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In this paper, we discuss different approaches for the estimation of transverse bunch characteristics,
namely, tune and chromaticity, using Schottky-based diagnostics. In particular, we show how, depending
on the signal quality and the availability of other instruments or information sources, we can choose
appropriate strategies combining both spectrum fitting procedures and explicit parameter calculations. In
addition, we revisit and formally derive the expression that relates the chromaticity with the width of the
Schottky spectral sidebands, discussing the rigorous meaning of this width and in which conditions it can
be applied. Results obtained using the proposed approaches are compared with the standard techniques for
different fills in the LHC.
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I. INTRODUCTION

Since the observation of Schottky signals at the
Intersecting Storage Ring at CERN in 1971 [1], their
analysis became an important noninvasive method for
beam diagnostics. It has served as a tool for betatron tune,
emittance, and chromaticity measurements at numerous
accelerator facilities, including, among others, Relativistic
Heavy Ion Collider at Brookhaven National Laboratory [2];
Tevatron and Recycler at Fermilab [3]; and heavy-ion
synchrotron SIS-18 at GSI Helmholtzzentrum für
Schwerionenforschung [4]. At CERN, Schottky diagnostics
have successfully helped in the operation of Super Proton
Synchrotron [5]; Antiproton Collector, Accumulator and
Decelerator [6,7]; a new Extra Low Energy Antiproton ring
[8]; and Large Hadron Collider (LHC) [9].
In Ref. [10], we have investigated how the transverse

Schottky system in the LHC can be used for the estimation
of longitudinal bunch characteristics, such as the bunch
profiles or the synchrotron frequency distribution. It was
shown that, in the absence of intrabunch coherent motion,
the distribution of synchrotron amplitudes among all the
particles in a bunch and the corresponding Schottky
spectrum are related through a system of linear equations.
The coefficients of these equations depend only on the

nominal synchrotron frequency if we consider the spectral
region in the immediate vicinity of a harmonic of the
revolution frequency. Both the amplitude distribution and
the nominal synchrotron frequency can be found with the
help of optimization algorithms such that this linear model
fits the measured Schottky spectrum. If, on the other hand,
one considers the transverse sidebands of the Schottky
spectrum, then, in addition to the previous dependencies,
also the betatron tune and the chromaticity play a role.
Schottky diagnostics can, therefore, in principle, be used to
provide chromaticity estimates without perturbing the
beam, contrary to the popular rf-modulation technique,
which requires measuring the tune while changing the
beam momentum [11].
In this paper, we discuss different approaches aimed at

obtaining noninvasive chromaticity and betatron tune
estimates using a transverse Schottky system. Depending
on the signal quality and the availability of external
diagnostics or information sources, different strategies
for combining spectrum fitting procedures and explicit
parameter calculations may be adopted. Especially in the
presence of spectral artifacts, such as coherent peaks or
other distortions [12], the flexibility of being able to
exclude affected regions from the analysis is of great
practical relevance.
The paper is organized as follows. In Sec. II, we discuss

the analytical expression for the transverse Schottky
spectrum of bunched beams. Section III is devoted to
betatron tune and chromaticity determination without
spectral fitting. We shall call such procedures explicit. In
Sec. III A, we propose a new method of finding the betatron
tune, while in Sec. III B we discuss and confirm in a
rigorous mathematical manner the well-known formula
which connects chromaticity with the width of the
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transverse sidebands. In particular, we show the rigorous
mathematical meaning of this width. Section IV describes
how both tune and chromaticity may be found from spectral
fitting, as the natural extension of the method presented in
Ref. [10]. In Sec. V, we present how the various proposed
approaches can be combined and what factors have an
impact on the choice of the most suitable strategy. In
addition, we present and compare the chromaticity esti-
mates obtained using the Schottky-based procedures pro-
posed herein with the ones obtained experimentally using
the rf-modulation method in the LHC. Closing remarks are
present in Sec. VI.
In the scope of this article, we neglect the effects of

octupole magnets, beam-beam effects, and beam interac-
tion with the vacuum chamber. The primary domain
of applicability of the Schottky diagnostics in the LHC
is the ion (Pb82þ) beam at the injection energy, when the
collisions have not yet started. All the experimental results
presented in this paper have been acquired under such beam
conditions, with octupole magnets switched off.

II. TRANSVERSE SCHOTTKY SPECTRUM

Let us recall the structure of a typical transverse
Schottky spectrum which consists of two sidebands,
symmetrically located on each side of a given harmonic
of the revolution frequency ω0. The spectrum of each of
these sidebands, due to a single particle, consists of a
sequence of infinitely sharp Bessel satellites lined up in
intervals of the particle’s synchrotron frequency. The
shape of the single-particle power spectral density
(PSD) and its dependence on the value of chromaticity
at LHC-like conditions is presented in Fig. 1. For clarity
reasons, the frequency axis has been shifted down by a
value of ðn − 1Þ · ω0=2π, where n ¼ 427 725 is the har-
monic of the revolution frequency observed by the
LHC Schottky monitor and ω0=2π ≈ 11245.45 Hz. As it
follows, the LHC Schottky monitor operates at approx-
imately 4.8 GHz.
In the presence of many particles with different syn-

