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Abstract

We address the prediction for the mass of the SM-like Higgs boson in NMSSM scenarios where

all BSM particles, including the singlets, have masses at the TeV scale. We provide a full one-loop

computation of the matching condition for the quartic Higgs coupling in the NMSSM, supplemented

with the two-loop contributions that involve the strong gauge coupling. We discuss the impact of the

one- and two-loop corrections that are specific to the NMSSM on the prediction for the Higgs mass,

and propose a method to estimate of the uncertainty associated with the uncomputed higher-order

terms. Finally, we illustrate how the measured value of the Higgs mass can be used to constrain

some yet-unmeasured parameters of the NMSSM.
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1 Introduction

The discovery of a Higgs boson with mass around 125 GeV and properties compatible with the

predictions of the Standard Model (SM) [1–4], combined with the negative (so far) results of the

searches for additional new particles at the LHC, point to scenarios with at least a mild hierarchy

between the electroweak (EW) scale and the scale of beyond-the-SM (BSM) physics. In this case, the

SM plays the role of an effective field theory (EFT) valid between the two scales. The requirement

that a given BSM model include a state that can be identified with the observed Higgs boson can

translate into important constraints on the model’s parameter space.

One of the prime candidates for BSM physics is supersymmetry (SUSY), which predicts scalar

partners for all SM fermions, as well as fermionic partners for all bosons. A remarkable feature of

SUSY extensions of the SM is the requirement of an extended Higgs sector, with additional neutral

and charged bosons. In contrast to the case of the SM, the masses of the Higgs bosons are not free

parameters, as SUSY requires all quartic scalar couplings to be related to the gauge and Yukawa

couplings. Moreover, radiative corrections to the tree-level predictions for the quartic scalar couplings

introduce a dependence on all of the SUSY-particle masses and couplings. In a hierarchical scenario

such as the one described above, the lightest scalar of the SUSY model plays the role of the SM Higgs

boson, and the prediction for its quartic self-coupling at the SUSY scale must coincide with the SM

coupling extracted at the EW scale from the measured value of the Higgs mass and evolved up to the

SUSY scale with appropriate renormalization group equations (RGEs). This “matching” condition

can be used to constrain some yet-unmeasured parameters of the SUSY model, such as, e.g., the

masses of the scalar partners of the top quarks, the stops.

In the next-to-minimal SUSY extension of the SM, or NMSSM, the Higgs sector includes two

SU(2) doublets H1 and H2 – as in the case of the minimal extension, the MSSM – plus a complex

scalar S, singlet with respect to the SM gauge group.1 The vacuum expectation value (vev) of the

singlet, induced by the mass and interaction terms in the soft SUSY-breaking Lagrangian, generates a

superpotential mass term for the doublets. This provides a solution to the so-called “µ problem” of the

MSSM, i.e., the question of why the supersymmetric Higgs-mass parameter µ should be at the same

scale as the soft SUSY-breaking parameters. The doublet–singlet interactions of the NMSSM also

induce new contributions to the prediction for the quartic self-coupling of the SM-like Higgs boson.

Depending on the considered region of the NMSSM parameter space, these additional contributions

can either increase or decrease the prediction for the quartic Higgs coupling (and hence the Higgs

mass) with respect to the case of the MSSM.

The fixed-order (FO) calculation of the NMSSM Higgs boson masses – in which the Higgs self-

energies are computed up to a given order in the perturbative expansion, considering the full content

of heavy and light fields of the theory – is quite advanced by now, albeit not yet at the level of the

corresponding calculation in the MSSM.2 After early studies of the NMSSM Higgs sector at the tree

1For reviews of the MSSM and of the NMSSM, we point the reader to ref. [5] and refs. [6, 7], respectively.
2For details on the Higgs-mass calculation in the MSSM, as well as for an overview of the different approaches to the
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level [9, 10] and partial calculations of the dominant one-loop corrections [11–20], full calculations

of the one-loop corrections – for increasingly general versions of the NMSSM and using a variety of

renormalization schemes for the NMSSM parameters – were made available in refs. [21–29]. At the

two-loop level, the corrections involving the strong gauge coupling were computed in refs. [21,30–32],

those involving only the top Yukawa coupling were computed in ref. [33], and those involving also

the remaining superpotential couplings of the NMSSM were computed in refs. [31,34–36]. It is worth

pointing out that, in all of the two-loop calculations listed above, the two-loop part of the Higgs

self-energies was computed under the approximation of vanishing external momentum and in the

so-called “gaugeless limit” of vanishing EW gauge couplings. These full one-loop and partial two-

loop calculations of the NMSSM Higgs masses were implemented in various public codes, such as

NMSSMTools [37,38], SARAH/SPheno [39–45], NMSSMCALC [46], SOFTSUSY [47,48], FlexibleSUSY [49,50]

and FeynHiggs [51–53].3 Detailed comparisons among the predictions of these codes for the NMSSM

Higgs masses were also presented in refs. [54, 55].

Compared with the case of the FO calculation, much less attention has been devoted so far to

the calculation of the NMSSM Higgs boson masses in the EFT approach, in which the heavy fields

are “integrated out” of the theory at a scale comparable to their mass, leaving behind matching

conditions for the couplings of the low-energy theory. This approach is the most appropriate to

scenarios characterized by a hierarchy between the SUSY scale and the EW scale, where the FO

calculation is plagued by large logarithms of the ratio of the two scales. In ref. [56] a method was

proposed to numerically obtain the boundary condition for the quartic Higgs coupling at the SUSY

scale, by matching the FO calculation of the pole mass of the lightest Higgs boson in the NMSSM, as

implemented in FlexibleSUSY, with the corresponding calculation in the SM. A similar method was

later implemented in SARAH/SPheno in ref. [57]. The “hybrid” approach to the Higgs-mass calculation

in refs. [56,57] accounts for terms suppressed by powers of v2/M2
S – where v stands for the EW scale and

MS for the SUSY scale – that would be neglected in a pure EFT calculation. However, this approach

required successive adjustments [50,58] to avoid the introduction of spurious large-logarithmic effects

at higher orders, and it does not provide explicit analytic results for the matching conditions. The

latter would come in useful, e.g., to assess the relevance of the various contributions, to check and

compare existing calculations, or as building blocks for further calculations.

