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c Aix-Marseille-Université, Université de Toulon, CNRS, CPT, Marseille, France

d PRISMA+ Cluster of Excellence and Institut für Kernphysik, Johannes
Gutenberg-Universität Mainz, Germany

e Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz, Germany

f GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

g KEK Theory Center, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba,
Ibaraki 305-0801, Japan

h Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 2, D-64289
Darmstadt, Germany

i John von Neumann-Institut für Computing NIC, Deutsches Elektronen-Synchrotron DESY,
Platanenallee 6, 15738 Zeuthen, Germany

Abstract

Euclidean time windows in the integral representation of the hadronic vacuum polarization
contribution to the muon g − 2 serve to test the consistency of lattice calculations and may
help in tracing the origins of a potential tension between lattice and data-driven evaluations.
In this paper, we present results for the intermediate time window observable computed using
O(a) improved Wilson fermions at six values of the lattice spacings below 0.1 fm and pion masses
down to the physical value. Using two different sets of improvement coefficients in the definitions
of the local and conserved vector currents, we perform a detailed scaling study which results
in a fully controlled extrapolation to the continuum limit without any additional treatment of
the data, except for the inclusion of finite-volume corrections. To determine the latter, we use
a combination of the method of Hansen and Patella and the Meyer-Lellouch-Lüscher procedure
employing the Gounaris-Sakurai parameterization for the pion form factor. We correct our
results for isospin-breaking effects via the perturbative expansion of QCD+QED around the
isosymmetric theory. Our result at the physical point is awin

µ = (237.30 ± 0.79stat ± 1.22syst) ×
10−10, where the systematic error includes an estimate of the uncertainty due to the quenched
charm quark in our calculation. Our result displays a tension of 3.9σ with a recent evaluation
of awin

µ based on the data-driven method.
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I. INTRODUCTION

The anomalous magnetic moment of the muon, aµ, plays a central role in precision tests of
the Standard Model (SM). The recently published result of the direct measurement of aµ by the
Muon g − 2 Collaboration [1] has confirmed the earlier determination by the E821 experiment
at BNL [2]. When confronted with the theoretical estimate published in the 2020 White Paper
[3], the combination of the two direct measurements increases the tension with the SM to 4.2σ.
The SM prediction of Ref. [3] is based on the estimate of the leading-order hadronic vacuum

polarization (HVP) contribution, ahvp
µ , evaluated from a dispersion integral involving hadronic

cross section data (“data-driven approach”) [4–9], which yields ahvp
µ = (693.1 ± 4.0) × 10−10

[3]. The quoted error of 0.6% is subject to experimental uncertainties associated with measured
cross section data.

Lattice QCD calculations for ahvp
µ [10–24] as well as for the hadronic light-by-light scattering

contribution ahlbl
µ [25–39] have become increasingly precise in recent years (see [40–42] for recent

reviews). Although these calculations do not rely on the use of experimental data, they face nu-
merous technical challenges that must be brought under control if one aims for a total error that
can rival or even surpass that of the data-driven approach. In spite of the technical difficulties,
a first calculation of ahvp

µ with a precision of 0.8% has been published recently by the BMW

collaboration [20]. Their result of ahvp
µ = (707.5 ± 5.5) × 10−10 is in slight tension (2.1σ) with

the White Paper estimate and reduces the tension with the combined measurement from E989
and E821 to just 1.5σ. This has triggered several investigations that study the question whether
the SM can accommodate a higher value for ahvp

µ without being in conflict with low-energy
hadronic cross section data [43] or other constraints, such as global electroweak fits [44–47]. At
the same time, the consistency among lattice QCD calculations is being scrutinized with a focus
on whether systematic effects such as discretization errors or finite-volume effects are sufficiently
well controlled. Moreover, when comparing lattice results for ahvp

µ from different collaborations,
one has to make sure that they refer to the same hadronic renormalization scheme that expresses
the bare quark masses and the coupling in terms of measured hadronic observables.

Given the importance of the subject and in view of the enormous effort required to produce a
result for ahvp

µ at the desired level of precision, it has been proposed to perform consistency checks
among different lattice calculations in terms of suitable benchmark quantities that suppress,
respectively enhance individual systematic effects. These quantities are commonly referred to
as “window observables”, whose definition is given in section II.

In this paper we report our results for the so-called “intermediate” window observables, for
which the short-distance as well as the long-distance contributions in the integral representation
of ahvp

µ are reduced. This allows for a straightforward and highly precise comparison with
the results from other lattice calculations and the data-driven approach. This constitutes a
first step towards a deeper analysis of a possible deviation between lattice and phenomenology.
Indeed, our findings present further evidence for a strong tension between lattice calculations
and the data-driven method. At the physical point we obtain awin

µ = (237.30 ± 1.46) × 10−10

(see Eq. (45)) for a detailed error budget), which is 3.9σ above the recent phenomenological
evaluation of (229.4± 1.4)× 10−10 quoted in Ref. [48].

This paper is organized as follows: We motivate and define the window observables in Sect. II,
before describing the details of our lattice calculation in Sect. III. In Sect. IV we discuss ex-
tensively the extrapolation to the physical point, focussing specifically on the scaling behavior,
and present our results for different isospin components and the quark-disconnected contribu-
tion. Sections V and VI describe our determinations of the charm quark contribution and of
isospin-breaking corrections, respectively. Our final results are presented and compared to other
determinations in Sect. VII. In-depth descriptions of technical details and procedures, as well
as data tables, are relegated to several appendices. Details on how we correct for mistunings of
the chiral trajectory are described in Appendices A and B, the determination of finite-volume
corrections is discussed in Appendix C, while the estimation of the systematic uncertainty re-
lated to the quenching of the charm quark is presented in Appendix D. Ancillary calculations of
pseudoscalar masses and decay constants that enter the analysis are described in Appendix E.
Finally, Appendix F contains extensive tables of our raw data.
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II. WINDOW OBSERVABLES

The most widely used approach to determine the leading HVP contribution ahvp
µ in lattice

QCD is the “time-momentum representation” (TMR) [49], i.e.

ahvp
µ =

(α
π

)2
∫ ∞

0
dt K̃(t)G(t) , (1)

where G(t) is the spatially summed correlation function of the electromagnetic current

G(t) = −a
3

3

3∑

k=1

∑

~x

〈jem
k (t, ~x) jem

k (0)〉 ,

jem
µ = 2

3 ūγµu− 1
3 d̄γµd− 1

3 s̄γµs+ 2
3 c̄γµc+ . . . , (2)

K̃(t) is a known kernel function (see Appendix B of Ref. [10]), and the integration is performed
over the Euclidean time variable t. By considering the contributions from the light (u, d), strange

and charm quarks to G(t) one can perform a decomposition of ahvp
µ in terms of individual quark

flavors. It is also convenient to consider the decomposition of the electromagnetic current into
an isovector (I = 1) and an isoscalar (I = 0) component according to

jem
µ = jI=1

µ + jI=0
µ + . . . ,

jI=1
µ = 1

2(ūγµu− d̄γµd), jI=0
µ = 1

6(ūγµu+ d̄γµd− 2s̄γµs) (3)

where the ellipsis in the first line denotes the missing charm and bottom contributions.
One of the challenges in the evaluation of ahvp

µ is associated with the long-distance regime of

the vector correlator G(t). Owing to the properties of the kernel K̃(t), the integrand K̃(t)G(t)

has a slowly decaying tail that makes a sizeable contribution to ahvp
µ in the region t >∼ 2 fm.

However, the statistical error in the calculation of G(t) increases exponentially with t, which
makes an accurate determination a difficult task. Furthermore, it is the long-distance regime of
the vector correlator that is mostly affected by finite-size effects.

The opposite end of the integration interval, i.e. the interval t <∼ 0.4 fm, is particularly
sensitive to discretization effects which must be removed through a careful extrapolation to
the continuum limit, possibly involving an ansatz that includes sub-leading lattice artefacts,
especially if one is striving for sub-percent precision.

At this point it becomes clear that lattice results for ahvp
µ are least affected by systematic

effects in an intermediate subinterval of the integration in Eq. (1), as already recognized in [49].
This led the authors of Ref. [13] to introduce three “window observables”, each defined in terms
of complementary sub-domains with the help of smoothed step functions. To be specific, the
short-distance (SD), intermediate distance (ID) and long-distance (LD) window observables are
given by

(ahvp
µ )SD ≡

(α
π

)2
∫ ∞

0
dt K̃(t)G(t) [1−Θ(t, t0,∆)] (4)

(ahvp
µ )ID ≡

(α
π

)2
∫ ∞

0
dt K̃(t)G(t) [Θ(t, t0,∆)−Θ(t, t1,∆)] (5)

(ahvp
µ )LD ≡

(α
π

)2
∫ ∞

0
dt K̃(t)G(t) Θ(t, t1,∆) , (6)

where ∆ denotes the width of the smoothed step function Θ defined by

Θ(t, t′,∆) ≡ 1
2

(
1 + tanh[(t− t′)/∆]

)
. (7)

The widely used choice of intervals and smoothing width that we will follow is

t0 = 0.4 fm, t1 = 1.0 fm and ∆ = 0.15 fm. (8)

The original motivation for introducing the window observables in Ref. [13] was based on
the observation that the relative strengths and weaknesses of the lattice QCD and the R-ratio
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approach complement each other when the evaluations using either method are restricted to non-
overlapping windows, thus achieving a higher overall precision from their combination. Since
then it has been realized that the window observables serve as ideal benchmark quantities for as-
sessing the consistency of lattice calculations, since the choice of sub-interval can be regarded as
a filter for different systematic effects. Furthermore, the results can be confronted with the cor-
responding estimate using the data-driven approach. This allows for high-precision consistency
checks among different lattice calculations and between lattice QCD and phenomenology.

In this paper, we focus on the intermediate window and use the simplified notation

awin
µ ≡ (ahvp

µ )ID. (9)

We remark that the observable awin
µ , which accounts for about one third of the total ahvp

µ , can
be obtained from experimental data for the ratio

R(s) ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(10)

via the dispersive representation of the correlator (2) [49]. How different intervals of center-
of-mass energy contribute to the different window observables in the data-driven approach is
investigated in Appendix B; similar observations have already been made in Refs. [48, 50, 51].
For the intermediate window awin

µ , the relative contribution of the region
√
s < 600 MeV is

significantly suppressed as compared to the quantity ahvp
µ . Instead, the relative contribution

of the region
√
s > 900 MeV, including the φ meson contribution, is somewhat enhanced1.

Interestingly, the region of the ρ and ω mesons between 600 and 900 MeV makes about the
same fractional contribution to awin

µ as to ahvp
µ , namely 55 to 60%. Thus if the spectral function

associated with the lattice correlator G(t) was for some reason enhanced by a constant factor
(1 + ε) in the interval 600 <

√
s/MeV < 900 relative to the experimentally measured spectral

function R(s)/(12π2), it would approximately lead to an enhancement by a factor (1 + 0.6ε) of

both ahvp
µ and awin

µ . Finally, we note that the relative contributions of the three
√
s intervals

are rather similar for awin
µ as for the running of the electromagnetic coupling from Q2 = 0 to

Q2 = 1 GeV2.

III. CALCULATION OF awin
µ ON THE LATTICE

A. Gauge ensembles

Our calculation employs a set of 24 gauge ensembles generated as part of the CLS (Coordi-
nated Lattice Simulations) initiative using Nf = 2 + 1 dynamical flavors of non-perturbatively
O(a) improved Wilson quarks and the tree-level O(a2) improved Lüscher-Weisz gauge action
[52]. The gauge ensembles used in this work were generated for constant average bare quark
mass such that the improved bare coupling g̃0 [53] is kept constant along the chiral trajectory.
Six of the ensembles listed in Table I realize the SU(3)f -symmetric point mu = md = ms cor-
responding to mπ = mK ≈ 420 MeV. Pion masses lie in the range mπ ≈ 130− 420 MeV. Seven
of the ensembles used have periodic (anti-periodic for fermions) boundary conditions in time,
while the others admit open boundary conditions [54]. All ensembles included in the final anal-
ysis satisfy mπL >∼ 4. Finite-size effects can be checked explicitly for mπ = 280 and 420 MeV,
where in each case two ensembles with different volumes but otherwise identical parameters are
available. The ensembles with volumes deemed to be too small are marked by an asterisk in
Table I and are excluded from the final analysis.

The QCD expectation values are obtained from the CLS ensembles by including appropriate
reweighting factors, including a potential sign of the latter [55]. A negative reweighting factor,
which originates from the handling of the strange quark, is found on fewer than 0.5% of the
gauge field configurations employed in this work.

1 Contributions as massive as the J/ψ, however, make again a smaller relative contribution to awin
µ than to ahvpµ .
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TABLE I: Parameters of the simulations: the bare coupling β = 6/g2
0 , the lattice dimensions, the lattice

spacing a in physical units extracted from [56], the pion and kaon masses and the physical size of the
lattice, the number of gauge field configurations used for the connected light- and strange-quark contri-
butions (penultimate column) and for the disconnected contribution (last column). Ensembles with an
asterisk are not included in the final analysis but used to control finite-size effects. The ensembles A653,
A654, B450, N451, D450, D452, and E250 have periodic boundary conditions in time, all others have
open boundary conditions.

Id β (La )3 × T
a a [fm] mπ [MeV] mK [MeV] mπL L [fm] #confs conn #confs disc

A653 3.34 243 × 96 0.0993 421(4) 421(4) 5.1 2.4 4000 -

A654 243 × 96 331(3) 451(5) 4.0 2.4 4000 -

H101 3.40 323 × 96 0.08636 416(4) 416(4) 5.8 2.8 2000 -

H102 323 × 96 352(4) 437(4) 4.9 2.8 1900 1900

H105∗ 323 × 96 277(3) 462(5) 3.9 2.8 2000 1000

N101 483 × 128 278(3) 461(5) 5.8 4.1 1500 1300

C101 483 × 96 219(2) 470(5) 4.6 4.1 2000 2000

B450 3.46 323 × 64 0.07634 415(4) 415(4) 5.1 2.4 1500 -

S400 323 × 128 349(4) 440(4) 4.3 2.4 2800 1700

N451 483 × 128 286(3) 461(5) 5.3 3.7 1000 1000

D450 643 × 128 215(2) 475(5) 5.3 4.9 500 500

D452 643 × 128 154(2) 482(5) 3.8 4.9 900 800

H200∗ 3.55 323 × 96 0.06426 416(5) 416(5) 4.3 2.1 2000 -

N202 483 × 128 412(5) 412(5) 6.4 3.1 900 -

N203 483 × 128 346(4) 442(5) 5.4 3.1 1500 1500

N200 483 × 128 284(3) 463(5) 4.4 3.1 1700 1700

D200 643 × 128 200(2) 480(5) 4.2 4.1 2000 1000

E250 963 × 192 128(1) 489(5) 4.0 6.2 600 1000

N300 3.70 483 × 128 0.04981 419(4) 419(4) 5.1 2.4 1700 -

N302 483 × 128 344(4) 450(5) 4.2 2.4 2200 1000

J303 643 × 192 257(3) 474(5) 4.1 3.2 1000 500

E300 963 × 192 174(2) 490(5) 4.2 4.8 600 500

J500 3.85 643 × 192 0.039 411(4) 411(4) 5.2 2.5 1200 -

J501 643 × 192 332(3) 443(4) 4.2 2.5 400 -

For the bulk of our pion masses, down to the physical value, results were obtained at four
values of the lattice spacing in the range a = 0.050 − 0.086 fm. At and close to the SU(3)f -
symmetric point, four more ensembles have been added that significantly extend the range of
available lattice spacings to a = 0.039− 0.099 fm, which allows us to perform a scaling test with
unprecedented precision.