chrotron frequencies and random initial synchrotron and
betatron phases, this set of infinitely sharp satellites
interferes incoherently to form spectral structures, which
eventually begin to overlap at high Bessel orders. The
distance between the centers of the two transverse side-
bands is exactly twice the value of the fractional part of the
betatron tune. An example of the multiparticle PSD and its
dependence on the value of chromaticity can be seen
in Fig. 2.
Under the assumption of linear synchrotron oscillations

which, as shown in Ref. [10], covers the overwhelming
majority of LHC operating scenarios, the Schottky spec-
trum is described by an elegant analytical formula. We
shall consider a single particle i, which is subject to
betatron oscillations with a nominal tune Q ¼ QI þQF
(where QI and QF are, respectively, the integer and the

fractional parts of the tune) and initial phase φβi . Particle i
is simultaneously performing synchrotron oscillations with
amplitude τ̂i, synchrotron frequency Ωsi, and initial phase
φsi . In addition, due to chromaticity Qξ, the betatron tune

oscillates with amplitude cQi at the synchrotron frequency.
The dipole moment signal due to a single particle i in the
vicinity of the nth revolution harmonic can be written in
the form

DiðtÞ∝Re

� X∞
p¼−∞

Jpðχ�i;n∓QI
Þejft½ðn�QFÞω0þpΩsi

�þφβi
þpφsi

g
�
;

where Jpð·Þ is the Bessel function of the order of p and the
� symbol denotes the summation over both signs. The
argument of the Bessel function is given by

(a)

(b)

FIG. 1. Power spectral densities of a single particle’s dipole
moment, presented for two different values of chromaticity.
Typical for the LHC values of synchrotron amplitude, frequency,
and betatron tune are assumed. (a) Qξ ¼ 0 (b) Qξ ¼ 20.
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χ�i;m ≔
�
mbτi � cQi

Ωsi

�
ω0 ¼ ðmη�QξÞ ω0 bpi

Ωsip0

;

where η is the slip factor, p0 is the nominal momentum, andbpi is the amplitude of momentum oscillations performed by
particle i. The formal derivation of the previous expression
for the dipole moment is presented in the Appendix. It has
to be noted that this expression is slightly different from the
one postulated in Refs. [13–15]; namely, the argument of
the Bessel function differs by a value of ηQω0 bpi=ðΩsip0Þ.
This discrepancy comes from the two possible definitions
for the betatron tune. In the scope of this paper, we adopt
the convention that the betatron tune QiðtÞ of particle i is
defined with respect to the nominal revolution frequency
ω0 rather than the particle’s own revolution frequency
ωiðtÞ, as adopted by the other references. As a conse-
quence, there are also two distinct definitions for chroma-
ticity. The numerical difference between them, equal to ηQ,

compensates for the additional ηQω0 bpi=ðΩsip0Þ term, so
that the numerical value of the argument of the Bessel
function remains the same.
The PSD of the single particle’s dipole moment consists

of two sidebands Pþ
T and P−

T which, up to a scaling factor,
are given by

P�
T ðω;bτiÞ ¼ X∞

p¼−∞
J2pðχ�i;n∓QI

Þδ½ω − ðn�QFÞω0 − pΩsi �:

Writing the above formula as a function of bτi is justified
by the fact that, in linear approximation of synchrotron
motion, the synchrotron frequency Ωsi, the momentum

amplitude bpi, and the amplitude of betatron oscillation bQi
are uniquely determined by the value of synchrotron
amplitude (see the Appendix and Ref. [10]). In Ref. [10],
we have shown that, under the assumption of no coherent
intrabunch motion, the total PSD of the bunch current
signal, PLðωÞ, can be expressed by

PLðωÞ ¼
X
i

PLðω;bτiÞ ¼ Z
∞

0

gðbτÞP�
L ðω;bτÞdbτ;

where gðbτÞ is a probability density function of the synchro-
tron amplitudes among the particles and P�

L ðω;bτÞ is the
current signal PSD of the single particle having synchrotron
amplitude bτ. By the exact same argumentation, we get an
analogous result for the dipole moment, which reads

P�
T ðωÞ ¼

X
i

P�
T ðω;bτiÞ ¼

Z
∞

0

gðbτÞP�
T ðω;bτÞdbτ; ð1Þ

where P�
T ðω;bτÞ is the single-particle dipole moment PSD of

the particle having synchrotron amplitudebτ. According to the
previous formulas, it has the following form:

P�
T ðω;bτÞ ¼ X∞

p¼−∞
J2pðχ�bτ;n∓QI

Þδ½ω − ðn�QFÞω0 − pΩsðbτÞ�;
ð2Þ

with the argument of the Bessel function given by

χ�bτ;m ≔
�
mbτ� bQðbτÞ

ΩsðbτÞ
�
ω0 ¼ ðmη�QξÞ ω0bpðbτÞ

ΩsðbτÞp0

:

ð3Þ

In fact, due to the additional betatron phase in the exponent
of the expression of the dipole moment, and unlike in
Ref. [10], Eq. (1) remains valid even in the case of coherent
synchrotron motion. It is enough to have either the initial
synchrotron or betatron phases uniformly distributed.
Furthermore, in the latter case, and again unlike in

