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1 Introduction

The consistency of low-energy actions for spin-3/2 Rarita-Schwinger fermions has a long
and interesting history. It was shown in the sixties that a charged spin 3/2 field in an
electromagnetic background has acausal propagation features [1]. When supergravity
(SUGRA) was invented in 1976 [2–5], this issue was immediately raised and the minimal
supergravity was shown to be causal [6] due to its specific interactions. Much later, it
was shown that a charged gravitino propagation is also causal in gauged supergravities [7],
solving the original Velo-Zwanziger problem.

When supersymmetry is realized nonlinearly, causality of gravitino propagation has to
be re-examined. Starting from a standard two-derivative SUGRA and taking the scale of
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supersymmetry breaking to large values, one expects to decouple superpartners without
generating any causality problems. If one instead write the most general nonlinearly-
supersymmetric lagrangians, there is a priori no guarantee of their microcopic origin and
causality problems can arise. This does not occur for the simplest (and oldest) Volkov-
Akulov realization [8]. In this case, supersymmetry is realized as a diffeomorphism, starting
initially with a two-derivative action coupled to a metric/vierbein. The goldstino/gravitino
couplings arise through an appropriately defined goldstino-dependent vierbein, which in the
end induce also higher-derivative operators containing the goldstino.

A particularly simple formalism to build nonlinear supersymmetry (SUSY) or SUGRA
lagrangians is by using superfield constraints [9–12]: this procedure allows to fix/remove
some of the superfields components, simulating the decoupling of a massive degree of
freedom while allowing one to use the standard supersymmetric lagrangians. Constraints
appropriate to remove scalar, fermions and even auxiliary fields were proposed. Nonlinear
supergravities along these lines were soon constructed afterwards [13–16]. Such setups
were widely used to construct more minimal inflationary models in supergravity [17], in
particular models with a minimal particle spectrum: a graviton, a massive gravitino and a
(real scalar) inflaton [18–20], using the so-called orthogonal constraint. It was subsequently
realized that such models have peculiar features, like the possibility that the gravitino
sound speed becomes zero and generates an unbounded production of gravitinos [21–26]
and even superluminal propagation [24], both arising for the longitudinal component of
the gravitino.1

In this paper we shed more light on the sound speed of gravitino in such constructions
(assuming the presence of a nilpotent superfield, which parametrizes supersymmetry breaking
throughout our paper). First, by using the equivalence theorem between the longitudinal
component of the gravitino and the goldstino, valid at energies E � m3/2 [28–30], we write
down low-energy goldstino lagrangians coupled to scalars, eventually to be identified with
the inflaton in supergravity. Our results apply however to gravitino couplings to any scalars,
not only the inflaton. The superfield constraints generate, in the low-energy theory with
broken SUSY, higher-derivative operators which are subject to positivity bounds [31, 32] in
order for the theory to respect causality, analyticity and crossing-symmetry (see also [33–
75]). Positivity and superluminality are well-known to be connected [31], and we confirm
that the positivity constraints map precisely into subluminality constraints derived directly
in SUGRA from the gravitino sound speed, in the limit of decoupling gravity MP → ∞.
However, whereas positivity constraints are valid only in the ground state, subluminality of
sound speed in supergravity should be respected throughout the time-dependent scalar field
evolution, which is a priori a stronger constraint. Knowing that a microscopic two-derivative
SUGRA lagrangian has no acausal propagation problems, we attempt to identify the
origin of the subluminality constraints as a potential unphysical feature of the orthogonal
constraint. Our understanding is that, whereas the “removal” of a scalar or fermion can
be easily understood microscopically as standard decoupling of heavy particles, removal
of an auxiliary field requires higher-derivative couplings directly in the UV, as proposed

1The possibility of the gravitino to propagate “slowly” was noticed in [27].
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already in [76]. We substantiate this claim in two ways. First, by imposing alternative
constraints that remove a real scalar and its fermionic partner only (not the auxiliary
field) and by constructing low-energy goldstino lagrangians coupled to the real scalar: in
this improved framework we find no non-trivial causality condition to be imposed on the
low-energy theory. Alternatively, we propose a procedure to integrate-out an auxiliary
field at the superfield level, which yields an effective action of superfields constrained
so as to not contain auxiliary fields anymore. We show explicitly that higher-derivative
terms are generated in the action by that procedure, and that they precisely cancel the
“wrong-sign” terms in the operators subject to positivity bounds. The result leads to an
effective action which trivially satisfies the (twice-subtracted and forward) positivity bounds
for all values of fields and couplings. Finally, we rely on these insights to construct simple
realistic minimal models of inflation in SUGRA with causality respected everywhere in
the theory parameter space. Let us nevertheless stress that we are not claiming that any
two-derivative SUGRA theory supplemented with the orthogonal constraint cannot be
realized in a microscopic theory. If the causality constraints that we discuss later on are
satisfied identically, i.e. for any values of the parameters of the theory, this is perfectly
acceptable. For this to happen, the functions defining the effective action (superpotential
and Kähler potential) should have some restricted form. This is a priori possible to obtain
from a microscopic theory. Our precise claim is that any non-trivial causality constraints on
the theory parameters should not come from a microscopic theory, or in a modern language,
is in the swampland [77, 78]. Our alternative constructions have the particular feature that
for the most general superpotential and Kähler potentials, the theory is causal for arbitrary
values of the parameters of the theory.

The paper is organized as follows. In section 2 we review the gravitino equivalence
theorem and the gravitino sound speed in supergravity. We compute the sound speed
in various examples with nonlinear supersymmetry and identify cases with potential su-
perluminal propagation. Section 3 constructs low-energy goldstino actions coupled to
matter, with nonlinearly-realized supersymmetry generated by constrained superfields. We
use these results to work out causality/positivity constraints in various cases, which turn
out to reproduce the corresponding SUGRA subluminality constraints on the gravitino
sound speed in the decoupling limit MP →∞, and in our main example, the orthogonal
constraint, even exactly. In sections 4 and 5 we propose two different, but equivalent,
ways to obtain goldstino actions from microscopic theories. The one in section 4 starts
from a two-derivative low-energy action and, instead of using the orthogonal constraint
which eliminates a (imaginary) scalar, its fermionic partner and the auxiliary field, uses the
alternative constraints which eliminate only the scalar and the fermion [76]. The second
approach put forward in section 5 starts from a microscopic two-derivative action and uses
the presence of nonlinear SUSY to integrate the auxiliary field out of a chiral multiplet in a
superspace/superfield fashion, instead of the standard component field algebraic procedure.
The procedure leads to an action of superfields constrained so that their auxiliary fields
are eliminated. In particular, this is able to generate the orthogonal constraint, but at
the same time it generates higher-derivative terms which remove all potentially non-trivial
causality conditions, yielding a completely safe action. We believe that the two procedures
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are equivalent, as they assume the same microscopic action and superfield content and
subsequently only amount to solving equations of motion. Whereas the results apply beyond
models of slow-roll inflation, we use them to construct simple examples of completely causal
minimal SUGRA models of inflation in section 6. We summarize our findings and present
our perspectives in the Conclusions, section 7. Appendix A displays the complete solution
of the alternative constraints put forward in section 4, while appendix B presents the
derivation of the main result of section 5.1.

2 Gravitino sound speed, goldstino and the equivalence theorem

The gravitino, spin 3/2 superpartner of the graviton,2 has four degrees of freedom if
supersymmetry is broken. Analogously to the Higgs mechanism, there is a super-Higgs
mechanism in which a massless gravitino with helicities ±3/2 absorbs the goldstino spin
1/2 fermion related to supersymmetry breaking in order to form a massive gravitino with
four helicity states. The states of helicity ±3/2 form the transverse gravitino, whereas the
helicity ±1/2 states are the longitudinal components. By representing the spin 3/2 in a
basis of a spin 1 and a spin 1/2 states, one can write

|32 ,±
3
2〉 = |1,±1〉 ⊗ |12 ,±

1
2〉 ,

|32 ,±
1
2〉 =

√
2
3 |1, 0〉 ⊗ |

1
2 ,±

1
2〉+

√
1
3 |1,±1〉 ⊗ |12 ,∓

1
2〉 . (2.1)

The gravitino Ψµ couples in SUGRA to matter fields via the supercurrent

1
MP

ΨµJµ . (2.2)

Whereas the transverse gravitino couples with gravitational strength, the longitudinal
component couples stronger. Indeed, the gravitino equivalence theorem [28–30] states that
at energies E � m3/2 the amplitudes for the ±1/2 helicities can be computed by using the
goldstino G via the substitution

Ψµ → 1
m3/2

∂µG . (2.3)

The longitudinal gravitino component couplings can then be replaced by

1
f
∂µG Jµ = − 1

f
G ∂µJµ , (2.4)

where f = m3/2MP is the supersymmetry breaking scale. The couplings of the longitudinal
component are therefore enhanced compared to the transverse component, which are
gravitationally suppressed. One can take in particular the decoupling limit of gravity MP →
∞ with fixed f . On-shell, ∂µJµ is proportional to soft terms, hence goldstino couplings to
matter can also be written as being proportional to msoft/f . When superpartners are very

2We are only considering supersymmetry/SUGRA models with minimal supersymmetry in four
dimensions.
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heavy, their virtual exchange generate effective operators coupling the goldstino and the
light matter fields. In the original Volkov-Akulov (VA) formulation they are determined
geometrically, typically of dimension eight and of the type

LV A = i

2f2

(
Gσµ∂νḠ− ∂νGσµḠ

)
Tµν , (2.5)

where G is the goldstino field and Tµν is the energy momentum tensor of the light matter
fields with heavy superpartners. Whereas dimension-eight operators of this type are generally
subject to positivity conditions coming from general arguments of unitarity and causality,
the ones generated via the VA prescription, produced starting from a two-derivative action
coupling to the VA vierbein, come automatically with the correct signs. The same will be
true for effective operators obtained by tree-level exchange of heavy superpartners starting
from the supercurrent couplings (2.4). For other nonlinear supersymmetry realizations, in
particular by constrained superfields, the positivity/causality constraints can turn out to
be non-trivial. Through the equivalence theorem, such positivity conditions are manifest in
the corresponding SUGRA lagrangians, in particular in the sound speed of the gravitino.