B. Renormalization and O(a)-improvement

To reduce discretization effects, on-shell O(a)-improvement has been fully implemented. CLS
simulations are performed using a non-perturbatively O(a) improved Wilson action [57], there-
fore we focus here on the improvement of the vector current in the (u, d, s) quark sector. To
further constrain the continuum extrapolation and explicitly check our ability to remove lead-
ing lattice artefacts, two discretizations of the vector current are used, the local (L) and the
point-split (C) currents

J (L),a
µ (x) = ψ(x)γµ

λa

2
ψ(x) , (11a)

J (C),a
µ (x) =

1

2

(
ψ(x+ aµ̂)(1 + γµ)U †µ(x)

λa

2
ψ(x)− ψ(x)(1− γµ)Uµ(x)

λa

2
ψ(x+ aµ̂)

)
, (11b)

where ψ denotes a vector in flavor space, λ are the Gell-Mann matrices, and Uµ(x) is the
gauge link in the direction µ̂ associated with site x. With the local tensor current defined as
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Σa
µν(x) = −1

2 ψ(x)[γµ, γν ]λ
a

2 ψ(x), the improved vector currents are given by

J (α),a,I
µ (x) = J (α),a

µ (x) + ac
(α)
V (g0) ∂̃νΣa

µν(x) , α = L, C , (12)

where ∂̃ is the symmetric discrete derivative ∂̃νf(x) = (1/2a) (f(x+ a)− f(x− a)). The coeffi-

cients c
(α)
V have been determined non-perturbatively in Ref. [58] by imposing Ward identities in

large volume ensembles and independently in [59] using the Schrödinger functional (SF) setup.
The availability of two independent sets allows us to perform detailed scaling tests, which is a
crucial ingredient for a fully controlled continuum extrapolation.

The conserved vector current does not need to be further renormalized. For the local vector
current, the renormalization pattern, including O(a)-improvement, has been derived in Ref. [60].
Following the notations of Ref. [58], the renormalized isovector and isoscalar parts of the elec-
tromagnetic current read

J (L),3,R
µ (x) = Z3 J

(L),3,I
µ (x) , (13a)

J (L),8,R
µ (x) = Z8 J

(L),8,I
µ (x) + Z80 J

(L),0,I
µ (x) , (13b)

where J0
µ = 1

2ψγµψ is the flavor-singlet current and

Z3 = ZV

[
1 + 3bVam

av
q + bVamq,l

]
, (14a)

Z8 = ZV

[
1 + 3bVam

av
q +

bV
3
a(mq,l + 2mq,s)

]
, (14b)

Z80 = ZV

(
1

3
bV + fV

)
2√
3
a(mq,l −mq,s) . (14c)

Here, mq,l and mq,s are the subtracted bare quark masses of the light and strange-quarks re-
spectively defined in Appendix E and mav

q = (2mq,l +mq,s)/3 stands for the average bare quark
mass. The renormalization constant in the chiral limit, ZV, and the improvement coefficients
bV and bV, have been determined non-perturbatively in Ref. [58]. Again, independent determi-
nations using the SF setup are available in [59, 61]. The coefficient fV, which starts at order g6

0

in perturbation theory [58], is unknown but expected to be very small and is therefore neglected
in our analysis.

Thus, in addition to having two discretizations of the vector current, we also have at our
disposal two sets of improvement coefficients that can be used to benchmark our continuum
extrapolation:

• Set 1 : using the improvement coefficients obtained in large-volume simulations in Ref. [58].

• Set 2 : using ZV and cV from [59], bV and bV from [61], using the SF setup.

Note, in particular, that the improvement coefficients cV, bV and bV have an intrinsic ambiguity
of order O(a). Thus, for a physical observable, we expect different lattice artefacts at order
O(an) with n ≥ 2. This will be considered in Section IV C.

C. Correlation functions

The vector two-point correlation function is computed with the local vector current at the
source and either the local or the point-split vector current at the sink. The corresponding
renormalized correlators are

G(LL),R(t) = Z2
3 G

(LL),33,I(t) +
1

3
Z2

8 G
(LL),88,I(t) +

1

3
Z8Z80

(
G(LL),80,I(t) +G(LL),08,I(t)

)
, (15a)

G(CL),R(t) = Z3G
(CL),33,I(t) +

1

3
Z8G

(CL),88,I(t) +
1

3
Z80G

(CL),80,I(t) , (15b)

with the improved correlators

G(α L),ab,I(t) = −a
3

3

3∑

k=1

∑

~x

〈 J (α),a,I
k (t, ~x) J

(L),b,I
k (0) 〉 , α = L, C . (16)
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In the absence of QED and strong isospin breaking, there are only two sets of Wick con-
tractions, corresponding to the quark-connected part and the quark-disconnected part of the
vector two-point functions. The method used to compute the connected contribution has been
presented previously in [17]. In this work we have added several new ensembles and have sig-
nificantly increased our statistics, especially for our most chiral ensembles. The method used to
compute the disconnected contribution involving light and strange quarks is presented in detail
in Ref. [62]. Note that we neglect the charm quark contribution to disconnected diagrams in
the present calculation.

D. Treatment of statistical errors and autocorrelations

Statistical errors are estimated using the Jackknife procedure with blocking to reduce the
size of auto-correlations. In practice, the same number of 100 Jackknife samples is used for all
ensembles to simplify the error propagation. In a fit, samples from different ensembles are then
easily matched.

Our analysis makes use of the pion and kaon masses, their decay constants, the Wilson
flow observable t0, as well as the Gounaris-Sakurai parameters entering the estimate of finite-
size effects. These observables are always estimated on identical sets of gauge configurations
and using the same blocking procedure, such that correlations are easily propagated using the
Jackknife procedure.

The light and strange-quark contributions have been computed on the same set of gauge
configurations, except for A654 where only the connected strange-quark contribution has been
calculated. The quark-disconnected contribution is also obtained on the same set of configura-
tions for most ensembles (see Table I). When it is not, correlations are not fully propagated;
this is expected to have a very small impact on the error, since the disconnected contribution
has a much larger relative statistical error.

The charm quark contribution, which is at the one-percent level, is obtained using a smaller
subset of gauge configurations. Since its dependence on the ratio of pion mass to decay constant
(mπ/fπ) is rather flat, the error of this ratio is neglected in the chiral extrapolation of the charm
contribution.

In order to test the validity of our treatment of statistical errors, we have performed an inde-
pendent check of the entire analysis using the Γ-method [63] for the estimation of autocorrelation
times and statistical uncertainties. The propagation of errors is based on a first-order Taylor
series expansion with derivatives obtained from automatic differentiation [64]. Correlations of
observables based on overlapping subsets of configurations are fully propagated and the results
confirm the assumptions made above.

E. Results for awin
µ on individual ensembles

For the intermediate window observable, the contribution from the noisy tail of the correlation
function is exponentially suppressed and the lattice data are statistically very precise. Thus,
on each ensemble, awin

µ is obtained using Eq. (5) after replacing the integral by a discrete sum
over timeslices. Since the time extent of our correlator is far longer than t1 = 1.0 fm, we can
safely replace the upper bound of Eq. (5) by T/2, with T the time extent of the lattice. The
results for individual ensembles are summarized in Tables VIII, IX and X. On ensemble E250,
corresponding to a pion mass of 130 MeV, we reach a relative statistical precision of about two
permille for both the isovector and isoscalar contributions. The integrands used to obtain awin

µ

are displayed in Fig. 1.
Our simulations are performed in boxes of finite volume L3 with mπL >∼ 4, and corrections

due to finite-size effects (FSE) are added to each ensemble individually prior to any continuum
and chiral extrapolation. This is the only correction applied to the raw lattice data. FSE
are dominated by the ππ channel and mostly affect the isovector correlator at large Euclidean
times. For the intermediate window observable, they are highly suppressed compared to the
full hadronic vacuum polarization contribution. Despite this suppression, FSE in the isovector
channel are not negligible and require a careful treatment. They are of the same order of
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G(t)K̃(t) (Θ(t, t0, ∆) − Θ(t, t1, ∆)) /mµ
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Charm (x10)

FIG. 1: Integrands used to compute the intermediate window awin
µ for the isovector, isoscalar and charm

quark contributions. The isoscalar contribution does not include the charm quark contribution. The data
has been obtained on ensemble E250, which has close-to-physical quark masses, using two local vector
currents and set 1 of renormalization and improvement coefficients.

magnitude as the statistical precision for our most chiral ensemble and enhanced at larger pion
masses. In the isoscalar channel, FSE are included only at the SU(3)f point where mπ = mK .
The methodology is presented in Appendix C, and the corrections we have applied to the lattice
data are given in the last column of Tables VI and V respectively for Strategy 1 and 2. In our
analysis, we have conservatively assigned an uncertainty of 25% to these finite-size corrections,
in order to account for any potential effect not covered by the theoretical approaches described
in Appendix C. In addition to the ensembles H105 and H200 that are only used to cross-check
the FSE estimate, ensembles S400 and N302 are also affected by large finite-volume corrections.
We exclude those ensembles in the isovector channel.

IV. EXTRAPOLATION TO THE PHYSICAL POINT

A. Definition of the physical point in iso-symmetric QCD

Our gauge ensembles have been generated in the isospin limit of QCD with ml ≡ mu =
md, neglecting strong isospin-breaking effects and QED corrections. Naively, those effects are
expected to be of order O((md − mu)/ΛQCD) ≈ 1% and O(α) ≈ 1%, and are not entirely
negligible at our level of precision. In Ref. [65], although the authors used a different scheme
to define their iso-symmetric setup, those corrections have been found to be of the order of
0.4% for this window observable. A similar conclusion was reached in Ref. [13] although only
a subset of the diagrams was considered. This correction will be discussed in Section VI. Only
in full QCD+QED is the precise value of the observable unambiguously defined: the separation
between its iso-symmetric value and the isospin-breaking correction is scheme dependent. In
Section IV D, we provide the necessary information to translate our result into a different scheme.

Throughout our calculation, we define the ‘physical’ point in the (mπ,mK) plane by imposing
the conditions [66–68]

mπ = (mπ0)phys, (17)

2m2
K −m2

π = (m2
K+ +m2

K0 −m2
π+)phys. (18)

Inserting the PDG values [69] on the right-hand side, our physical iso-symmetric theory is thus
defined by the values

mπ = 134.9768(5) MeV , mK = 495.011(10) MeV . (19)

We note that since our gauge ensembles have been generated at constant sum of the bare quark
masses, the linear combination (m2

K+m2
π/2) is approximately constant. Two different strategies

are used to extrapolate the lattice data to the physical point.
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a. Strategy 1 We use the gradient flow observable t0 [70] as an intermediate scale and the
dimensionless parameters

Φ2 = 8t0m
2
π, Φ4 = 8t0(m2

K + 1
2m

2
π) (20)

as proxies for the light and the average quark mass as the physical point is approached. In the
expressions of Φ2 and Φ4, t0 is the pion- and kaon-mass dependent flow observable; we use the
notation tsym

0 to denote its value at the SU(3)f -symmetric point. We adopt the physical-point
value

√
8t0 = 0.4081(20)(37) fm from Ref. [71], obtained by equating the linear combination of

pseudoscalar-meson decay constants

fKπ =
2

3

(
fK +

1

2
fπ

)
(21)

to its physical value, set by the PDG values of the decay constants given below. Ref. [71] is an
update of the work presented in [56] and includes a larger set of ensembles, including ensembles
close to the physical point. We note that in Refs. [56, 71] the absolute scale was determined
assuming a slightly different definition of the physical point: the authors used the meson masses
corrected for isospin-breaking effects as in [72], mπ = 134.8(3) MeV and mK = 494.2(3) MeV.
Using the NLO χPT expressions, we have estimated the effect on fKπ of these small shifts in
the target pseudoscalar meson masses to be at the sub-permille level and therefore negligible for
our present purposes.

b. Strategy 2 Here we use fπ-rescaling, which was already presented in our previous
work [17], and express all dimensionful quantities in terms of the ratio fphys

π /(af lat
π ), where

af lat
π can be computed precisely on each ensemble. In this case, the intermediate scale t0 is not

needed and we use the following dimensionless proxies for the quark masses,

ỹ =
m2
π

8πf2
π

, yKπ =
m2
K + 1

2m
2
π

8πf2
Kπ

. (22)

As Φ4, the proxy yKπ is approximately constant along our chiral trajectory. Since all relevant
observables have been computed as part of this project, this method has the advantage of being
fully self-consistent, and all correlations can be fully propagated. It will be our preferred strategy.
We use the following input to set the scale in our iso-symmetric theory [69, 73],

fπ = 130.56(14) MeV . (23)

The quantity yKπ is only used to correct for a small departure of the CLS ensembles from
the physical value of this quantity, which we obtain using fK = 157.2(5) MeV [69, 73]. The
latter, phenomenological value of fK implies a ratio fK/fπ that is consistent with the latest
lattice determinations [74–76]. The impact of the uncertainty of fK on awin

µ is small2, δawin
µ '

0.10×10−10, and occurs mainly through the strange contribution. In the isosymmetric theory, we
take the phenomenological values of the triplet (mπ,mK , fπ) as part of the definition of the target
theory, and therefore only include the uncertainty from fK in our results. By contrast, in the
final result including isospin-breaking effects, which we compare to a data-driven determination
of awin

µ , we include the experimental uncertainties of all quantities used as input.
The observables mπ, mK , fπ and fK , as well as t0/a

2 have been computed on all gauge
ensembles and corrected for finite-size effects [77]. Their values for all ensembles are listed in
Table VII.

