dataset, also
called TTree or simply tree, that in turn is saved into the actual ROOT file. When reading a
remote ROOT file, a cluster is the smallest data volume that can be streamed independently
from the rest of the file, that is without triggering extra read operations from the same dataset
in memory and over the network. This feature can be exploited in the context of caching the
files. Caching only the portions of dataset needed for processing on each computing node
will directly translate into less network traffic. This holds true for both dimensions in which
the dataset can be partitioned: along columns (only a subset of features for every event) or
along clusters (ranges of events).

3 Caching mechanisms

In a physicist’s exploratory analysis workflow, it is common to rerun an application multiple
times on the same input data, with slightly modified code. This opens the door to caching
the dataset (or better yet the portion of it which is actually processed) during the first run
of the user application. This will speed up subsequent runs where the computing nodes
can read data from the cache rather than from the remote storage. The caching mechanism
should be as transparent as possible for the user, in the sense that it should not modify their
workflow or ask them to learn new tools. To this end, it should happen during the first run
and asynchronously with respect to the main RDataFrame computation. Through the I/O
libraries in ROOT, only the columns and the clusters of entries that are actually processed in
the computation graph will be read from the remote storage. Thus, caching systems should
try to leverage this behaviour by storing a subset of the input data that is as close as possible
to what RDataFrame actually reads, preferably exactly the same amount.
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3.1 Caching on a file server

One aspect to keep in consideration is the physical destination of the cached files. For ex-
ample, everything could be stored in a single machine, acting as caching server for the com-
puting nodes. This approach would still require all the machines to be in the same network,
preferably with a high-bandwidth connection between them, in order to have some chance
to be faster than reading the files from a remote storage facility. The technology that will be
tested for this configuration is XRootD. In particular, its proxy plugin fits in the requirements
described so far. In this work, a single machine of the cluster acts as caching proxy, standing
between the client application and the remote storage system. When the client asks for one
or more remote files, the request will be redirected through the proxy and then to the final
endpoint. Any file that is not already present on the proxy will be downloaded and stored in
a specified directory.

By default, files downloaded to the proxy are prefetched in chunks. This takes some time
at the beginning of the user application, slowing it down with no added benefit thus needs to
be disabled. Also the size of the data chunks that are stored on the proxy can be decreased to
a very low value (in this work it is set to 4 kB) in an attempt at making XRootD store exactly
the equivalent in size of the TTree clusters of the input dataset. Furthermore, the URL of the
proxy is automatically prepended to the user-supplied endpoint path, thus making the proxy
completely transparent in the user application. In its final configuration, this mechanism runs
as follows. During the first run, computing nodes make a request to the XRootD proxy to
read a particular fragment of the input remote dataset. The proxy then fetches the requested
portion remotely, caches it internally then serves it to the node which has made the request.
During subsequent runs, the request of a worker node is served directly from the local cache
on the proxy. This workflow is shown in Figure 2.

Remote storage

P -

Worker

orker

Figure 2. XRootD proxy cache. During user analysis, computing nodes (labeled "worker" in
the image) make read requests for their assigned ranges of entries to the proxy server, which
in turn forwards such requests to the remote storage system. The proxy stores the requested
entries in its local filesystem and will be able to serve them directly to the nodes during
subsequent runs of the application.

3.2 Caching on the distributed computing nodes

Making each computing node store only its portion of processed data on its local filesys-
tem could be another approach. In order to exploit these computing-node-local caches, the
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Figure 3. TFilePrefetch cache. During user analysis, computing nodes (labeled "worker"
in the image) make read requests for their assigned ranges of entries directly to the remote
storage system. On each node, TFilePrefetch intercepts the incoming blocks of entries and
stores them on the local filesystem. In subsequent runs, each node will be able to read the
same range of entries from the local disk instead of requesting it again from remote.