It was shown in [22, 23] that the transverse gravitino in SUGRA propagates at the
speed of light. On the other hand, the longitudinal component has a more complicated
sound speed cs, which can be written in general in terms of the energy density ρ and
pressure p, according to the formula

c2
s =

(
p− 3m2

3/2

)2

(
ρ+ 3m2

3/2

)2 +
4ṁ2

3/2(
ρ+ 3m2

3/2

)2 . (2.6)

For standard SUGRA theories with two-derivative couplings, it was shown in full generality
in [24] that cs ≤ 1. For completeness we review the argument here. Refs. [22, 23] provides
a useful expression for cs in any N = 1 supergravity model with chiral superfields,

c2
s = 1− 4

(|ϕ̇|2 + |F |2)2

{
|ϕ̇|2|F |2 − |ϕ̇ · F ∗|2

}
, (2.7)

where ϕ and F correspond to vectors of scalar3 and auxiliary fields respectively, and the
F -terms are given by

F i ≡ −eK/2Kij∗ Dj∗W
∗ , (2.8)

where in a standard supergravity notation, Kij∗ is the inverse of the Kähler metric

Kij∗ ≡
∂2K

∂ϕi ∂ϕj∗
, (2.9)

while
DiW ≡

∂W

∂ϕi
+ ∂K

∂ϕi
W . (2.10)

3Formula (2.7) actually holds for real scalar fields ϕ. However, the formula that we use to compute the
gravitino sound speed in the various models analyzed throughout the paper is the more general (2.6).
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Throughout our paper, we will consider the most general superpotential W and Kähler
potential K, not necessarily renormalizable. The dot operator in (2.7) denotes a scalar
product with the Kähler metric (2.9), namely |ϕ̇|2 = ϕ̇iKij∗ ϕ̇

j∗, and similarly for the other
terms.4 Finally, due to the Cauchy-Schwarz type inequality |ϕ̇|2|F |2 ≥ |ϕ̇ · F ∗|2, causality
cs ≤ 1 is always guaranteed to hold. The argument can be extended to include D-term
contributions to the scalar potential, which change the sound speed according to

c2
s = 1− 4(

|ϕ̇|2 + |F |2 + 1
2D

2
)2

{
|ϕ̇|2

(
|F |2 + 1

2D
2
)
− |ϕ̇ · F ∗|2

}
. (2.11)

The subluminality condition is strongest when D = 0 and therefore models with only
F-terms are the most constraining.

The proof above does not apply to higher-derivative theories and for some realizations
with nonlinear supersymmetry, which we will analyze here from several perspectives. The
pressure and energy density associated to the scalar ϕ are given by

p = KΦΦ̄ϕ̇
2 − V (ϕ) , ρ = KΦΦ̄ϕ̇

2 + V (ϕ) . (2.12)

It was shown in [24] that the sound speed (2.6) applies actually to the case where there is
no fermion/inflatino in the spectrum. A particularly interesting example in this class of
models is the orthogonal constraint defined by

S
(
Φ− Φ̄

)
= 0 , (2.13)

where Φ is a chiral superfield and S is a chiral nilpotent goldstino superfield, whose scalar
component s is expressed in terms of a goldstino bilinear. This constraint turns the imaginary
part of the scalar, the fermion and the auxiliary field contained in Φ into functions of the
goldstino G and the real part ϕ of the scalar in Φ, which vanishes when G→ 0 (see section 3
for more details). Decomposing Φ = A+ iB (ϕ is then the lowest, scalar component of A
and B vanishes when G→ 0), the generic SUGRA lagrangian is defined by [19]

K = h (A)B2 + SS̄ , W = f(Φ)S + g(Φ) , (2.14)

where h is a real function, while f, g are holomorphic. As said above, the sgoldstino scalar
s and the auxiliary field Fφ in Φ are expressed in terms of fermionic terms. This implies
in particular that only the auxiliary field of S contributes to the scalar potential, which is
given by

V = |f(ϕ)|2 − 3|g(ϕ)|2 , (2.15)

and the sound speed (2.6) reads5

c2
s = 1− 4ϕ̇2(

h(ϕ)
2 ϕ̇2 + |f(ϕ)|2

)2

(
h(ϕ)

2 |f(ϕ)|2 − |g′(ϕ)|2
)
. (2.16)

4We work in Planck units MP = 1, but restoring MP whenever needed can simply be achieved by
dimensional analysis.

5We stress here that to compute the sound speed in this model, we need to make use of the formula (2.6),
and not of (2.7): while the former applies in general, in particular for nonlinear realizations of supersymmetry
such as (2.14), the latter applies only for linearly-realised SUSY.
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Causality imposes therefore a nontrivial condition,

h(ϕ)
2 |f(ϕ)|2 ≥ |g′(ϕ)|2 . (2.17)

The causality condition (2.17) should be respected not only in the ground state, but on any
time-dependent solution for the scalar ϕ, being them relevant for inflation or not. Therefore
the value of ϕ in (2.17) refers to all possible scalar field values attained during the time
evolution. Notice also that the causality/subluminality condition (2.17) has to be imposed
even for arbitrarily small velocities ϕ̇. We stress that all mass scales in W,K are implicitly
assumed to be independent on gravity, i.e. on the Planck mass MP . As such, W and K
retain the same form in the limit of decoupling gravity MP →∞ with fixed f , which defines
the goldstino lagrangians upon using the equivalence theorem.6 This implies in particular
that the causality condition (2.17) should remain the same after decoupling gravity, since
MP does not appear anywhere in it. The same is actually true also for the orthogonal
constraint gravitino/goldstino sound speed (2.6).

It should be clear from our discussion that the issue is not really tied to inflationary
models and is more general. For example, one could consider models with complex scalars,
defined by the constraint SH̄ = chiral, where H is another chiral superfield. This constraint
eliminates its fermion and auxiliary field, leaving a light complex scalar. In this case, the
most general model is characterised by the following Kähler potential and superpotential,

K = ξ
(
H, H̄

)
SS̄ + κ

(
H, H̄

)
, W = f (H)S + g (H) , (2.18)

where ξ, κ are real functions, while f, g are holomorphic ones. Using again (2.6), we see
that subluminality imposes now the following constraint on the theory parameter space,

κHH̄ |Ḣ|
2|f |2 ≥ ξ |Ḣ

(
g′ + g

2κH
)

+ ˙̄Hg

2κH̄ |
2 , (2.19)

where κH = ∂Hκ, etc. Any nontrivial time dynamics for the scalar H will lead to a nontrivial
causality constraint. Differently from (2.17) however, in (2.19) the terms proportional to
κH , κH̄ arise from the SUGRA lagrangian with a factor of 1/M2

P , which we kept implicit as
it can be reinstated on dimensional grounds (see footnote 4).

The presence of a nontrivial causality condition suggests that the microscopic origin
of the orthogonal constraint (2.13) is not a standard two-derivative theory. As decoupling
a heavy scalar and heavy fermion should not be difficult to obtain, it becomes intuitively
clear that the problem comes from the “removal” of the auxiliary field via the constraint.
This claim can be tested by imposing constraints that remove only the scalar and the
fermion, but not the auxiliary field. As shown in [76], this can be achieved by imposing
the constraints

SS̄
(
Φ− Φ̄

)
= 0 , SS̄DαΦ = 0 , (2.20)

where the first constraint in (2.20) removes the imaginary part of the scalar and the second
one removes the fermion in Φ. Whereas the physical spectrum of such a model is the same

6The study of goldstino lagrangians and sound speed for the orthogonal constraint from the viewpoint of
the equivalence theorem was already studied in [79] in the particular case of a constant gravitino mass.
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(minimal) one as that obtained with the orthogonal constraint, the lagrangian is different.
In particular, both auxiliary fields are now determined in the usual SUSY algebraic way, so
that the scalar potential reads

V = |f (ϕ) |2 + 2
h (ϕ) |g

′(ϕ)|2 − 3|g(ϕ)|2 , (2.21)

and the sound speed changes accordingly into

c2
s = 1− 2h(ϕ)ϕ̇2|f(ϕ)|2(

h(ϕ)
2 ϕ̇2 + |f(ϕ)|2 + 2

h(ϕ) |g′(ϕ)|2
)2 , (2.22)

which is always subluminal cs ≤ 1 since h is positive definite. In this case causality is therefore
automatically satisfied. We interpret this as evidence that the superfield constraints (2.20)
can arise from a two-derivative microscopic lagrangian with linear SUSY. On the other
hand, in the case of the orthogonal constraint, the nontrivial causality condition (2.17)
probably implies that the original high-energy lagrangian should be supplemented with
higher-derivative terms which ensure causality for all points in the theory parameter space.

Comparing subluminality conditions in SUGRA with low-energy goldstino causality
conditions, as well as providing evidence for the claims above, are the main subjects for the
rest of our paper. Before embarking into more technical considerations on the goldstino
lagrangians, we repeat that we expect a causality condition of the type (2.17) to be captured
exactly by goldstino actions via the equivalence theorem, since it is independent of MP .
On the other hand, for a SUGRA causality condition of the type (2.19), which depends
explicitly on MP , we expect that causality arguments from the goldstino action only agree
in the MP →∞ limit. Turning the argument around, by imposing causality in SUGRA,
we find a small (i.e., order 1/M2

P ) seemingly violation of causality in the goldstino actions.
However, apparent gravitational violations of causality are well-studied and were argued
not to be necessarily inconsistent (see for example [49–53]).

In addition, when there is no inflatino in the spectrum, there is the possibility that the
gravitino sound speed becomes zero and generates an unbounded production of gravitinos [21–
26]. This is the case both for the orthogonal constraint (2.13) and for the alternative
constraints (2.20). In both cases, the sound speed becomes zero at particular points of the
inflationary trajectory which satisfy

g′(ϕ) = 0 , h(ϕ)
2 ϕ̇2 = |f(ϕ)|2 . (2.23)

In the case of the orthogonal constraint, the complete sound speed (2.16) is independent
of MP , hence the exact formula can be captured exactly from the low-energy goldstino
lagrangians using the equivalence theorem, which we explicitly confirm below. Therefore,
goldstino lagrangians in this case capture exactly both the causality/subluminality condition
and the vanishing of the sound speed of gravitino in supergravity. For cases where the
sound speed in SUGRA contains MP explicitly, goldstino lagrangians capture only the limit
MP →∞ of the different formulae.
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3 Low-energy goldstino lagrangians

As we anticipated above, all the models we are going to study involve one particular chiral
superfield, subject to the nilpotency condition [11]

S2 = 0 . (3.1)

The solution of (3.1) is

S = G2

2FS
+
√

2θ G+ θ2FS , (3.2)

i.e. the scalar field component s of S is not independent anymore, but is a bilinear in the
goldstino. S is the field responsible for spontaneous supersymmetry breaking, with the
fermion G being identified as the goldstino. SUSY is actually realized nonlinearly [80] and
it has been shown in [11] that writing the most general two-derivative theory for S and
subsequently imposing the constraint leads to a goldstino lagrangian which is equivalent to
the original Volkov-Akulov theory [8]. The latter is perfectly causal, while the nilpotent
constraint on S does not constrain its auxiliary field, which further supports our claim
linking the loss of causality to the removal of auxiliary fields by superfield constraints.7

All the models we are going to consider will be based on the goldstino superfield (3.2),
which not only breaks SUSY but also allows to define other constraints for different
superfields, decoupling some field components and realizing SUSY nonlinearly in the
corresponding multiplets. Let us outline the general procedure to build such models.
Since we will consider only chiral superfields of components (φi, χi, F i), the starting
lagrangian is [80, 81]

L = Kij̄

[
F iF̄ j̄ + ∂µφ

i∂µφ̄j̄ +
(
i

2∂µχ
iσµχ̄j̄ + h.c.

)]
+
[
WiF

i − 1
2Wijχ

iχj + h.c.