B. Fitting procedure

We now present our strategy to extrapolate the data to the physical point in our iso-symmetric
setup. The ensembles used in this work have been generated such that the physical point is
approached keeping

XK = {Φ4, yKπ} (24)

2 The sensitivity of awin
µ to the value of fK can be derived from Table II.
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approximately constant, where the two entries correspond respectively to Strategy 1 and 2.
To account for the small mistuning, only a linear correction in ∆XK = Xphys

K − XK is thus
considered. To improve the fit quality, a dedicated calculation of the dependence of awin

µ on XK

has been performed, which is described in Appendix A. This analysis does not yet include all
ensembles in the final result, and hence we decided to not apply this correction ensemble-by-
ensemble prior to the global extrapolation to the physical point. Instead, we have used ∆XK

to fix suitable priors on the fit parameter γ0 in Eq. (26), which parametrizes the locally linear
dependence on XK . The values of these priors are given in Appendix A.

To describe the light quark dependence beyond the linear term in

Xπ = {Φ2, ỹ} (25)

(respectively for Strategy 1 and 2), we allow for different fit ansätze encoded in the function
fch(Xπ). The precise choice of fch is motivated on physical grounds and depends on the quark
flavor. The specific forms will be discussed below. Since on-shell O(a)-improvement has been
fully implemented, leading discretization artefacts are expected to scale as a2/t0 up to logarith-
mic corrections [78, 79]. In the case of the vacuum polarization function, a further logarithmic
correction proportional to a2 log a was discovered in [80]. Contrary to standard logarithmic cor-
rections, it does not vanish as the coupling g0 goes to zero due to correlators being integrated over
very short distances. However, the intermediate window strongly suppresses the short-distance
contribution, so that we do not expect this source of logarithmic enhancement to be relevant
here. However, in the absence of further information on the relevant exponents of log a in full
QCD [79], we still consider a possible logarithmic correction with unit exponent. Moreover, to
check whether we are in the scaling regime, we consider higher order terms proportional to a3.
Finally, we also allow for a term ∝ X2

aXπ that describes pion-mass dependent discretization
effects of order a2.

Thus, for each discretization of the vector correlator, the continuum and chiral extrapolation
is done independently assuming the most general functional form

awin,f
µ (Xa, Xπ, XK) = awin,f

µ (0, Xexp
π , Xexp

K ) + β2X
2
a + β3X

3
a + δ X2

aXπ + εX2
a logXa

+ γ0

(
XK −Xphys

K

)
+ γ1 (Xπ −Xexp

π ) + γ2 (fch(Xπ)− fch(Xexp
π )) , (26)

where ‘f’ can be any flavor content and Xa = a/
√
t0 parametrizes the lattice spacing. Despite

the availability of data from six lattice spacings and more than twenty ensembles, trying to fit all
parameters is not possible. Thus each analysis is duplicated by switching on/off the parameters
β3, δ and ε that control the continuum extrapolation. In addition, for each functional form fch

of the chiral dependence, different analyses are performed by imposing cuts in the pion mass
(no cut, < 400 MeV, < 300 MeV) and/or in the lattice spacing.

Since several different fit ansätze can be equally well motivated, we apply the model averaging
method presented in [81, 82] where the Akaike Information Criterion (AIC) is used to weight
different analyses and to estimate the systematic error associated with the fit ansatz (see also [20,
83]). Thus, to each analysis (n) described above (defined by a specific choice of fch, applying
cuts in the pion mass or in the lattice spacing, and including or excluding terms proportional
to β3, δ, ε) we associate a weight wn given by

wn = N exp

[
−1

2

(
χ2 + 2k − 2n

)]
(27)

where χ2 is the minimum value of the chi-squared of the correlated fit, k is the number of fit
parameters and n is the number of data points included in the fit3. The normalization factor
N is such that the sum over all the analyses’ weights are equal to one. Each analysis is again
duplicated by either using the local-local or the local-conserved correlators. For those analyses,

3 Different definitions of the weight factor have been proposed in the literature. In [20] the authors used wn =
N exp

[
− 1

2

(
χ2 + 2k − n

)]
which, applied to our data for a given number of fit parameters, tends to favor fits

that discard many data points. This issue will be discussed further below.
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we use a flat weight. Finally, when cuts are performed, some fits may have very few degrees of
freedom, and hence we exclude all analyses that contain fewer than three degrees of freedom.
The central value of an observable O is then obtained by a weighted average over all analyses

Ō =
∑

n

wnOn , (28)

and our estimate of the systematic error associated with the extrapolation to the physical point
is given by

(δO)2
syst =

∑

n

wn(On − Ō)2 . (29)

The statistical error is obtained from the Jackknife procedure using the estimator defined by
Eq. (28).

C. The continuum extrapolation at the SU(3)f-symmetric point

To reach sub-percent precision, a good control over the continuum limit is mandatory [79, 80].
As discussed below, it is one of the largest contributions to our total error budget. Thus,
before presenting our final result at the physical point, we first demonstrate our ability to
perform the continuum extrapolation. We have implemented three different checks: First, two
discretizations of the vector correlator are used and the extrapolations to the physical point are
done independently. Both discretizations are expected to agree within errors in the continuum
limit. Physical observables computed using Wilson-clover quarks approach the continuum limit
with a rate ∝ a2 once the action and all currents are non-perturbatively O(a)-improved [53].
To check our ability to fully remove O(a) lattice artefacts in the action and the currents, two
independent sets of improvement coefficients are used: both of them should lead to an a2

scaling behavior but might differ by higher-order corrections. Finally, we have included six
lattice spacings at the SU(3)f -symmetric point, all of them below 0.1 fm and down to 0.039 fm,
to scrutinize the continuum extrapolation. In this section, we discuss those three issues, with a
specific focus on the ensembles with SU(3)f symmetry.

Ensembles with six different lattice spacings in the range [0.039 : 0.099] fm are available
for mπ = mK ≈ 420 MeV. Since the pion masses do not match exactly, we first describe our
procedure to interpolate our SU(3)f -symmetric ensembles to a single value of Xπ = X?

π, to be
be able to focus solely on the continuum extrapolation. This reference point X?

π is chosen to
minimize the quadratic sum of the shifts δXπ = Xπ −X?

π.
We start by applying the finite-size effect correction discussed in the previous section to all

ensembles. Then, a global fit over all the ensembles and simultaneously over both discretizations
of the correlation function is performed using the functional form of Eq. (26) without any cut
in the pion mass. Thus (γ0, γ1, γ2) are fit parameters common to both discretizations, while the
others are discretization-dependent. For the isovector contribution, we use the choice fch(Xπ) =
1/Xπ that leads to a reasonable χ2/d.o.f. = 1.1. The good χ2, and more importantly the good
description of the light-quark mass dependence, ensures that the small interpolation to X?

π is safe
and that we do not bias the result. In practice, we have checked explicitly that using different
functional forms fch to interpolate the data leads to changes that are small compared to the
statistical error. Thus, for both choices of the improvement coefficients (set 1 and set 2), and
for both discretizations LL and CL, the data from an SU(3)f -symmetric ensemble is corrected
in the pseudoscalar masses to the reference SU(3)f -symmetric point at the same lattice spacing.
The correction is obtained by taking the difference of Eq. (26) evaluated with the reference-point
arguments (Xa, X

?
π, X

?
K) and the ensemble arguments (Xa, Xπ, XK), resulting in

awin,f
µ

,α(Xa, X
?
π, X

?
K) = awin,f

µ
,α(Xa, Xπ, XK)− δ X2

a (Xπ −X?
π)− γ0 (XK −X?

K)

− γ1 (Xπ −X?
π)− γ2 (fch(Xπ)− fch(X?

π)) , (30)
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FIG. 2: Continuum extrapolation for the isovector quark contribution at the SU(3)f -symmetric point.
Left: using fπ-rescaling. Right: with t0 to set the scale. The blue and green points correspond to the
two different sets of improvement coefficients (see Section III). For clarity, the extrapolated results have
been shifted to the left.

where α = (LL), (CL) stands for the discretization. Note that X?
K = X?

π and XK = Xπ in
view of the SU(3)f -symmetry. Throughout this procedure, correlations are preserved via the
Jackknife analysis.

In a second step, we extrapolate both discretizations of the correlation function to a common
continuum limit, using data at all six lattice spacings and assuming a polynomial in the lattice
spacing,

awin,f
µ

,α(Xa, X
?
π) = awin,f

µ (0, X?
π)
(

1 + β
(α)
2 X2

a + β
(α)
3 X3

a

)
. (31)

The two data sets obtained using the two different sets of improvement coefficients are fitted
independently. The results are displayed in Fig. 2 for two cases: either applying fπ-rescaling
(left panel) or using t0 to set the scale (right panel). For Set 1 of improvement coefficients,
we observe a remarkably linear behavior over the whole range of lattice spacings, whether fπ-
rescaling is applied or not. The second set of improvement coefficients (Set 2) leads to some
visible curvature, but the continuum limit is perfectly compatible provided that lattice artefacts
of order a3 are included in the fit.

We also tested the possibility of logarithmic corrections assuming the ansatz

awin,f
µ

,α(Xa, X
?
π) = awin,f

µ (0, X?
π)
(

1 + β
(α)
2 X2

a + ε(α)X2
a logXa

)
, (32)

which is shown as the red symbol and red dashed curve in Fig. 2. The result is again compatible
with the naive a2 scaling, albeit with larger error. We conclude that logarithmic corrections are
too small to be resolved in the data. We also remark that it is difficult to judge the quality of
the continuum extrapolation based solely on the relative size of discretization effects between
our coarsest and finest lattice spacing, as this measure strongly depends on the definition of the
improvement coefficients.

We tested the modification of the continuum extrapolation via X2
a → (αs(1/Xa))

Γ̂X2
a as

proposed in Refs. [79, 84] for awin,I1
µ and awin,I0

µ
,c/ in our preferred setup, using fπ-rescaling and

set 1 of improvement coefficients. The strong coupling constant αs has been obtained from the
three-flavor Λ parameter of Ref. [85]. Several choices of Γ̂ in the range from 0.76 to 3 were tested.
The curvature that is introduced by this modification, especially for larger values of Γ̂, would
lead to larger values of awin

µ in the continuum limit. However, such curvature is not supported

by the data, as indicated by a deterioration of the fit quality when Γ̂ is increased. Therefore,
only small weights would be assigned to such fits in our model averaging procedure, where the
modification has not been included.

D. Results for the isospin and flavor decompositions

Having studied the continuum limit at the SU(3)f -symmetric point, we are ready to present
the result of the extrapolation to the physical point. The charm quark contribution is not



13

175

180

185

190

195

200

205

0.02 0.04 0.06 0.08 0.1 0.12

ỹ
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ỹ

awin,I0µ × 1010

β = 3.34
β = 3.40
β = 3.46
β = 3.55
β = 3.70
β = 3.85

FIG. 3: Left: one typical extrapolation of the isovector contribution using fch(ỹ) = 1/ỹ. The data corre-
sponds to the local-conserved discretization of the correlator using the set 1 of improvement coefficients.
Error bands are the results from the fit for each of the six lattice spacings. The black line is the chiral
extrapolation in the continuum limit. The black point is the result at the physical point. Right: same
for the isoscalar contribution but using fch(ỹ) = 0.

included here and will be considered separately in Section V.
For the isovector or light quark contribution we use the same set of functional forms as in [17]

fch(Xπ) = {logXπ ;X2
π ; 1/Xπ ;Xπ logXπ}. The data shows some small curvature close to the

physical pion mass. Thus, the variation fch = 0 is excluded as it would significantly undershoot
our ensemble at the physical pion mass (E250). We use Set 1 of improvement coefficients as our
preferred choice and will use Set 2 only as a crosscheck. A typical extrapolation using fch(ỹ) =
1/ỹ without any cut in the data is shown in the left panel of Fig. 3. We find that the specific
functional form of fch has much less impact on the extrapolation as compared to the inclusion
of higher-order lattice artefacts. For the isoscalar and strange quark contributions, we restrict
ourselves to functions that are not singular in the chiral limit: fch(Xπ) = {0 ;X2

π ;Xπ logXπ}.
Again, the extrapolation using fch(ỹ) = ỹ log ỹ with δ 6= 0 and without any cut in the data is
shown in the right panel of Fig. 3.

Using the fit procedure described above, the AIC estimator defined in Eq. (28) leads to the
following results for the isovector (I = 1) and the isoscalar contribution, charm excluded,

awin,I1
µ = (186.30± 0.75stat ± 1.08syst)× 10−10 , (33)

awin,I0
µ

,c/ = (47.41± 0.23stat ± 0.29syst)× 10−10 , (34)

where the first error is statistical and the second is the systematic error from the fit form used
to extrapolate our data to the physical point. In Table II , we also provide the derivatives

X
∂awin,f

µ

∂X
, X ∈ {mπ,mK , fπ, fK} , f ∈ {I1, I0} , (35)

to translate our result to a different iso-symmetric scheme.
We also note that both discretizations of the vector correlator yield perfectly compatible re-

sults. For the isovector contribution, and in units of 10−10, we obtain 186.14(0.87)stat(1.29)syst

for the local-local discretization and 186.47(0.79)stat(0.79)syst for the local-conserved discretiza-
tion, with a correlated difference of −0.33(0.72). For the isoscalar contribution, we find
47.39(0.24)stat(0.36)syst for the local-local discretization and 47.43(0.20)stat(0.19)syst for the
local-conserved discretization, with a correlated difference of −0.04(0.10).

As an alternative to the fit weights given by Eq. (27), we have tried applying the weight
factors used in Ref. [20]; see the footnote below Eq. (27). While a major change occurs in
the subset of fits that dominate the weighted average, the results do not change significantly.
In particular, the central value of the isovector contribution changes by no more than half a
standard deviation.

Finally, we have also performed an extrapolation to the physical point using the second set
of improvement coefficients. Since our study at the SU(3)f -symmetric point shows curvature
in the data, we exclude those continuum extrapolations that are only quadratic in the lattice
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FIG. 4: Comparison of the isovector and isoscalar contributions (without the charm) using different
variations (either using fπ or t0 to set the scale, and with both sets of improvement coefficients). The
blue point is our final estimate obtained from the rescaling method with the set 1 of improvement
coefficients.

spacing. The other variations are kept identical to those used for the first set. The results are
slightly larger but compatible within one standard deviation. A comparison between the two
strategies to set the scale and the two sets of improvement coefficients is shown in Fig. 4 for
both the isovector and isoscalar contributions.

