
WLCG Token Usage and Discovery

Brian Bockelman6, Andrea Ceccanti3, Thomas Dack4, Dave Dykstra7, Maarten Litmaath1,
Mischa Sallé5, and Hannah Short1,∗

1European Organization for Nuclear Research (CERN), Switzerland
2Deutsches Elektronen-Synchrotron (DESY), Germany
3Istituto Nazionale di Fisica Nucleare (INFN), Italy
4Science and Technology Facilities Council (UKRI-STFC), United Kingdom
5Nationaal Instituut voor Subatomaire Fysica (Nikhef), Netherlands
6Morgridge Institute for Research, United States
7Fermi National Accelerator Laboratory, United States

Abstract. Since 2017, the Worldwide LHC Computing Grid (WLCG) has
been working towards enabling token based authentication and authorisation
throughout its entire middleware stack. Following the publication of the WLCG
Common JSON Web Token (JWT) Schema v1.0 [1] in 2019, middleware de-
velopers have been able to enhance their services to consume and validate the
JWT-based [2] OAuth2.0 [3] tokens and process the authorization information
they convey. Complex scenarios, involving multiple delegation steps and com-
mand line flows, are a key challenge to be addressed in order for the system to
be fully operational. This paper expands on the anticipated token based work-
flows, with a particular focus on local storage of tokens and their discovery by
services. The authors include a walk-through of this token flow in the RUCIO
managed data-transfer scenario, including delegation to FTS and authorised ac-
cess to storage elements. Next steps are presented, including the current target
of submitting production jobs authorised by Tokens within 2021.

1 Introduction

Over the past few years there has been significant progress made towards making token based
authentication and authorisation a realistic goal for the WLCG. OAuth2.0-based workflows
for physics analysis have been prototyped thanks to technical developments, made by both
industry and the wider academic community, and to time dedicated by many members of the
WLCG collaboration to address WLCG-specific challenges. The current objective is to be
able to submit experiment production jobs within 2021.

1.1 Contributing Groups

The WLCG Authorisation Working Group was formed in 2017, at a time when multiple
activities were independently beginning to seriously consider token based authorisation. Ex-
perts from multiple domains and projects - including SciTokens [4], the INDIGO DataCloud
project [5] and EGI [6] - came together to chart a path towards token based authorisation
∗e-mail: hannah.short@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 251, 02028 (2021)	 https://doi.org/10.1051/epjconf/202125102028
CHEP 2021

for WLCG [7]. Work to enhance software was supported by several European Commission
Projects: EOSC-Hub [8], EOSC Pilot [9] and AARC2 [10]. The group focuses on the tech-
nical and policy challenges affecting WLCG’s transition to OAuth2.0-based authorisation.

The Data Organization, Management and Access (DOMA) Third-Party-Copy (TPC)
Working Group [11] has been instrumental in getting WLCG token support tested in data
handling workflows that will be vital for LHC Run 3 and beyond.

2 Progress towards Token Based Workflows

2.1 WLCG Token Schema

The WLCG Common JSON Web Token (JWT) Schema v1.0 was published in September
2019 [1] and defined the semantics for JWT use within the WLCG. It was largely inspired
by the SciTokens schema but, importantly, addressed some WLCG-specific requirements
such as the need for including group information in tokens. The schema document defines
recommended lifetimes for different tokens in the ecosystem and a mechanism for requesting
tokens conforming to a given version of the specification. Many of the areas that required
extended discussion have since been addressed by an Internet Draft that defines the content
of Access Tokens [12]. A future addition of the WLCG specification will take advantage of
this new document and focus on defining only those aspects which fall outside the scope of
the draft.

The publication of the WLCG Schema allowed middleware developers to implement sup-
port for OAuth2.0 Tokens, which they could test using a WLCG Token Issuer deployed at
INFN. This Token Issuer is a deployment of INDIGO IAM [13], the software chosen by the
WLCG for this purpose, following a thorough analysis of several very viable options.