application scheduler needs to guarantee data locality, that means it needs to submit tasks
where their input data fragments were previously cached. ROOT provides an experimen-
tal component for caching files on the local filesystem, namely TFilePrefetch. Its internal
workflow is shown in Figure 3. A second thread is spawned at the beginning of the appli-
cation. It is in charge of prefetching blocks of TTree entries from the remote files while the
main thread is requesting them. It is completely asynchronous to the main event loop and
allows to store blocks from memory to local files. This system will be activated on each com-
puting node, caching only the necessary TTree clusters on the machine. The TFilePrefetch
thread is only responsible for the I/O of the blocks of entries and in general does not put
extra strain on the CPU running the RDataFrame computations, especially in runs where
the cache is already populated. Enabling this feature involves setting two variables, namely
TFile.AsyncPrefetching and Cache.Directory, either in the .rootrc global configura-
tion file for ROOT or directly in the application code.

4 Test runs

The tests developed focus on showcasing the transfer of data from the remote storage system
to the computing nodes or the caching server. A reference dataset has been created: a single
ROOT file with a TTree of one hundred thousand entries and ten TTree clusters (exactly ten
thousand entries per cluster). The dataset contains five columns of randomized data. The
tests will always try to read one specific column of type double. The total file size is 1.8 GB,
while the column of interest is 700 MB. This file is uploaded to EOS at CERN so that it will
be readable through XRootD.

The RDataFrame computation graph is the same for all the tests: a very lightweight
function running on the selected column of the dataset. This is enough to trigger the XRootD
read requests from remote storage and observe the different effects depending on the caching
mechanism enabled. The baseline is defined by running this RDataFrame application on a
single machine, either with no cache or with one of the two caching mechanisms enabled.
Following test configurations distribute the application to a set of nodes thanks to the Spark
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backend of the distributed RDataFrame interface. The source code of each test is available
on a GitHub repository [14].

4.1 Hardware setup

The hardware setup is made of a physical machine plus a set of virtual machines. The baseline
of tests runs on the following machines:

e 1 physical node, 4C/8T i7-6700, 256 GB SSD storage and 16 GB RAM. Serves as cache
server in the tests with XRootD cache enabled.

e | virtual machine (VM) with 1 core, 10 GB spinning disk storage, 1024 MB RAM. Runs
the RDataFrame application.

The second test configuration reuses the same physical node, but extends the number of
total VMs to 5 (each with specifications identical to those of the VM described above) in
order to form a Spark cluster. The virtual machines are created in the CERN OpenStack
Cloud [15], while the physical machine is located at CERN. Thus, all machines used in the
tests are inside the CERN network.

5 Results

In this section two different test scenarios are presented. In the first scenario, the RDataFrame
application described in Section 4 is executed on the single node setup described above. In the
second scenario, the same application is distributed over the Spark cluster described above.
Each scenario in turn presents three tests: the baseline test with caching disabled, one test
with XRootD cache enabled on a server separate from the computing nodes and one test with
TFilePrefetch cache enabled on the local filesystem of the computing nodes. The results of
the tests are presented in this section and are discussed in Section 6.

5.1 Single node

In the single node scenario, the reference dataset is read from EOS on the computing VM
node during runtime. Only the selected column of the dataset is cached. If XRootD cache
is enabled, data belonging to the selected column in the test will be stored on the caching
server. The size of the cached data depends on the XRootD block size. For that reason its
default value has been changed as explained in Section 3.1, so that the cache will contain
approximately the same volume of data of the selected column.

If TFilePrefetch cache is enabled instead, data are stored directly in the local filesystem
of the VM. This mechanism caches exactly the TTree clusters that the application requests.
Subsequent runs will read data from the cache and not from EOS. Each test is run a thousand
times to get a significant distribution of the execution times of the application, since this
value might vary especially when the cache is disabled. Figure 4 shows the execution time
results. For the cache enabled cases, only the runs where the cache was already populated are
considered (i.e. no cold cache runs are shown).