A sensible approach to obtain explicit analytic results for the matching conditions consists in adapt-

ing to the NMSSM the formulas that were computed independently in refs. [59, 60] for the one-loop

matching of a general high-energy theory (without heavy gauge bosons) on a general renormalizable

EFT. Indeed, in ref. [60] analytic results for the one-loop matching condition for the quartic Higgs

coupling were obtained in an extremely constrained NMSSM scenario in which all of the BSM-particle

masses depend on just one parameter. Subsequently, the general formulas of ref. [60] were employed

in ref. [61] to study a “Split-SUSY” scenario in which the NMSSM is matched to an EFT that, beyond

Higgs-mass calculation in SUSY models, we point the reader to ref. [8].
3In fact, the version of FeynHiggs that implements the NMSSM calculations of refs. [26–28] is not public yet.
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the SM fields, includes also the complex singlet as well as the gauginos, the higgsinos and the singlino

(i.e., the SUSY partners of the gauge bosons, the Higgs doublets and the singlet, respectively).

In this paper we aim to improve the accuracy of the EFT calculation of the SM-like Higgs mass in

the NMSSM, and to illustrate how the measured value of the Higgs mass can constrain the parameter

space of the model even in scenarios where all of the BSM particles are heavy. In section 2 we adapt

to the NMSSM the general formulas of ref. [59], and obtain the full one-loop matching condition for

the quartic Higgs coupling, for arbitrary values of all of the relevant parameters, in the EFT setup in

which the NMSSM is matched directly to the SM. We compare our results with those of ref. [60], in the

constrained scenario considered in that paper, and find a discrepancy. We also compute directly the

full two-loop-QCD contribution to the matching condition, i.e., the contribution of all two-loop terms

that involve the strong gauge coupling. In section 3 we discuss the effect of the corrections computed

in section 2 on the prediction for the mass of the SM-like Higgs boson, including an estimate of the

uncertainty associated with uncomputed higher-order terms. We also discuss the constraints on the

NMSSM parameters that arise from the requirement that the theory prediction for the Higgs mass

correspond to the measured value. Finally, section 4 contains our conclusions.

2 Matching condition for the quartic Higgs coupling

In this section we describe our calculation of the full one-loop and two-loop-QCD contributions to

the matching condition for the quartic Higgs coupling in the NMSSM. To fix our notation, which

follows the SLHA2 conventions [62], we list here the terms in the superpotential W and in the soft

SUSY-breaking Lagrangian Lsoft that determine the Higgs potential:

W ⊃ −λ Ŝ Ĥ1Ĥ2 +
κ

3
Ŝ3 , (1)

−Lsoft ⊃ m2
H1
H†1H1 + m2

H2
H†2H2 + m2

S S
∗S −

(
λAλ S H1H2 −

κ

3
Aκ S

3 + h.c.
)
, (2)

where the hats denote superfields, and the SU(2) indices of the Higgs doublets are contracted by the

antisymmetric tensor εab, with ε12 = 1. For simplicity, we take the parameters in eqs. (1) and (2)

to be all real, and we enforce the Z3 symmetry that forbids tadpole and mass terms in W and the

corresponding SUSY-breaking terms in Lsoft. We assume that the singlet develops a vev vs ≡ 〈S〉,
providing effective µ and Bµ terms for the Higgs doublets. It is also convenient to rotate the two

doublets to the so-called Higgs basis, in which they have the same hypercharge and only one of them

develops a vev (
H

A

)
=

(
cosβ sinβ

− sinβ cosβ

)(
−εH∗1
H2

)
, (3)

where the rotation angle is defined by tanβ ≡ v2/v1, with vi ≡ 〈H0
i 〉. In this basis the neutral

component of H has the vev v = (v21 + v22)1/2, while A has no vev.

We consider the hierarchical scenario in which all of the SUSY particles, as well as the Higgs

doublet A and the scalar and pseudoscalar components of the singlet, are significantly heavier than

3



the EW scale. We then adopt an EFT setup in which all of the heavy particles of the NMSSM are

integrated out at a common renormalization scale Q ≈MS , below which the field content of the theory

is just the one of the SM, and in particular the Higgs doublet H plays the role of the SM Higgs. In

the matching of the NMSSM to the SM we work in the limit of unbroken EW symmetry, v → 0. This

amounts to neglecting corrections suppressed by powers of v2/M2
S , which can be mapped to the effect

of non-renormalizable, higher-dimensional operators in the EFT Lagrangian. In this limit we can

neglect the mixing among gauginos, higgsinos and singlino, as well as the mixing between the “left”

and “right” sfermions (i.e., the SUSY partners of the left- and right-handed fermions of the SM).

2.1 Tree-level masses and couplings

We now discuss the tree-level masses and couplings in the Higgs/higgsino sector. As mentioned above,

we work in the limit v → 0, as appropriate to the calculation of the matching conditions in the EFT

approach. The masses of the scalar and pseudoscalar components of the singlet, which we decompose

as S = vs + (s+ i a)/
√

2, are

m2
s = κ vs (Aκ + 4κ vs) , m2

a = − 3κ vsAκ , (4)

where one of the minimum conditions of the tree-level scalar potential has been used to replace the

soft SUSY-breaking mass for the singlet with a combination of the other parameters,

m2
S = − κ vs (Ak + 2κ vs), (5)

and the requirement that 〈S〉 = vs be a deeper minimum than 〈S〉 = 0 implies 3κ vs/Aκ < −1. The

mass of the heavy Higgs doublet A is

m2
A =

λ vs (Aλ + κ vs)

sinβ cosβ
, (6)

where again the minimum conditions have been used to remove the dependence on m2
H1

and m2
H2

.

Finally, the higgsinos h̃1 and h̃2 combine into a Dirac fermion with mass µ = λ vs, and the singlino

acquires a mass ms̃ = 2κ vs.