2.2 Command Line Tools

Whilst other scientific domains are seeing their researchers moving to web based analysis, a
large proportion of physicists’ work is still performed on the command line. Tools to pro-
vision OAuth2.0 tokens into a user’s local environment must be both convenient and secure,
minimising any requirements for the user e.g. to perform operations on a web portal. Tokens
must be discoverable by command line clients, which led to the definition of the Bearer Token
Discoverability specification [14] described in Section 3. Further details on Command Line
tools for WLCG Token Based workflows can be found in vCHEP 2021 contribution “Secure
Command Line Solution for Token-based Authentication” [15].

2.3 Token authorization flows

To make token based authentication and authorization a reality in WLCG we need to define
how tokens are obtained from the Virtual Organisation (VO) token issuer (e.g., IAM) and sent
across services to drive authentication and authorization in the infrastructure. We will rely
only on standard OAuth/OpenID connect authorization flows for this purpose.

It is expected that most services will act as OAuth resource servers (which do not need
registration at the token issuer), while services acting as entry points to the infrastructure
(e.g., experiment frameworks, UIs, etc.) or that need to exchange tokens will have to be
registered in IAM as clients. Table 1 contains an overview of anticipated OAuth flows for
different authorization scenarios.

User authentication is requested by including the openid scope in the authorization re-
quests. Audience restrictions are requested using the audience parameter, as standardized

2

EPJ Web of Conferences 251, 02028 (2021)	 https://doi.org/10.1051/epjconf/202125102028
CHEP 2021

for WLCG [7]. Work to enhance software was supported by several European Commission
Projects: EOSC-Hub [8], EOSC Pilot [9] and AARC2 [10]. The group focuses on the tech-
nical and policy challenges affecting WLCG’s transition to OAuth2.0-based authorisation.

The Data Organization, Management and Access (DOMA) Third-Party-Copy (TPC)
Working Group [11] has been instrumental in getting WLCG token support tested in data
handling workflows that will be vital for LHC Run 3 and beyond.

2 Progress towards Token Based Workflows

2.1 WLCG Token Schema

The WLCG Common JSON Web Token (JWT) Schema v1.0 was published in September
2019 [1] and defined the semantics for JWT use within the WLCG. It was largely inspired
by the SciTokens schema but, importantly, addressed some WLCG-specific requirements
such as the need for including group information in tokens. The schema document defines
recommended lifetimes for different tokens in the ecosystem and a mechanism for requesting
tokens conforming to a given version of the specification. Many of the areas that required
extended discussion have since been addressed by an Internet Draft that defines the content
of Access Tokens [12]. A future addition of the WLCG specification will take advantage of
this new document and focus on defining only those aspects which fall outside the scope of
the draft.

The publication of the WLCG Schema allowed middleware developers to implement sup-
port for OAuth2.0 Tokens, which they could test using a WLCG Token Issuer deployed at
INFN. This Token Issuer is a deployment of INDIGO IAM [13], the software chosen by the
WLCG for this purpose, following a thorough analysis of several very viable options.

2.2 Command Line Tools

Whilst other scientific domains are seeing their researchers moving to web based analysis, a
large proportion of physicists’ work is still performed on the command line. Tools to pro-
vision OAuth2.0 tokens into a user’s local environment must be both convenient and secure,
minimising any requirements for the user e.g. to perform operations on a web portal. Tokens
must be discoverable by command line clients, which led to the definition of the Bearer Token
Discoverability specification [14] described in Section 3. Further details on Command Line
tools for WLCG Token Based workflows can be found in vCHEP 2021 contribution “Secure
Command Line Solution for Token-based Authentication” [15].

2.3 Token authorization flows

To make token based authentication and authorization a reality in WLCG we need to define
how tokens are obtained from the Virtual Organisation (VO) token issuer (e.g., IAM) and sent
across services to drive authentication and authorization in the infrastructure. We will rely
only on standard OAuth/OpenID connect authorization flows for this purpose.

It is expected that most services will act as OAuth resource servers (which do not need
registration at the token issuer), while services acting as entry points to the infrastructure
(e.g., experiment frameworks, UIs, etc.) or that need to exchange tokens will have to be
registered in IAM as clients. Table 1 contains an overview of anticipated OAuth flows for
different authorization scenarios.

User authentication is requested by including the openid scope in the authorization re-
quests. Audience restrictions are requested using the audience parameter, as standardized

Authorization Scenario OAuth Flow
User authorization to a registered server-
side application.

OpenID Connect authoriza-
tion flow [16].