]
+
[
i

4Kijk̄

(
χiσµχ̄k̄∂µφ

j + χjσµχ̄k̄∂µφ
i + 2iχiχjF̄ k̄

)
+ h.c.

]
+ 1

4Kijk̄l̄ χ
iχjχ̄k̄χ̄l̄,

(3.3)

where K and W are, respectively, the Kähler potential and the superpotential, and the
subscripts denote their derivatives with respect to the chiral fields. Given a set of superfield
constraints, the first step is then to insert their solution in (3.3). The second step consists in
integrating out the auxiliary fields, which is non-trivial here because the dependence of the
lagrangian (3.3) on the auxiliary fields, and especially on that of the goldstino (see (3.2)),
is not polynomial anymore. One typically searches for a solution of the auxiliary field
equations of motion (EoM) as a (finite) series of operators with increasing numbers of
fermions (see [11, 14, 82] for examples). The resulting lagrangian only depends on the
dynamical fields.

In what follows, we will restrict ourselves to two kinds of truncations of the lagrangians.
When studying the goldstino sound speed, we only consider operators quadratic in the

7The fact that the constraint S2 = 0, equivalent to the VA dynamics, does not lead to any positivity
problem follows from the fact that it is known to arise from UV models, upon integrating the heavy scalar
partner of G [11]. Such constraints are genuinely equivalent to constraint of the form |Φ|2 = v2 for a
multiplet of scalar fields Φ, which arise in the mapping from linear to nonlinear sigma models.
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goldstino field (which we refer to as the “quadratic limit” throughout the discussion), which
are those driving the free propagation of the goldstino on a generic scalar background.
When studying instead the positivity bounds on 2→ 2 scattering amplitudes, we can focus
on operators involving at most four fields (called the “four-fields limit”). We therefore
find it convenient to consider two operator bases, related by field redefinitions: the one
which naturally arises from the procedure outlined in the previous paragraph and generates
all (finitely many) terms quadratic in the goldstino field, and another one where most
three-point couplings between goldstini and scalars have been traded for four-point couplings.
The former is more adapted to a quick extraction of the goldstino sound speed, while in the
latter one can directly read off from the associated Wilson coefficients the combination of
coefficients constrained by positivity bounds. In any case, the results are physical and can
be obtained in any operator basis.

3.1 Light real scalar: the orthogonal constraint

The first model we discuss involves the goldstino superfield (3.2) coupled to a chiral superfield
Φ subject to what is called the orthogonal constraint,

S
(
Φ− Φ̄

)
= 0 . (3.4)

This constraint, which implies also
(
Φ− Φ̄

)3
= 0, fixes the components of Φ, calling the

scalar field φ ≡ A+ iB, to be [11]

B = GσµḠ

2|FS |2
∂µA , χφ = iσµ

Ḡ

F̄S
∂µφ , F φ = −∂ν

(
Ḡ

F̄S

)
σ̄µσν

Ḡ

F̄S
∂µA−

1
2

(
Ḡ

F̄S

)2

�A .

(3.5)
The resulting spectrum involves only the goldstino G and a real scalar A: for this reason,
models with such constrained superfields have been largely studied from a cosmological
viewpoint as minimal models of inflation, with A being identified with the inflaton (see for
instance [19, 20, 22–24, 83]).

The most general theory involving such constrained superfields was given in (2.14), i.e.
it is completely characterized by a real function h(Φ) and two holomorphic ones, f(Φ) and
g(Φ).8 We first notice that because of the expression of the Kähler potential, the second
line of (3.3) does not give any contribution, neither in the quadratic nor in the four-field
limit. The starting lagrangian turns out to be9

L = |FS |2 + h

2∂µA∂
µA+

(
i

2∂µGσ
µḠ+ h.c.

)
− 1

4
Ḡ2

F̄S
�

(
G2

FS

)

+ h

2

[
i ∂µ

(
G

FS

)
σν
(
Ḡ

F̄S

)
∂µA∂νA−

i

2∂µ
(
G

FS

)
σµ
(
Ḡ

F̄S

)
(∂A)2 + h.c.

]

+

fFS − i

2f
′Gσ

µḠ

F̄S
∂µA−

g′′

2

(
Ḡ

F̄S

)2

(∂A)2 − g′

2

(
Ḡ

F̄S

)2

�A

−g′∂ν

(
Ḡ

F̄S

)
σ̄µσν

Ḡ

F̄S
∂µA+ h.c.

]
.

(3.6)

8The precise form of the functions h, f and g and their combinations is left implicit in what follows.
9We follow the conventions of [84] in what follows.
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The next step is to integrate out the auxiliary field FS , which means that we need to find the
(algebraic) solution to its EoM and then plug it back into lagrangian (3.6). Such solution
can be found iteratively as an expansion in the number of fermions. Among the operators
which couple the goldstino to the scalar, we only keep those with at most two goldstini, i.e.
we apply the quadratic limit. Putting everything together and performing integrations by
parts, the resulting lagrangian is

L =− |f |2 + h

2∂µA∂
µA+

(
i

2∂µGσ
µḠ+ h.c.

)
+
(
i
f ′

2f + h.c.

)
GσµḠ∂µA

+ h

2|f |2
[
i ∂µGσνḠ∂µA∂νA−

i

2∂µGσ
µḠ∂νA∂

νA+ h.c.

]
− 1

4|f |2 Ḡ
2�G2

+
[
ḡ′

f̄2

(1
2G

2�A+ ∂µGσ
µσ̄νG∂νA

)
+ ξ G2 ∂µA∂

µA+ h.c.

]
,

(3.7)

where

ξ ≡ ḡ′′

2f̄2 −
ḡ′f̄ ′

f̄3 . (3.8)

From this lagrangian, one can extract the goldstino sound speed, and compute 2 → 2
scattering amplitudes in order to extract positivity bounds from them. We present such
results below, but, as announced in the beginning, we first perform some field redefinitions,
in order to remove the redundant 4-fields operators and also to exchange most of the 3-fields
operators with 4-fields ones: this makes manifest the proper combination of coefficients
subject to positivity bounds. In (3.7) there are three operators which are suitable to this
procedure (i.e. which are proportional to the free EoM),

∂µGσ
µḠ∂νA∂

νA , ∂µGσ
µσ̄νG∂νA , G2�A (3.9)

(plus hermitian conjugates), which can be removed with the following field redefinitions,
respectively,

δGα = h

4|f |2 (∂A)2Gα , δGα = −i g
′

f2

(
Ḡσ̄µ

)α
∂µA , δA = ḡ′

2hf̄2G
2 + h.c .

(3.10)
Eventually, the final resulting lagrangian in the four-field limit is

L = −|f |2 + h

2∂µA∂
µA+

(
i

2∂µGσ
µḠ+ h.c.

)
+
(
mG2 + h.c.

)
+ λG2Ḡ2

+
(
i
f ′

2f Gσ
µḠ∂µA+ ξ̃G2∂µA∂

µA+ h.c.

)
+ 1

8h

(
ḡ′2

f̄4 G
2�G2 + h.c.

)

+ 1
2|f |2

(
h− 2|g′|2

|f |2

)(
i ∂µGσνḠ∂µA∂νA+ h.c.

)
− 1

4|f |2

(
1− |g

′|2

h|f |2

)
Ḡ2�G2 ,

(3.11)
where m, λ and ξ̃ denote combinations of original coefficients which are not needed explicitly.
Note that from (3.11), one cannot compute the goldstino sound speed exactly, but only up
to terms involving two derivative in the scalar, as a result of the four-field limit.
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3.1.1 Positivity bounds and sound speed

In this paper, we focus on (twice-subtracted) 2 → 2 amplitudes in the forward limit
(p1 = p3), which are subject to direct positivity bounds. Although they do not capture the
full set of all positivity bounds in a generic lagrangian, they suffice to identify an amplitude
version of the breakdown of causality discussed in section 2. In the lagrangian (3.11), they
concern the following amplitudes,

A
(
G, Ḡ→ G, Ḡ

)
= h|f |2 − |g′|2

h|f |4
[14]〈23〉 (p1 − p4)2 = h|f |2 − |g′|2

h|f |4
s2

A
(
G,G→ Ḡ, Ḡ

)
= ḡ′2

hf̄4 ([12][34](s− t) + [14][23](u− t)) = 2ḡ′2

hf̄4 s
2 ,

A (G,A→ G,A) = −h|f |
2 − 2|g′|2

2|f |4 (p1 + p3)µ [1
(
p2,µ/p4 + p4,µ/p2

)
3〉 = h|f |2 − 2|g′|2

2|f |4 s2 ,

(3.12)
using notations of the massless helicity spinor formalism (see e.g. [85]), and where the last
equalities hold in the forward limit. We dropped all terms which scale differently than
s2 in the forward limit, since they do not contribute to the twice-subtracted bounds. By
construction, the factors match the coefficients appearing in the lagrangian (3.11). Of
course, they could have been obtained directly from (3.7), since amplitudes do not depend
on the operator basis used. Other amplitudes, corresponding to crossed or time-reversed
versions of those above, do not bring further constraints.

Following [32, 86], we can derive a positivity bound on the elastic amplitude A(G, Ḡ→
G, Ḡ), which reads (restoring now the A-dependence of the various functions)

d2A(G, Ḡ→ G, Ḡ)
ds2

∣∣∣∣∣
t=s=0

≥ 0 ⇐⇒ h(A)|f(A)|2 > |g′(A)|2 , (3.13)

i.e. the coefficient of the operator Ḡ2�G2 must be negative when there are no three-point
couplings contributing to the twice-subtracted amplitudes. An even stronger bound follows
from including the inelastic amplitude A(G,G→ Ḡ, Ḡ) [33–43] (see in particular [44] for
the Weyl fermion case),

d2A
(
G, Ḡ→ G, Ḡ

)
ds2 − 1

2

∣∣∣∣∣∣
d2A

(
G,G→ Ḡ, Ḡ

)
ds2

∣∣∣∣∣∣
∣∣∣∣∣
t=s=0

≥ 0 ⇐⇒ h (A) |f(A)|2 > 2|g′(A)|2 .

(3.14)
This bound combines the coefficients of the Ḡ2�G2 and G2�G2 operators, when no three-
point coupling contributes to the twice-subtracted amplitudes. From A(G,A → G,A),
one gets

h(A)|f(A)|2 > 2|g′(A)|2 , (3.15)

i.e. the coefficient of
(
i ∂µGσνḠ∂µA∂νA+ h.c.