In the EFT approach, the calculation of the mass of the SM-like Higgs boson H – or, alternatively,

the determination of the constraints on the NMSSM parameters that arise from the measured value

of the Higgs mass – require the calculation of the NMSSM prediction for the quartic Higgs coupling

at the matching scale.4 At the tree level, the latter reads

λtree
SM =

1

4
(g2 + g′ 2) cos2 2β +

1

2
λ2 sin2 2β −

a2hhs
m2
s

, (7)

where the first term on the r.h.s. is the D-term contribution analogous to the one in the MSSM, the

second term is the F-term contribution specific to the NMSSM, and the third term originates from

4We denote the quartic Higgs coupling as λSM to distinguish it from the doublet–singlet superpotential coupling λ.

In our conventions the SM Lagrangian contains the quartic interaction term − 1
2
λSM|H|4 .
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the decoupling of the singlet scalar. The trilinear coupling ahhs enters the NMSSM Lagrangian as

L ⊃ −(ahhs/2)h2s, where h is the neutral scalar component of H, and at the tree level it reads

ahhs =
λ√
2

[2λ vs − (Aλ + 2κ vs) sin 2β] . (8)

Combining eqs. (4), (7) and (8), we remark that the contribution to λtree
SM that arises from the decoupling

of the singlet is always negative, and contains a piece that does not depend on tanβ.

2.2 One-loop matching

We now describe our calculation of the full one-loop contribution to the matching condition for the

quartic Higgs coupling. This contribution can be decomposed as:

∆λ1`SM = ∆λ1`,1PI
SM + 2λtree

SM ∆Z1`
h − 2

ahhs
m2
s

∆a1`hhs +
a2hhs
m4
s

∆m2 , 1`
s + ∆λ1`,RS

SM . (9)

The first term on the r.h.s. of eq. (9) originates from one-particle-irreducible (1PI) diagrams with heavy

particles in the loop and four external Higgs legs. The second term arises from diagrams with a wave-

function renormalization (WFR) insertion on one of the external legs, and it involves the derivative

with respect to the external momentum of the heavy-particle (HP) contribution to the renormalized

self-energy of the Higgs field:

∆Z1`
h = −

dΠ̂1`,HP

hh

dp2

∣∣∣∣∣
p2=0

. (10)

The third term on the r.h.s. of eq. (9) arises from singlet-exchange diagrams with a HP loop insertion on

one of the trilinear Higgs–singlet vertices, while the fourth term arises from singlet-exchange diagrams

with a HP loop insertion on the singlet propagator. The exact form of the latter term depends on the

choices made for the definitions of the singlet vev vs and of the singlet mass m2
s entering the tree-level

part of the matching condition for λSM, see eq. (7). Assuming that vs corresponds to the minimum of

the loop-corrected scalar potential, and using the expression in eq. (4) for the singlet mass, we get

∆m2 , 1`
s = − Π̂1`,HP

ss

∣∣∣
p2=0

+
T̂ 1`,HP
s√
2 vs

, (11)

involving the HP contributions to the renormalized self-energy and tadpole of the singlet. We remark

that the tadpole term in eq. (11) originates from the fact that, with our choice for vs, the minimum

condition of the scalar potential used to remove the explicit dependence of the singlet mass on the

soft SUSY-breaking parameter m2
S includes a loop correction,

m2
S = − κ vs (Ak + 2κ vs) +

T̂ 1`,HP
s√
2 vs

. (12)

By expressing the singlet mass as in eq. (4), we are effectively moving the tadpole term from the singlet

mass to the one-loop part of the matching condition for λSM . If we were instead to express the singlet
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mass entering the tree-level part of the matching condition as m2
s = m2

S + 2κ vs (Aκ + 3κ vs), while

still considering vs as the minimum of the loop-corrected potential, there would be no tadpole term

in eq. (11). If, on the other hand, we were to consider vs as the minimum of the tree-level potential,

there would still be no tadpole term in eq. (11), and the two expressions for the singlet mass discussed

above would be equivalent to each other, i.e. m2
s = κ vs (Aκ + 4κ vs) = m2

S + 2κ vs (Aκ + 3κ vs).

However, the one-loop contribution to the matching condition for λSM in eq. (9) would receive direct

contributions from non-1PI diagrams with tadpole insertions (see ref. [63] for a related discussion)

∆λ1`,tadSM =

[√
2κ (Ak + 6κ vs)

a2hhs
m6
s

− 2λ (λ− κ sin 2β)
ahhs
m4
s

]
T̂ 1`,HP
s , (13)

where the first term within square brackets arises from a diagram with a tadpole insertion on the singlet

propagator, and the second from diagrams with tadpole insertions on the singlet-doublet vertices.

Finally, the last term on the r.h.s. of eq. (9) includes contributions arising from differences in the

renormalization scheme (RS) used for the couplings of the NMSSM and for those of the EFT valid

below the matching scale (i.e., the SM). In particular, the calculation of the matching condition for

λSM is performed in the DR scheme assuming the field content of the NMSSM, whereas in the EFT

λSM is interpreted as an MS parameter, and we also choose to interpret the EW gauge couplings

entering eq. (7) as MS parameters of the SM. We remark, however, that the presence of the singlet

superfield does not affect these contributions at one loop, thus they can be taken directly from the

MSSM calculation of refs. [64, 65].

To obtain the quartic- and trilinear-vertex corrections and the self-energies entering the various

contributions to eq. (9) we use the formulas in appendix B of ref. [59], which discusses the one-loop

matching of a general high-energy theory (without heavy gauge bosons) on a general renormalizable

EFT. To obtain the singlet tadpole we use analogous formulas from ref. [66]. This saves us the trouble

of actually calculating one-loop Feynman diagrams, but requires that we adapt to the case of the

NMSSM the notation of refs. [59, 66] for masses and interactions of scalars and fermions in a general

renormalizable theory.5 We find that, once the higgsino mass and the Higgs–sfermion interaction

parameters are expressed in terms of µ = λ vs, the threshold correction ∆λ1`SM splits neatly into a part

that does not depend explicitly on λ and coincides with the corresponding correction in the MSSM,

see refs. [64, 65], plus an NMSSM-specific, λ-dependent part that vanishes in the limit λ→ 0.