(a)

(b)

FIG. 2. Power spectral densities of the cumulative bunch dipole
moment, presented for two different values of chromaticity.
Typical for the LHC values of synchrotron frequency, betatron
tune, and bunch profile are assumed. (a) Qξ ¼ 0 (b) Qξ ¼ 20.
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Ref. [10], we no longer have to exclude the p ¼ 0 Bessel
satellite from our analysis as it now adds up incoherently.
It is important to underline that Eq. (1) describes the

expected value of the instantaneous Schottky spectrum.
The time average of the experimentally measured spectra
approximates this expected value. The incoherent spec-
trum, however, will always be subject to intrinsic random
fluctuations. In addition, as will be seen in the following
sections, spurious components whose origin is yet
unknown to the authors may pollute the spectra. These
components need to be treated differently in the analysis.

III. EXPLICIT PARAMETER ESTIMATION

A. Betatron tune

According to the theory recalled in the previous section,
each of the transverse sidebands should be symmetric.
The axis of symmetry coincides with the p-zero Bessel
satellite, for which the frequency is equal to ðn�QFÞω0.
Hence, detection of this satellite enables us to determine the
tune value.
Analyzing previously proposed methods of Schottky-

based tune measurements [9,16,17], we can group them
into two types. The first is based on peak detection,
followed by the estimation of which peak is most likely
the p-zero satellite. One considered feature is the height;
however, there is no guarantee that the central satellite has
the highest power. Alternatively, the overall shape of the
transverse sideband is considered, and, by means such as
curve fitting or weight averaging, the center of the sideband
is determined, even if it does not correspond to a local
maximum. The biggest drawback of this approach is poor
robustness to nonsymmetric shapes of the sidebands.
We propose a new method of tune calculation, which we

call the mirrored difference (MD) method. It exploits the
observation that, even in cases where the overall shape of
the transverse hump is distorted, we still observe correla-
tion between the power of the corresponding positive and
negative Bessel p satellites. We define, therefore, a cost
function as

CMDðmÞ ¼
Xi¼N

i¼1

jP�
T ðωm−iÞ − P�

T ðωmþiÞj; ð4Þ

where P�
T ðωnÞ is the power of nth point in the spectrum and

N is the range parameter, which should correspond to the
expected sideband width. The value of m which minimizes
the above cost function indicates the frequency bin of
ðn�QFÞω0. In addition, a supplementary check can be
performed by confirming that the detected frequency bin is
indeed a local maximum. This can be simply done by
comparing the value of P�

T ðωnÞ with the average power in
the sideband. That should be enough, as it immediately
excludes the valleys in between satellites, leaving only the
local maxima as possible points of symmetry. Finally,

interpolation techniques can be used in order to increase
point density in the spectrum and decrease CMD even more.
It should be noted that the presence of irregularities or
artifacts outside the central region of the sideband affects
nearly all the summands in Eq. (4) in a comparable way. As
a result, an additional artificial peak cannot ”drag” the
calculated tune toward itself, unless its power is so large
that its location minimizes the cost function despite the
induced asymmetry.

B. Chromaticity

There exists in the literature [3,9,17–19] a well-known
formula which relates the width of the transverse sidebands
to the value of chromaticity:

Qξ ¼ −η
�
n
Δf− − Δfþ
Δf− þ Δfþ

−QI

�
; ð5Þ

where by Δf− and Δfþ we denote, respectively, the width
of the left and right sidebands and n, as previously, denotes
the observed harmonic of the revolution frequency.
Depending on the adopted definition of tune (see discus-
sion in Sec. II), the formula with the þQF term instead of
−QI is also given. However, since normally we have
n ≫ Q, this does not lead to significant discrepancies.
In the case of a coasted beam, an analogous formula can

be derived straightforwardly from the works of Boussard
[15] and van der Meer [20]. The result in the case of
bunched beams was justified by the assumption that
JpðxÞ ≈ 0 for p > x [3], which is only approximately
correct, especially in the case of small x. As far as the
authors know, it was never shown that the result holds, in
general, or what the exact mathematical meaning is of the
widths, Δf− and Δfþ, of the sidebands. One could, for
example, use the rms width, the standard deviation of a
fitted Gaussian, or even the width measured at some power
threshold. Furthermore, all of these can be calculated in
either linear or logarithmic (dB) scale. In fact, a few
different approaches can be found in the available literature
[9,19,21]. In the following, we shall provide a formal
derivation of Eq. (5) for the case of bunched beams and
clarify that these widths should be defined as the rms
widths of the transverse sidebands in linear scale. By rms
width, we mean the standard deviation of the PSD side-
band, if treated as a histogram. This is defined by an
integral over the frequency range containing the whole
sideband, where the integrand is the power spectral density
multiplied by the squared distance to the sideband’s center.
The rms width of the transverse sideband can be calculated
using Eqs. (1) and (2). As we know that the sideband is
centered on the frequency ðn�QFÞω0, we derive the rms
width by calculating the variance:

σ2� ¼
Z

P�
T ðωÞ½ω − ðn�QFÞω0�2dω

¼
ZZ

∞

0

gðbτÞP�
T ðω;bτÞ½ω − ðn�QFÞω0�2dbτdω:
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We can now substitute P�
T ðω;bτÞ, using Eq. (2), and obtain

σ2� ¼
ZZ

∞

0

gðbτÞ X∞
p¼−∞

J2pðχ�bτ;n∓QI
Þδ½ω − ðn�QFÞω0 − pΩsðbτÞ�½ω − ðn�QFÞω0�2dbτdω

¼
Z

∞

0

Z
gðbτÞ X∞

p¼−∞
J2pðχ�bτ;n∓QI

Þδ½ω − ðn�QFÞω0 − pΩsðbτÞ�½ω − ðn�QFÞω0�2dωdbτ
¼

Z
∞

0

gðbτÞ X∞
p¼−∞

J2pðχ�bτ;n∓QI
Þ½pΩsðbτÞ�2dbτ ¼ Z

∞

0

gðbτÞ� X∞
p¼−∞

J2pðχ�bτ;n∓QI
Þp2

�
ΩsðbτÞ2dbτ:

Previously, we have allowed ourselves to change the
integration order using a version of the Fubini-Tonelli
theorem which holds for generalized functions (see Chap. 4
in Ref. [22] ). Now we can use the expression [see
Formula (2.3) in Ref. [23] ]

X∞
p¼−∞

J2pðxÞp2 ¼ x2

2

and get

σ2� ¼
Z

∞

0

gðbτÞ ðχ�bτ;n∓QI
Þ2

2
ΩsðbτÞ2dbτ:

Substituting χ�bτ;n∓QI
, as given in Eq. (3), we have that

σ2� ¼
Z

∞

0

gðbτÞ
�
½ðn ∓ QIÞη�Qξ� ω0bpðbτÞ

ΩsðbτÞp0

�
2

2
ΩsðbτÞ2dbτ

¼ ½ðn ∓ QIÞη�Qξ�2
Z

∞

0

gðbτÞ� ω0bpðbτÞ
2ΩsðbτÞp0

�
2

ΩsðbτÞ2dbτ
¼ ½ðn ∓ QIÞη�Qξ�2 · C;

where C ¼ R∞
0 gðbτÞð ω0bpðbτÞ

2ΩsðbτÞp0

Þ2ΩsðbτÞ2dbτ is a positive

constant.
At this point, it is necessary to note that, although σ� ≔ffiffiffiffiffiffi
σ2�

p
is by definition positive, the value of ½ðn ∓ QIÞη�

Qξ� can be of any sign. One can distinguish two cases: 1.
½ðn −QIÞηþQξ� and ½ðnþQIÞη −Qξ� are both positive
or both negative; 2. ½ðn −QIÞηþQξ� and ½ðnþQIÞη −
Qξ� have opposite signs. For high enough values of n, only
the first option remains possible. In the case of the LHC
Schottky monitor n ¼ 427725, QI ¼ 59 or 64, and
η ≈ −3.182 × 10−4, which results in ðn�QIÞη ≈ −136,
to be compared withQξ values ranging usually from−20 to
20. Under this assumption, it is straightforward to check

that, if one takes Δf− ¼ σ− and Δfþ ¼ σþ, then constant
C cancels out in Eq. (5) and one gets

− η

�
n
Δf− −Δfþ
Δf−þΔfþ

−QI

�

¼−η
�
n
½ðnþQIÞη−Qξ�− ½ðn−QIÞηþQξ�
½ðnþQIÞη−Qξ� þ ½ðn−QIÞηþQξ�−QI

�

¼−η
�
n
2QIη− 2Qξ

2nη
−QI

�
¼−η

�
QI −

Qξ

η
−QI

�
¼Qξ:

If, however, the considered harmonic of the revolution
frequency is low, one might have that ½ðn ∓ QIÞη�Qξ�
are of opposite signs, and Eq. (5) should be replaced with

Qξ ¼ −η
�
n
Δf− þ Δfþ
Δf− − Δfþ

−QI

�
: ð6Þ

Unfortunately, as it is very likely that in such a case the sign
of ½ðn ∓ QIÞη�Qξ� strictly depends on the value of Qξ,
which is to be determined, the correction introduced by
Eq. (6) is of a very limited practical use.
We have, therefore, rigorously proven Eq. (5) under the

assumption that Δf− ¼ σ− and Δfþ ¼ σþ, with σ� calcu-
lated using linear scale PSD values and for a sufficiently
high value of the revolution frequency harmonic n. Simple
algebraic manipulation shows that, if any other interpreta-
tion of the width gΔf� would also result in the correct value
of chromaticity, it has to be in the relation gΔf� ¼ αΔf�,
where α is a nonzero scaling factor, the same for both upper
and lower sidebands.

IV. SPECTRUM FITTING PROCEDURES

In Ref. [10], we have shown that the discrete Fourier
transform (DFT) of the longitudinal part of the Schottky
spectrum can be expressed as

ESTIMATION OF TRANSVERSE BUNCH … PHYS. REV. ACCEL. BEAMS 25, 062801 (2022)

062801-5



2
666664

PDFTðω1; bτ1;Ωs0Þ � � � PDFTðω1; bτn;Ωs0Þ
PDFTðω2; bτ1;Ωs0Þ � � � PDFTðω2; bτn;Ωs0Þ

..