)
must be positive when no three-point

coupling contributes to the twice-subtracted amplitudes. (3.15) immediately yields the
strongest bound among the two derived from pure Goldstino scattering, and including the
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inelastic amplitude A(G,A→ Ḡ, A) does not improve it, as it vanishes in the theory under
consideration when twice-subtracted, or in the forward limit.10

Strictly speaking, the positivity bounds only apply to 2→ 2 amplitudes in the vacuum,
which we take to be A = 0 without loss of generality. Therefore, they constrain only the
first order coefficients of the dangerous operators, i.e.

h(0)|f(0)|2 > 2|g′(0)|2 . (3.16)

The higher orders of the Taylor expansion of the scalar functions f, g′, h carry higher powers
of the scalar field A and thus contribute to amplitudes of higher multiplicity. There may
exist constraints on higher-multiplicity amplitudes which can effectively be resumed to
generate (3.15), but we are not aware that they have already been precisely identified
and derived. Therefore, we remain conservative and only claim that (3.16) follows from
scattering-amplitudes positivity. Nevertheless, we argue here that we need to extend the
bound (3.16) to the whole functions’ domain in order to allow for a time-dependent dynamics
of the field A. Considering the case of a time-dependent solution A = A(t) (relevant or
not for an inflationary scenario), this fact can be seen by studying the sound speed of
the goldstino, as discussed in section 2, which now becomes non-trivial because of the
presence of the higher-order operators generated by the constraints. The sound speed can
be computed from the quadratic goldstino EoM on the A(t) background. The most suitable
form of the lagrangian to carry out this computation is actually (3.7), since it captures
exactly all the operators involving two goldstini, which are the only ones contributing to
the computation of the sound speed. However, unlike in (3.11), quadratic terms in the
third line of (3.7) contribute to the quadratic goldstino EoM and need to be dealt with.11

Following [22, 23], we write the quadratic goldstino EoM,

i

(
1 + hȦ2

2|f |2

)
∂0Gσ

0 + i

(
1− hȦ2

2|f |2

)
∂iGσ

i + 2Ȧ ḡ′

f̄2∂iḠσ̄
i = 0 , (3.17)

which we Fourier transform, using rotation invariance to write the momentum
as kµ = (k0, 0, 0, k3),(

1 + hȦ2

2|f |2

)
k0G(k)σ0 +

(
1− hȦ2

2|f |2

)
k3G(k)σ3 + 2iȦ ḡ′

f̄2k3Ḡ(k)σ̄3 = 0 . (3.18)

We then decompose along the spinor components of Gα =
(
G+ G−

)
,(

1 + hȦ2

2|f |2

)
k0G

± − (±)
(

1− hȦ2

2|f |2

)
k3G

± + 2iȦ ḡ′

f̄2k3Ḡ
∓ = 0 , (3.19)

10There also exists constraints beyond forward scattering or two subtractions [45–48], whose applications
to our models are left for future study.

11We do not need to consider the term proportional to f ′. Indeed, it vanishes for real f , which can be
achieved by redefining the goldstino and its auxiliary field, i.e. by decomposing f(A) = |f(A)|eiα(A) and
performing (G,FS) → e−iα(A)(G,FS) in (3.6). In (3.6) this changes f → |f | and the term in the third
line proportional to f ′

F̄S
into iα′

(
|f |
F̄S

+ 1
)
, which vanishes on the bosonic EoM of FS . Therefore, one can

consider f ∈ R when computing the goldstino sound speed.
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and plug the EoM of G± into that of G∓ to get
(

1 + hȦ2

2|f |2

)2

k2
0 −

(1− hȦ2

2|f |2

)2

+ 4Ȧ2 |g′|
2

|f |4

 k3
3

G± = 0 . (3.20)

From this, one immediately reads

c2
s = 1− 4Ȧ2(

|f(A)|2 + h(A)Ȧ2

2

)2

(
h(A)

2 |f(A)|2 −
∣∣g′(A)

∣∣2) . (3.21)

When h = 1, g′ = 0, one recovers the result of [79]. This formula shows that, in order
to always have a causal/subluminal propagation of the gravitino, we need to extend the
positivity bound (3.16) to the whole field space, i.e. (3.15).

This result is coherent with the discussion in [86] and it agrees with the study of
longitudinal gravitino dynamics in SUGRA [22–24]. As already anticipated, we explicitly
determined that the low-energy goldstino sound speed (3.21) exactly matches the gravitino’s
one in SUGRA (2.16), since the latter one has no Planck-suppressed corrections. We are
not aware of a deep reason for the absence of supergravity corrections in this case. Being
the two sound speeds identical, the causality requirement (3.15) in the low-energy theory
directly matches the subluminality one in the SUGRA framework.

The causality constraint (3.15) implies that the functions defining the effective theory
in (2.14) are not arbitrary. They need to satisfy an additional condition for all points
in the theory parameter space reached during the time-dependent dynamics, in order to
define a consistent theory. This is a signal that the starting point, namely the orthogonal
constraint (3.4), may not be well-defined microscopically. Indeed, the UV origin of such
constraint is not clear; it seems to be determined by a lagrangian which already contains
higher-derivative operators [76]. We will present in later sections a different viewpoint on
this issue and show that specific microscopic higher-derivative operators remove the causality
constraint and render therefore the model causal in all points of the theory parameter space.

3.2 Light complex scalar

The second theory we study is very similar to the previous one, with the difference that we
have a complex scalar instead of a real one. Again, we consider the goldstino superfield
S (3.2) coupled to another chiral superfield,

H = H +
√

2θχH + θ2FH , (3.22)

but this time the constraint is
SH̄ = chiral, (3.23)

which fixes [11]

χH = iσµ
Ḡ

F̄S
∂µH , FH = −∂ν

(
Ḡ

F̄S

)
σ̄µσν

Ḡ

F̄S
∂µH −

1
2

(
Ḡ

F̄S

)2

�H . (3.24)
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The most general model is characterised by the Kähler potential and superpotential of (2.18).
The off-shell lagrangian turns out to be

L = ξFSF̄S + ξ

(
i

2∂µGσ
µḠ+ h.c.

)
+ κHH̄∂µH∂

µH̄

+ κHH̄
2

[
i∂µ

(
G

FS

)
σν
(
Ḡ

F̄S

)
+ h.c.

] (
∂µH̄∂νH + ∂µH∂νH̄

)
− κHH̄

2

[
i∂µ

(
G

FS

)
σµ
(
Ḡ

F̄S

)
+ h.c.

]
∂νH∂

νH̄

+ κHH̄
2

GσµḠ

|FS |2
(
i∂µH�H̄ + h.c.

)
− ξ

4

(
Ḡ2

F̄S

)
�

(
G2

FS

)

− κHH̄ε
µναβ∂µ

(
G

FS

)
σλ

(
Ḡ

F̄S

)
∂αH∂βH̄

+

f(H)FS −
(
ξH
2 + f ′

F̄S

)
iGσµḠ∂µH + g′′(H)

2

(
Ḡ

F̄S

)2

(∂H)2

+g′(H)
2

(
Ḡ

F̄S

)2

�H + g′(H)
(
Ḡ

F̄S

)
σ̄µσν∂ν

(
Ḡ

F̄S

)
∂µH + h.c.

 .

(3.25)

It was argued in [12] that one can set ξ = 1 from the very beginning without loss of
generality, which can be seen explicitly from the lagrangian above: the whole ξ-dependence
can be redefined away, up to terms with four goldstini and at least two scalar fields which
are irrelevant in this paper, by the rescaling

(G,FS) −→ 1√
ξ

(G,FS) , (3.26)

which also implies s → ξ−1/2s for the constrained sgoldstino. Actually, S → ξ−1/2S still
defines a chiral nilpotent superfield S, due to the constraints on S and H. After redefining
f(H) →

√
ξ(H, H̄)f(H, H̄) (where f is no longer holomorphic), ξ = 1 disappears from

the action.12

After integrating out the auxiliary field, the resulting on-shell lagrangian becomes

L = −|f |2 +
(
i

2∂µGσ
µḠ+ h.c.

)
+ κHH̄∂µH∂

µH̄

− 1
4|f |2

Ḡ2�G2 + κHH̄
2|f |2

(
i∂µGσνḠ+ h.c.

) (
∂µH∂νH̄ + ∂νH∂µH̄

)
− κHH̄

2|f |2
(
i∂µGσ

µḠ+ h.c.
)
∂νH∂

νH̄ +
[
i
fH
f
GσµḠ∂µH + h.c.

]
+ κHH̄
|f |2

[1
2Gσ

µḠ
(
i ∂µH�H̄ + h.c.

)
− εµναβ∂µGσνḠ∂αH∂βH̄

]
+
[
g′′

2f2 Ḡ
2(∂H)2 + g′

2f2 Ḡ
2�H + g′

f2 Ḡσ̄
µσν∂νḠ∂µH + h.c.

]
.

(3.27)

12After all the redefinitions but before integrating FS , one finds a leftover ξ-dependent term,

−ξH2ξ

(
f

F̄S
+ 1
)
iGσµḠ∂µH + h.c. ,

which however becomes quartic in goldstini with more than four fields once FS is put on-shell.
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As in the previous section, this is the lagrangian corresponding to what we called the
quadratic limit. We can move to the four-fields limit by performing the following
field redefinitions:

δGα =κHH̄
2|f |2∂µH∂

µH̄Gα, δH = i

2|f |2Gσ
µḠ∂µH,

δGα =− i g
′

f2 (Ḡσ̄µ)α ∂µH, δH = ḡ′

2κHH̄ f̄2G
2.

(3.28)

The transformations in the first line remove the redundant operators(
i∂µGσ

µḠ+ h.c.
)
∂νH∂

νH̄ and
(
GσµḠ∂µH + h.c.

)
from the lagrangian, while those

in the second one transform respectively the 3-fields operators
(
Ḡ2�H + h.c.

)
and(

Ḡσ̄µσν∂νḠ∂µH + h.c.
)
into 4-fields ones. The resulting lagrangian is

L = −|f |2 + κHH̄∂µH∂
µH̄ +

(
i

2∂µGσ
µḠ+ h.c.

)
−
(
m1G

2 + h.c.
)

+ 2
[
m̄1(k̄H̄ − kH)Ḡ2 + h.c.

]
− 1

4|f |2

(
1− |g′|2

|f |2κHH̄

)
Ḡ2�G2

+ 1
2
(
k2H2 + k̄2H̄2 − 2|k|2|H|2

) (
m1G

2 + m̄1Ḡ
2
)
−m2G

2Ḡ2

+ 1
2|f |2

(
κHH̄ + |g

′|2

|f |2

)(
i∂µGσνḠ∂µH∂νH̄ + h.c.

)
+ 1

2|f |2

(
κHH̄ − 3 |g

′|2

|f |2

)(
i∂µGσνḠ∂µH̄∂νH + h.c.

)

+
[
λ1G

2∂µH∂
µH̄ + λ2Ḡ

2(∂H)2 + h.c.
]

+

 i
(
2fH f̄ − ∂H |f |2

)
2|f |2

GσµḠ∂µH + h.c.


− 1
|f |2

(
κHH̄ + |g

′|2

|f |2

)
εµναβ∂µGσνḠ∂αH∂βH̄,

(3.29)
where m1, m2, λ1 and λ2 are a short-hand notation for coefficients depending on H whose
explicit form is not needed in what follows.