Delegation of user authorization across
services, to implement audience and scope
restrictions and the ability to delegate of-
fline access privileges across the chain of
services.

OAuth token exchange
flow [17].

User authorization for a registered CLI
application, to implement authentication
flows on the terminal that can support fed-
erated identity providers like the CERN
SSO [18]. Authentication on a web
browser is required to validate the CLI ses-
sion.

Device code flow [19].

Registered services acting as their own
identity, i.e. not on behalf of a user.

OAuth client credentials
flow [3].

Table 1. OAuth flows for authorization scenarios in WLCG.

in the OAuth token exchange standard. IAM honours what is a requested by a client, and
includes the requested audience in issued access tokens. When no audience is explicitly re-
quested, the generic audience string is included in access tokens, as required by the WLCG
profile.

2.3.1 The RUCIO-FTS-SEs flow

To support DOMA activities, the first scenario we focused on is the RUCIO managed data
transfer, which is common to several LHC experiments (as depicted in Figure 1).

In this scenario, RUCIO [20] delegates its identity to FTS [21] to manage a third-party
transfer between two storage elements. RUCIO requests a token from IAM using the client
credentials flow, since it is acting as its own service identity. In this request (step 1 in Fig-
ure 1), RUCIO requests that the token audience is restricted to the FTS service. RUCIO then
submits a transfer job to FTS including the token in the request. FTS creates the transfer job,
but cannot use the received token to manage the transfer as the token audience is specific to
FTS and may not provide the privileges needed for reading and writing data at storage ele-
ments. To acquire the privileges needed for the storage elements, FTS starts a token exchange
flow with IAM to exchange the received token (step 3.) with two new tokens; an access token
and a refresh token that will be used to manage the transfer. In this flow, FTS requests the
scopes needed to access the data and restricts the audience of the issued tokens to the target
storage elements. The access token obtained in the flow is then used to submit the third-party
transfer to one of the SE (step 4.) and for the actual data transfer among the SEs (step 5.).
The refresh token can be used by FTS to get fresh access token from IAM (using the standard
OAuth refresh token flow) if needed.

2.4 WLCG IAM Operational Readiness

In order to transition to production use of the WLCG IAM Token Issuers, the new Token
Based infrastructure must be operated with a level of service at least equivalent to that of the

3

EPJ Web of Conferences 251, 02028 (2021)	 https://doi.org/10.1051/epjconf/202125102028
CHEP 2021

Figure 1. Token flows used in the RUCIO managed data-transfer scenario. Circles with stars identify
OAuth Access tokens. Circles with the letter R identify OAuth Refresh tokens. Black indicates the
initial tokens requested by Rucio, and red indicates the subsequent tokens requested by FTS following
token exchange with IAM.

current infrastructure. This implies running highly available WLCG IAM instances, offering
user support, and ensuring that service incidents can be addressed within an acceptable time-
frame. In addition, the Token Issuers must demonstrate their trustworthiness by conforming
with the EUGridPMA’s Guidelines for Attribute Authority Service Provider Operations [22].

WLCG IAM Instances for CMS and ATLAS have been successfully deployed on CERN’s
Openshift Infrastructure for several months, allowing them to be highly scalable and leverag-
ing central CERN IT services wherever possible. IAM instances for the remaining VOs will
be set up similarly. Each instance will be integrated behind CERN’s Single-Sign-On [18],
improving user experience for the researchers and facilitating the inclusion of such services
in the investigation of security incidents. IAM instances must be deployed on CERN infras-
tructure to enable experiment membership verification against CERN’s Human Resources
Database, due to data protection requirements. Production level support is expected for the
second half of 2021 and load testing with anticipated production volumes will be completed.

3 Token Discovery

Client tools that rely on a bearer token for authenticating themselves need a mechanism for
receiving the tokens from their environment. While the browser is a monolithic user agent
(and can internally manage tokens), the terminal environment involves a number of indepen-
dently developed tools; the environment needs a way to communicate the token to be used
to Unix processes. As we did not find any existing standard for token discovery, we have
defined one to be used by the tools built in our community [14]. The rest of this section is a
description of that standard.