Our full formulas for ∆λ1`SM, valid for generic values of all of the relevant NMSSM parameters, are

lengthy and not particularly illuminating, therefore we make them available on request in electronic

form. For later convenience, we provide here the contribution to the NMSSM-specific part of ∆λ1`SM
from diagrams involving stop squarks. The sfermion contribution to ∆λ1`,1PI

SM is the same as in the

MSSM once we set µ = λ vs, and in the limit v → 0 there are no one-loop sfermion contributions

to the self-energy and tadpole of the singlet. The NMSSM-specific stop contribution to the one-loop

5Note that our conventions for the signs of tadpoles and self-energies are opposite to those in refs. [59, 66]. Also,

refs. [59,66] define vs ≡
√

2 〈S〉, whereas we define vs ≡ 〈S〉 as mentioned after eq. (2).
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matching condition for λSM thus reduces to(
∆λ1`, t̃SM

)
λ

= 2 (λtree
SM )λ ∆Z1`, t̃

h − 2
ahhs
m2
s

∆a1`, t̃hhs . (14)

In the first term on the r.h.s. of eq. (14) above, (λtree
SM )λ = λ2 sin2 2β/2 − a2hhs/m2

s is the λ-dependent

part of the tree-level matching condition for λSM, see eq. (7), and ∆Z1`, t̃
h is the stop contribution to

the Higgs WFR:

∆Z1`, t̃
h = − g2tNc

(4π)2
X2
t

6mQ3mU3

F̃5

(
mQ3

mU3

)
, (15)

where Nc = 3 is a color factor, Xt = At−µ cotβ is the trilinear Higgs-stop interaction parameter (with

At being the corresponding soft SUSY-breaking coupling), mQ3 and mU3 are the soft SUSY-breaking

masses for the left and right stop, respectively, and the loop function F̃5(x) is defined in the appendix

A of ref. [64]. In the second term on the r.h.s. of eq. (14) above, the tree-level quantities m2
s and

ahhs are given in eqs. (4) and (8), respectively, while ∆a1`, t̃hhs is the one-loop stop contribution to the

Higgs–singlet coupling in the limit v → 0,

∆a1`,t̃hhs =
√

2Nc
λ g2t

(4π)2
Xt cotβ

m2
Q3
−m2

U3

[
m2
Q3

(
1− ln

m2
Q3

Q2

)
−m2

U3

(
1− ln

m2
U3

Q2

)]
. (16)

The NMSSM-specific sbottom contribution
(

∆λ1`, b̃SM

)
λ

can be obtained from eqs. (14)–(16) with the

replacements gt → gb, Xt → Xb, cotβ → tanβ and mU3 → mD3 , where gb is the bottom Yukawa

coupling, Xb = Ab−µ tanβ , andmD3 is the soft SUSY-breaking mass for the right sbottom. Analogous

replacements (with Nc = 1) yield also the stau contribution. For simplicity, we set the tiny Yukawa

couplings of the first two generations to zero, hence there are no NMSSM-specific contributions to

∆λ1`SM from the corresponding sfermions.

As a non-trivial check of our full one-loop calculation, we verified that by taking the derivative of

the matching condition for λSM with respect to lnQ2 we recover the corresponding one-loop RGE of

the SM, i.e.,

(4π)2
d

d lnQ2

(
λtree

SM + ∆λ1`SM

)
= λtree

SM

(
6λtree

SM + 6 g2t + 6 g2b + 2 g2τ −
9

2
g2 − 3

2
g′ 2
)

− 6 g4t − 6 g4b − 6 g4τ +
9

8
g4 +

3

8
g′ 4 +

3

4
g2g′ 2 . (17)

To this effect, we must combine the explicit scale dependence of our result for ∆λ1`SM with the implicit

scale dependence of all of the parameters entering λtree
SM . For the latter we use the RGEs of the NMSSM

as listed in ref. [7], with the exception of the EW gauge couplings for which our definitions require

that we use the RGEs of the SM.

As mentioned in section 1, the authors of ref. [60] obtained the matching condition for λSM in an

extremely constrained NMSSM scenario in which all of the masses and couplings in the singlet/singlino

sector depend only on λ, tanβ and a lone mass parameter m0. After adapting our formulas for ∆λ1`SM
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to this constrained scenario, we compared them with those of ref. [60],6 but we found a discrepancy.

Indeed, it appears that in ref. [60] the one-loop matching condition for λSM misses a tadpole contribu-

tion analogous to the one in our eq. (11). This is inconsistent with the fact that the authors of ref. [60]

appear to have defined the singlet mass entering λtree
SM as in our eq. (4) – thus obtaining m2

s = 2/3m2
0

in the constrained scenario – and vs as the vev of the loop-corrected potential, as can be inferred from

the absence of direct contributions from tadpole-insertion diagrams in their results.

2.3 Two-loop-QCD matching

As mentioned earlier, the one-loop squark contribution to the matching condition for λSM splits into

a λ-independent part that coincides with the analogous MSSM result and a λ-dependent part that

is specific to the NMSSM. This structure allows for a relatively economical calculation of the two-

loop contribution that involves the strong gauge coupling. Indeed, once we identify µ = λ vs, the

contribution from two-loop 1PI diagrams that involve the strong interactions of the squarks is the

same as in the MSSM, and has already been computed in refs. [64, 67]. Furthermore, the fact that

there are no squark contributions to the singlet self-energy and tadpole at one loop implies that there

are no two-loop contributions involving the strong interactions either. In analogy with eqs. (9) and

(14), the NMSSM-specific, λ-dependent two-loop-QCD contribution to the matching condition for λSM

can thus be decomposed as(
∆λ2`,QCD

SM

)
λ

= 2 (λtree
SM )λ ∆Z2`,QCD

h − 2
ahhs
m2
s

∆a2`,QCD

hhs +
(

∆λ2`,RS
SM

)
λ
. (18)

The quantity denoted as ∆Z2`,QCD

h in the first term on the r.h.s. of eq. (18) above is the two-loop

contribution to the Higgs WFR from diagrams that involve the strong interactions of the squarks.