3.2.1 Positivity bounds and sound speed

We can now present the positivity bounds on the coefficients of lagrangian (3.29) (although
we stress again that the bounds do not depend on a precise choice of operator basis).
As already said, they are obtained from (twice-subtracted) 2 → 2 scattering amplitudes
in the forward limit, to which only the operators ∂µGσνḠ∂µH∂νH̄, its H ↔ H̄ version
and Ḡ2�G2 contribute. Unlike the previous section, the operator G2�G2 is absent, and
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decomposing H = A+ iB, the two-fermion two-scalar operators can be further written as

1
2|f |2

{
i∂µGσνḠ

[(
κHH̄ + |g

′|2

|f |2

)
∂µH∂νH̄ +

(
κHH̄ − 3 |g

′|2

|f |2

)
∂µH̄∂νH

]
+ h.c.

}
=

= 1
|f |2

(
κHH̄ −

|g′|2

|f |2

)(
∂µGσνḠ+ h.c.

)
(∂µA∂νA+ ∂µB∂νB)

+ 2 |g
′|2

|f |4
[
∂µGσνḠ(∂µA∂νB − ∂νA∂µB) + h.c.

]
,

(3.30)
where the last line does not generate any non-trivial inelastic amplitude A(G,A→ G,B)
in the forward limit. The positivity bounds can therefore be extracted from those on elastic
scattering in the real scalar case. In this case, this suffices for all operators to yield the
same bound,

κHH̄(0)|f(0)|2 >
∣∣g′(0)

∣∣2 . (3.31)

Following the same reasoning of the real scalar case, we motivate the need for the bound (3.31)
to hold in the whole field space, and not just in the vacuum, by studying the goldstino sound
speed. Using the quadratic limit of the lagrangian (3.27) and considering a time-dependent
scalar background H = H(t), the goldstino sound speed can be computed, following the
same steps13 that lead to (3.21), to be

c2
s = 1− 4|Ḣ|2(

|f |2 + κHH̄ |Ḣ|2
)2

[
κHH̄ |f |

2 − |g′|2
]
, (3.32)

so that subluminality enforces the causality bound (3.31) to be respected for any time-
dependent solution and therefore for any value of the scalar field scanned by such solutions,

κHH̄ |f |
2 >

∣∣g′∣∣2 . (3.33)

Notice that, as expected, the (improved) condition (3.33), as well as the sound speed (3.32),
agree with the one coming from the subluminality of the gravitino sound speed in
SUGRA (2.19) in the decoupling limit MP →∞. As discussed in section 2, the plausible
interpretation of the gravitational corrections in the SUGRA condition is that the positivity
of the four-field operators can be violated by Planck suppressed 1/M2

P terms. Causality
should nevertheless hold or be unresolvable [49–53]. The occurence of positivity bounds
suggests, like for the orthogonal constraint, that the superfield constraint (3.23) does not
have a two-derivative microscopic origin. The problem seems again that the auxiliary field
is determined by the constraint, and this has no obvious microscopic interpretation in terms
of decoupling of physical degrees of freedom in a two-derivative lagrangian.

13Also in this case the operator
(
GσµḠ∂µH + h.c.

)
does not actually contribute to the sound speed. The

argument is the same as in footnote 11, adapted to the complex scalar case. More precisely, in (3.29), in the
combination

(
2fH f̄ − ∂H |f |2

)
∂µH, the only non-vanishing terms are

(
2fH f̄ − ∂H |f |2

)
∂µH/ξ

2, where now
f is again the holomorphic function of (3.25). This whole expression can be rewritten as f̄∂µf/ξ2, and one
can absorb the phase of f in G, as in footnote 11.
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3.3 Light fermion

For completeness, we consider briefly a theory in which the component to be removed is the
complex scalar one. This situation corresponds to giving a large mass to a complex scalar
in a chiral multiplet and is straightforward to realize microscopically, up to fine-tuning.
Consequently we expect no non-trivial causality condition on the low-energy goldstino
lagrangian. Calling the chiral superfield Q = Q +

√
2θχQ + θ2FQ, the decoupling of the

scalar Q is achieved via the constraint

SQ = 0 , (3.34)

which, similarly to the orthogonal constraint case (3.4), implies Q3 = 0 and fixes14 [11]

Q = χQG

FS
− FQ

2F 2
S

G2 . (3.35)

It can be shown that the most general theory is given by a superpotential which is analogous
to the previous ones,

W = f(Q)S + g(Q) , (3.36)

and by the Kähler potential

K = SS̄ +QQ̄+ 1
2QQ̄

(
h1Q+ h̄1Q̄

)
+ h2

4
(
QQ̄

)2
, (3.37)

with h1 and h2 constants, respectively complex and real.
By writing explicitly the on-shell lagrangian, we find that the coefficients of the operators

subject to positivity bounds have the appropriate signs for any values of the theory space
parameters, implying that there are no causality constraints to be imposed. Therefore,
unlike the two previous cases, the constraint (3.34) removing the scalar component of the
superfield does not demand that we impose any extra condition in order for the resulting
theory to be causal. Since (3.34) leaves the auxiliary field FQ unconstrained, this is further
evidence that the causality problems arise only when an auxiliary field is removed, as
pointed out at the end of the last section. One could object that the problems could come
from the removal of a fermion, which is also implied by the constrains of sections 3.1 and 3.2,
but it turns out not to be the case, as we will show in the next sections. Indeed, decoupling
a fermion can be achieved microscopically from a two-derivative lagrangian, albeit modulo
a fine-tuning. The tricky constraints are those eliminating auxiliary fields, which cannot
be done, in our opinion, without using higher-derivative operators directly in the UV, as
already anticipated in [76].

4 Evading causality conditions with alternative constraints

In the previous sections, we have studied models realized by various superfields constraints
and showed that the ones that affect the auxiliary field component of a chiral superfield

14For more specific discussions on other types of constraints one can see for example [87–89].

– 18 –



J
H
E
P
1
1
(
2
0
2
2
)
1
1
3

lead to nontrivial positivity bounds, which restricts the parameter space of the theory and
may indicate that the corresponding UV theory is not a two-derivative one.

Now we go deeper into this analysis, making use of the generalized superfield constraint
formalism developed in [76], where it was shown that one can remove the lowest component
of a superfield QL (where L denotes a possible Lorentz index) by applying the constraint

SS̄QL = 0 . (4.1)

This is solved, implicitly and in superspace, by

QL = −2D̄α̇S̄D̄
α̇QL

D̄2S̄
− S̄D̄2QL

D̄2S̄
− 2

DαSDαD̄
2
(
S̄QL

)
D2SD̄2S̄

− S
D2D̄2

(
S̄QL

)
D2SD̄2S̄

. (4.2)

The only nontrivial constraint is actually on the lowest component (i.e. θ = θ̄ = 0) of QL.
The power of the constraint (4.1) is that it allows to remove one single component at a
time, and this means that every superfields constraint can be expressed as a combination of
multiple such single, generalized constraints. For instance, the orthogonal constraint (3.4)
can be decomposed into the three following single constraints [76],

SS̄
(
Φ− Φ̄

)
= 0, (4.3)

SS̄DαΦ = 0, (4.4)

SS̄D2Φ = 0, (4.5)

of which the first one removes the imaginary part of the scalar field component of Φ,
the second one the fermionic one and the third one the auxiliary field one, reproducing
equation (3.5).

4.1 Removing the imaginary scalar and the fermion

Focusing on this set of constraints, we see that by using simultaneously (4.3) and (4.4) one
obtains a theory with the same physical degrees of freedom as the orthogonal constraint
case. The crucial difference is that here we will not impose (4.5), so that the auxiliary
field Fφ will be determined by its usual algebraic EoM from the off-shell lagrangian: with
the issues regarding the removal of the inflaton auxiliary field being absent (now Fφ is
unconstrained), we believe that the resulting theory should represent a minimal inflationary
model in SUGRA, since, according to the discussion up to this point, it is likely to have a
well-understood origin in terms of a SUSY-breaking UV theory.

The solution of the two single, generalized constraints (4.3) and (4.4) is displayed
in appendix A. Instead, we present here the solution of the two constraints combined
together,15 restricted ourselves to the appropriate number of the fields that will lead to at

15This is obtained by solving — at the appropriate order in the number of fields — the system given by
the two implicit equations (A.1) and (A.5) of appendix A.
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most four fields in the final action:

B = i

4

( Ḡ

F̄S

)2

F̄φ −
(
G

FS

)2
Fφ

+ GσµḠ

2|FS |2
∂µA+ . . . , (4.6)

ψα = Fφ
FS

Gα + i

(
σµḠ

)
α

F̄S
∂µA−

i

4

(
σµḠ

)
α

F̄S
∂µ

[(
G

FS

)2
Fφ

]
+ . . . , (4.7)

where “. . . ” denotes terms irrelevant for the quadratic of four-field limits in the final
lagrangian, which are not important for our considerations.

The most general theory associated to this new setup is characterized by

K = SS̄ + κ
(
Φ, Φ̄

)
, W = f(Φ)S + g(Φ) , (4.8)

where κ(Φ, Φ̄) is a real function and f(Φ) and g(Φ) are instead holomorphic. The resulting
full off-shell lagrangian is

L = |FS |2 + κφφ̄|Fφ|
2 + κφφ̄∂µA∂

µA+
(
i

2∂µGσ
µḠ+ h.c.

)
+
[
fFS + g′Fφ + h.c.

]
−
κφφ̄φ + κφφ̄φ̄

4

[(
G

FS

)2
F 2
φ F̄φ + h.c.

]
− 1

4
(
f ′FS + g′′Fφ + h.c.

) [( G
FS

)2
Fφ + h.c.

]

+ κφφ̄

[
i

2 |Fφ|
2∂µ

(
G

FS

)
σµ

Ḡ

F̄S
+ i

2
GσµḠ

|FS |2
F̄φ∂µFφ − Fφ

G

FS
σµσ̄ν∂ν

(
G

FS

)
∂µA

−
(
G

FS

)2
∂µFφ∂

µA+ i∂µ
(
G

FS

)
σν

Ḡ

F̄S
∂µA∂νA−

i

2∂µ
(
G

FS

)
σµ

Ḡ

F̄S
(∂A)2 + h.c.

]

−
(
i

2g
′′Fφ + i

2f
′FS + h.c.

)
GσµḠ

|FS |2
∂µA−

1
4|FS |2

(
1 +

κφφ̄|Fφ|2

2|FS |2

)
Ḡ2�G2

+
(
f ′′FS + g′′′Fφ + h.c.

) G2Ḡ2

16|FS |4
|Fφ|2 +

(
κφφ̄φφ + κφφ̄φ̄φ̄ + 2κφφ̄φφ̄

) G2Ḡ2

16|FS |4
|Fφ|4

− 1
2

[(κφφ̄φ + κφφ̄φ̄
2 + g′′

)(
G

FS

)2
(∂A)2 + h.c.

]
+
κφφ̄
16

[
F 2
φ

(
G

FS

)2
�
(
G

FS

)2
+ h.c.

]
.

(4.9)
As anticipated, we have that also Fφ, now unconstrained, enters the lagrangian as an

auxiliary field which needs to be integrated out together with FS . The resulting on-shell
lagrangian relevant for the quadratic limit is then

L = −
[
|f |2 + |g

′|2

κφφ̄

]
+ κφφ̄∂µA∂

µA+ Z

(
i

2∂µGσ
µḠ+ h.c.

