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Abstract. The Large Hadron Collider (LHC) will enter a new phase begin-
ning in 2027 with the upgrade to the High Luminosity LHC (HL-LHC). The
increase in the number of simultaneous collisions coupled with a more complex
structure of a single event will result in each LHC experiment collecting, stor-
ing, and processing exabytes of data per year. The amount of generated and/or
collected data greatly outweighs the expected available computing resources.
In this paper, we discuss efficient usage of HPC resources as a prerequisite for
data-intensive science at exascale. First, we discuss the experience of porting
CMS Hadron and Electromagnetic calorimeters reconstruction code to utilize
Nvidia GPUs within the DEEP-EST project; second, we look at the tools and
their adoption in order to perform benchmarking of a variety of resources avail-
able at HPC centers. Finally, we touch on one of the most important aspects of
the future of HEP - how to handle the flow of petabytes of data to and from com-
puting facilities, be it clouds or HPCs, for exascale data processing in a flexible,
scalable and performant manner. These investigations are a key contribution to
technical work within the HPC collaboration among CERN, SKA, GEANT and
PRACE.

1 Introduction

The field of High-Performance Computing (HPC) is undergoing a transition to the next major
phase of its development, namely that of exascale computing. The first systems with such
capabilities are slated for the early 2020s with numerous development efforts underway in
Europe, the United States, China, and Japan. In anticipation of the delivery of these systems,
the global HPC community is broadening its horizons: as well as providing a step change
in capability for its traditional user base (computational fluid dynamics, quantum chemistry
etc.) exascale systems will need to provide the e-Infrastructure required by large experimental
facilities that are due to generate unprecedented volumes of data as new capabilities come
online in the next decade.

To reach exascale computing, HPC facilities rely heavily on heterogeneous hardware ar-
chitectures. Accelerated processors like Graphical Processing Units (GPUs) or low-power
ARM processors provide the bulk of the computing capacity at the majority of the largest
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supercomputers. The use of heterogeneous architectures is both a challenge and an opportu-
nity [1] for the High Energy Physics (HEP) community. Within the context of the DEEP-EST
project [2], CERN participated as one of the scientific applications. The experience of porting
workflows from the Compact Muon Solenoid (CMS) Experiment to utilize Nvidia GPUs is
presented in Section 2. Section 3 further discusses developments in order to enable transpar-
ent benchmarking of computing resources available at HPC facilities. Finally, Section 4 looks
at challenges that are specific for any data-intensive science that aims to process Exabytes of
data.

2 HPC and Heterogeneous Computing

2.1 The DEEP-EST Project

Figure 1: DEEP-EST Prototype CM node
specification

The Dynamic Exascale Entry Platform
- Extreme Scale Technologies (DEEP-
EST) project is an European HPC initia-
tive to build a prototype of the Modu-
lar Supercomputing Architecture (MSA).
The DEEP-EST is the latest project in the
"DEEP" series, where with each iteration
prototypes integrate increasingly diverse
hardware architectures. The MSA con-
cept allows integrating compute modules
with different performance characteristics
into a single heterogeneous system, in-
terconnected using different network fab-
rics.

Figure 2: DEEP-EST Prototype ESB node
specification

The DEEP-EST prototype consists of
three types of compute modules: Cluster
(CM), Extreme-scale Booster (ESB) and
Data Analytics (DAM) modules. Each
module is designed in order to provide
best performance for a particular type of
workload. For instance, CM nodes are
targeting applications that require higher
single thread performance, whereas ESB
nodes are more optimized for scientific
codes requiring many-core high degree
of parallelism architectures, and therefore
draw most of the computational power
from Nvidia GPUs.

In total, the DEEP-EST prototype
contains 50 Cluster Module nodes. Fig-
ure 1 provides the exact specification of
each node. As can be seen, each CM node is equipped with a dual socket Intel Xeon ’Sky-
lake’ Gold 6146 which gives 24 physical cores in total (12 per socket). In terms of main
memory, there are 192 GBs RAM, which comfortably gives 8GB per core. The InfiniBand
100Gb/s fabric is used to interconnect nodes, enabling low latency message passing interfaces
such as MPI.
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Figure 3: DEEP-EST Prototype DAM node
specification

For the ESB module there are 75
nodes in total and the exact specifica-
tion is provided in Figure 2. The Ex-
treme Booster Module is targeted to pro-
vide applications requiring extreme scal-
ability. The ESB has been designed to
be used together with CM nodes via MPI
to offload parts of the code that require a
high degree of parallelism. A lower grade
CPU has been chosen (Intel Xeon ’Cas-
cade Lake’ Silver 4215) where the bulk of
the compute capability being the Nvidia
V100 GPU, with 32 GB of HBM2.