In the same figure, it is possible to observe the incredibly higher variability in execution
time of the application when reading data from EOS rather than from the caches (the stan-
dard deviation with caching disabled is respectively 13 times higher than the standard devia-
tion with XRootD cache and 10 times higher than the standard deviation with TFilePrefetch
cache). At the same time, the average execution times with cache enabled are lower, respec-
tively by 38% with XRootD and by 48% with TFilePrefetch. See Table 1 for a summary of
these results.
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Figure 4. Single node scenario. Box plots of the distributions of execution times of one
thousand test runs in three configurations: Caching disabled, XRootD cache, TFilePrefetch
cache. The empty circles represent the median values of the distribution, the whiskers are
drawn at 1.5 X IQR and the crosses outside the whisker boundaries represent distribution
outliers.

The time to populate the caches was measured as well. XRootD cache takes on average
43 s with a standard deviation of 35 s, while TFilePrefetch takes on average 60 s with a
standard deviation of 41 s.

Table 1. Statistics for one thousand test runs along three configurations, with the single node
setup.

Caching disabled 33 24 28
XRootD cache 21 21 2
TFilePrefetch cache | 17 18 3

5.2 Distributed cluster

In the second test configuration, all the VMs are included in the setup and it is possible to
send tasks to the Spark cluster through the distributed RDataFrame interface. The Spark
setup is thus made of one VM acting as Spark driver (the node from where the tests will be
submitted), one acting as Spark master (the cluster coordinator and application scheduler)
and the other three nodes acting as the Spark executors.

Each test is repeated 100 consecutive times, in order to simulate an interactive scenario
where an exploratory user analysis is run once and then rerun subsequent times on the same
data after some parameter modification. There is no need to repeat the test as many times
as in the single node scenario, since it is enough to observe the caching behaviour work-
ing for a few repetitions of the application. The input dataset is transparently split in three
logical partitions by the distributed RDataFrame module: it is sufficient to give an optional
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parameter npartitions to the RDataFrame constructor. Each partition is sent together with the
computation graph to one of the three worker nodes as described in Section 2. Each task then
reads and processes data independently of the others. When the XRootD cache is enabled,
the data corresponding to the whole selected column of the dataset is stored on the caching
proxy server. With TFilePrefetch enabled instead, each task caches the logical portion of the
column on the node which is processing it.

The results of this configuration are shown in Figure 5. The first points of the lines corre-
sponding to tests with caching enabled show the run during which the caching mechanisms
are downloading and storing the processed portions of the dataset. In the particular case
shown in the figure, the run where the cache is being populated takes roughly 10 times more
than subsequent runs with both caching mechanisms. High spikes in the execution times of
some of the runs with TFilePrefetch cache enabled are striking. They opened another topic
of investigation in this work that will be further discussed in Section 6. This investigation led
to modify the RDataFrame distributed module with the aim of forcing the Spark backend to
apply data locality, i.e. to map tasks operating on the same logical range to the same node in
subsequent runs. Following points of the TFilePrefetch cache line show a higher execution
time than the respective points on the XRootD cache line. This was not expected but could
be due to some unpredictable strain on the host machines of the VMs.

Rerunning the same tests with the improvements of forcing data locality leads to Figure 6.
In this figure the cold cache runs are not shown, instead the focus is on the subsequent runs
with the cache already populated. The spikes previously observed using TFilePrefetch cache
are no longer present. Average execution times with the two caching mechanisms are similar
and summarized in Table 2. On average, running with a cache mechanism enabled (either
XRootD cache or TFilePrefetch cache) is slightly more than 2 times faster than running with-
out cache.

Table 2. Statistics for one hundred test runs along three configurations, with the distributed
setup and a locality-aware scheduler.

Caching disabled 36 26 17
XRootD cache 15 15 0.6
TFilePrefetch cache | 16 16 0.5

6 Discussion

The results presented in Section 5 generally shows that enabling caching during the first run
of the application makes subsequent runs faster. Each scenario and caching mechanism also
show non trivial details and insights.