)
+
(
mG2 + h.c.

)
+ cG2Ḡ2

+ Z

(
i
f ′

2f + h.c.

)
GσµḠ∂µA+

(
dG2 + h.c.

)
(∂A)2 − 1

4|f2|

(
1 + |g′|2

2κφφ̄|f |2

)
Ḡ2�G2

+
[
ḡ′

f̄2∂µGσ
µσ̄νG∂νA+

κφφ̄
|f |2

i∂µGσνḠ∂µA∂νA−
κφφ̄
2|f |2 i∂µGσ

µḠ (∂A)2 + h.c.

]

+ 1
16κφφ̄

(
ḡ′2

f̄4 G
2�G2 + h.c.

)
,

(4.10)
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with
Z ≡ 1 + |g′|2

κφφ̄|f |2
. (4.11)

We do not specify further the other indicative coefficients, i.e. m, c and d, since they
are not going to be relevant for our discussion. Up to quartic pure goldstino terms, the
lagrangian (4.10) corresponds to the quadratic limit lagrangian in this framework with
improved constraints. The crucial difference with respect to the orthogonal constraint
case described in section 3 is that here the scalar potential is restored to be the standard
supersymmetric one

V = |FS |2 +Kφφ̄|Fφ|
2 = |∂SW |2 + |∂φW |

2

Kφφ̄

= |f |2 + |g
′|2

κφφ̄
, (4.12)

since now both auxiliary fields are determined algebraically by the usual rules of supersym-
metric lagrangians. The counterpart of this change is that the goldstino kinetic term also
gets shifted, acquiring the normalization factor Z given in (4.11).

Instead, the lagrangian in the four-field basis is obtained via the field redefinitions

δGα =
κφφ̄

2Z|f |2G
α (∂A)2 , δGα = − i

Z

g′

f2

(
Ḡσ̄µ

)α
∂µA, (4.13)

and become

L = −
[
|f |2 + |g

′|2

κφφ̄

]
+ κφφ̄∂µA∂

µA+ Z

(
i

2∂µGσ
µḠ+ h.c.

)
+
(
mG2 + h.c.

)
+ λGσµḠ∂µA+ cG2Ḡ2 +

(
d̃ G2 + h.c.

)
∂µA∂

µA

+

 κφφ̄

|f |2 + |g′|2
κφφ̄

(i∂µGσνḠ∂µA∂νA+ h.c.
)
− 1

4|f |2

(
1 + |g′|2

2κφφ̄|f |2

)
Ḡ2�G2

+ 1
16κφφ̄

(
ḡ′2

f̄4 G
2�G2 + h.c.

)
,

(4.14)

where, again, the coefficients λ and d̃ are not specified further because they are not relevant
for our analysis.

4.2 Sound speed and (trivial) positivity bounds

The lagrangian (4.14) immediately gives confirmation to our starting claim: the coefficients
of the operators

(
i∂µGσνḠ∂µA∂νA+ h.c.

)
and Ḡ2�G2 now identically satisfy the positivity

bounds required to ensure causality. Also the improved bound on non-elastic scattering
becomes trivial.

Again, looking at the goldstino sound speed in a time-dependent scalar field background
A = A(t), we understand that the theory is actually well-defined in the whole field space,
not only in the vacuum. Indeed, following the same steps of section 3,16 we see that thanks

16The operator GσµḠ∂µA can again be seen not to contribute to the sound speed. The argument is the
one presented in footnote 11.
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to the modification of the goldstino kinetic term normalization (4.11), connected to that of
the scalar potential (4.12), the sound speed becomes

c2
s = 1−

4Ȧ2|f2|κφφ̄(
|f |2 + |g′|2

κφφ̄
+ κφφ̄Ȧ

2
)2 . (4.15)

This sound speed exactly matches the SUGRA one (2.22) and it is subluminal along the
whole scalar field evolution.

Therefore, in this improved framework it is not necessary to impose any extra condition
on the theory parameters: the two single constraints (4.3) and (4.4) give rise to a theory
with the same field content as the orthogonal constraint case, but which is now causal on
the whole field space. This indicates that the theory can be completed in the UV into what
would then be a minimal inflationary model.

This result supports our understanding of the (potential) inconsistencies associated
to the orthogonal constraint (3.4). The improvement we have found in the generalized
constraints setup described in this section lies in the fact that the two single constraints (4.3)
and (4.4) effectively realize the decoupling of a heavy scalar and of a heavy fermion,
respectively: being those physical degrees of freedom, this procedure is well-understood
and legitimate, and it does not lead to any causal inconsistency in the IR theory. On the
contrary, the orthogonal constraint treats on the same footing the auxiliary field by also
enforcing the third constraint (4.5), although “decoupling” an auxiliary field does not have
a proper physical meaning unless one adds higher-derivative operators in the UV and this
can lead to acausality behaviours in the IR theory, as described in section 3. In the next
section, we will see that adding higher-derivative operators in the UV does change in fact
this conclusion.

5 Lagrangians with orthogonal constraints and no causality condition

All the above superfield constraints which resulted in non-trivial positivity bounds share the
feature that they “eliminate” an auxiliary field in terms of the other degrees of freedom. In
the language of section 4, their solution verifies SS̄D2QL = 0, where QL is the constrained
superfield. This led us to suspect that eliminating the auxiliary field by a superfield
constraint has no simple interpretation in a microscopic two-derivative SUSY/SUGRA
theory, and is responsible for the breakdown of positivity.

One may wonder how this claim is articulated with the fact that auxiliary fields,
when present, can always be integrated out and expressed in terms of other degrees of
freedom, without leading to any breakdown of positivity. One tentative answer could be
that integrating out auxiliary fields yields a theory where SUSY is only realized on-shell,
while the constraint SS̄D2QL = 0, which removes the auxiliary field, allows to write actions
with off-shell SUSY. Instead, we will explain in this section that i) off-shell nonlinear SUSY,
i.e. the explicit presence of the nilpotent field S, allows one to integrate out auxiliary fields
while retaining off-shell SUSY by working in superspace, that ii) this process generates the
constraint SS̄D2QL = 0 and higher-derivative interactions in addition to the two-derivative
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lagrangian, and that iii) these additional terms make the positivity bounds trivially satisfied.
This shows that the non-trivial causality constraints signal that the use of constraints
which remove auxiliary fields clash with the use of two-derivative actions for the associated
constrained superfields.

We believe that the use of improved constraints, as in section 4, and the approach
of the present section are equivalent. Indeed, one assumes the same microscopic action
and superfield content in both cases, and one subsequently only solves equations of motion
associated to an auxiliary field, either in component or in superspace. The lagrangians
obtained in both approaches should be related by field redefinitions, but we have not tried
to perform this identification systematically.

5.1 Integrating out an auxiliary field in superspace

Let us consider a chiral superfield QL, and show how one can integrate out its auxiliary field
without giving up off-shell supersymmetry. This can be achieved due to the power of off-shell
nonlinear SUSY associated to S, thanks to which we can define a chiral multiplet Q(a)

L ,

Q
(a)
L ≡

S

D̄2S̄
D̄2

(
S̄D2QL
D2S

)
, (5.1)

which is by construction nilpotent, i.e. Q(a)
L

2 = 0, and such that17

SS̄Q
(a)
L = SS̄DαQ

(a)
L = SS̄

(
D2Q

(a)
L −D

2QL
)

= 0 . (5.2)

The first two constraints imply that the would-be dynamical scalar and fermion of Q(a)
L are

expressed in terms of its auxiliary field. The last one implies that, for any QL, one can write

QL = Q′L +Q
(a)
L , with SS̄Q

(a)
L = SS̄DαQ

(a)
L = SS̄D2Q′L = 0 , (5.3)

i.e. QL is the sum of a superfield which contains only a dynamical complex scalar and a
dynamical fermion (Q′L) and a superfield which contains only an auxiliary field (Q(a)

L ). In
addition, if QL verifies constraints such as SS̄QL = 0 or SS̄DαQL = 0, so does Q′L.

Q
(a)
L being fully auxiliary, it can be integrated out, and this can be explicitly performed

in superspace. Let us take the action for QL to be a regular two derivative action, whose
lagrangian reads

L =
∫
d4θK

(
S, S̄,QL, Q̄L

)
+
[∫

d2θW (S,QL) + h.c.

]
=
∫
d4θK

(
S, S̄,Q′L +Q

(a)
L , Q̄′L + Q̄

(a)
L

)
+
[∫

d2θW (S,Q′L +Q
(a)
L ) + h.c.

]
.

(5.4)

17All these relations follow from S2 = 0 (and its consequence SDαS = 0). For instance, when computing
SS̄D2Q

(a)
L , the available D2 and D̄2 must fully act on the S and S̄ factors in Q(a)

L , respectively:

SS̄D2Q
(a)
L = SS̄D2

(
S

D̄2S̄
D̄2
(
S̄D2QL
D2S

))
= SS̄

D2S

D̄2S̄
D̄2
(
S̄D2QL
D2S

)
= SS̄

D2S

D̄2S̄

D̄2S̄D2QL
D2S

= SS̄D2QL .
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One can integrate out the auxiliary superfield Q(a)
L , i.e. solve its equation of motion and

express it in terms of Q′L, in order to get an action for Q′L only, of which we remind that it
verifies by construction SS̄D2Q′L = 0.

When we perform this integration, we need to account for the fact that the superfields
are constrained (beyond being chiral). Hence, we add to the action two unconstrained
Lagrange multiplier superfields M1 and Mα

2 ,

L → L+
∫
d4θSS̄

(
M1Q

(a)
L +Mα

2 DαQ
(a)
L

)
+ h.c. , (5.5)

so that the equation of motion for Q(a)
L reads

D̄2∂QLK = 4∂QLW − D̄
2
(
SS̄M1 +Dα

[
SS̄Mα

2

])
. (5.6)

The equations of motion of M1,2 enforce the constraints on Q
(a)
L . Upon acting with SS̄

on (5.6), one finds

Q
(a)
L = D̄2

 |S|2
[
4∂Q̄LW̄

(
0, Q̄′L

)
− ∂2

S,Q̄L
K
(
0, 0, Q′L, Q̄′L

)
D2S

]
∂2
QL,Q̄L

K
(
0, 0, Q′L, Q̄′L

)
|D2S|2

 . (5.7)

This solution is such that the Lagrange multipliers disappear from the action. In order to
derive it, we used the fact that the constraints on Q(a)

L imply the following identity,

Q
(a)
L = D̄2

(
|S|2D2Q

(a)
L

|D2S|2

)
, (5.8)

and that18 S2 = SQ
(a)
L = SS̄DαQ

(a)
L = 0.