Again, once we identify µ = λ vs, this contribution is the same as in the MSSM and has already

been computed in ref. [67]. Explicit formulas for ∆Z2`,QCD

h in the limit of degenerate squark and

gluino masses can be gleaned from eqs. (13)–(17) in section 2.2 of that paper, and the formulas

with full dependence on all of the relevant parameters are available on request in electronic form.

It is worth noting that, in the EFT calculation of the SM-like Higgs mass, the WFR contribution

in eq. (18) accounts for effects that, in the corresponding FO calculation, arise from the external-

momentum dependence of the two-loop self-energies; in particular, it is related to the first-order

term in the p2-expansion of Π̂2`,q̃
hh , the contribution to the renormalized Higgs-boson self-energy from

two-loop diagrams involving the strong interactions of the squarks. Higher-order terms in the p2-

expansion of Π̂2`,q̃
hh are suppressed by powers of v2/M2

S and can be neglected in our hierarchic scenario,

while the momentum dependence of the two-loop quark–gluon contribution to the self-energy is fully

accounted for in the calculation of the relation between λSM and Mh at the EW scale, see section 3.

Hence, the EFT approach allows for a straightforward inclusion of external-momentum effects that

6We obtained the formulas of ref. [60] for ∆λ1`
SM in the constrained NMSSM scenario from their implementation in

SARAH/SPheno. We also remark that we cannot reproduce figure 12 of ref. [60] beyond the qualitative level.
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are of the same order in the relevant couplings as the other two-loop contributions computed in this

section. In contrast, these effects are missed by the FO calculations of the NMSSM Higgs masses in

refs. [21,30–32], where the two-loop part of the self-energies is computed – whether “diagrammatically”

or in the effective-potential approach – under the approximation of vanishing external momentum.

The quantity denoted as ∆a2`,QCD

hhs in the second term on the r.h.s. of eq. (18) is the contribution to

the trilinear Higgs–singlet coupling from two-loop, 1PI diagrams that involve the strong interactions

of the squarks. This contribution is not available in the literature, but can be straightforwardly

computed with the same effective-potential techniques adopted in refs. [64, 67] for the calculation of

the two-loop-QCD contributions to the matching condition for λSM. In particular, we can write

∆a2`,QCD

hhs =
∂3∆V 2`, q̃

∂2h ∂s

∣∣∣∣
v=0

, (19)

where ∆V 2`, q̃ is the contribution to the NMSSM scalar potential from two-loop diagrams involving

the strong interactions of the stop and sbottom squarks (the first two generations of squarks do not

contribute in the limit in which we neglect the corresponding Yukawa couplings). The stop contribution

to ∆V 2`, q̃ can be found, e.g., in eq. (28) of ref. [64], and the sbottom contribution can be obtained

from the stop one with trivial replacements. The squark masses and mixing angles in ∆V 2`, q̃ are then

expressed as function of field-dependent quark masses, and eq. (19) becomes

∆a2`,QCD

hhs = − λ g
2
t√
2

cotβ
d

dXt

[(
Dt1 + m2

t Dt2
)

∆V 2`, t̃
]
mt→0

−
λ g2b√

2
tanβ

d

dXb

[(
Db1 + m2

b Db2
)

∆V 2`, b̃
]
mb→0

, (20)

where we define the operators

Dqi ≡
(

d

dm2
q

)i
. (21)

We use relations such as those in eq. (32) of ref. [64] for the derivatives of the field-dependent pa-

rameters with respect to the quark masses, then we obtain the limits of vanishing quark masses as

described in that paper (note that in this calculation we do not encounter terms that diverge for

mq → 0). Finally, the derivatives with respect to the parameters Xt and Xb in eq. (20) account for

the derivative with respect to the singlet field in eq. (19). In units of g2s CF Nc/(4π)4, where gs is the

strong gauge coupling and CF = 4/3 and Nc = 3 are color factors, we obtain for the stop contribution

(
∆a2`,QCD

hhs

)t̃
= −2

√
2λ g2t cotβ

{
Xt

[
−2 +

(
2−

2 (1 + xQ) lnxQ
xQ − xU

)
ln
m2
g̃

Q2
− 1

2
ln2

m2
g̃

Q2

+
2 (1 + 2xQ) lnxQ

xQ − xU
−

(x2Q + xQ − xU ) ln2 xQ

(xQ − xU )2

+
xQ xU lnxQ lnxU

(xQ − xU )2
−

2 (1− xQ)

xQ − xU
Li2

(
1− 1

xQ

)]
9



+mg̃

[
5

2
−
(

2−
2xQ lnxQ
xQ − xU

)
ln
m2
g̃

Q2
+

1

2
ln2

m2
g̃

Q2
−

4xQ lnxQ
xQ − xU

−
(1− xQ) ln2 xQ

xQ − xU
−

2 (1− xQ)

xQ − xU
Li2

(
1− 1

xQ

)]

+ (xQ ←→ xU )

}
, (22)

where mg̃ is the gluino mass, and we defined the ratios xQ = m2
Q3
/m2

g̃ and xU = m2
U3
/m2

g̃ . Again, the

sbottom contribution can be obtained from the stop contribution in eq. (22) with the replacements

gt → gb, Xt → Xb, cotβ → tanβ and mU3 → mD3 .