If a tool needs to authenticate with a token and does not have out-of-band WLCG Bearer
Token Discovery knowledge on which token to use, the following steps to discover a token
MUST be taken in sequence, where $ID below denotes the process’s effective user ID:

4

EPJ Web of Conferences 251, 02028 (2021)	 https://doi.org/10.1051/epjconf/202125102028
CHEP 2021

Figure 1. Token flows used in the RUCIO managed data-transfer scenario. Circles with stars identify
OAuth Access tokens. Circles with the letter R identify OAuth Refresh tokens. Black indicates the
initial tokens requested by Rucio, and red indicates the subsequent tokens requested by FTS following
token exchange with IAM.

current infrastructure. This implies running highly available WLCG IAM instances, offering
user support, and ensuring that service incidents can be addressed within an acceptable time-
frame. In addition, the Token Issuers must demonstrate their trustworthiness by conforming
with the EUGridPMA’s Guidelines for Attribute Authority Service Provider Operations [22].

WLCG IAM Instances for CMS and ATLAS have been successfully deployed on CERN’s
Openshift Infrastructure for several months, allowing them to be highly scalable and leverag-
ing central CERN IT services wherever possible. IAM instances for the remaining VOs will
be set up similarly. Each instance will be integrated behind CERN’s Single-Sign-On [18],
improving user experience for the researchers and facilitating the inclusion of such services
in the investigation of security incidents. IAM instances must be deployed on CERN infras-
tructure to enable experiment membership verification against CERN’s Human Resources
Database, due to data protection requirements. Production level support is expected for the
second half of 2021 and load testing with anticipated production volumes will be completed.

3 Token Discovery

Client tools that rely on a bearer token for authenticating themselves need a mechanism for
receiving the tokens from their environment. While the browser is a monolithic user agent
(and can internally manage tokens), the terminal environment involves a number of indepen-
dently developed tools; the environment needs a way to communicate the token to be used
to Unix processes. As we did not find any existing standard for token discovery, we have
defined one to be used by the tools built in our community [14]. The rest of this section is a
description of that standard.

If a tool needs to authenticate with a token and does not have out-of-band WLCG Bearer
Token Discovery knowledge on which token to use, the following steps to discover a token
MUST be taken in sequence, where $ID below denotes the process’s effective user ID:

1. If the BEARER_TOKEN environment variable is set, then its value is taken to be the
token contents.

2. If the BEARER_TOKEN_FILE environment variable is set, then its value is interpreted
as a filename. The contents of the specified file are taken to be the token contents.

3. If the XDG_RUNTIME_DIR environment variable is set 1, then take the token from
the contents of $XDG_RUNTIME_DIR/bt_u$ID 2.

4. Otherwise, take the token from /tmp/bt_u$ID.

If a potential token is found at a step, then the discovery implementation MUST strip all
whitespace on the left and right sides of the string. We define whitespace the same way as
the C99 isspace() function: space, form-feed (\f), newline (\n), carriage return (\r), horizontal
tab (\t), and vertical tab (\v). Upon finding a valid token according to section 2.1 of RFC6750
[23], the discovery procedure MUST terminate and return this token. Upon finding an empty
token, the discovery implementation should continue with the next step. Upon finding an
invalid token, the implementation SHOULD stop and return an error.

Upon discovery of a valid token, referred to as $TOKEN, if the tool is to use it to authen-
ticate an HTTP request the tool MUST use it in accordance with RFC6750. For example, in
the Authorization header as follows:

Authorization: Bearer $TOKEN

High-level tools that need to simultaneously support bearer tokens for multiple purposes
(e.g. multiple VOs) MAY set $BEARER_TOKEN_FILE using the patterns of steps 3 and
4 with filenames having an added hyphen and purpose name appended to the filename. For
example, the toolset named fife, keeping one token per VO, may choose the following name
for user 1221 and VO xyzzy:

/tmp/bt_u1221-fife-xyzzy

The purpose syntax and semantics are deliberately left undefined and intended for use by
the tool implementer. These high-level tools SHOULD consider potential filename collisions
with other tools when implementing a naming scheme. When executing lower-level tools,
the high-level tool SHOULD set the $BEARER_TOKEN_FILE to the desired file. Tools
SHOULD NOT inspect multiple tokens to try to determine which one to use based on content.