. . .
. ..

.

PDFTðωm; bτ1;Ωs0Þ � � � PDFTðωm; bτn;Ωs0Þ

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MðΩs0

Þ

·

2
666664
egðbτ1Þegðbτ2Þ
..
.

egðbτnÞ

3
777775

|fflfflfflfflffl{zfflfflfflfflffl}
A

¼

2
666664
PDFTðω1Þ
PDFTðω2Þ

..

.

PDFTðωmÞ

3
777775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
S

; ð7Þ

where the columns of matrix MðΩs0Þ correspond to the spectra of a single particle with synchrotron amplitude bτi and
nominal synchrotron frequency Ωs0, vector A represents the discrete approximation of the distribution of synchrotron
amplitudes, and vector S is the DFT estimate of the bunch PSD, which can be compared with the experimentally obtained
Schottky spectrum. In the case of the transverse Schottky sidebands, and as was seen in Sec. II, we need to include two
additional parameters, betatron tune and chromaticity, so that the new matrix equation reads

2
666664

PT;�
DFTðω1; bτ1;Ωs0 ; Q;QξÞ � � � PT;�

DFTðω1; bτn;Ωs0 ; Q;QξÞ
PT;�
DFTðω2; bτ1;Ωs0 ; Q;QξÞ � � � PT;�

DFTðω2; bτn;Ωs0 ; Q;QξÞ
..
. . .

. ..
.

PT;�
DFTðωm; bτ1;Ωs0 ; Q;QξÞ � � � PT;�

DFTðωm; bτn;Ωs0 ; Q;QξÞ

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MðΩs0

;Q;QξÞÞ

·

2
666664
egðbτ1Þegðbτ2Þ
..
.

egðbτnÞ

3
777775

|fflfflfflfflffl{zfflfflfflfflffl}
A

¼

2
666664

PT;�
DFTðω1Þ

PT;�
DFTðω2Þ

..

.

PT;�
DFTðωmÞ

3
777775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
S

: ð8Þ

The left-hand sides of the previous two equations can be
interpreted as models which, given the correct set of
parameters, should, in principle, make S match the exper-
imentally measured spectra. Inverting the problem, and
given an experimental spectrum, we may try to fit these
parameters in such a way that the resulting model predicts a
spectrum S that coincides with the measured one. The
number of considered synchrotron amplitudes has to be
smaller than number of the spectrum frequency bins, as
otherwise the problem would be ill posed, and as in
Ref. [10] we take 50 distinct amplitudes in our analyses.
The number of considered frequency bins varies, as will be
explained in the next section, and is in range between 1932
and 6056 bins. In order to determine the correct values of
Ωs0 , Q, Qξ, and A we look for values that minimize the
following cost function:

CðΩs0 ;Q;Qξ;AÞ ¼ j log ½MðΩs0 ;Q;QξÞ ·A�− log½Sexp�j2:
ð9Þ

The log functions are taken pointwise, and j · j is the
standard Euclidean norm. We have decided here to take a
logarithm of the measured and simulated spectrum in order
to be more sensitive to the low-magnitude spectral periph-
eries and more robust to noise, as it was observed that the
noise level in the spectrum is proportional to the spec-
trum value.
As discussed in Ref. [10], we use the Rice distribution

[24] to parametrize the distribution of synchrotron ampli-
tudes. This reduces the problem of estimating the A vector
down to determining no more than two parameters of a Rice

distribution. The minimization of the cost function may be
performed using, for example, one of the many optimizing
routines provided by the SciPy library [25]. In the scope of
this paper, the bound-constrained limited-memory BFGS
method [26] was used.
A great advantage of spectrum fitting procedures is that

one is free to choose the range of used frequencies
ðω1;…;ωnÞ. That means that, if for any reason we need
to exclude part of the spectrum from our analysis, we can
still perform a fit and estimate the desired quantities. In the
process of fitting, all parameters Ωs0 , Q, Qξ, and A are
taken into account. However, not all of them necessarily
have to be fitted. If any of them is known a priori, it can be
taken as a constant parameter, not subject to any change.
Such an approach can considerably decrease the calculation
time and improve fitting precision.

V. ESTIMATION OF BUNCH
CHARACTERISTICS

Equation (7) tells us that the overall shape of the
longitudinal Schottky spectrum is determined by the
nominal synchrotron frequency and the distribution of
synchrotron amplitudes, while for the case of the transverse
sidebands one has to consider, in addition to the previous,
also the contribution of the betatron tune and the chroma-
ticity [see Eq. (8)]. One can, therefore, envisage as possible
the derivation of these quantities using a fitting approach.
Some of them, namely, the betatron tune and the chroma-
ticity, could also, in principle, be obtained from the
Schottky spectrum without using a fitting procedure, as

KACPER LASOCHA and DIOGO ALVES PHYS. REV. ACCEL. BEAMS 25, 062801 (2022)