In order to facilitate comparisons with other lattice collaborations, we also present results
for the light, strange and disconnected contributions separately. For the light and strange-quark
connected contributions, we obtain

awin,ud
µ = (207.00± 0.83stat ± 1.20syst)× 10−10, (36)

awin,s
µ = (27.68± 0.18stat ± 0.22syst)× 10−10. (37)

For the disconnected contribution, the correlation function is very precise in the time range
relevant for the intermediate window, and a simple sum over lattice points is used to evaluate
Eq. (5). The data are corrected for finite-size effects using the method described in Section C.
Since our ensembles follow a chiral trajectory at fixed bare average quark mass, we can consider
awin,disc
µ as being, to a good approximation, a function of the SU(3)f -breaking variable ∆2 =
{8t0(m2

K −m2
π), (m2

K −m2
π)/(8πf2

Kπ)} (respectively for Strategy 1 and 2), with the additional
constraint that the disconnected contribution vanishes quadratically in ∆2 for ∆2 → 0. We
apply the following ansatz

awin,disc
µ (Xa, Xπ, XK) = ∆2

2

(
α+ γ0

(
XK −Xphys

K

)
+ β2X

2
a

)

+ γ1

(
1

Xphys
K −∆2

− ∆2

(Xphys
K )2

− 1

Xphys
K

)
. (38)

The ensembles close to the SU(3)f symmetric point (mπ ≈ 350 MeV) are affected by significant
FSE corrections and are not included in the fit. We obtain for the disconnected contribution

awin,disc
µ = (−0.81± 0.04stat ± 0.08syst)× 10−10 , (39)

and the extrapolation is shown in Fig. (5). The extrapolation using t0 to set the scale shows less
curvature close to the physical point. We use half the difference between the two extrapolations

TABLE II: Derivatives of the window quantity awin
µ (in units of 10−10), for both the isovector and isoscalar

contributions, as defined by Eq. (35).

X mπ mK fπ fK

I1 −7(5) −11(7) −66(84) 7(5)

I0 2(1) −34(2) −29(9) 25(2)
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FIG. 5: Extrapolation to the physical point for the quark-disconnected contribution using Eq. (38). The
vertical dashed line represents the physical point in our iso-symmetric QCD setup. The black point is
the result of the extrapolation, and the grey band represents the extrapolation to the continuum limit
with XK = X?

K . Points with dashed error bars are not included in the fit.

as our estimate for the systematic error. It is worth noting that the value for the intermediate
window represents roughly 6% of the total contribution to ahvp,disc

µ . As a crosscheck, we note

that using Eqs. (36), (37) and (39) we would obtain awin,I0
µ

,c/ = (47.57±0.20stat±0.26syst)×10−10,
in good agreement with Eq. (34).

V. THE CHARM QUARK CONTRIBUTION

In our calculation, charm quarks are introduced in the valence sector only. A model estimate
of the resulting quenching effect is provided in Appendix D. The method used to tune the
mass of the charm quark has previously been described in Ref. [17] and has been applied to
additional ensembles in this work. We only sketch the general strategy here, referring the
reader to Ref. [17] for further details. For each gauge ensemble, the mass of the ground-state cs̄
pseudoscalar meson is computed at four values of the charm-quark hopping parameter. Then
the value of κc is obtained by linearly interpolating the results in 1/κc to the physical Ds meson
mass mDs = 1968.35(0.07) MeV [69]. We have checked that using either a quadratic fit or a
linear fit in κc leads to identical results at our level of precision. The results for all ensembles
are listed in the second column of Table X.

The renormalization factor Ẑ
(c)
V of the local vector current has been computed non-

perturbatively on each individual ensemble by imposing the vector Ward-identity using the
same setup as in Ref. [58], but with a charm spectator quark. To propagate the error from the

tuning of κc, both Ẑ
(c)
V and awin,c

µ are computed at three values of κ close to κc. In the computa-
tion of correlation functions, the same stochastic noises are used to preserve the full statistical
correlations. For both quantities, we observe a very linear behavior and a short interpolation
to κc is performed. The systematic error introduced by the tuning of κc is propagated by com-
puting the discrete derivatives of both observables with respect to κc (second error quoted in
Table X). This systematic error is considered as uncorrelated between different ensembles.

From ensembles generated with the same bare parameters but with different spatial extents
(H105/N101 or H200/N202), it is clear that FSE are negligible in the charm-quark contribution.
As in our previous work [17], the local-local discretization exhibits a long continuum extrapo-
lation with discretization effects as large as 70% between our coarsest lattice spacing and the
continuum limit, compared to only 12% for the local-conserved discretization. Thus, we discard
the local-local discretization from our extrapolation to the physical point, which assumes the
functional form

awin,c
µ (Xa, Xπ, XK) = awin,c

µ (0, Xexp
π , Xexp

K ) + β2X
2
a + β3X

3
a + δ X2

aXπ + β4X
2
a log(Xa)

+ γ0

(
XK −Xphys

K

)
+ γ1 (Xπ −Xexp

π ) . (40)

Lattice artefacts are described by a polynomial in Xa = a/
√
tsym
0 and a possible logarithmic
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FIG. 6: Left panel: study of the continuum extrapolation of the charm quark contribution to awin
µ at the

SU(3)f -symmetric point using the local-conserved discretization of the correlation function. The black
and green points are obtained using two independent sets of improvement coefficients, as explained in
Section III B. Right panel: Example of a typical extrapolation to the physical point of the charm-quark
contribution. The error from the scale setting, which is highly correlated between ensembles, is not
shown. The plain lines are obtained from the fit function (40) without any cut in the pion mass.

term is included; recall that tsym
0 denotes the value of the flow observable at the SU(3)f -

symmetric point. Only the set of proxies Xπ = φ2 and XK = φ4 is used. The light-quark
dependence shows a very flat behavior, and a good χ2/d.o.f. = 0.9 is obtained without any cut
in the pion mass. The corresponding extrapolation is shown on the right panel of Fig. 6.

Before quoting our final result, we provide strong evidence that our continuum extrapolation
is under control by looking specifically at the SU(3)f -symmetric point where six lattice spacings
are available. As for the isovector contribution, we use Eq. (40) to correct for the small pion-
mass mistuning at the SU(3)f -symmetric point. The data are interpolated to a single value of
X∗π using the same strategy as in Eq. (30). Those corrected points are finally extrapolated to
the continuum limit using the ansatz (31). The result is shown in the left panel of Fig. 6 for
the two sets of improvement coefficients of the vector current. Again, excellent agreement is
observed between the two data sets. Even for the charm-quark contribution, we observe very
little curvature when using the set 1 of improvement coefficients.

Having confirmed that our continuum extrapolation is under control, we quote our final
result for the charm contribution obtained using the ansatz (40). Using Eq. (28), the AIC
analysis described above leads to

awin,c
µ = (2.89± 0.03stat ± 0.03syst ± 0.13scale)× 10−10 , (41)

where variations include cuts in the pion masses and in the lattice spacing, and fits where the
parameters β3, β4 and δ have been either switched on or off.

VI. ISOSPIN BREAKING EFFECTS

As discussed in the previous Sections III and IV A, our computations are performed in an
isospin-symmetric setup, neglecting the effects due to the non-degeneracy of the up- and down-
quark masses and QED. At the percent and sub-percent level of precision it is, however, necessary
to consider the impact of isospin-breaking effects. To estimate the latter, we have computed awin

µ

in QCD+QED on a subset of our isospin-symmetric ensembles using the technique of Monte
Carlo reweighting [86–90] combined with a leading-order perturbative expansion of QCD+QED
around isosymmetric QCD in terms of the electromagnetic coupling e2 as well as the shifts in
the bare quark masses ∆mu,∆md,∆ms [90–94]. Consequently, we must evaluate additional
diagrams that represent the perturbative quark mass shifts as well as the interaction between
quarks and photons. We make use of non-compact lattice QED and regularize the manifest IR
divergence with the QEDL prescription [95], with the boundary conditions of the photon and
QCD gauge fields chosen in accordance [93]. We characterize the physical point of QCD+QED
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by the quantities m2
π0 , m2

K+ + m2
K0 −m2

π+ , m2
K+ −m2

K0 −m2
π+ + m2

π0 and the fine-structure
constant α [91]. The first three quantities are inspired by leading-order chiral perturbation
theory including leading-order mass and electromagnetic isospin-breaking corrections [67], and
correspond to proxies for the average light-quark mass, the strange-quark mass, and the light-
quark mass splitting. As we consider leading-order effects only, the electromagnetic coupling
does not renormalize [90], i.e. we may set e2 = 4πα. The lattice scale is also affected by
isospin breaking, which we however neglect at this stage. Making use of the isosymmetric
scale [56], we match m2

π0 and m2
K+ + m2

K0 − m2
π+ in both theories on each ensemble and set

m2
K+ −m2

K0 −m2
π+ +m2

π0 to its experimental value.
We have computed the leading-order QCD+QED quark-connected contribution to awin

µ as
well as the pseudoscalar meson masses mπ0 , mπ+ , mK0 and mK+ required for the hadronic renor-
malization scheme on the ensembles D450, N200, N451 and H102, neglecting quark-disconnected
diagrams as well as isospin-breaking effects in sea-quark contributions. The considered quark-
connected diagrams are evaluated using stochastic U(1) quark sources with support on a single
timeslice whereas the all-to-all photon propagator in Coulomb gauge is estimated stochastically
by means of Z2 photon sources. Covariant approximation averaging [96] in combination with
the truncated solver method [97] is applied to reduce the stochastic noise. We treat the noise
problem of the vector-vector correlation function at large time separations by means of a recon-
struction based on a single exponential function. A more detailed description of the computation
can be found in Refs. [91, 92, 98]. The renormalization procedure of the local vector current
in the QCD+QED computation is based on a comparison of the local-local and the conserved-
local discretizations of the vector-vector correlation function and hence differs from the purely
isosymmetric QCD calculation [58] described in Section III B. We therefore determine the rela-
tive correction by isospin breaking in the QCD+QED setup. For fπ-rescaling as introduced in
Section IV A, isospin-breaking effects in the determination of fπ are neglected. We observe that
the size of the relative first-order corrections for awin

µ is compatible on each ensemble and can in
total be estimated as a (0.3± 0.1)% effect.

VII. FINAL RESULT AND DISCUSSION

We first quote our final result awin,iso
µ in our iso-symmetric setup as defined in Section IV A.

Using the isospin decomposition, and combining Eqs. (33), (34) and (41), we find

awin,I1
µ = (186.30± 0.75stat ± 1.08syst)× 10−10 , (42)

awin,I0
µ = awin,I0

µ
,c/ + awin,c

µ = (50.30± 0.23stat ± 0.32syst)× 10−10 , (43)

awin,iso
µ = awin,I1

µ + awin,I0
µ = (236.60± 0.79stat ± 1.13syst ± 0.05Q)× 10−10 , (44)

where the first error is statistical, the second is the systematic error, and the last error of awin,iso
µ

is an estimate of the quenching effect of the charm quark derived in Appendix D. Overall, this
uncertainty has a negligible effect on the systematic error estimate. The small bottom quark
contribution has been neglected. For ahvp

µ , this contribution has been computed in [99] and
found to be negligible at the current level of precision.

As stressed in Section IV A, our definition of the physical point in our iso-symmetric setup is
scheme dependent. To facilitate the comparison with other lattice collaborations, the derivatives
with respect to the quantities used to define our iso-symmetric scheme are provided in Table II.
They can be used to translate from one prescription to another a posteriori.

One of the main challenges for lattice calculations of both ahvp
µ and the window observable is

the continuum extrapolation of the light quark contribution, which dominates the results by far.
To address this specific point, we have used six lattice spacings in the range [0.039,0.0993] fm in
our calculation, along with two different discretizations of the vector current (see the discussion
in Section IV C). Although this work contains many ensembles away from the physical pion
mass, we observe only a mild dependence on the proxy used for the light-quark mass. This
observation is corroborated by the fact that, in the model averaging analysis, most of the spread
comes from fits that differ in the description of lattice artefacts rather than on the functional
form fch that describes the light-quark mass dependence.
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FIG. 7: Comparison of our results (in units of 10−10) with other lattice calculations [13, 18, 20–24] in
isosymmetric QCD. The four panels on the left show compilations of the individual quark-disconnected,
charm, strange and light quark contributions. The total result for awin

µ in the isosymmetric case is shown
in the rightmost panel. Our results are represented by green circles and vertical bands.

In Fig. 7, we compare our results in the isosymmetric theory with other lattice calculations.
Our estimate for awin,iso

µ agrees well with that of the BMW collaboration who quote awin,iso
µ =

236.3(1.4)×10−10 using the staggered quark formulation [20]. However, our result is about 2.3σ
above the published value by the RBC/UKQCD collaboration, awin,iso

µ = 232.0(1.5) × 10−10,
obtained using domain wall fermions [13]. It is also 1.7σ above the recent estimate quoted by
ETMC, based on the twisted-mass formalism [22], which reads awin,iso

µ = 231.0(2.8)×10−10. The

difference with the latter two calculations can be traced to the light-quark contribution awin,ud
µ ,

which is shown in the second panel from the right. In this context, it is interesting to note that,
apart from BMW, two independent calculations using staggered quarks (albeit with a different

action as compared to the BMW collaboration) have quoted results for awin,ud
µ [18, 21, 24] that

are in good agreement with our estimate, as can be seen in Fig. 7. The middle panel of the figure
shows that our estimate for the strange quark contribution is slighly higher compared to other
groups, but due to the relative smallness of awin,s

µ this cannot account for the difference between

our result for awin,iso
µ and Refs. [22] and [13]. Good agreement with the BMW, ETMC and

RBC/UKQCD collaborations is found for both the charm and quark-disconnected contributions.

If one accepts that most lattice estimates for the light-quark connected contribution awin,ud
µ

have stabilized around ≈ 207 × 10−10, one may search for an explanation why the results by
RBC/UKQCD [13] and ETMC [22] are smaller by about 2%. This is particularly important since

awin,ud
µ contributes about 87% to the entire intermediate window observable. One possibility is

that the extrapolations to the physical point in Refs. [13] and [22] are both quite long. For
instance, the minimum pion mass among the set of ensembles used by ETMC is only about
220 MeV, while the result by RBC/UKQCD has been obtained from two lattice spacings, i.e.
0.084 fm and 0.114 fm. Further studies using additional ensembles at smaller pion mass and
lattice spacings are highly desirable to clarify this important issue.