The third term on the r.h.s. of eq. (18) contains in fact two separate contributions that arise from

choices of renormalization scheme for the couplings involved in the matching condition:(
∆λ2`,RS

SM

)
λ

=
g2s CFNc

(4π)4
(g2t + g2b ) (λtree

SM )λ + 2 ∆gt

(
∆λ1`, t̃SM

)
λ
. (23)

The first term on the r.h.s. of eq. (23) above is the NMSSM-specific completion of the contribution in

eq. (21) of ref. [67], and stems from the fact that SUSY provides a prediction for the DR-renormalized

quartic Higgs coupling, whereas we interpret the parameter λSM in the EFT as MS. The second term

stems from the fact that we choose to express the one-loop part of the matching condition for λSM

in terms of the MS-renormalized top Yukawa coupling of the SM rather than the corresponding DR-

renormalized coupling of the NMSSM.7 The quantity
(

∆λ1`, t̃SM

)
λ

is given in eqs. (14)–(16), while ∆gt

denotes the one-loop, O(g2s) part of the difference between the MS coupling of the SM and the DR

coupling of the NMSSM,

∆gt = − g2s CF
(4π)2

[
1 + ln

m2
g̃

Q2
+ F̃6

(
mQ3

mg̃

)
+ F̃6

(
mU3

mg̃

)
− Xt

mg̃
F̃9

(
mQ3

mg̃
,
mU3

mg̃

)]
, (24)

where the loop functions F̃6(x) and F̃9(x, y) are defined in the appendix A of ref. [64].

Finally, we verified that, by taking the derivative with respect to lnQ2 of the NMSSM-specific

part of the two-loop-QCD matching condition for λSM, we do recover the terms involving g2s that we

should expect from the RGE of the quartic Higgs coupling of the SM:

(4π)4
d

d lnQ2

[
(λtree

SM )λ +
(

∆λ1`, q̃SM

)
λ

+
(

∆λ2`,QCD
SM

)
λ

]
⊃ 40 g2s (g2t + g2b ) (λtree

SM )λ . (25)

To this effect, we must combine the explicit scale dependence of our result for
(

∆λ2`,QCD
SM

)
λ

with the

implicit scale dependence of the parameters in (λtree
SM )λ whose RGEs have QCD contributions at two

loops (namely λ, Aλ and tanβ), and of the parameters in the one-loop stop and sbottom contributions(
∆λ1`, q̃SM

)
λ

whose RGEs have QCD contributions at one loop (namely the soft SUSY-breaking masses

and trilinear couplings of the squarks, and the top and bottom Yukawa couplings).
7In contrast, the bottom Yukawa coupling is defined as the DR-renormalized coupling of the NMSSM, to avoid the

introduction of spurious tanβ-enhanced effects at two loops (see ref. [65]).
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3 Higgs-mass prediction and constraints on the NMSSM parameters

In this section we analyze the impact of the one- and two-loop corrections to the quartic Higgs coupling

computed in sections 2.2 and 2.3, respectively, on the prediction for the mass of the lightest Higgs

scalar of the NMSSM, focusing on the scenario in which all of the SUSY particles, the heavier SU(2)

doublet, and the scalar and pseudoscalar components of the singlet are all significantly heavier than the

EW scale. We also propose a method to estimate the so-called “theory uncertainty” of our calculation,

i.e., the uncertainty associated with uncomputed higher-order corrections. Finally, we discuss how the

prediction for the mass of the SM-like Higgs boson can constrain the parameter space of the NMSSM

even in scenarios in which all of the BSM particles are heavy.

Our numerical calculations rely on an EFT setup analogous to the one developed in ref. [67]. We

use the public code mr [68] to extract – at full two-loop accuracy – the MS-renormalized parameters of

the SM Lagrangian from a set of physical observables, and to evolve them up to the SUSY scale using

the three-loop RGEs of the SM. For the physical observables other than the Higgs mass, we use as input

for the code the PDG values GF = 1.1663787×10−5 GeV−2, MZ = 91.1876 GeV, MW = 80.379 GeV,

Mt = 172.76 GeV, Mb = 4.78 GeV and αs(mZ) = 0.1179 [69]. In order to obtain a prediction for the

Higgs mass from a full set of SUSY parameters, we vary the value of the pole mass Mh that we give

as input to mr until the value of the MS-renormalized SM parameter λSM(Q) returned by the code at

the SUSY scale Q = MS coincides with the NMSSM prediction for the quartic coupling of the lightest

scalar. In alternative, we can treat the measured value of the Higgs mass, Mh = 125.25 GeV [69],

as an additional input parameter, and use the matching condition on the quartic Higgs coupling at

the SUSY scale to constrain the NMSSM parameter space. In this case we vary one of the SUSY

parameters until the NMSSM prediction for the quartic Higgs coupling coincides with the value of

λSM(MS) returned by mr.

To obtain the NMSSM prediction for the quartic coupling of the SM-like Higgs boson at the SUSY

scale, we combine the tree-level prediction in eq. (7) with the full one-loop contribution computed in

section 2.2, the NMSSM-specific, λ-dependent two-loop-QCD contribution computed in section 2.3,

and the λ-independent two-loop contributions that are in common with the MSSM, given in refs. [64,

65, 67]. As a result, our determination of the matching condition for λSM includes all of the two-loop

contributions that involve the strong gauge coupling, whereas the remaining two-loop contributions

are included only under the approximations of vanishing EW gauge couplings and of vanishing λ.

While the first approximation is generally good in view of the relative sizes of g, g′, gt and gs, the

goodness of the second approximation obviously depends on the considered values of λ. In particular

– similarly to what was found in refs. [31, 34–36] in the context of the FO calculation of the NMSSM

Higgs masses – when λ is of O(1) the two-loop, NMSSM-specific contributions that are omitted in our

prediction for λSM can become as large as the dominant MSSM-like contributions that are included, i.e.,

those of O(g4t g
2
s) and O(g6t ). We recall that, in the EFT approach, the (next-to)n-leading-logarithmic

(NnLL) resummation of the large logarithmic corrections requires the combination of (n+ 1)-loop
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RGEs with n-loop matching conditions at the boundary scales. Our calculation thus provides a full

NLL resummation of the large logarithmic corrections, but, in view of the incomplete determination

of the two-loop boundary condition for λSM at the SUSY scale, only a partial NNLL resummation.

An estimate of the impact of the omitted contributions seems desirable.