062801-6



explained in Sec. III. In Ref. [10], we have shown that,
under the assumption of no intrabunch coherent motion, the
distribution of synchrotron amplitudes can be derived from
the longitudinal bunch profile, and vice versa. The nominal
synchrotron frequency can, if needed, also be obtained
from other diagnostics or from calculations based on rf
system parameters [27,28].
We can see that there exists a surplus in the number of

procedures. On the other hand, this surplus can be used
either as a cross-check or as a way to improve the fitting
quality by providing external constant parameters and
reducing the number of parameters to be fit. It is important
to note that all fitting procedures have to take into account
all the parameters which have an impact on the spectrum.
These have to either be fitted or provided as a constant
parameter.
Although mentioned methods may be intermingled in

many possible ways, we will present only a subset of
combinations, which we believe gives a good overview of
most of the use cases. These scenarios will be benchmarked
using experimental Schottky data taken during LHC run 2.
The dataset consists of horizontal and vertical measure-
ments taken at injection energy during three different fills:
7435, 7443, and 7486. Data from both LHC rings are
analyzed. For fill 7435 we analyze beam 1 data, while for
fills 7443 and 7486 we focus on beam 2.
As previously mentioned, fitting procedures do not

require taking the whole Schottky spectrum into consid-
eration. We shall demonstrate this feature by performing a

single fit on a subset of frequencies, as shown, for example,
in Fig. 3, where we can see that the strong coherent peaks
located in both transverse sidebands of the spectrum
coming from the vertical Schottky system (left to the
region J and right to the region K) have been conveniently
excluded from the selected regions. The integrated power
of the experimental and simulated spectra are normalized in
each spectral window so that we do not need to fit
additional gain parameters corresponding to the linear
scaling of longitudinal and transverse sidebands.
The results presented in this section are organized as

follows. Each distinct scenario representing a different
analysis method is described in an independent subsection.
If the scenario involves fitting, the fitting results are
presented separately for every region marked in Fig. 3.
In order to reduce the number of plots, only the fits
corresponding to fill 7443 are presented. In the last
subsection, we present a comparison between the chroma-
ticity estimates obtained for each scenario with the chro-
maticity estimates obtained with the standard rf-modulation
technique.

A. First scenario

In theory, both the betatron tune and the chromaticity
could be calculated based on methods presented in Sec. III.
It requires, however, a signal of very good quality, as we are
not able to exclude any part of the spectrum. In addition, the
unavoidable presence of noise, and especially of coherent

(a)

(b)

FIG. 3. Gray shaded regions show the frequency ranges used in the fitting procedure of the horizontal (a) and the vertical (b) Schottky
spectra for LHC fill 7435. The red vertical line denotes the harmonic of the revolution frequency.
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spectral peaks, can have a very strong impact on the rms
widths of transverse sidebands, thus causing errors in the
calculated chromaticity.

B. Second scenario

In most cases, at least in the LHC, chromaticity cannot be
accurately calculated using Eq. (5). In such cases, we have to
fit the transverse sidebands, or a subset of them, according to
the procedure discussed in Sec. IV. In order to further
constrain the solution space to a plausible region, it is
sometimes desirable to fit as few parameters as possible.
We assume that the nominal synchrotron frequency is
known, either through theprecise knowledge of rf parameters
or from external diagnostics. We estimate the value of the
betatron tune directly from the Schottky spectrum, according
to the procedure described in Sec. III A. This method has
proven to be very robust and can be applied in most of the
cases. Knowing the nominal synchrotron frequency, we can
determine the distribution of synchrotron amplitudes from
fitting the longitudinal portion of the Schottky spectrum.
Finally, only chromaticity is left to be determined through
transverse fitting or, in this case, simply scanning. A
comparison between the experimental and fitted spectrum,
for the different frequency regions, is shown in Fig. 4.

C. Third scenario

In certain circumstances [29], it may happen that we
simply cannot fit the longitudinal part of the Schottky
spectrum. Furthermore, it can also happen that no useful

information is available from external devices. In such
cases, we can rely on only the information contained in the
transverse sidebands of the Schottky spectrum. A com-
parison between the experimental and fitted spectrum, for
the different frequency regions, is shown in Fig. 5.

D. Fourth scenario

The last considered scenario can be seen as an enhanced
version of the third scenario. Again, we fit all the
parameters, apart from the betatron tune, within a single
fitting routine. This time, however, we fit simultaneously
both the longitudinal and the transverse portions of the
Schottky spectrum. In case we have a reliable longitudinal
spectral region, this scenario has a clear advantage over
the third scenario, as it provides more constraints on the
fitted parameters. It also represents the most straightfor-
ward approach for the simultaneous estimation of all
parameters given the entire set of available data. A
comparison between the experimental and fitted spectrum
is shown in Fig. 6.

E. Results

For all the considered scenarios and fills, we present here
the results of the chromaticity estimates. Every estimate is
performed separately for each plane. As a comparison, we
present also the chromaticity calculated from the rf-modu-
lation technique. The analyzed spectra were acquired
before the start of the rf modulation to avoid the strong
spectral distortions caused by it. For that reason, only a
“fairly close-in-time” comparison is possible, as seen from

(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

FIG. 4. Measured (blue lines) transverse and longitudinal Schottky spectrum for LHC fill 7443, compared with the best fitted spectrum
(orange lines) obtained from the second scenario strategy. A–L region labels correspond to frequency ranges equivalently located as
shown in Fig. 3 for fill 7435.
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

FIG. 6. Measured (blue lines) longitudinal and transverse Schottky spectrum for LHC fill 7443, compared with the best fitted spectrum
(orange lines) obtained from the fourth scenario strategy. A–L region labels correspond to frequency ranges equivalently located as
shown in Fig. 3 for fill 7435.