In order to compare our result with phenomenological determinations of the intermediate
window observable, we must correct for the effects of isospin-breaking. Our calculation of isospin-
breaking corrections, described in Section VI, has been performed on a subset of our ensembles
and is, at this stage, lacking a systematic assessment of discretization and finite-volume errors.
Furthermore, only quark-connected diagrams have been considered so far. To account for this
source of uncertainty, we double the error and thereby apply a relative isospin-breaking correction
of (0.3 ± 0.2)% to awin,iso

µ , which amounts to a shift of +(0.70 ± 0.47) × 10−10. Thus, our final
result including isospin-breaking corrections is

awin
µ = (237.30± 0.79stat ± 1.13syst ± 0.05Q ± 0.47IB)× 10−10 . (45)

Adding all errors in quadrature yields 237.30(1.46)× 10−10 which corresponds to a precision of
0.6%. A comparison with other lattice calculations is shown in Fig. 8. Since corrections due
to isospin breaking are small, the same features are observed as in the isosymmetric theory:
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FIG. 8: Comparison of our result for awin
µ including isospin-breaking corrections with the estimates by

ETMC [22], BMW [20] and RBC/UKQCD [13]. The estimate based on the data-driven method of
Ref. [48] is shown in red.

while our result agrees well with the published estimate from BMW [20], it is larger than the
values quoted by ETMC [22] and RBC/UKQCD [13]. Our result lies 3.9σ above the recent
evaluation using the data-driven method [48], which yields awin

µ = 229.4(1.4) × 10−10 and is

shown in red in Fig. 8. Our result for awin
µ is also consistent with the observation that the

central value of our 2019 result for the complete hadronic vacuum polarization contribution [17]
lies higher than the phenomenology estimate, albeit with much larger uncertainties. In Ref.
[62] we observed a similar, but statistically much more significant enhancement in the hadronic
running of the electromagnetic coupling, ∆αhad(−Q2) relative to the data-driven evaluation,
especially for Q2 <∼ 3 GeV2. As pointed out at the end of Section II, the relative contributions
from the three intervals of center-of-mass energy separated by

√
s = 600 MeV and

√
s = 900 MeV

are similar for awin
µ and ∆αhad(−1GeV2), even though the respective weight functions in the

time-momentum representation are rather different. The fact that the lattice determination is
larger by more than three percent for both quantities, in each case with a combined error of less
than one percent, suggests that a genuine difference exists at the level of the underlying spectral
function, R(s)/(12π2), between lattice QCD and phenomenology.

If one were to subtract the data-driven evaluation of awin
µ from the White Paper estimate

[3] and replace it by our result in Eq. (45), the tension between the SM prediction for aµ and
experiment would be reduced to 2.9σ. This observation illustrates the relevance of the window
observable for precision tests of the SM. Our findings also strengthen the evidence supporting a
tension between data-driven and lattice determinations of ahvp

µ .
In our future work we will extend the calculation to other windows and focus on the deter-

mination of the full hadronic vacuum polarization contribution, ahvp
µ .
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Appendix A: Mistuning of the chiral trajectory

The ensembles used in our work have been generated with a constant bare average sea quark
mass which differs from a constant renormalized mass by O(a) cutoff effects. When the sum
of the renormalized quark masses is kept constant, the dimensionless parameters φ4 and yKπ,
which have been introduced in Section IV A to define the chiral trajectories towards the physical
point, are constant to leading order in chiral perturbation theory (χPT). Therefore, φ4 and yKπ
cannot be constant across our set of ensembles due to cutoff effects and higher-order effects from
χPT.

We have to correct for the sources of mistuning of our ensembles with respect to the chiral
trajectories of strategies 1 and 2. This can be done by parameterizing the dependence of our
observables on XK ∈ {yKπ, φ4} in the combined chiral-continuum extrapolation. However,
since the pion and kaon masses are not varied independently within our set of ensembles, the
dependence on ∆XK = Xphys

K −XK cannot be resolved reliably in our fits. A different strategy
has to be employed to stabilize our extrapolation to the physical point.

Explicit corrections of the mistuning prior to the chiral extrapolation have been used in [56]

to approach the physical point at constant φ4 = φphys
4 . These corrections are based on small

shifts defined from the first order Taylor expansion of the quark mass dependence of lattice
observables. The expectation value of a shifted observable is given by

〈O〉 → 〈O〉+

Nf∑

i=1

∆mq,i
d〈O〉
dmq,i

, (A1)

with the Nf = 3 sea quark mass shifts ∆mq,i. Within this appendix, we work with observ-
ables and expectation values that are defined after integration over the fermion fields, i.e. the
expectation values are taken with respect to the gauge configurations. The total derivative of
an observable with respect to the quark masses is decomposed via

d〈O〉
dmq,i

=

〈
∂O
∂mq,i

〉
−
〈
O ∂S

∂mq,i

〉
+ 〈O〉

〈
∂S

∂mq,i

〉
. (A2)

The partial derivative of an observable with respect to a quark mass of flavor i captures the
effect of shifts of valence quark masses. The second and third terms that contain the derivative
of the action S with respect to the quark masses account for sea quark effects. The chain rule
is used to compute the derivatives of derived observables.

The chain rule relating the derivatives with respect to the quark masses to those with respect
to the variables Xj = Xπ, XK can be written

Nf∑

i=1

ni
d〈O〉
dmq,i

=
∑

j=π,K

∆j(~n)
d〈O〉
dXj

, ∆j(~n) ≡
Nf∑

i=1

ni
dXj

dmq,i
(A3)

∀~n = (n1, n1, n3), the condition n1 = n2 being imposed to remain in the isosymmetric theory.
In particular, if the direction of the vector ~n in the space of quark masses is chosen such that
∆π(~n) vanishes, the following expression [71] for the derivative of an observable with respect to
XK is obtained,

d〈O〉
dXK

=
1

∆K(~n)

Nf∑

i=1

ni
d〈O〉
dmq,i

. (A4)

In [56] the shifts ni have been chosen to be degenerate for all three sea quarks. In [71] the same
approach is taken at the SU(3)f -symmetric point and ~n = (0, 0, 1) is used when amq,l 6= amq,s.
To stabilize the predictions for the derivatives, they are modeled as functions of lattice spacing
and quark mass.

To improve the reliability of our chiral extrapolation, we have determined the derivatives
of awin,ud

µ and awin,s
µ with respect to light and strange quark masses on a large subset of the

ensembles in Table I. Whereas the computation of the first term in Eq. (A2) shows a good
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signal for the vector-vector correlation function, the second and third term carry significant
uncertainties. In the case of fπ-rescaling, a non-negligible statistical error that has its origin in
dfπ/dmq,i enters the derivative of awin

µ .
Our computation does not yet cover all ensembles in this work and has significant uncertain-

ties on some of the included ensembles. Moreover, we have not computed the mass-derivative of
awin,disc
µ that enters awin,I0

µ . Therefore, we have decided not to correct our observables prior to
the global extrapolation but to determine the coefficient γ0 in Eq. (26) instead. We do not aim
for a precise determination here but focus instead on the determination of a sufficiently narrow
prior width, in order to stabilize the chiral-continuum extrapolation.

We compute the derivatives with respect to XK as specified in Eq. (A4) with the shift vector
~n chosen such that ∆π(~n) vanishes ensemble by ensemble, i.e. the shift is taken in a direction
in the quark mass plane where Xπ remains constant. The derivatives are therefore sensitive to
shifts in the kaon mass. A residual shift of Xa is present at the permille level.

We collect our results for the derivatives with respect to φ4 and yKπ in Table III. Throughout
this appendix, we use units of 10−10 for awin

µ , as well as for coefficient γ0. The results are based
on the local-local discretization of the correlation functions and the improvement coefficients and
renormalization constants of set 1. As can be seen, the derivative of the isovector contribution
to the window observable vanishes within error on most of the ensembles. This is expected from
the order-of-magnitude estimate in Eq. (B33). No clear trend regarding a dependence on Xπ,
XK or Xa can be resolved. We show the derivative of awin,I1

µ with respect to Xπ in the upper
panels of Fig. 9. For the corresponding priors for the chiral-continuum extrapolation we choose

γwin,I1,yKπ
0 = 0(50) γwin,I1,φ4

0 = −2.5(5.0) . (A5)

The derivative of the strange-connected contribution of the window observable with respect
to XK is negative and can be determined to good precision. Our results are shown in the lower
panels of Fig. 9. We choose our priors such that their width encompasses the spread of the data.
For the strange-connected and the isoscalar contribution, we choose

γwin,s,yKπ
0 = −100(20) γwin,s,φ4

0 = −12.5(2.5) . (A6)

These values are compatible with the estimate in Eq. (B26).
Discretization effects in the data may be inspected by comparing the derivatives based on the

two sets of improvement coefficients. Such effects are largest for the two ensembles at β = 3.34,
but are still smaller than the spread in the data and therefore not significant with respect to
our prior widths. In our global extrapolations, we use a single set of priors irrespective of the
improvement procedure.
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FIG. 9: Derivatives of the isovector and the strange-connected contributions to the window observable
with respect to Xπ. The gray areas illustrate the priors that are used in the global extrapolation.

TABLE III: Derivatives of the isovector and the strange-connected contributions to the window observable
with respect to XK in units of 10−10. The data is based on the the local-local discretization of the vector-
vector correlation function and the improvement coefficients of set 1.

id
dawin,I1
µ

dΦ4

dawin,I1
µ

dyKπ

dawin,s
µ

dΦ4

dawin,s
µ

dyKπ

A653 5.0(1.1) 83(39) −10.0(0.7) −80(10)

A654 5.0(1.9) 96(47) −11.3(0.5) −93(10)

H101 −4.7(3.9) 145(137) −13.4(1.1) −68(26)

H102 −12.2(3.5) 46(118) −14.5(1.0) −91(27)

N101 −8.9(12.9) −163(143) −17.8(2.1) −204(51)

C101 2.6(8.3) −84(93) −12.1(1.6) −138(27)

B450 −3.4(2.6) 42(39) −12.5(0.7) −93(9)

N451 −5.3(5.2) −68(71) −12.8(0.5) −122(20)

D450 −4.9(10.0) −85(233) −11.1(0.8) −116(73)

H200 −0.3(5.3) 241(198) −10.8(1.3) −40(40)

N202 −3.5(9.2) 79(136) −14.5(2.2) −95(30)

N203 −3.5(5.1) 125(106) −16.5(1.6) −123(25)

N200 3.3(7.2) 136(128) −14.0(1.3) −119(24)

D200 7.1(7.1) 121(93) −11.8(1.4) −98(26)

N300 0.4(4.3) 8(53) −11.4(1.1) −98(15)

J303 6.5(9.1) 197(148) −13.4(1.2) −94(32)

J500 −9.0(5.3) −18(68) −15.1(1.5) −117(19)

J501 −6.1(9.4) 88(189) −12.5(3.0) −92(48)
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Appendix B: Phenomenological models

In the first subsection of this appendix, we collect estimates of the sensitivity of the window
observables to various intervals in

√
s in the dispersive approach. The observable awin

µ can indeed
be obtained from experimental data for the ratio R(s) defined in Eq. (10) via

awin
µ =

∫ ∞

0
ds fwin(s)R(s), (B1)

where the weight function is given by

fwin(s) =
α2√s
24π4

∫ ∞

0
dt e−t

√
sK̃(t) [Θ(t, t0,∆)−Θ(t, t1,∆)] . (B2)

In practice, since the integrand is very strongly suppressed beyond 1.5 fm, we have used the
short-distance expansion of K̃(t) given by Eq. (B16) of Ref. [10], which is very accurate up to
2 fm.

The second and the third subsection contain phenomenological estimates of the derivatives
of the strangeness and the isovector contributions to awin

µ with respect to the kaon mass at fixed
pion mass, as a cross-check of the lattice results presented in Appendix A.

1. Sensitivity of the window quantity

In [49], a semi-realistic model for the R-ratio was used for the sake of comparisons with
lattice data generated in the (u, d, s) quark sector with exact isospin symmetry. In particular,
the model does not include the charm contribution, nor final states containing a photon, such
as π0γ. It leads to the following values for the window observables and their sum, the full ahvp

µ ,

(ahvp
µ )SD|model = 56.0× 10−10, (B3)

awin
µ |model = (ahvp

µ )ID|model = 231.9× 10−10, (B4)

(ahvp
µ )LD|model = 384.8× 10−10, (B5)

ahvp
µ |model = 672.7× 10−10. (B6)

Given the omission of the aforementioned channels, these values are quite realistic.4 Here we
only use the model to provide the partition of the quantities above into three commonly used
intervals of

√
s, in order to illustrate what the relative sensitivities of these quantities are to

different energy intervals. These percentage contributions are given in Table IV, along with the
corresponding figures for the subtracted vacuum polarization,

Π(Q2) ≡ Π(Q2)−Π(0) =
Q2

12π2

∫ ∞

0
ds

R(s)

s(s+Q2)
. (B7)

The model yields for this quantity the value 385.5 × 10−4 at Q2 = 1 GeV2. We expect the
fractions in the table to be reliable with an uncertainty at the five to seven percent level.

√
s interval ahvp

µ (ahvp
µ )SD (ahvp

µ )ID (ahvp
µ )LD Π(1GeV2)

below 0.6 GeV 15.5 1.5 5.5 23.5 8.2

0.6 to 0.9 GeV 58.3 23.1 54.9 65.4 52.6

above 0.9 GeV 26.2 75.4 39.6 11.1 39.2

Total 100.0 100.0 100.0 100.0 100.0

TABLE IV: Fractional contributions in percent from different regions in
√
s to ahvp

µ and the partial

quantities (ahvp
µ )SD,ID,LD, as well as the subtracted vacuum polarization at scale Q2 = 1 GeV2, according

to the R-ratio model given in [49]. Note that this model includes neither the charm nor final states
containing a photon, such as π0γ.

4 For orientation, the charm contribution to ahvpµ is 14.66(45) × 10−10 [17], and the π0γ channel contributes
4.5(1)× 10−10 [3]. Adding these to Eq. (B6), the total is 691.9× 10−10, consistent within errors with the White
Paper evaluation of 693.1(4.0) × 10−10.
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The model value for the intermediate window is best compared to the sum of Eqs. (33,34).
The difference is (1.8 ± 1.4) × 10−10, which represents agreement at the 1.3σ level. The main
reason the R-ratio model agrees better with the lattice result than a state-of-the-art analysis [48]
is that the model does not account for the strong suppression of the experimentally measured
R-ratio in the region 1.0 <

√
s/GeV < 1.5 relative to the parton-model prediction. This

observation suggests a possible scenario where the higher lattice value of awin
µ as compared to

its data-driven evaluation is explained by a too pronounced dip of the R-ratio just above the
φ meson mass. In such a scenario, the relative deviation between the central values of ahvp

µ

obtained on the lattice and using e+e− data would be smaller than for awin
µ by a factor of about

1.5, given the entries in Table IV. Indeed, it has been shown [50] that the central values of the
BMW collaboration [20] cannot be explained by a modification of the experimental R(s) ratio
below s = 1 GeV2 alone.