Eventually, inserting (5.7) in the lagrangian results in the following action (see ap-
pendix B for details),

Leff =
∫
d4θK

(
S,S̄,Q′L, Q̄

′
L

)
+
[∫

d2θW (S,Q′L)+h.c.
]

+
∫
d4θ

1
∂2

QL,Q̄L
K(0,0,Q′L, Q̄′L)

∣∣∣∣ S

D̄2S̄

∣∣∣∣2
(
−
∣∣∣4∂QL

W
(
0, Q̄′L

)
−∂2

QL,S̄K
(
0,0,Q′L, Q̄′L

)
D̄2S̄

∣∣∣2
+
{
∂3

QL,Q̄2
L
K(0,0,Q′L, Q̄′L)

[
D̄Q̄′L

]2 [4∂Q̄L
W̄ (0, Q̄′L)−∂2

S,Q̄L
K(0,0,Q′L, Q̄′L)D2S

]
+h.c.

})
.

(5.9)
18The relation SQ(a)

L = 0 follows from (5.8) and is not an extra constraint. As for (5.8), it follows from
SS̄Q

(a)
L = SS̄DαQ

(a)
L = 0. Indeed, acting with D̄2 on the first equality removes S̄ and leaves out the chiral

constraint SQ(a)
L = 0, which can be solved with a subsequent action of D2,

Q
(a)
L = −

SD2Q
(a)
L + 2DαSDαQ

(a)
L

D2S
.

We can then multiply by S̄ and act with D̄2 to obtain

Q
(a)
L = − 1

D̄2S̄
D̄2
(
S̄
SD2Q

(a)
L + 2DαSDαQ

(a)
L

D2S

)
= 1
D̄2S̄

D̄2
(
S̄
SD2Q

(a)
L

D2S

)
,

corresponding to the expression in (5.8). In the last step, we used the result of acting with Dα on
SS̄DαQ

(a)
L = 0, namely S̄

[
DαSDαQ

(a)
L + SD2Q

(a)
L

]
= 0.
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The first line is simply the two-derivative action that we started from, now evaluated on
Q′L which verifies SS̄D2Q′L = 0. As anticipated, it is supplemented by higher-derivative
interactions. We now proceed to show that these extra terms yield exactly what is required
to trivialize all the causality conditions.

5.2 Application to models of real scalars

We first consider the models explored in section 3.1. Our goal here is to start with the
same dynamical degrees of freedom and the same two-derivative action, but instead of
constraining the auxiliary field, we integrate it out following the construction of the previous
section. Therefore, we take QL to verify SS̄DαQL = SS̄(QL − Q̄L) = 0, which only leaves
a dynamical real scalar A behind (together with the auxiliary field). As mentioned above,
these constraints also apply to Q′L, which we identify with Φ of section 3.1, as they verify
the same constraints. We also use K = h

(
Φ+Φ̄

2

) (
Φ−Φ̄

2i

)2
+ SS̄ and W = f(Φ)S + g(Φ), as

in section 3.1.
The constraints on Q′L = Φ as well as the form of the Kähler potential drastically

simplify the terms which arise from the second and third lines of (5.9) and which should be
added to (3.6). They simply read

δL = −16
∫
d4θ

1
∂2

Φ,Φ̄K(0, 0,Φ, Φ̄)

∣∣∣∣ S

D̄2S̄
∂ΦW (0, Φ̄)

∣∣∣∣2 . (5.10)

We then insert the expressions of K,W and of Φ in terms of A presented in section 3.1.
Dropping the terms irrelevant in both the quadratic and four-field limits, one eventually finds

δL = −2|g′|2

h

[
1 +

∣∣∣∣ 1
FS

∣∣∣∣2
(
i

2Gσ
µ∂µḠ−

i

2∂µGσ
µḠ+ |∂µs|

2

2 + 3 s̄�s+ s�s̄
4

)]

+ i|g′|2

|FS |2h
GσµḠ

(
∂µF̄S

F̄S
− h.c.

)
,

(5.11)

where the A-dependence of the scalar functions is left implicit, and we remind that s = G2

2FS .
After solving for19 FS , integrating by part and dropping further irrelevant terms, we
eventually find

δL = −2|g′|2

h
− 2|g′|2

h|f |2

([
i

2Gσ
µ∂µḠ+ h.c.

]
−
(
i
f ′

2f + h.c.

)
GσµḠ∂H + 1

4|f |2
G2�Ḡ2

)
,

(5.12)
and the resulting lagrangian can be matched to that of (3.7), upon making the fermion
kinetic term canonical,

G→
(

1 + 2|g′|2

h|f |2

)−1/2

G , (5.13)

19Note that the equation of motion of FS is modified by (5.11) with respect to (3.6), but not at the
bosonic level, while the additional two-fermion terms are all proportional to the free equation of motion
σµ∂µG. In the four-field limit, that allows us to simply use the bosonic value of FS in (5.11).
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and redefining

f → f̃ ≡ f
(

1 + 2|g′|2

hf2

) 1
2

. (5.14)

All other couplings are left untouched.20 Note that δL adds a term to the scalar potential
of (3.11), such that the scalar potential accounting for all auxiliary fields is recovered.

Having matched to (3.7), we can use the results of section 3.1, leading to the causal-
ity/positivity bound

hf̃2 > 2g′2 ⇐⇒ hf2 > 0 , (5.15)

which is trivially satisfied. Therefore, the addition of δL ensured that there is no non-trivial
causality constraint, despite the fact that Φ is constrained not to contain an auxiliary field.

5.3 Application to models of complex scalars

We now turn to the models of section 3.2. Those contain a complex scalar H but no
dynamical fermion, hence we take QL to verify SS̄DαQL = 0. As explained above, this also
implies that SS̄DαQ

′
L = 0, hence SQ̄′L = chiral, and we can identify Q′L = H. Following

section 3.2, we use K = ξ(H, H̄)SS̄ + κ(H, H̄) and W = f(H)S + g(H).
As above, the constraints on H and the form of the Kähler potential allow us to

use (5.10), where we insert the expressions K,W and ofH presented in section 3.2. Dropping
all terms irrelevant for both the quadratic and four-field limits, one eventually finds

δL = − |g
′|2

κHH̄

[
1 +

∣∣∣∣ 1
FS

∣∣∣∣2
(
i

2Gσ
µ∂µḠ−

i

2∂µGσ
µḠ+ |∂s|

2

2 + 3 s̄�s+ s�s̄
4

)]

− i

2|FS |2κHH̄
GσµḠ

(∣∣g′∣∣2 [κH2H̄

κHH̄
∂µH −

∂µF̄S

F̄S

]
− ḡ′g′′∂µH − h.c.

)
,

(5.16)

where the H-dependence of the scalar functions is left implicit. Fixing ξ = 1, solving for
FS , integrating by part and dropping further irrelevant terms, we eventually find

δL = − |g
′|2

κHH̄
− 1
κHH̄

∣∣∣∣g′f
∣∣∣∣2
([

i

2Gσ
µ∂µḠ+ h.c.

]
+ 1

4|f |2
G2�Ḡ2

)

− i

2κHH̄ |f |
2Gσ

µḠ

(
∂µH

[∣∣g′∣∣2(κH2H̄

κHH̄
− f ′

f

)
− ḡ′g′′

]
− h.c.

)
.

(5.17)

The resulting lagrangian can be matched to that of (3.27), upon redefining

G→ G̃ ≡
(

1 + 1
κHH̄

∣∣∣∣g′f
∣∣∣∣2
)− 1

2

G , f → f̃ ≡
(

1 + 1
κHH̄

∣∣∣∣g′f
∣∣∣∣2
) 1

2

f , (5.18)

20The fact that δL merely amounts to a shift of parameters in (3.7) is a consequence of nonlinear
supersymmetry, which imposes that the operator coefficients are all determined by a small set of functions.
For instance, the vacuum energy is fixed given the goldstino decay constant, which is (up to a numerical
coefficient) the coefficient of the operator G2�Ḡ2 when the goldstino is canonically normalized. The same
applies for the coupling ∂µGσνḠ∂µA∂νA when A is canonically normalized.
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all other fields and couplings being left untouched. As in the previous section, δL adds
a term to the scalar potential of (3.29), such that the scalar potential accounting for all
auxiliary fields is recovered.

Having matched to (3.27), we can use the results of section 3.2, leading to the causal-
ity/positivity bound

κ̃HH̄

∣∣∣f̃ ∣∣∣2 > ∣∣g̃′∣∣2 ⇐⇒ κHH̄ |f |
2 > 0 , (5.19)

which is trivially satisfied. Therefore, the addition of δL ensured that there is no non-trivial
causality constraint, despite the fact that H is constrained not to contain an auxiliary field.

6 Minimal models of inflation with no causality constraints

The alternative models put forward in the last sections 4 and 5 can accommodate a minimal
physical spectrum from the viewpoint of an inflationary model in supergravity: the graviton,
a massive gravitino and a real scalar, the inflaton. They share this feature with models using
the orthogonal constraint (and two-derivative actions). They have the advantage however
to remove any causality condition on the theory parameter space. As stressed previously,
we believe the two alternative approaches in section 4 and section 5 are equivalent and lead
to the same physical observables. In particular, the scalar potential in both cases is the
usual supersymmetric one. For supergravity models, it is therefore given by the standard
SUGRA formulae [90].

Building minimal models of inflation along these lines is straightforward. Let us consider
models for which the two-derivative part of the action is

K = −1
2
(
Φ− Φ̄

)2
+ S̄S , W = f(Φ)S + g(Φ) , (6.1)

where S is nilpotent and Φ contains as only physical degree of freedom the inflaton
ϕ = Re(Φ)|. The scalar potential is

V = |f(ϕ)|2 + |g′(ϕ)|2 − 3|g(ϕ)|2 . (6.2)

We restrict for simplicity to the class of models put forward in [91], defined by f =
√

3g,
for which the scalar potential reduces to

V = |g′(ϕ)|2 . (6.3)

Let us give two simple examples of inflationary models.

Starobinsky model. One chooses

g = M2
(

Φ + 1
a
e−aΦ

)
+ g0 , (6.4)

where M is a mass scale which will fix the energy scale during inflation, whereas g0 will
determine supersymmetry breaking in the vacuum. One gets the scalar potential

V (ϕ) = M4 [1− e−aϕ]2 , (6.5)

which is the usual Starobinsky scalar potential of the inflaton ϕ.
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Chaotic inflation. One chooses

g = m

2
√

2
Φ2 + g0 , (6.6)

where m is the inflaton mass. The scalar potential becomes now the simplest example of
chaotic inflation

V (ϕ) = m2ϕ2

2 . (6.7)

As explained in [91], the advantage of such models is the decoupling of the energy scale of
inflation and that of supersymmetry breaking in the vacuum. Indeed, the latter is governed
by the independent parameter g0, which can be chosen such that the supersymmetry
breaking scale is much smaller than the inflationary scale.

Finally, let us stress that our alternative inflationary models have the same minimal
particle content as models based on the orthogonal constraint [19, 20], but that the scalar
potential, therefore the inflationary dynamics, are different. gravitino/goldstino interactions
to the inflaton also differ.