(a) (i)

(b) (j)

(c) (k)

(d) (l)

FIG. 5. Measured (blue lines) transverse Schottky spectrum for LHC fill 7443, compared with the best fitted spectrum (orange lines)
obtained from the third scenario strategy. A–D and I–L region labels correspond to frequency ranges equivalently located as shown in
Fig. 3 for fill 7435.
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the x axis in Figs. 7–9. However, it is important to note that
during all the time windows presented in these plots there
was no change in the current of the sextupole magnets,
indicating that the values of chromaticity should remain
constant.
Analyzing these plots, we may conclude that the results

obtained with scenarios 2–4 are self-consistent and strongly
correlated with rf-modulation measurements. Chromaticity
values calculated using the first scenario are less robust, as
can be observed especially from the results of fill 7486
horizontal and fill 7435 vertical. Such a lack of robustness
can be understood, for example, if we take a look at Fig. 3.
Two strong coherent peaks are present in the vertical
spectrum, just behind the right border of region K and
left border of region J. These peaks have to be included in
the calculations, hence causing Eq. (5) to fail. The exact
same problem was verified for the case of fill 7486
horizontal. For scenarios 2–4, as previously highlighted,
we can exclude such distorted spectral regions and obtain
better and plausible results.

The question remains of whether the accuracy of the
chromaticity estimates is sufficient. The difference between
the chromaticity value estimations provided by the pro-
posed approaches and the rf-modulation technique is
sometimes greater than a unit. It is, however, important
to note that the spread of the presented rf-modulation
results is not negligible and happens to cover several units.
Taking this into account, the noninvasive methods pre-
sented here are shown to provide chromaticity estimates
which are at least comparable to the ones obtained from the
rf-modulation technique.
In order to understand the limitations of the Schottky-

based chromaticity estimation methods presented herein,
we should assess the sensitivity of the spectrum itself
with respect to chromaticity. Such an exercise is prelimi-
narily illustrated in Fig. 10. It is worth noting how subtle
the changes in the spectrum are for different values of

FIG. 7. Chromaticity measurements during LHC fill 7435.

FIG. 8. Chromaticity measurements during LHC fill 7443.

FIG. 9. Chromaticity measurements during LHC fill 7486.

FIG. 10. Simulated lower transverse Schottky sidebands for
different values of chromaticity. Bunch profile and synchrotron
frequency as in fill 7435.
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chromaticity and how challenging this distinction can be
when dealing with real-life Schottky spectra.
We may also note, from Figs. 7–9, that the chromaticity

estimates seem to be more precise and also to agree more
with the estimates from the rf-modulation technique, for
lower values of chromaticity. In Fig. 11, we can see that the
value of the cost function Eq. (9), applied this time not to
the theoretical and experimental spectra but to two theo-
retical ones, of chromaticities, respectively, Qξ ¼ 5 and
Qξ ¼ 7 is the same as the one for spectra with chroma-
ticitiesQξ ¼ 15 andQξ ¼ 18. This observation, verified to
hold for various types of LHC-like profiles, is not neces-
sarily true for shorter bunches.
In all proposed scenarios, the value of betatron tune is

calculated with the MD method, described in Sec. III A.
The high precision of the method is confirmed by the fact
that all the fitted spectra are correctly located with respect

to the experimental ones. Any deviations would result in an
evident misalignment.
As a final sanity check, distributions of synchrotron

amplitudes obtained by following scenarios 2–4 might be
compared. Such an example is shown in Fig. 12, confirm-
ing self-consistency of presented approaches and compares
well with a typical LHC bunch length of 1–1.2 ns.

VI. CONCLUSIONS

The aim of this paper is to revisit, improve, and develop
new methods for transverse Schottky analysis with special
emphasis on noninvasive chromaticity estimates in the
LHC. From a theoretical point of view, the most important
contribution of this work is the formal derivation of the
relationship between the natural chromaticity and the rms
widths of the transverse sidebands in the case of a bunched
beam. This derivation provides an exact and unambiguous
definition for the sideband widths often used to estimate
chromaticity.
Considering the practical aspects, we have proposed a

new algorithm for explicit tune calculation. We have shown
as well that the matrix formalism introduced in Ref. [10] for
the longitudinal part of the spectrum may be extended as
well in order to analyze the transverse part. Moreover, we
have studied how the different types of analyses can
interplay and under what circumstances they can be used.
Finally, we have discussed the sensitivity of the Schottky
spectrum to chromaticity, as a step toward deep under-
standing of the fundamental limitations of Schottky signal
analysis.
The obtained results are self-consistent and compare well

with the reference measurements. Good spectral fits were
clearly shown in Fig. 4–6, where it can be seen that not only
the overall shape of the spectrum is recovered, but also the
internal structure of the synchrotron satellites is extremely
well reproduced.
As a result, the design of an online implementation of the

methods described herein is presently underway with the
purpose of providing the LHC operators with either
continuous or on-demand chromaticity measurements.
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APPENDIX: DIPOLE MOMENT SIGNAL

The dipole moment signal due to a single-particle i can
be given in the following form:

DiðtÞ ∝ IiðtÞ · xiðtÞ;

where IiðtÞ is the intensity signal and by xiðtÞwe denote the
transverse displacement. According to Ref. [15], we have

FIG. 12. Distribution of synchrotron amplitudes during LHC
fill 7443, obtained by following different strategies.