All test runs with caching disabled show a strikingly high variability in the execution time
distribution, with a very long tail. This is a sign of the high load that storage systems like
EOS have to sustain. This translates into unpredictable slowdowns in network 1/O even when
reading from within the CERN network as was done in this setup. This is already a strong
point in favor of enabling caching for this kind of analysis, in order to protect the user from
high latencies or overhead in remote data access.

In the single node scenario, XRootD cache shows the execution time distribution with
the lowest standard deviation. In general this is not expected, but it is likely that the storage
performance of the VM is responsible for the larger distribution in the TFilePrefetch case.
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Figure 5. Distributed scenario. Lines represent the execution times along one hundred
consecutive runs for three configurations: Caching disabled, XRootD cache, TFilePrefetch
cache. The first point of the two configurations with cache enabled correspond to a run where
the caches were being populated.
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Figure 6. Distributed scenario, with data locality aware scheduler. Lines represent the exe-
cution times along one hundred consecutive runs for three configurations: Caching disabled,
XRootD cache, TFilePrefetch cache. In the configurations with cache enabled, the caches
were already populated in every run.

Nonetheless, TFilePrefetch shows the lowest average runtime, which is expected in general
since data is stored directly on the same machine where it is processed.

The preliminary results of the distributed scenario shown in Figure 5 demonstrate that
data locality is of utmost importance when caching on the computing nodes. This actually
opens a new research question for this kind of effort: how to guarantee task pinning to nodes
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in a distributed computing environment. When distributing an RDataFrame application, the
scheduler does not read the actual dataset and stream portions of it to the various nodes.
Instead what the Spark master receives is a list of logical ranges of entries in the dataset and
each element of that list corresponds to a task on some node of the cluster. In this context,
task pinning would be beneficial. That means having the same logical range (so just a pair of
integers) cached on the same worker node for all runs of the application.

Spark for example offers a Cache function in its API, but that still doesn’t guarantee that
tasks will always be sent to the same executors in the cluster. It is rather a way to signal the
Spark scheduler that it is desirable to have that particular logical range cached on the cluster.
In this sense, data locality is guaranteed eventually rather than at all times. It is possible
though to have some stricter guarantee if some limits are set on the analysis workflow, namely
that the application only runs computations of one single RDataFrame object and that the user
does not exit the scope of their application until the end of their exploratory work. This was
fully implemented in the distributed RDataFrame module for the purposes of this study, with
no change in user code. Within this configuration, the distributed RDataFrame tests with the
Spark backend indeed always pinned the same task to the same executor. This result is what
Figure 6 shows, with the TFilePrefetch line overlapping the XRootD one for runs with the
cache already populated.

7 Conclusions

This work integrates two caching technologies in a distributed RDataFrame application. In
the distributed test scenario, both caching mechanisms give on average a factor 2 speed im-
provement with respect to the average baseline measurement with caching disabled.

The XRootD framework is quite well established in the community and its proxy plugin
system may be used to cache remote files closer to the computing nodes. This technology is
used in this work to cache input data on a server separate from the rest of the computing nodes.
Another configuration makes use of the ROOT TFilePrefetch class to cache input data locally
on the computing VMs that are running the application. The first configuration does not
underperform with respect to the latter in the different scenarios tested. The main reason for
this is the extra overhead of accessing virtualized storage on the small VMs and the difference
in storage devices between the XRootD cache server (SSD) and the VMs (spinning disk). It is
planned to further investigate this matter in the future with a cluster of physical machines and
more homogeneous storage devices, in a setup with more geographical distance between the
remote data source and the computing cluster and its caches. Another key objective for future
work is to develop further on the logic for caching an input dataset during an RDataFrame
analysis, possibly creating an ad hoc solution closer to the RDataFrame core.
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