2. Model estimate of (∂/∂m2
K)awin,s

µ (m2
π,m

2
K)

In [62], we have used two closely related R-ratio models for the strangeness correlator and
the light-quark contribution to the isoscalar correlator,

R`I=0(s) =
Aω
18
m2
ωδ(s−m2

ω) +
Nc

18
θ(s− s0)

(
1 +

αs
π

)
, (B8)

Rs(s) =
Aφ
9
m2
φδ(s−m2

φ) +
Nc

9
θ(s− s1)

(
1 +

αs
π

)
, (B9)

with

√
s0 = 1.02 GeV,

√
s1 = 1.24 GeV, (B10)

mω = 0.78265 GeV, mφ = 1.01946 GeV and [100]

Aω
18

=
9π

α2

Γee(ω)

mω
=

7.33(24)

18
, (B11)

Aφ
9

=
9π

α2

Γee(φ)

mφ
=

5.86(10)

9
. (B12)

The threshold values s0 and s1 have been adjusted to reproduce the corresponding lattice results
for ahvp

µ . The model R-ratios of Eqs. (B8–B9) were used [62] in the linear combination (18R`I=0−
9Rs) in order to model the SU(3)f breaking contribution Π08, which enters the running of the
electroweak mixing angle. Our model for this linear combination also obeys an exact sum rule,∫∞

0 ds (18R`I=0 − 9Rs) = 0, within the statistical uncertainties. We now evaluate the window
quantity for the models of Eqs. (B8–B9). For the strangeness contribution, we have

awin,s
µ = (27.6± 0.3stat)× 10−10, (B13)

and for the full isoscalar contribution, the model predicts

awin,I0
µ = (47.4± 0.5stat)× 10−10. (B14)

Given the modelling uncertainties, these values are in excellent agreement with the lattice results
presented in the main part of the text, respectively Eqs. (37) and (34). We also record some
useful values of the kernel,

fwin(m2
φ) = 29.5× 10−10 GeV−2, fwin(s1) = 16.1× 10−10 GeV−2, (B15)

d

ds
(sfwin(s))s=m2

φ
= −11.3× 10−10 GeV−2. (B16)

In the following, we evaluate the strange-quark mass dependence of awin,s
µ , based on the idea

that the parameters Aφ, mφ and s1 only depend on the mass of the valence (strange) quark.
This general assumption is reflected in Eqs. (B21, B22, B24) below.
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It was noted a long time ago [101] that the electronic decay widths of vector mesons, nor-
malized by the relevant charge factor, is only very weakly dependent on their mass:

18 · Γee(ω) = 10.8(4) keV, (B17)

9 · Γee(φ) = 11.4(4) keV, (B18)
9
4 · Γee(J/ψ) = 12.4(2) keV. (B19)

This suggests that, unlike in QED, (AV ·mV ) depends less strongly on mV than AV itself for
QCD vector mesons. Therefore it is best to estimate the derivative of interest as follows,

∂awin,φ
µ

∂m2
K

∣∣∣
m2
π

' ∂

∂m2
K

(Aφmφ

9

)
mφ fwin(m2

φ) +
(Aφmφ

9

) ∂m2
φ

∂m2
K

∂

∂m2
φ

(mφfwin(m2
φ)). (B20)

We estimate the following derivatives by taking a finite difference between the ω and the φ
meson properties,

∂

∂m2
K

(Aφmφ

9

)
' 1

9

Aφmφ −Aωmω

m2
K −m2

π

= 0.12(10) GeV−1. (B21)

and

∂m2
φ

∂m2
K

= 2mφ
∂mφ

∂m2
K

' 2mφ
mφ −mω

m2
K −m2

π

= 2.13. (B22)

Thus

∂awin,φ
µ

∂m2
K

∣∣∣
m2
π

' ((3.5± 3.1)− 36.1)× 10−10 GeV−2 = (−32.6± 3.1)× 10−10 GeV−2. (B23)

Next, we estimate the dependence originating from the valence-mass dependence of s1,

∂s1

∂m2
K

' 2
√
s1

√
s1 −

√
s0

m2
K −m2

π

= 2.4. (B24)

Thus the derivative of the perturbative continuum awin,s,cont
µ with respect to the squared kaon

mass yields

∂awin,s,cont
µ

∂m2
K

= −Nc

9
(1 + αs/π)fwin(s1)

∂s1

∂m2
K

= −14.1× 10−10. (B25)

Adding this contribution to Eq. (B23), we get in total

∂awin,s
µ

∂m2
K

= (−46.6± 3.1stat ± 7.0model)× 10−10 GeV−2. (B26)

To the statistical error from the electronic widths of the ω and φ mesons, we have added a
modelling error of 15%. Using t0, the value above translates into

∂awin,s
µ

∂φ4

∣∣∣
φ2
' (−10.9± 0.7stat ± 1.6model)× 10−10, (B27)

which can directly be compared to the values from lattice QCD listed in Table III. The agreement
is excellent.

In Eq. (B9), we have written the perturbative contribution above the threshold s1 in the
massless limit. We now verify that the mass dependence of the perturbative contribution is
negligible for fixed s1. The leading mass-dependent perturbative contribution to the R-ratio
well above threshold is (see e.g. [102], Eqs. 11 and 12)

Rspert(m
2
s, s)−Rspert(0, s) =

Nc

9

(
− 6
(m2

s

s

)2
+ 12

αs
π

m2
s

s
+ . . .

)
. (B28)
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From here we have estimated ∂
∂m2

K
awin,s,pert
µ ≈ 0.5 × 10−10 GeV−2. Since this contribution to

∂
∂m2

K
awin,s
µ is about one sixth the statistical uncertainty from the vector meson electronic decay

widths, we neglect the perturbative mass dependence of awin,s
µ .

For future reference, we evaluate in the same way as in Eq. (B26) the derivative of ahvp,s
µ and

find

∂ahvp,s
µ

∂m2
K

∣∣∣
m2
π

= (−129± 6stat ± 19model)× 10−10 GeV−2. (B29)

Here, the dependence on s1 only contributes 18% of the total. We have again assigned a 15%
modelling uncertainty to the prediction. Since we expect valence-quark effects to dominate, the
prediction (B29) can also be applied to the full isoscalar prediction.

3. Model estimate of (∂/∂m2
K)awin,I1

µ (m2
π,m

2
K)

The influence of the strange quark mass on the isovector channel is a pure sea quark effect,
and is as such harder to estimate. Based on the OZI rule, one would also expect a smaller
relative sensitivity than in the strangeness channel addressed in the previous subsection.

One effect of the presence of strange quarks on the isovector channel is that kaon loops can
contribute. No isovector vector resonances with a strong coupling to K̄K are known, therefore
we attempt to use scalar QED (sQED) to evaluate the effect of the kaon loops. Note that at
the SU(3)f symmetric point, the sum of the K̄0K0 and K+K− contributions to the isovector
channel amounts to half as much as that of the pions. We find, integrating in s from threshold
up to 4 GeV2 with mK = 0.495 GeV,

awin,I=1
µ = 0.99× 10−10, kaon loops in sQED (B30)

∂

∂m2
K

awin,I=1
µ = −7.0× 10−10 GeV−2. (B31)

A further, more indirect effect of two-kaon intermediate states is that they can affect the
properties of the ρ meson. On general grounds, one expects the two-kaon states to reduce the
ρ mass, since energy levels repel each other. However, for the window quantity it so happens
that sfwin(s) has a maximum practically at the ρ mass, therefore the derivative of this function
is extremely small,

2

fwin(s)

d

ds
(sfwin(s))

∣∣∣
s=m2

ρ

= −0.043. (B32)

The effect of a shift in the ρ meson mass is therefore heavily suppressed.5 Reasonable estimates
of the order-of-magnitude of the derivative ∂mρ/∂m

2
K |m2

π
lead to a contribution to ∂

∂m2
K
awin,I=1
µ

which is smaller than the sQED estimate. These estimates are based on the observation that the
ratio mρ/fπ is about 5% higher at a pion mass of 311 MeV in the Nf = 2 QCD calculation [103]
than if one interpolates the corresponding Nf = 2 + 1 QCD results [17, 104] to the same pion
mass, though a caveat is that neither result is continuum-extrapolated. The effect of the kaon
intermediate states on the ππ line-shape is even harder to estimate, but we note that even
in Nf = 2 QCD calculations [103], i.e. in the absence of kaons, the obtained gρππ coupling is
consistent with Nf = 2 + 1 QCD calculations [17, 104] carried out at comparable pion masses.

In summary, we use the sQED evaluation of Eq. (B31) to provide the order-of-magnitude
estimate

∂

∂φ4

∣∣∣
φ2
awin,I=1
µ ≈ −1.6× 10−10 . (B33)

We note that the statistical precision of our lattice-QCD results for this derivative in Table III
is not sufficient to resolve the small effect estimated here.

5 But note that this effect must be revisited when addressing the strange-quark mass dependence of the isovector
contribution to the full ahvpµ .
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Appendix C: Finite-volume correction

Corrections for finite-size effects (FSE) have been estimated using a similar strategy to the
one presented in our previous publication on the hadronic contributions to the muon g− 2 [17].
The main difference lies in the treatment of small Euclidean times, where we have replaced NLO
χPT by the Hansen-Patella method as described below. We have also investigated finite-size
corrections in χPT at NNLO [20, 105]. Overall, we found it to be comparable in size to the values
found in Tables V–VI, the level of agreement improving for increasing volumes and decreasing
pion masses. Given that the NNLO χPT correction term is in many cases not small compared
to the NLO term, we refrain from using χPT to compute finite-size effects in our analysis of
awin
µ (see [24] for a more detailed discussion of the issue).

1. The Hansen-Patella method

In [106, 107], finite-size effects for the hadronic contribution to the muon (g−2) are expressed
in terms of the forward Compton amplitude of the pion as an expansion in exp (−|~n|mπL) for
|~n|2 = 1, 2, 3, 6, . . . . Here, nk schematically represents the number of times the pion propagates
around the kth spatial direction of the lattice. Corrections that start at order exp (−neffmπL)

with neff =
√

2 +
√

3 ≈ 1.93 are neglected: they appear when at least two pions propagate
around the torus. The results for the first three leading contributions (|~n|2 ≤ 3) can thus be
used consistently to correct the lattice data on each timeslice separately. We decided to use
the size of the |~n|2 = 3 term, i.e. the last one that is parametrically larger than the neglected
neff ≈ 1.93 contribution, as an estimate of the inherent systematic error.

In this work we follow the method presented in [107], where the forward Compton amplitude
is approximated by the pion pole term, which is determined by the electromagnetic form factor
of the pion in the space-like region. Since the form-factor is only used to evaluate the small
finite-volume correction, a simple but realistic model is sufficient. Here we use a monopole
parametrization obtained from Nf = 2 lattice QCD simulations [108],

F (q2) =
1

1 + q2/M2
, M2(m2

π) = 0.517(23)GeV2 + 0.647(30)m2
π . (C1)

The statistical error on the finite-size correction is obtained by propagating the jackknife error
on the pion and monopole masses. The results obtained using this method are summarized in
the third and fourth columns of Table V and Table VI.

2. The Meyer-Lellouch-Lüscher formalism with Gounaris-Sakurai parametrization

As an alternative, we also consider the Meyer-Lellouch-Lüscher (MLL) formalism. The isovec-
tor correlator in both finite and infinite volume is written in terms of spectral decompositions

GI=1(t,∞) =
1

48π2

∫ ∞

2mπ

dω ω2

(
1− 4m2

π

ω2

)3/2

|Fπ(ω)|2 e−ωt , (C2)

GI=1(t, L) =
∑

i

|Ai|2 e−Eit , Ei = 2
√
m2
π + k2

i , (C3)

where Fπ(ω) is the time-like pion form factor. Following the Lüscher formalism, the discrete

energy levels Ei = 2
√
m2
π + k2

i in finite volume are obtained by solving the equation

δ1(ki) + φ(q) = nπ , q =
kiL

2π
, (C4)

where φ(q) is a known function [109, 110], n a strictly positive integer and δ1 is the scattering
phase shift in the isospin I = 1, p-wave channel. Strictly speaking, this relation holds exactly
only below the four-particle threshold that starts at 4mπ. This is only a restriction at light pion
mass where many states are needed to saturate the spectral decomposition in finite volume. We
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will see below how to circumvent this difficulty. In [111], the overlap factors Ai that enter the
spectral decomposition in finite volume were shown to be related to the form factor in infinite
volume through the relation

|Fπ(Ei)|2 =

(
qφ′(q) + k

∂δ1

∂k

)
3πE2

i

2k5
i

|Ai|2 . (C5)

The time-like pion form factor has been computed on a subset of our lattice simulations [17,
104]. Since the form factor is only needed to estimate the small finite-volume correction, an
approximate model can be used. Here, we assume a Gounaris-Sakurai (GS) parametrization
that contains two parameters: the gρππ coupling and the vector meson mass mρ [112]. A given
choice of those parameters allows us to compute both the finite-volume and infinite-volume
correlation function in the isovector channel at large Euclidean times using Eq. (C3). The
difference GI=1(t,∞) − GI=1(t, L), when inserted into Eq. (5), yields our estimate of the FSE.
In practice, the GS parameters are obtained from a fit to the isovector correlation function
GI=1(t, L) at large Euclidean times, using Eqs. (C3), (C4) and (C5). Statistical errors on the
GS parameters can easily be propagated using the Jackknife procedure.

Since this method is expected to give a good description only up to the inelastic threshold,
Eq. (C4) being formally valid below 4mπ, we opt to use the MLL formalism only above a certain
cut in Euclidean time, given by t∗ = (mπL/4)2/mπ. Below the cut, we always use the HP
method described above. Above the cut, the lightest few finite-volume states in the spectral
decomposition saturate the integrand. The results using the MLL formalism are summarized in
the fifth column of Table V and Table VI.

3. Corrections applied to lattice data

In Tables V and VI we summarize the FSE correction applied to the raw lattice data. We find
that finite-size corrections computed using either the HP or the MLL method for (t > t?) show
good agreement within their respective uncertainties. Our final estimates, shown in the rightmost
column, are obtained by adding the result from the HP method at short times (t < t?) to that
of the MLL method above t? and the kaon loop contribution. The latter has been computed
in χPT at NLO (see for instance [113]) on ensembles without SU(3) flavor symmetry. At the
SU(3) symmetric point, the kaon loop contribution has been accounted for by scaling the HP
and MLL corrections by a factor of 3/2. We have included the scale factor in the respective
entries in Tables V and VI.

The uncertainty quoted in the rightmost column is given by the statistical error computed
as described in the two previous sections. It includes the statistical error on the GS parameters
and on the monopole mass that appears in the parametrization of the form factor in Eq. (C1).
The systematic error on the HP contribution is estimated as described in Section C 1.