×

FIG. 11. Difference between spectra of a typical LHC bunch for
different values of chromaticity expressed in terms of cost
function (9).
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IiðtÞ ∝ Re

� X∞
n¼−∞

ejnω0½tþbτi sin ðΩsi
tþφsi

Þ�
�
;

where ω0 is the revolution frequency and bτi, Ωsi , and φsi
are, respectively, the amplitude, the frequency, and the
initial phase of a synchrotron motion. Assuming a constant
betatron amplitude x̂, we can write

xiðtÞ ¼ bx cos ½ϕβiðtÞ�;

where ϕβi is the phase of the betatron oscillations.
The betatron frequency of particle i is given by the

product of betatron tune QiðtÞ and the nominal revolution
frequency ω0:

ωβiðtÞ ¼ QiðtÞω0;

which, as a consequence of the synchrotron motion, can be
expressed by

ωβiðtÞ ¼ ½QþcQi cos ðΩsi tþ φsiÞ�ω0; ðA1Þ

where Q is the nominal tune and cQi is the amplitude of the
tune oscillations. A convention here is adopted such that
the amplitude of synchrotron motion bτi is positive, whereas
the amplitude of momentum oscillations bpi and the
amplitude of betatron tune oscillations cQi may be of any
sign, depending on signs of the slip factor η and chroma-
ticity Qξ.
Integrating Eq. (A1) with respect to time gives the phase

of betatron motion:

ϕβiðtÞ ¼ Qω0tþ
cQiω0

Ωsi

sin ðΩsi tþ φsiÞ þ φβi ; ðA2Þ

where φβi is the initial phase of the betatron oscillation.
Finally. the dipole moment reads as follows:

DiðtÞ ∝ IiðtÞ · xiðtÞ

¼ Re

� X∞
n¼−∞

ejnω0½tþbτi sin ðΩsi
tþφsi

Þ�
�bx cos ½ϕβiðtÞ�

¼ bx
2
Re

� X∞
n¼−∞

ejnω0½tþbτi sin ðΩsi
tþφsi

Þ��jϕβi
ðtÞ
�
;

where � denotes summation over both signs. If we expand
ϕβiðtÞ according to Eq. (A2), we can arrange the expression
into three exponents:

DiðtÞ∝Re

� X∞
n¼−∞

ejðn�QÞω0tej½nbτi�ðbQi=Ωsi
Þ�ω0 sinðΩsi

tþφsi
Þejφβi

�
:

By virtue of the Jacobi-Angers expansion

ejz sin θ ¼
X∞
p¼−∞

JpðzÞejpθ;

the second exponent may be transformed, and the sum-
mand takes the following form:

X∞
p¼−∞

Jp

��
nbτi � cQi

Ωsi

�
ω0

	
ejft½ðn�QÞω0þpΩsi

�þφβi
þpφsi

g:

Assuming that the betatron frequency spread is due only
to natural chromaticity, we have

cQi ¼ Qξ
bpi

p0

;

where p0 is the nominal momentum. We also have [see
Eq. (7) in Ref. [30] ] that

bτi ¼ η

Ωsi

bpi

p0

;

where the slip factor η is negative for machines operating
above transition energy (such as the LHC).
We can now rewrite the argument of the Bessel

function as

χ�i;n ≔
�
nbτi � cQi

Ωsi

�
ω0 ¼ ðnη�QξÞ ω0bpi

Ωsip0

:

This gives us a compact form:

DiðtÞ ∝ Re

� X∞
n;p¼−∞

Jpðχ�i;nÞejft½ðn�QÞω0þpΩsi
�þφβi

þpφsi
g
�
:

It is important to note that the value of Q can be
decomposed into its integer and fractional part:
Q ¼ QI þQF. If the integer part is not zero, transverse
sidebands corresponding to the nth harmonic of the
revolution frequency are, in fact, located around n −QI
and nþQI harmonics. In order to derive an expression
convenient for studying the spectrum around the given
harmonic of the revolution frequency, we will transform the
sum above by the following shift. For every summand, we
replace the index n by n ∓ QI (the choice of sign is
opposite to χ�i;n). We can do so, as every summand remains
included in the infinite sum. The dipole moment signal
reads then as follows:

DiðtÞ∝Re

� X∞
n;p¼−∞

Jpðχ�i;n∓QI
Þejft½ðn�QFÞω0þpΩsi

�þφβi
þpφsi

g
�
;

where the summand indexed by n describes the vicinity of
the nth harmonic of the revolution frequency.
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