The last and newest computing module in the DEEP series is the DAM. This is the module
that exhibits the widest variety of hardware. Figure 3 provides the exact specs of each node.
In total there are 16 nodes, each equipped with a dual socket Intel Xeon ’Cascade Lake’
Platinum 8260M and 384 GBs of RAM. Additionally, each node contains a single Nvidia
V100 GPU and Intel STRATIX10 FPGA, both connected via PCIe Gen3.

2.2 CMS Ecal/Hcal on Nvidia GPUs

The Compact Muon Solenoid (CMS) detector is a general-purpose particle detector which
consists of several components: tracker, electromagnetic and hadronic calorimeters, magnet
and muon systems. Each component (usually referred to as a sub-detector) accomplishes a
different task. For instance, the tracker (both Pixel and Strip parts) is the closest sub-detector
to the interaction point and responsible for identifying the trajectories of charged particles.
Calorimeters measure energy depositions of the particles passing through them.

As part of the DEEP-EST project, the CMS Electromagnetic (Ecal) and Hadronic (Hcal)
calorimeters local reconstruction code was ported to utilize Nvidia GPUs. We targeted the
High Level Trigger (HLT) specific parts for porting in this work, however the solution can
be further generalized for offline reconstruction. Local reconstruction for both of these sub-
detectors consists of a sequence of steps of various transformations to obtain the final event
product. The sequence can be divided into the following three parts:

• Unpacking - decoding raw data.

• Multifit/Mahi - iterative routines employed to perform reconstruction of the actual "energy"
deposit.

• Corrections - calibration factors can be applied to the values obtained from the previous
step.

Out of the three steps above, the most important and time-consuming is the iterative
process to reconstruct energy. The procedure is usually referred to as "Multifit"/"Mahi"
(Ecal/Hcal), however mathematically it can be formulated in terms of a χ2 problem with a
positivity constraint, as we must require that energies deposited in the calorimeter are always
positive. More precisely, we can write this down as:

min(χ2) = argminx((P · x − b)TΣ(x)−1(P · x − b)) (1)

∀i : xi ≥ 0 (2)

where:
x − energy vector (3)
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P : energy→ charge mapping (4)

Σ − total covariance matrix (5)

n − number of time samples (6)

It is important to point out that the correlation matrix Σ is not a constant but rather depends
on the solution vector for which we are minimizing for. Therefore, we do not have a direct
solution, but rather employ the following iterative procedure:

1. Compute the Σ matrix using the current iteration of χ

2. Perform minimization of χ2 for the just computed correlation matrix

3. Compute χ2 and if below some threshold we have convergence, otherwise go to step 1

Step 2 above constitutes a formulation of a Non Negative Least Squares (NNLS) [7] problem
with positivity constraint. To solve we employ something that has been called the Fast NNLS
algorithm, which is an active set algorithm that performs iterative minimization preserving
the constraint. Although there are notable differences in what goes into the minimization
procedure (e.g. different ways to build the Σ matrix), both the Hcal and Ecal algorithm
perform essentially an identical mathematical function. We took advantage of this to port a
single algorithm for both.

For our performance comparison we chose maximum throughput of events per second
that could be achieved either on CPU or GPU. Although the CMS software framework
is multi-threaded, the original local reconstruction algorithm implementations are single
threaded, therefore they are expected to scale linearly with the number of available cores
(provided there are no other limitations). However for the case of a GPU implementation, it
is not so straight forward. We try to push as many concurrent events into a single GPU card as
possible until we reach the maximum compute capacity. Figure 4 shows the results of testing
CMS Ecal and Hcal local reconstruction only workflows using CPU or GPU sequences. Both
Ecal and Hcal routines were optimized specifically targeting Nvidia V100 GPU. Results were
obtained using CMS Open Data [8]. In summary, substantial speed ups in throughput can be
achieved when porting these types of workloads to heterogeneous hardware, like general pur-
pose GPUs.