For our final estimates of finite-volume corrections, we adopt a more conservative approach
regarding the overall uncertainty. As in our earlier paper [10], we base our uncertainty estimate
on the comparison to the NLO χPT correction, which leads us to assign an error of 25% of
the estimated correction for each ensemble, which replaces the uncertainties quoted in the last
column of Tables V and VI. For example, the finite-size correction applied to awin,I1

µ in the case
of ensemble J303 with fπ-rescaling is (1.62± 0.405)× 10−10.
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TABLE V: Finite-size effects in the isovector channel with fπ-rescaling, in units of 10−10, for our ensembles
described in Table I. The correction obtained using the HP method is given in the third and fourth
columns. The MLL estimate in the long-distance region is listed in the fifth column. The contribution
of the kaon is given in column six, where dashes for ensembles at the SU(3) symmetric point indicate
that this contribution is contained in the HP and MLL estimates. Our final estimate is given in the last
column. Only statistical errors are shown. We assign an uncertainty of 25% of the FSE on each ensemble
(see text).

id t? [fm] HP(t < t?) HP(t > t?) MLL(t > t?) Kaon loop Final Estimate

A653 0.79 0.98(0.01) 0.81(0.03) 0.78(0.01) - 1.75(0.03)

H101 1.04 0.71(0.01) 0.03(0.00) 0.03(0.00) - 0.74(0.01)

H102 0.86 0.70(0.01) 0.40(0.02) 0.36(0.01) 0.19 1.25(0.10)

H105 0.69 0.58(0.03) 1.95(0.11) 1.87(0.08) 0.14 2.59(0.15)

N101 1.47 0.28(0.01) 0.00(0.00) 0.00(0.00) 0.01 0.29(0.01)

C101 1.21 0.75(0.02) 0.03(0.00) 0.03(0.00) 0.01 0.78(0.02)

B450 0.76 0.83(0.01) 0.77(0.02) 0.74(0.56) - 1.57(0.37)

S400 0.69 0.61(0.01) 1.55(0.05) 1.54(0.03) 0.34 2.50(0.18)

N451 1.22 0.51(0.01) 0.01(0.00) 0.01(0.00) 0.02 0.53(0.01)

D450 1.60 0.32(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.32(0.01)

D452 1.15 0.89(0.02) 0.10(0.01) 0.10(0.01) 0.00 1.00(0.03)

H200 0.58 0.68(0.02) 3.35(0.07) 3.17(0.09) - 3.84(0.16)

N202 1.22 0.38(0.01) 0.00(0.00) 0.00(0.00) - 0.38(0.00)

N203 1.03 0.56(0.01) 0.04(0.00) 0.03(0.00) 0.09 0.69(0.05)

N200 0.84 0.73(0.01) 0.64(0.02) 0.61(0.01) 0.07 1.41(0.05)

D200 1.09 0.95(0.01) 0.11(0.00) 0.10(0.00) 0.01 1.06(0.02)

E250 1.54 0.57(0.02) 0.00(0.00) 0.00(0.00) 0.00 0.57(0.02)

N300 0.75 0.89(0.01) 0.79(0.02) 0.75(0.01) - 1.64(0.03)

N302 0.65 0.61(0.01) 1.79(0.03) 1.73(0.02) 0.34 2.68(0.20)

J303 0.85 0.90(0.01) 0.71(0.02) 0.67(0.01) 0.05 1.62(0.06)

E300 1.25 0.76(0.01) 0.02(0.00) 0.02(0.00) 0.00 0.78(0.01)

J500 0.82 0.98(0.01) 0.41(0.01) 0.40(0.01) - 1.37(0.01)

J501 0.67 0.60(0.01) 1.52(0.04) 1.55(0.02) 0.29 2.44(0.16)

Appendix D: Quenching of the charm quark

The gauge configurations used in this work contain the dynamical effects of up, down and
strange quarks. As for the charm quarks, we have only taken into account the connected valence
contributions. In this appendix, we estimate the systematic error from the missing effect of
charm sea-quark contributions. The question we are after can be formulated as, “What is the
charm-quark effect on the R-ratio in a world in which the charm quark is electrically neutral?”.

As in [62], we adopt a phenomenological approach. There, we evaluated the perturbative
prediction for the charm sea quark effect and found it to be small for the running of the elec-
tromagnetic coupling from Q2 = 1 GeV2 to 5 GeV2. Alternatively, we considered D-meson pair
creation in the electromagnetic-current correlator of the (u, d, s) quark sector. The contribution
of the D+D− channel to the R-ratio reads

RD+D−(s) =
1

4

(
1− 4m2

D+

s

)3/2

|FD+(s)|2 , (D1)

and similar expressions hold for the D0D̄0 and D+
s D
−
s channels. Since the form factor FD+

is not known precisely and our goal is only to estimate the order of magnitude of the effect,
we will approximate it by its value at s = 0, which amounts to treating D-mesons in the
scalar QED framework and replacing their form factors by the relevant electromagnetic charges:
{FD0(s), FD+(s), FD+

s
} → {2/3,−1/3,−1/3}. Note that up-, down-, or strange-quarks play the

role of the valence quarks giving the mesons their respective charges.
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TABLE VI: Same as Table V using t0 to set the scale.

id t? [fm] HP(t < t?) HP(t > t?) MLL(t > t?) Kaon loop Final Estimate

A653 0.79 0.80(0.01) 1.19(0.04) 1.11(0.01) - 1.90(0.06)

H101 1.04 0.73(0.02) 0.13(0.00) 0.12(0.00) - 0.85(0.01)

H102 0.86 0.62(0.01) 0.57(0.02) 0.52(0.01) 0.19 1.33(0.11)

H105 0.69 0.54(0.01) 2.10(0.06) 2.01(0.02) 0.14 2.68(0.15)

N101 1.47 0.29(0.01) 0.00(0.00) 0.00(0.00) 0.01 0.30(0.01)

C101 1.21 0.73(0.02) 0.03(0.00) 0.03(0.00) 0.01 0.76(0.02)

B450 0.76 0.63(0.01) 1.21(0.03) 1.12(0.79) - 1.75(0.53)

S400 0.69 0.50(0.01) 1.87(0.04) 1.82(0.02) 0.34 2.65(0.19)

N451 1.22 0.54(0.01) 0.01(0.00) 0.01(0.00) 0.02 0.57(0.01)

D450 1.60 0.32(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.32(0.01)

D452 1.15 0.88(0.02) 0.07(0.00) 0.08(0.00) 0.00 0.95(0.02)

H200 0.58 0.45(0.01) 4.14(0.09) 3.77(0.12) - 4.22(0.28)

N202 1.22 0.44(0.01) 0.01(0.00) 0.01(0.00) - 0.45(0.01)

N203 1.03 0.57(0.01) 0.11(0.00) 0.10(0.00) 0.09 0.76(0.05)

N200 0.84 0.66(0.01) 0.81(0.02) 0.76(0.01) 0.07 1.49(0.06)

D200 1.09 0.96(0.01) 0.12(0.00) 0.11(0.00) 0.01 1.07(0.02)

E250 1.54 0.53(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.53(0.01)

N300 0.75 0.63(0.01) 1.37(0.03) 1.24(0.02) - 1.87(0.09)

N302 0.65 0.45(0.01) 2.29(0.05) 2.13(0.03) 0.33 2.91(0.25)

J303 0.85 0.81(0.01) 0.93(0.02) 0.87(0.01) 0.05 1.73(0.07)

E300 1.25 0.76(0.01) 0.02(0.00) 0.02(0.00) 0.00 0.78(0.01)

J500 0.82 0.74(0.01) 0.92(0.03) 0.85(0.01) - 1.60(0.05)

J501 0.67 0.43(0.01) 2.02(0.05) 1.97(0.01) 0.29 2.69(0.17)

The corresponding contributions to ahvp
µ are evaluated using the expression

∆c-seaahvp
µ =

∫ ∞

0
ds fhvp(s)

(
RD0D0 +RD+D− +RD+

s D
−
s

)
(s) , (D2)

fhvp(s) :=
(α2√s

24π4

)∫ ∞

0
dt e−t

√
s K̃(t) =

(αmµ

3π

)2 K̂(s)

s2
, (D3)

where mµ is the muon mass and the analytic form of K̂(s) can be found e.g. in [114], section
4.1. Similarly, the counterpart for the intermediate window reads

∆c-seaawin
µ =

∫ ∞

0
ds fwin(s)

(
RD0D0 +RD+D− +RD+

s D
−
s

)
(s) . (D4)

where fwin(s) is defined in Eq. (B2).
For the D-meson masses, we use the values provided by the Particle Data Group 2020 [100].

Our results are

∆c-seaahvp
µ

ahvp
µ

=
0.314

720.0
(∼ 0.04%) , (D5)

∆c-seaawin
µ

awin
µ

=
0.015

236.60
(∼ 0.006%) , (D6)

where we have inserted the ahvp
µ = 720.0 value from Ref. [17]. The charm sea-quark contributions

are thus negligible at the current level of precision.
We notice that ∆c-seaahvp

µ /ahvp
µ is much smaller than the effects found in the HVP contribu-

tions to the QED running coupling, namely ∼ 0.4% [62]. We interpret the difference as follows:

the typical scale in ahvp
µ is given by the muon mass, which is well separated from the D-meson
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masses. Therefore the D-meson effects are strongly suppressed. In comparison, the running
coupling was investigated at the GeV scale and the suppression is less strong.

In the intermediate window, the charm sea-quarks are even more suppressed, as seen in
the tiny value of ∆c-seaawin

µ /awin
µ . This results from the following fact: creating D-meson pairs

requires a center-of-mass energy of ∼ 4 GeV, corresponding to t ∼ 0.05 fm, which is much
smaller than the lower edge of the intermediate window, t0 = 0.4 fm. Therefore, the D-meson
pair creation contributes mostly to the short-distance window (ahvp

µ )SD. In fact, the effect in the

intermediate window ∆c-seaawin
µ amounts to at most 5% of the total ∆c-seaahvp

µ .
Charm sea quarks lead not only to on-shell D mesons in the R(s) ratio, but also to virtual

effects below the threshold for charm production. This is seen explicitly in the perturbative
calculation [115], where the two effects are of the same order. At present, we do not have a
means to estimate these virtual effects on the quantity awin

µ , in which they are less kinematically
suppressed. Therefore, we will conservatively amplify the uncertainty that we assign to the
neglect of sea charm quarks by a factor of three relative to the prediction of Eq. D6. This
estimate also generously covers the effect on awin

µ which follows from adopting the perturbative

charm-loop effect on R(s) down to s = 1 . . . 1.5 GeV2. Thus, rounding the uncertainty to one
significant digit, we quote

∆c-seaawin
µ = 0.05× 10−10 (D7)

as the uncertainty on awin
µ due to the quenching of the charm in the final result Eq. (44) for the

isosymmetric theory.
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Appendix E: Light pseudoscalar quantities

In Table VII, we provide our results for the light pseudoscalar masses and decay constants,
in lattice units, for all our lattice ensembles.

The pseudoscalar decay constant on ensembles with open boundary conditions is computed
using the same procedure as in [56]. We construct the ratio

R(x0, y0) =

√
2

mP

[
CA(x0, y0)CA(x0, T − y0)

CP (T − y0, y0)

]1/2

(E1)

as an estimator for the (improved, but unrenormalized) decay constant, with mP the pseu-
doscalar mass. The two-point correlation functions are

CP (x0, y0) = − a
6

L3

∑

~x,~y

〈P (x0, ~x)P (y0, ~y)〉 , (E2)

CA(x0, y0) = − a
6

L3

∑

~x,~y

〈A0(x0, ~x)P (y0, ~y)〉 , (E3)

with P = ψrγ5ψr′ and Aµ = ψrγ0γ5ψr′ + acA∂µ(ψrγ5ψr′) the local O(a)-improved interpolating
operators for the pseudoscalar and axial densities respectively. The coefficient cA has been
determined non-perturbatively in Ref. [116] and the valence flavors are denoted by r and r′,
with r 6= r′. In practice we average the results between the two source positions y0 = 2a and
y0 = T − 2a, close to the temporal boundaries. As shown in [56], a plateau Ravg is obtained
at large x0 where excited state contributions are small. On ensembles with periodic boundary
conditions, we use the estimator

Ravg =
2ZP
m2
P

×mPCAC
rr′ , (E4)

where mPCAC
rr′ is the average PCAC quark mass of flavors r and r′, and ZP the overlap factor

of the pseudoscalar meson. The average PCAC mass is defined from an average in the interval
[ti, tf ] via

mPCAC
rr′ =

a

tf − ti + a

tf∑

x0=ti

∂̃0CA(x0, y0)

2CP (x0, y0)
, (E5)

where the source position y0 is fixed as specified above for open boundary conditions and ran-
domly chosen for periodic boundary conditions. The interval is chosen such that deviations
from a plateau which occur at short source-sink separations and close to the time boundaries
are excluded from the average.

From the bare matrix element Ravg, the renormalized and O(a)-improved pseudoscalar decay
constant is given by

fP (Xa, Xπ) = ZA(g̃0)
(
1 + 3bAam

av
q + bAamq,rr′

)
Ravg . (E6)

In this equation, ZA is the renormalization factor in the chiral limit and bA, bA are improvement
coefficients of the axial current. These quantities are known from Refs. [117–119]. The average
valence quark mass mq,rr′ = (mq,r + mq,r′)/2 and the average sea quark mass mav

q = (2mq,l +
mq,s)/3 are defined in terms of the bare subtracted quark masses mq,r ≡ (2κr)

−1 − (2κcrit)
−1,

with κcrit the critical value of the hopping parameter at which all three PCAC masses vanish.
In practice, we use the relation [60]

mq,rr′ =
mPCAC
rr′

Z
− (rm − 1)

Zrm
mPCAC

av + O(amPCAC
rr′ , amPCAC

av ) (E7)

where mPCAC
av = (mPCAC

ll′ + 2mPCAC
ls )/3 is the average sea PCAC quark mass and the coefficients

Z(g̃0) = ZmZP/ZA and rm(g̃0) have been determined non-perturbatively in [120, 121].
The lattice data for the light pseudoscalar masses and decay constants are corrected for finite-

size effects using chiral perturbation theory (χPT) as described in Ref. [77]. Those corrections
are small (the negative shift is at most 1.3 σ) and we find that they correctly account for FSE on
the ensembles H105/N101, which are generated using the same action parameters but different
lattice volumes.
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Appendix F: Tables

1. Pseudoscalar observables

TABLE VII: Pseudoscalar masses and decay constants in lattice units, including finite-size corrections.
Value of the gluonic observable t0/a

2 and the two dimensionless variables ỹ and φ2 used in the extrapo-
lation to the physical point.

id amπ amK afπ afK t0/a
2 ỹ φ2

A653 0.21193(91) 0.21193(91) 0.07164(23) 0.07164(23) 2.171(08) 0.1108(06) 0.7803(70)

A654 0.16647(121) 0.22712(89) 0.06723(33) 0.07206(23) 2.192(11) 0.0777(08) 0.4860(77)

H101 0.18217(62) 0.18217(62) 0.06377(26) 0.06377(26) 2.846(08) 0.1034(09) 0.7557(56)