7 Conclusions and perspectives

In this paper we investigated causality constraints on supergravity and supersymmetry
models with nonlinear supersymmetry. By using the equivalence theorem, the causality
constraints from the sound speed of the gravitino in SUGRA models translate in the
MP → ∞ limit into causality/positivity constraints in low-energy goldstino lagrangians.
We found nontrivial causality conditions on the theory parameter space of models with
superfield constraints which “eliminate” auxiliary fields. Example in this class are the
orthogonal constraint which eliminates a real (or pseudoreal) scalar, a fermion and an
auxiliary field, and the constraint eliminating a fermion and an auxiliary field [11]. We
found that in general the SUGRA causality condition has gravitational corrections, which
should imply that small gravitational (of order 1/M2

P ) violations of causality/positivity in
the low-energy goldstino actions are allowed. This is in agreement with causality arguments
discussed in the literature [49–53]. We stress that the causality bounds related to the
gravitino/goldstino sound speed are valid not only in the ground state, but for all values of
the scalar fields which solve the equations of motion, such as time-dependent inflationary
dynamics in supergravity or solutions in the low-energy theory. While, as we demonstrated
explicitly, they agree in the ground state with positivity arguments on 2 → 2 particles
scattering, they hold more generally and are therefore stronger.

Unless the low-energy functions, depending on theory parameters and scalar fields,
are restricted to satisfy the causality constraints identically, we interpret the constraints
as an obstruction to a microscopic two-derivative UV completion of such models. Since
the decoupling of scalars and/or fermions should not be problematic, we argued that the
problem comes from constraints which eliminate auxiliary fields. We substantiated this
claim in two ways. First, by imposing alternative superfield constraints which eliminate the
same physical fields, but not the auxiliary field, and showing that causality is automatically
guaranteed, i.e. that the causality constraints are made trivial. Secondly, by explicitly
integrating auxiliary fields in complete theories coupled to nonlinear SUSY, generating
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along the way higher-derivative operators which again trivialize the causality constraints.
Let us emphasize again that when the causality constraints are satisfied identically, there
should be no obstruction for a microscopic completion. This is the case for example for the
orthogonal constraint with a constant gravitino mass, corresponding to g′ = 0.

Using our constructions, we provided new SUGRA models for inflation, with a minimal
spectrum (a graviton, a massive gravitino and a real inflaton) and no causality constraints.
Unlike the case of the orthogonal constraint, the scalar potential is provided by the standard
SUGRA formulae [90].

It would be interesting to provide a general analysis of causality constraints in nonlinearly
realized supersymmetric models in supergravity, in the spirit of the swampland program.
We notice that important steps from the stability viewpoint in such constructions were
taken recently in string models with brane supersymmetry breaking [92–97] and nonlinear
supersymmetry [98, 99], see e.g. [100–102].
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A Explicit solution of constraints (4.3) and (4.4)

We start with the solution of the generalized constraint (4.3), imposed alone. This fixes the
imaginary part B of the scalar field φ as the function of the goldstino G, the fermion ψ
and the auxiliary fields FS , Fφ. Starting from the generalized constraint solution (4.2), the
equation for B results to be

B = i

2

(
Ḡψ̄

F̄S
− Gψ

FS

)
+ i

4

( G
FS

)2
Fφ −

(
Ḡ

F̄S

)2

F̄φ

− GσµḠ

2|FS |2
∂µA

+ ψσµ∂µḠ

2|FS |2
G2

2FS
− Gσµψ̄

2|FS |2
∂µ

(
Ḡ2

2F̄S

)
− Gσµ∂µψ̄

2|FS |2
Ḡ2

2F̄S

+ i

2F̄S

(
G

FS

)2
∂µ

(
Ḡ2

2F̄S

)
∂µA+ i

G2Ḡ2

8|FS |4
�A

+ i
Gσµ∂µḠ

|FS |2
B + i

2
GσµḠ

|FS |2
∂µB + 1

2F̄S

(
G

FS

)2
�

(
Ḡ2

2F̄S

)
B

+ 1
2F̄S

(
G

FS

)2
∂µ

(
Ḡ2

2F̄S

)
∂µB + G2Ḡ2

8|FS |4
�B .

(A.1)

This equation can be solved iteratively via an expansion of operators with increasing number
of fermions, so that one finds

B = B(2) +B(4) +B(6) +B(8) , (A.2)

where the number in the superscripts denotes the number of goldstino fields. The explicit
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expressions for B(2) and B(4) are, respectively,

B(2) = i

2

(
Ḡψ̄

F̄S
− Gψ

FS

)
+ i

4

( G
FS

)2
Fφ −

(
Ḡ

F̄S

)2

F̄φ

− GσµḠ

2|FS |2
∂µA , (A.3)

B(4) =− Gσµ∂µḠ

|FS |2
Ḡψ̄

2F̄S
+ GσµḠ

4|FS |2

[
ψ∂µ

(
G

FS

)
− ψ̄∂µ

(
Ḡ

F̄S

)]

−
[
G2

8FS
∂µψσ

µḠ

|FS |2
+ Ḡ2

8F̄S
Gσµ∂µψ̄

|FS |2

]
− Gσµψ̄

2|FS |2
∂µ

(
Ḡ2

2F̄S

)

+ i

2F̄S

(
G

FS

)2
∂µ

(
Ḡ2

2F̄S

)
∂µA− i G2

4|FS |4
(
Ḡσ̄µσν∂νḠ

)
∂µA

− i

4|FS |2

{
G2

2FS

[
Ḡσ̄νσµ∂µ

(
Ḡ

F̄S

)]
∂µA+ Ḡ2

2F̄S

[
Gσν σ̄µ∂ν

(
G

FS

)]
∂µA

}

− 1
8|FS |2

GσµḠ

Fφ ∂µ ( G
FS

)2
+ F̄φ ∂µ

(
Ḡ

F̄S

)2
 .

(A.4)

We don’t write explicit the expressions for B(6) and B(8) since they are not useful for
our discussion.

Let us turn now to the constraint (4.4) imposed alone. This removes the fermion ψ as a
function of the goldstino, the scalar φ and the auxiliary fields. The correspondent starting
equation is

ψα = i

(
σµḠ

)
α

F̄S
∂µφ+ Fφ

FS
Gα + i

Gσµ∂µḠ

|FS |2
ψα + (σν σ̄µG)α

|FS |2
∂µ

(
Ḡ2

2F̄S

)
∂νφ

− i

(
σµḠ

)
α

F̄S

G∂µψ

FS
+ i

2

(
G

FS

)2
(
σµ∂µḠ

)
α

F̄S
Fφ + i

2

(
G

FS

)2
(
σµḠ

)
α

F̄S
∂µFφ

+ (σν σ̄µ∂νψ)α
|FS |2

G2

2FS
∂µ

(
Ḡ2

2F̄S

)
+ 1
|FS |2

G2

2FS
�

(
Ḡ2

2F̄S

)
ψα .

(A.5)

Again, we can solve this equation iteratively via an expansion of operators with increasing
number of fermions, obtaining

ψα = ψ(1)
α + ψ(3)

α + ψ(5)
α + ψ(7)

α , (A.6)

where

ψ(1)
α = Fφ

FS
Gα + i

(
σµḠ

)
α

F̄S
∂µφ , (A.7)

ψ(3)
α = (σν σ̄µG)α

|FS |2
∂µ

(
Ḡ2

2F̄S

)
∂νφ−

i

2

(
G

FS

)2
(
σµḠ

)
α

F̄S
∂µFφ −

i

2

(
σµḠ

)
α

F̄S
∂µ

(
G

FS

)2
Fφ

+

(
σµḠ

)
α

|FS |2

[
Gσν∂µ

(
Ḡ

F̄S

)]
∂νφ+

(
Ḡ

F̄S

)2
Gα
2FS

�φ− Gσµ∂µḠ

|FS |2

(
σνḠ

)
α

F̄S
∂νφ .

(A.8)

Again, we don’t display ψ(5)
α and ψ(7)

α being them not relevant for the discussion.
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B Derivation of (5.9)

The effective lagrangian (5.9) can be derived as follows. The Kähler and superpotential are
expanded in a series in Q(a)

L , which respectively truncates at second and first order due to
the nilpotency of Q(a)

L ,

K
(
S,S̄,QL, Q̄L

)
=K

(
S,S̄,Q′L, Q̄

′
L

)
+
(
Q

(a)
L ∂QLK

(
0, S̄,Q′L, Q̄′L

)
+h.c.

)
+Q(a)

L Q̄
(a)
L ∂2

QL,Q̄L
K
(
0,0,Q′L, Q̄′L

)
,

W (S,QL) =W (S,Q′L)+Q(a)
L ∂QLW (0,Q′L) .

(B.1)
The S-dependence of the arguments is affected by SQ(a)

L = 0, since the above functions can
also be (finitely) Taylor-expanded in S. Then, one makes use of the explicit expression of
Q(a)L in (5.7) and of

∫
d2θD̄2f = −4

∫
d4θf under a spacetime integration to write

∫
d2θQ

(a)
L ∂QL

W (0,Q′L) =−4
∫
d4θ
|S|2

[
4∂Q̄L

W̄ (0, Q̄′L)−∂2
S,Q̄L

K(0,0,Q′L, Q̄′L)D2S
]

∂2
QL,Q̄L

K(0,0,Q′L, Q̄′L)|D2S|2
∂QL

W (0,Q′L) .

(B.2)
In the linear term of the Kähler expansion, one integrates by parts (

∫
d4θD2fg =

∫
d4θfD2g)

the D2 which arises from the expression of Q(a)L in (5.7),

Q
(a)
L ∂QL

K
(
0, S̄,Q′L, Q̄′L

)
→
|S|2

[
4∂Q̄L

W̄
(
0, Q̄′L

)
−∂2

S,Q̄L
K
(
0,0,Q′L, Q̄′L

)
D2S

]
∂2

QL,Q̄L
K
(
0,0,Q′L, Q̄′L

)
|D2S|2

D̄2∂QL
K
(
0, S̄,Q′L, Q̄′L

)

=
|S|2

[
4∂Q̄L

W̄
(
0, Q̄′L

)
−∂2

S,Q̄L
K
(
0,0,Q′L, Q̄′L

)
D2S

]
∂2

QL,Q̄L
K
(
0,0,Q′L, Q̄′L

)
|D2S|2

×
(
D̄2S̄∂2

S̄,QL
K
(
0,0,Q′L, Q̄′L

)
+
[
D̄Q̄′L

]2
∂3

QL,Q̄2
L
K
(
0,0,Q′L, Q̄′L

))
,

(B.3)
where the last equality relies on the nilpotency of S and on the constraint on Q′L. The
third line of (5.9) corresponds to the second piece in the last parenthesis above. Twice the
second line of (5.9) is obtained by adding the first piece in the last parenthesis above to the
superpotential contribution and to their hermitian conjugates. The final result is halved by
the addition of

Q
(a)
L Q̄

(a)
L ∂2

QL,Q̄L
K
(
0,0,Q′L, Q̄′L

)
=

∣∣∣4∂QLW (
0, Q̄′L

)
−∂2

QL,S̄
K
(
0,0,Q′L, Q̄′L

)
D̄2S̄

∣∣∣2
∂2
QL,Q̄L

K
(
0,0,Q′L, Q̄′L

)
∣∣∣∣∣∣∣
S

D̄2S̄

∣∣∣∣∣∣∣
2

.

(B.4)
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