(a) Ecal Performance (b) Hcal Performance

Figure 4: Ecal (a) and Hcal (b) Performance

Combining the Hcal and Ecal local reconstruction developments with the rest of the Pata-
track effort of porting CMS reconstruction algorithms to Nvidia GPUs, we can take a pre-
liminary look at performance of CMS HLT Run3 configuration on the DEEP-EST nodes.
Throughout all of these measurements we utilize the same CMS Open Data dataset [8]. Fig-
ure 5 shows the results of running CMS HLT Run 3 configuration using each type of compute
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liminary look at performance of CMS HLT Run3 configuration on the DEEP-EST nodes.
Throughout all of these measurements we utilize the same CMS Open Data dataset [8]. Fig-
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modules available at the DEEP-EST prototype. Since the Compute Module contains CPUs
only, we have run CPU-only configurations on these types of nodes, however for the ESB
and DAM nodes we have tested both of the configurations. For the ESB and DAM nodes
we observe approximately 50% speed up when using configurations that make use of the
available Nvidia V100 GPU. The reason for a smaller speed up running full CMS HLT Run3
configuration, compared to evaluating Hcal and Ecal ported algorithms independently, is due
to performance still being limited by algorithms running on the CPU. Per algorithm there is
quite a large speed-up and, as a consequence, significant benefit from offloading reconstruc-
tion code to a GPU.

3 Containerized Benchmarking on HPC

Figure 5: Results running CMS HLT Run 3
configuration using Open Data on different
compute modules of the DEEP-EST prototype

The target hardware for benchmarking
during the past decades has largely been
resources which are owned or adminis-
tered by the Worldwide LHC Comput-
ing Grid (WLCG) and partners. This
has allowed a common set of assump-
tions for users and administrators to oper-
ate within, as well as flexibility to change
hardware, topologies, and policies when
necessary. In contrast, HPC sites are de-
signed in response to market demands
from a wide variety of actors. As a re-
sult, sites generally feature a diverse ar-
ray of heterogeneous compute resources,
while simultaneously enforcing stricter
security policies that appeal to the needs
of clients. In order to fully exploit the
opportunities presented by HPC sites, a
change of assumptions that takes into account this new environment is required.

Security policies at HPC sites are necessarily more restrictive in order to ensure protec-
tion of client data from within and without. In an environment where multiple user’s jobs may
be simultaneously shared on the same node, restriction of escalated privileges is mandatory.
This may include restriction of userspace executables to reduce attack vectors from within
the compute cluster, and sometimes, restricted external network connectivity from compute
nodes to reduce attack vectors from external locations. Complying with these policies re-
quires that all HEP workloads are executed unprivileged, and frequently only via the binaries
exposed by a HPC site. In practice, this means all executables not typically included in a
minimal operating system installation must be provided by either binary compilation for the
target hardware (in the case of permissive userspace executables) or via container images
compatible with a host service (in a restricted userspace).

3.1 Extending HEP benchmarking for HPC

Adapting benchmarks designed under the assumptions of WLCG computing sites necessi-
tated several changes. Docker, despite widespread adoption in IT development and service
fields, has not been embraced by the majority of HPC sites. Serious security concerns regard-
ing Docker’s privileged container daemon remain unaddressed; potentially allowing unautho-
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rized root access to the production network. In addition, resource managers and job sched-
ulers necessary for shared resources are difficult to integrate with Docker. In response to
this void, many HPC sites have adopted a container solution designed specifically for the
challenges of HPC shared computing environment: Singularity [9].

Singularity is fully compliant with Open Container Initiative (OCI) standards [10] and
features native support for translation of Docker images. Therefore, migration to Singularity
only requires modification of Dockerfile definitions to account for differences between the
two services. Docker, by default, mounts a "thin" read-write partition (squashfs) to contain-
ers, enabling file modification at runtime. Singularity does not do this automatically, and
the permission to create file systems is not supported on most HPC sites. Docker container
users are root by default - for Singularity the container user is the same as the host user.
This required new publication of all HEP Dockerfile definitions to eliminate file modifica-
tions outside of host-mounted directories, and ensure execution as an unprivileged container
user. The migration from using Docker images to Singularity on HPC required an additional
step of “flattening” the structure of nested docker containers previously employed for bench-
marking. All nested container execution requires privilege escalation, and this approach is
not supported regardless of container solution on HPC.

Figure 6: Experiment workload performance
(normalized) on select HPC processors, larger
is better

The nested container approach
was abandoned in favor of a simpli-
fied microservice-style orchestrator,
re-written as a python 3 package. Bench-
marks are now modular and configurable
through declarative YAML language,
executing Singularity images by default.
At select HPC sites with CVMFS access,
pulling and translating docker images
can be skipped entirely with the use of
the recent CVMFS-unpacked service that
hosts singularity unpacked images.