H102 0.15395(71) 0.19144(57) 0.06057(30) 0.06365(23) 2.872(13) 0.0818(08) 0.5445(54)

H105 0.12136(124) 0.20230(61) 0.05800(110) 0.06431(29) 2.890(08) 0.0555(26) 0.3405(70)

N101 0.12150(55) 0.20158(31) 0.05772(31) 0.06418(20) 2.881(03) 0.0561(07) 0.3403(32)

C101 0.09569(73) 0.20579(34) 0.05496(31) 0.06330(15) 2.912(05) 0.0384(07) 0.2133(33)

B450 0.16063(45) 0.16063(45) 0.05674(15) 0.05674(15) 3.662(13) 0.1015(06) 0.7559(48)

S400 0.13506(44) 0.17022(39) 0.05394(38) 0.05675(32) 3.691(08) 0.0794(10) 0.5387(37)

N451 0.11072(29) 0.17824(18) 0.05228(13) 0.05789(08) 3.681(07) 0.0568(03) 0.3610(19)

D450 0.08329(43) 0.18384(18) 0.04989(21) 0.05766(12) 3.698(06) 0.0353(03) 0.2052(21)

D452 0.05941(55) 0.18651(15) 0.04827(49) 0.05704(08) 3.725(01) 0.0192(04) 0.1052(19)

H200 0.13535(60) 0.13535(60) 0.04799(27) 0.04799(27) 5.151(33) 0.1008(15) 0.7549(86)

N202 0.13424(31) 0.13424(31) 0.04821(17) 0.04821(17) 5.140(26) 0.0982(08) 0.7410(53)

N203 0.11254(24) 0.14402(20) 0.04645(14) 0.04907(12) 5.146(08) 0.0744(05) 0.5214(24)

N200 0.09234(31) 0.15071(23) 0.04424(16) 0.04901(16) 5.163(07) 0.0552(05) 0.3522(25)

D200 0.06507(28) 0.15630(15) 0.04226(13) 0.04910(11) 5.181(11) 0.0300(04) 0.1755(16)

E250 0.04170(41) 0.15924(09) 0.04026(19) 0.04864(06) 5.204(04) 0.0136(03) 0.0724(14)

N300 0.10569(23) 0.10569(23) 0.03819(14) 0.03819(14) 8.545(33) 0.0970(09) 0.7636(38)

N302 0.08690(34) 0.11358(28) 0.03663(15) 0.03860(15) 8.524(25) 0.0713(09) 0.5150(43)

J303 0.06475(18) 0.11963(16) 0.03444(12) 0.03872(16) 8.612(23) 0.0448(04) 0.2888(18)

E300 0.04393(16) 0.12372(10) 0.03255(09) 0.03832(17) 8.622(06) 0.0231(02) 0.1331(10)

J500 0.08153(19) 0.08153(19) 0.02989(10) 0.02989(10) 13.990(69) 0.0942(08) 0.7439(51)

J501 0.06582(23) 0.08794(22) 0.02882(15) 0.03059(15) 13.992(67) 0.0661(09) 0.4850(41)
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2. Isovector contribution

TABLE VIII: Values of the isovector contributions, with and without fπ-rescaling, in units of 10−10,
for the local-local (LL) and for the local-conserved (CL) discretizations of the correlation function, as
described in the main text. The finite-size correction has been applied.

Scale t0 - Set 1 Scale fπ - Set 1 Scale t0 - Set 2 Scale fπ - Set 2

id (LL) (CL) (LL) (CL) (LL) (CL) (LL) (CL)

A653 173.94(36) 176.25(37) 185.71(28) 189.09(32) 142.15(35) 151.27(37) 150.38(21) 162.53(26)

H101 172.10(39) 173.35(39) 185.49(47) 187.48(49) 150.16(39) 155.36(39) 161.03(40) 168.34(46)

H102 178.54(52) 179.75(52) 186.34(56) 187.95(58) 157.27(53) 162.26(53) 163.73(51) 169.87(56)

H105∗ 184.82(50) 186.01(49) 188.15(189) 189.51(199) 164.28(53) 169.09(51) 167.07(159) 172.35(187)

N101 186.31(43) 187.56(42) 188.94(60) 190.28(61) 165.61(44) 170.48(43) 167.80(54) 173.07(58)

C101 192.19(41) 193.40(41) 190.56(62) 191.69(64) 172.25(43) 176.94(42) 170.87(57) 175.33(62)

B450 168.12(38) 168.82(38) 182.47(35) 183.62(36) 152.53(38) 155.68(38) 165.14(33) 169.63(34)

N451 183.40(28) 184.05(28) 188.25(29) 189.04(29) 168.49(27) 171.40(27) 172.83(27) 176.17(28)

D450 189.36(26) 190.03(27) 189.80(46) 190.49(47) 174.95(26) 177.79(26) 175.35(43) 178.28(45)

D452 194.96(33) 195.61(33) 192.97(101) 193.58(104) 181.21(34) 183.97(34) 179.42(93) 182.00(101)

H200∗ 165.17(91) 165.44(91) 179.46(90) 179.92(90) 155.70(89) 157.21(89) 169.07(86) 171.19(87)

N202 168.14(68) 168.45(69) 182.46(52) 182.97(53) 158.36(67) 159.92(68) 171.77(50) 173.98(52)

N203 173.75(43) 174.11(43) 183.80(44) 184.25(44) 164.22(43) 165.77(43) 173.65(43) 175.60(44)

N200 180.17(43) 180.43(42) 185.21(50) 185.53(50) 171.02(44) 172.41(43) 175.77(49) 177.37(50)

D200 188.37(38) 188.69(37) 189.03(38) 189.36(38) 179.52(39) 180.91(38) 180.14(37) 181.56(38)

E250 194.75(26) 194.96(26) 191.77(45) 191.96(46) 186.36(27) 187.61(26) 183.54(44) 184.66(45)

N300 160.99(59) 161.08(59) 177.99(61) 178.15(60) 156.34(59) 156.89(59) 172.86(60) 173.65(60)

J303 179.51(54) 179.57(55) 184.77(56) 184.84(56) 175.24(55) 175.67(55) 180.39(56) 180.88(56)

E300 188.05(49) 188.13(49) 188.14(47) 188.21(47) 183.96(49) 184.38(50) 184.05(47) 184.47(47)

J500 162.00(72) 162.04(72) 178.03(65) 178.07(65) 159.69(72) 159.97(72) 175.52(65) 175.86(65)

J501 170.16(98) 170.15(98) 182.04(83) 182.07(83) 167.92(98) 168.13(98) 179.68(83) 179.98(83)
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3. Isoscalar contribution

TABLE IX: Values of the isoscalar contributions, with and without fπ-rescaling, in units of 10−10, for the
local-local (LL) and for the local-conserved (CL) discretizations of the correlation function, as described
in the main text. The finite-size correction has been applied.

Scale t0 - Set 1 Scale fπ - Set 1 Scale t0 - Set 2 Scale fπ - Set 2

id (LL) (CL) (LL) (CL) (LL) (CL) (LL) (CL)

A653 57.98(12) 58.75(12) 61.90(9) 63.03(11) 47.38(12) 50.42(12) 50.13(7) 54.18(9)

H101 57.36(13) 57.78(13) 61.83(16) 62.49(16) 50.05(13) 51.78(13) 53.68(13) 56.11(15)

H102 55.30(16) 55.71(16) 58.28(19) 58.82(20) 47.94(16) 49.70(16) 50.38(17) 52.53(18)

H105∗ 53.16(16) 53.57(15) 54.65(81) 55.12(84) 45.83(15) 47.61(15) 47.05(66) 49.01(76)

N101 53.55(11) 53.97(11) 54.70(25) 55.16(26) 46.18(11) 47.99(11) 47.12(21) 49.06(24)

C101 52.67(11) 53.08(11) 51.89(26) 52.27(27) 45.39(11) 47.18(11) 44.74(22) 46.46(24)

B450 56.04(13) 56.27(13) 60.82(12) 61.21(12) 50.84(13) 51.89(13) 55.05(11) 56.54(11)

N451 52.80(06) 53.01(06) 54.92(10) 55.18(10) 47.51(06) 48.60(06) 49.37(09) 50.61(09)

D450 51.47(06) 51.70(07) 51.70(19) 51.93(19) 46.23(06) 47.33(06) 46.43(17) 47.55(18)

D452 50.90(10) 51.12(10) 49.82(46) 50.06(46) 45.74(10) 46.84(10) 44.79(41) 45.82(43)

H200∗ 55.06(30) 55.15(30) 59.82(30) 59.97(30) 51.90(30) 52.40(30) 56.36(29) 57.06(29)

N202 56.05(23) 56.15(23) 60.82(17) 60.99(18) 52.79(22) 53.31(23) 57.26(17) 57.99(17)

N203 53.41(13) 53.50(13) 57.33(15) 57.46(15) 50.12(13) 50.65(13) 53.77(14) 54.45(15)

N200 51.61(11) 51.70(10) 53.81(15) 53.92(15) 48.35(11) 48.88(10) 50.39(14) 51.00(15)

D200 50.36(10) 50.46(10) 50.70(13) 50.80(13) 47.11(10) 47.67(09) 47.42(12) 47.99(12)

E250 49.65(09) 49.76(09) 47.90(24) 48.00(24) 46.45(09) 47.01(09) 44.82(22) 45.34(22)

N300 53.66(20) 53.69(20) 59.33(20) 59.38(20) 52.11(20) 52.30(20) 57.62(20) 57.88(20)

J303 49.80(12) 49.82(12) 52.21(16) 52.23(16) 48.25(12) 48.43(12) 50.59(16) 50.80(16)

E300 48.77(08) 48.80(08) 48.82(12) 48.84(12) 47.24(08) 47.44(08) 47.29(11) 47.48(11)

J500 54.00(24) 54.01(24) 59.34(22) 59.36(22) 53.23(24) 53.32(24) 58.51(22) 58.62(22)
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4. Charm quark contribution

TABLE X: Charm hopping parameter κc, renormalization factor of the local vector current Z
(c)
V , value

of awin,c
µ for the two discretizations of the correlator: local-local (LL) and local-conserved (LC). The first

error is statistical and the second is the systematic error arising from the tuning of the charm quark
hopping parameter as explained in the main text.

id κc Z
(c)
V (awin,c

µ )(LL) (awin,c
µ )(LC)

A653 0.119743(17) 1.32284(15)(71) 5.338(03)(23) 2.729(02)(12)

A654 0.120079(25) 1.30495(11)(105) 5.523(06)(46) 2.870(04)(25)

H101 0.122897(18) 1.20324(11)(70) 4.546(09)(27) 2.692(06)(16)

H102 0.123041(26) 1.19743(08)(99) 4.641(09)(39) 2.765(06)(24)

H105 0.123244(19) 1.18964(08)(74) 4.795(13)(30) 2.878(09)(19)

N101 0.123244(19) 1.18964(08)(74) 4.794(17)(30) 2.879(11)(19)

C101 0.123361(12) 1.18500(05)(43) 4.879(13)(24) 2.943(09)(15)

B450 0.125095(22) 1.12972(06)(82) 3.993(07)(26) 2.620(05)(17)

S400 0.125252(20) 1.11159(13)(88) 4.047(08)(31) 2.702(06)(21)

N451 0.125439(15) 1.11412(04)(58) 4.255(02)(23) 2.837(01)(15)

D450 0.125585(07) 1.10790(04)(26) 4.372(01)(12) 2.934(01)(08)

D452 0.125640(06) 1.10790(02)(23) 4.445(01)(09) 2.985(01)(06)

H200 0.127579(16) 1.04843(03)(85) 3.503(10)(27) 2.590(08)(20)

N202 0.127579(16) 1.04843(03)(85) 3.517(10)(27) 2.600(08)(20)

N203 0.127714(11) 1.04534(03)(39) 3.623(08)(19) 2.686(06)(14)

N200 0.127858(07) 1.04012(03)(25) 3.758(11)(13) 2.802(09)(10)

D200 0.127986(06) 1.03587(04)(21) 3.883(17)(11) 2.908(13)(09)

E250 0.128054(03) 1.03310(01)(11) 3.961(01)(11) 2.977(01)(08)

N300 0.130099(18) 0.97722(03)(60) 3.030(08)(36) 2.513(07)(30)

N302 0.130247(09) 0.97241(03)(30) 3.218(07)(19) 2.681(06)(16)

J303 0.130362(09) 0.96037(10)(38) 3.306(12)(18) 2.790(11)(16)

E300 0.130432(06) 0.96639(02)(26) 3.447(02)(25) 2.891(02)(21)

J500 0.131663(16) 0.93412(02)(51) 2.816(11)(40) 2.503(11)(35)

[1] Muon g-2 collaboration, B. Abi et al., Measurement of the Positive Muon Anomalous Magnetic
Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [2104.03281].

[2] Muon g-2 collaboration, G. W. Bennett et al., Final Report of the Muon E821 Anomalous
Magnetic Moment Measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035].

[3] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys.
Rept. 887 (2020) 1 [2006.04822].

[4] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum
polarisation contributions to the Standard Model predictions of the muon g − 2 and α(m2

Z) using
newest hadronic cross-section data, Eur. Phys. J. C77 (2017) 827 [1706.09436].

[5] A. Keshavarzi, D. Nomura and T. Teubner, The muon g − 2 and α(M2
Z): a new data-based

analysis, Phys. Rev. D97 (2018) 114025 [1802.02995].
[6] G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum

polarization, JHEP 02 (2019) 006 [1810.00007].
[7] M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum

polarization, JHEP 08 (2019) 137 [1907.01556].
[8] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum

polarisation contributions to the muon anomalous magnetic moment and to α(m2
Z), Eur. Phys. J.

C80 (2020) 241 [1908.00921].
[9] A. Keshavarzi, D. Nomura and T. Teubner, The g − 2 of charged leptons, α(M2

Z) and the
hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029 [1911.00367].

https://doi.org/10.1103/PhysRevLett.126.141801
https://arxiv.org/abs/2104.03281
https://doi.org/10.1103/PhysRevD.73.072003
https://arxiv.org/abs/hep-ex/0602035
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1016/j.physrep.2020.07.006
https://arxiv.org/abs/2006.04822
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://arxiv.org/abs/1706.09436
https://doi.org/10.1103/PhysRevD.97.114025
https://arxiv.org/abs/1802.02995
https://doi.org/10.1007/JHEP02(2019)006
https://arxiv.org/abs/1810.00007
https://doi.org/10.1007/JHEP08(2019)137
https://arxiv.org/abs/1907.01556
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://arxiv.org/abs/1908.00921
https://doi.org/10.1103/PhysRevD.101.014029
https://arxiv.org/abs/1911.00367


38

[10] M. Della Morte, A. Francis, V. Gülpers, G. Herdóıza, G. von Hippel, H. Horch et al., The
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