4 Conclusion and Next Steps

Significant progress has been made towards the current goal of submitting jobs authorised
with WLCG Tokens within 2021; a first draft of the Token Discoverability specification has
been published, Token Based Workflows are being planned and tested, a viable solution for
the command line is taking shape and production level Token Issuer support is being set up
at CERN IT. Much work remains to align the community on a realistic timeline for the full
transition to Tokens, away from end entity X.509 certificates. This will be a focus of the
coming months whilst, in parallel, development and testing of token based workflows will
continue.

1https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
2This additional location is intended to provide improved security for shared login environments as

$XDG_RUNTIME_DIR is defined to be user-specific as opposed to a system-wide directory.

5

EPJ Web of Conferences 251, 02028 (2021)	 https://doi.org/10.1051/epjconf/202125102028
CHEP 2021

References

[1] M. Altunay, B. Bockelman, A. Ceccanti, L. Cornwall, M. Crawford, D. Crooks, T. Dack,
D. Dykstra, D. Groep, I. Igoumenos et al., WLCG Common JWT Profiles (2019),
https://doi.org/10.5281/zenodo.3460258

[2] M. Jones, J. Bradley, N. Sakimura, JSON Web Token (JWT), RFC 7519 (2015), https:
//rfc-editor.org/rfc/rfc7519.txt

[3] D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749 (2012), https://
rfc-editor.org/rfc/rfc6749.txt

[4] INDIGO Identity and Access Management (IAM), https://indigo-iam.github.
io/docs

[5] Indigo Data Cloud, https://www.indigo-datacloud.eu
[6] EGI, https://www.egi.eu
[7] Bockelman, Brian, Ceccanti, Andrea, Collier, Ian, Cornwall, Linda, Dack, Thomas,

Guenther, Jaroslav, Lassnig, Mario, Litmaath, Maarten, Millar, Paul, Sallé, Mischa
et al., EPJ Web Conf. 245, 03001 (2020)

[8] EOSC Hub, https://www.eosc-hub.eu
[9] EOSC Pilot, https://eoscpilot.eu

[10] Authentication and Authorisation for Research and Collaboration (AARC), https://
aarc-project.eu

[11] Data Organization, Management and Access (DOMA) Working Group Twiki , https:
//twiki.cern.ch/twiki/bin/view/LCG/DomaActivities

[12] JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens, https://tools.ietf.
org/html/draft-ietf-oauth-access-token-jwt-11

[13] INDIGO Identity and Access Management (IAM), https://indigo-iam.github.
io/docs

[14] WLCG Authorization Working Group, WLCG Bearer Token Discovery (2020), https:
//doi.org/10.5281/zenodo.3937438

[15] D. Dykstra, Secure Command Line Solution for Token-based Authentication (????),
https://indico.cern.ch/event/948465/contributions/4323985/

[16] Nat Sakimura and John Bradley and Michael B. Jones, The OpenID Connect dis-
covery specification, https://openid.net/specs/openid-connect-core-1_0.
html (2014)

[17] M. Jones, A. Nadalin, B. Campbell, J. Bradley, C. Mortimore, OAuth 2.0 Token Ex-
change, RFC 8693 (2020), https://rfc-editor.org/rfc/rfc8693.txt

[18] Aguado Corman, Asier, Fernández Rodríguez, Daniel, Georgiou, Maria V., Rische,
Julien, Schuszter, Ioan Cristian, Short, Hannah, Tedesco, Paolo, EPJ Web Conf. 245,
03012 (2020)

[19] W. Denniss, J. Bradley, M. Jones, H. Tschofenig, OAuth 2.0 Device Authorization
Grant, RFC 8628 (2019), https://rfc-editor.org/rfc/rfc8628.txt

[20] RUCIO: Scientific Data Management, http://rucio.cern.ch/
[21] The CERN File Transfer Service, https://fts.web.cern.ch
[22] EUGridPMA Guidelines for Attribute Authority Service Provider Operations, https:

//www.eugridpma.org/guidelines/aaops/

[23] M. Jones, D. Hardt, The OAuth 2.0 Authorization Framework: Bearer Token Usage,
RFC 6750 (2012), https://rfc-editor.org/rfc/rfc6750.txt

6

EPJ Web of Conferences 251, 02028 (2021)	 https://doi.org/10.1051/epjconf/202125102028
CHEP 2021