As was discussed already in ref. [64], the EFT calculation of the Higgs mass in scenarios where

all heavy particles are integrated out at a common scale MS is subject to three distinct sources of

theory uncertainty: i) a “SM uncertainty” stemming from uncomputed higher-order corrections in the

relations between the physical observables taken as input for the calculation and the MS-renormalized

parameters of the SM Lagrangian; ii) a “SUSY uncertainty” stemming from uncomputed higher-order

corrections in the matching conditions for the couplings of the SM Lagrangian at the scale MS ; iii)

an “EFT uncertainty” associated to the corrections suppressed by powers of v2/M2
S that are omitted

when the EFT Lagrangian is identified with the renormalizable Lagrangian of the SM in the unbroken

phase of the EW symmetry. We neglect the third source of uncertainty in the following, because we

consider scenarios in which all BSM particles are heavy enough to make the O(v2/M2
S) effects fully

negligible. In contrast, we aim to simulate the effects of uncomputed higher-order corrections in the

matching conditions at both the EW scale and the SUSY scale.

To obtain an estimate of the SM uncertainty, we change the accuracy of the determination of the

top Yukawa coupling in mr, removing corrections of O(g6s) and higher that are implemented by default

in the code. This simulates the effect of uncomputed N3LL corrections that involve the highest powers

of the strong gauge coupling, which are expected to be the largest among those neglected in the “SM”

part of the calculation (see, e.g., the discussion in section 6.3.1 of ref. [8]).

For what concerns the SUSY uncertainty, we combine two estimates of different classes of higher-

order effects. To obtain our first estimate, which targets the uncomputed two-loop and higher-order

corrections that involve the top Yukawa coupling, we change the definition of the coupling gt entering

the matching condition for λSM from the MS-renormalized parameter of the SM to the DR-renormalized

parameter of the NMSSM. The two definitions are related by

gNMSSM
t (MS) =

gSM
t (MS)

1−∆gMSSM
t − (∆gt)λ

, (26)

where ∆gMSSM
t is the threshold correction given for the MSSM in refs. [64, 65], and (∆gt)λ is the λ-

dependent contribution that turns the MSSM coupling into the NMSSM coupling. This contribution

is related to the λ-dependent part of the Higgs WFR by (∆gt)λ = −(∆Zh)λ/2. For the latter we find:

(4π)2 (∆Zh)λ = −
a2hhs
2m2

s

−
a2hHs

6mAms
F̃5

(
ms

mA

)
−

a2hAa
6mAma

F̃5

(
ma

mA

)

+
λ2

3

[
3 ln

µ2

Q2
− sin 2β f

(
ms̃

µ

)
+ g

(
ms̃

µ

)]
, (27)

where the terms in the first line are the contributions of diagrams involving scalars or pseudoscalars,

while those in the second line are the contributions of diagrams involving higgsinos and singlino. The
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loop functions F̃5(x), f(x) and g(x) are defined in the appendix A of ref. [64]. The coupling ahhs is

given in eq. (8), and the remaining trilinear couplings are

ahHs = − λ√
2

(Aλ + 2κ vs) cos 2β , ahAa =
λ√
2

(Aλ − 2κ vs) . (28)

The inclusion of this λ-dependent contribution in the redefinition of gt, see eq. (26), simulates the effect

of two-loop contributions of O(g4t λ
2) to the matching condition for λSM. As mentioned above, these

can in principle compete with the known O(g4t g
2
s) and O(g6t ) contributions when λ is large enough.

We remark that, to avoid the inclusion in our uncertainty estimate of effects that are in fact accounted

for by our calculation, the redefinition of gt must be accompanied by shifts in the known two-loop

contributions to the matching condition for λSM. In particular, in the NMSSM-specific, λ-dependent

two-loop-QCD contribution computed in section 2.3 we must remove the second term on the r.h.s. of

eq. (23). The analogous shifts for the MSSM-like two-loop contributions can be trivially obtained

from refs. [64, 65,67].

Our second estimate of the SUSY uncertainty targets the uncomputed two-loop and higher-order

corrections that involve the highest powers of the doublet–singlet coupling λ. We replace the definitions

in eq. (4) for the scalar and pseudoscalar singlet masses with m2
s = m2

S + 2κ vs (Aκ + 3κ vs) and

m2
a = m2

S + 2κ vs (−Aκ + κ vs), respectively. The two sets of mass definitions are equivalent at the

tree level, but they differ at one loop, because the soft SUSY-breaking singlet mass mS is related to

the other parameters as in eq. (12) when vs is defined as the vev of the loop-corrected potential. As

discussed in section 2.2, the change in the definition of the scalar singlet mass entering the tree-level

part of the matching condition for λSM must be compensated for at the one-loop level by removing

the tadpole term in eq. (11). On the other hand, the change in the definition of both scalar and

pseudoscalar singlet masses entering the one-loop part of the matching condition simulates the effect

of two-loop λ-dependent corrections that do not involve the strong gauge coupling, and the change

in the definition of the scalar singlet mass entering the two-loop-QCD part simulates the effect of

three-loop λ-dependent corrections that do involve the strong gauge coupling.

To assess the impact of the different contributions to the matching condition for the quartic Higgs

coupling computed in section 2, we plot in figure 1 the prediction for the mass of the SM-like Higgs

boson as a function of λ. We consider an NMSSM scenario in which all sfermions of the first and

second generations have degenerate masses of 2 TeV, while those of the third generation (namely

stops, sbottoms and staus) have degenerate masses MS = 5 TeV. The trilinear Higgs-stop interaction

parameter is fixed as Xt =
√

6MS , which maximizes the one-loop stop contribution to λSM. For given

values of µ and tanβ this determines the soft SUSY-breaking coupling At, and the corresponding

sbottom and stau couplings are fixed as Ab = Aτ = At. For consistency with our calculation of

the two-loop contributions to λSM, all sfermion masses and trilinear couplings are interpreted as DR-

renormalized parameters, at a scale that we choose as Q = MS . The soft SUSY-breaking masses of

bino, wino and gluino are fixed as M1 = 1 TeV, M2 = 2 TeV and M3 = 2.5 TeV, respectively.
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Figure 1: Higgs-mass prediction as a function of λ, for tanβ = 3 (left) or tanβ = 5 (right), in the

NMSSM scenario described in the text. The three lines in each plot correspond to different accuracies

of the NMSSM-specific contribution to the matching condition for λSM. The band around the red, solid

line is our estimate of the theory uncertainty.