Integration with HPC job scheduling
tools such as SLRUM [11] have been
greatly simplified thanks to the migration
to Python. An array of selected bench-
marks may be executed across a large
batch of heterogeneous resources by a
single python argument defining a YAML configuration to use - even remotely hosted YAML
definitions. Leveraging this combination of a simplified modular structure, minimal runtime
assumptions, and greatly expanded coverage of heterogeneous architectures has enabled the
successful benchmarking and collection of over two thousand results covering more than
122,000 cores across numerous HPC sites. Scale deployment up to 200 simultaneous nodes
has been run without issue. For further detail on developments of the HEP Benchmark suite,
see the proceedings on HEPiX benchmarking solution for WLCG computing resources in
this issue[12].

4 HPC and Data Access

The traditional approach to performing data processing has been to employ a distributed
computing grid, which has been extremely successful. LHC experiments have been able to
utilize computing and storage resources with a common design and specification set forth by
the HEP community. The level of control of the design, procurement and access results in
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deep implications on the experiments’ operational computing model and creates substantial
difficulties for the community when trying to integrate external resources like HPC facilities
and cloud resources. One of the main difficulties in this integration stems from the fact that
the flow of data to/from these HPC facilities is no longer in full control of HEP experiments.
Furthermore, each such supercomputing center defines its own interfaces and policies for
interaction; each site may have different types of storage systems, network topologies, or
interconnect methods. Figure 7 shows an example of a schematic overview of the DEEP-EST
prototype network federation [4]. As can be seen, in total there are three types of fabrics used,
for each cluster respectively, with many gateways in order to connect different modules. For

Figure 7: DEEP-EST Prototype Network Federation.

data intensive applications that require large quantities of data ingesting and data production,
there are two crucial challenges when approaching heterogeneous compute facilities:

1. It is important to understand the limitations of the internal interconnect and storage
systems. In order to obtain the maximum efficiency of the allocated resources, the lim-
iting factors of these systems must be understood. Would network topology between
compute nodes and storage systems be a bottleneck or would the storage system itself
restrict scaling? Given the variety of storage systems (e.g. shared filesystems, object
stores, etc...), each with its own architecture and deployment setup, it is not clear if
changes are necessary to the way HEP deploy workflows. Are changes are needed in
order to utilize certain types of storage systems to their fullest without reducing the
processing performance?

2. Once there is an understanding on a site’s internal interconnect and storage capabili-
ties, the second challenge is how to enable data flow from HEP experiments’ storage
location (e.g. potentially Data Lakes). HPC centers have very different external con-
nectivity bandwidth, and this may prove critical for applications that require sending
and receiving large amounts of data to a computing center. Restrictive ingress or egress
bandwidth is another potential limiting factor to successful site utilization.

In order to address first point mentioned above, we chose CMS MINIAOD2NANO con-
version workflows, as they are one of the more I/O driven data parallel standard workflows.
We measured aggregated bandwidth from an HPC shared storage system while scaling the
number of compute nodes, with the goal of enabling extrapolations for a hypothetical Exas-
cale HPC storage system. Several tests were performed at San Diego Supercomputer Center
(SDSC) using a Ceph storage instance. Using Slurm batch system, hundreds of nodes were
allocated with instances reading data using CephFS. Table 4 summarizes the results obtained
and extrapolations deduced. Considering that a future Exascale system will bring O(1M)
cores, one should expect to be able to draw O(150)GB/s from a storage system, assuming
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scaling out to the whole machine. Although this might not seem like a lot (as this is aggre-
gated across all of the nodes), this is on average. Considering that HEP I/O is typically bursty,
one could expect going significantly outside of this projection as well, which might impact
the overall performance.

N nodes Throughput/node (Evs/s) Aggregated B-width

1 284 15 MB/s
200 289 3037 MB/s
300 288 4525 MB/s

O(10K) — O(150) GB/s

5 Conclusion

Even with aggressive operational improvements, the computing needs of the experiments
during the HL-LHC will exceed the predicted technology evolution. This leads to an ex-
pected resource gap between what is needed to complete the science mission and what can
be provided by traditional sites. To close this gap new computing resources and techniques
will be needed, and HPC supercomputing centres could play a vital role. In this work, we
shared three contributions to the effort of the HEP community to exploit High Performance
Computing facilities. Utilization of heterogeneous resources is crucial to improve the perfor-
mance of applications on a per-node basis, particularly so as we move towards using more
machine-learning driven techniques. For the purpose of understanding the types of resources
and accounting, benchmarking of such facilities is key to properly estimate the amount of
resources needed for experiments. Finally, as we are approaching Exabyte scale for moving,
processing, storing and analyzing data, an initial study data access methodologies is being
performed.
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