In contrast to the case of the MSSM, in which the tree-level masses of the heavy Higgs bosons and

of the higgsinos in the limit of unbroken EW symmetry are determined by the three parameters µ,

Bµ and tanβ (with m2
A = 2Bµ/ sin 2β), the Higgs/higgsino sector of the NMSSM depends on the six

parameters λ, κ, vs, Aλ, Aκ and tanβ. In the plots of figure 1 we choose to vary the doublet–singlet

coupling λ, because that parameter determines the size of the NMSSM-specific contributions to the

quartic Higgs coupling, and in the limit λ → 0 we recover the MSSM prediction. For the remaining

parameters, we choose: κ = λ; a tree-level higgsino mass µ = λ vs = 1.5 TeV, which determines vs for

a given value of λ; a tree-level heavy-Higgs-doublet mass mA = 3 TeV, which determines Aλ via eq. (6)

for a given value of tanβ; and Aκ = −2 TeV. Finally, we fix tanβ = 3 in the left plot of figure 1 and

tanβ = 5 in the right plot. For consistency with our calculation of the one-loop contributions to λSM,

all of these six parameters – which enter the boundary condition for λSM already at the tree level –

are interpreted as DR-renormalized parameters, also at the scale Q = MS . Our choices of parameters

correspond to a tree-level mass of 3 TeV for the singlino, and to tree-level masses of about 2.45 TeV

and 3 TeV for the scalar and pseudoscalar components of the singlet, respectively.

In all of the lines in the plots of figure 1, the Higgs-mass prediction includes all of the contributions

to the matching condition for λSM that are in common with the MSSM, so that the left edge of the

plot where λ = 0 corresponds to our best prediction for Mh in the so-called “MSSM limit”. The

three lines in each plot correspond to different accuracies for the inclusion of the NMSSM-specific

contributions. The green, dot-dashed line corresponds to the inclusion of the tree-level contribution

(λtree
SM )λ = λ2 sin2 2β/2 − a2hhs/m

2
s alone; the blue, dashed line corresponds to the inclusion of the

full one-loop, λ-dependent contribution computed in section 2.2; the red, solid line corresponds to
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the additional inclusion of the two-loop-QCD, λ-dependent contribution computed in section 2.2.

The band around the red, solid line corresponds to our total estimate of the theory uncertainty of

the Higgs-mass prediction, obtained by summing linearly the absolute values of the three estimates

described above. Comparing the different contributions, we find that the SM uncertainty estimate

alone is generally larger than the combination of the two SUSY uncertainty estimates.

The comparison between the left and right plots in figure 1 shows that, in our scenario, the λ-

dependent contributions increase the prediction for Mh for lower values of tanβ, and decrease it for

higher values of tanβ. This behavior is driven already at the tree level by the tanβ dependence of

(λtree
SM )λ, whose first, positive-definite term is suppressed at larger tanβ, whereas the second, negative-

definite term contains a tanβ-independent piece, as remarked after eq. (8). The comparison between

the dot-dashed and dashed lines in each plot shows that the full one-loop, λ-dependent contribution

to the matching condition for λSM can become substantial when λ & 0.5, changing the prediction for

Mh by several GeV. Finally, the comparison between the dashed and solid lines shows that the effect

on the Higgs-mass prediction of the two-loop-QCD, λ-dependent contribution is quite modest, and it

is much smaller than our estimate of the uncomputed higher-order effects. This is likely related to the

fact that, with our choices of parameters, the λ-dependent stop contribution is suppressed already at

the one-loop level. In particular, the second term in eq. (14) vanishes for degenerate stop masses and

Q = MS , and the first term only amounts to a 2% shift of the tree-level contribution.

The knowledge of the mass of the SM-like Higgs boson can be used to constrain the parameters

of the yet-undiscovered SUSY sector. For example, figure 3 of ref. [67] showed the values of MS and

Xt – i.e., the two parameters that most affect the stop contribution to the matching condition for

λSM – that are selected by the requirement that the prediction for Mh coincide with its measured

value in an MSSM scenario with moderately large tanβ. Here we keep the parameters in the stop

sector fixed, and exploit the Higgs-mass prediction to constrain two of the parameters that determine

the NMSSM-specific contribution to the matching condition for λSM already at the tree level. In

figure 2 we show the values of tanβ and λ that yield the required prediction Mh = 125.25 GeV in

a representative NMSSM scenario with heavy BSM particles. We adopt the same choices of SUSY

parameters as in figure 1, except that i) we set MS to 3 TeV (red lines), 5 TeV (blue lines) or 10 TeV

(green lines), and ii) we set either κ = λ (left plot) or κ = 2λ (right plot).8 Each of the lines in

figure 2 is obtained with our full one-loop and partial two-loop calculation of the matching condition

for λSM, and is accompanied by an uncertainty estimate obtained as described earlier.9

The behavior of the different lines in the plots of figure 2 can be qualitatively understood by

considering the dependence on tanβ and λ of the three terms entering the tree-level matching condition

for λSM, see eq. (7). The first term, which is in common with the MSSM, vanishes for tanβ = 1 and

increases for increasing tanβ, reaching a constant positive value at large tanβ. With our choices for

the parameters that determine ahhs and ms, the remaining, NMSSM-specific contribution (λtree
SM )λ =

8For κ = 2λ the tree-level masses of the singlet fields become ms ≈ 5.5 TeV, ma ≈ 4.2 TeV and ms̃ = 6 TeV.
9The kinks in figure 2 are artifacts induced by the symmetrization of the uncertainty bands in the tanβ–λ plane.
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Figure 2: Regions of the tanβ–λ plane that yield Mh = 125.25 GeV, for κ = λ (left) or κ = 2λ

(right), in the NMSSM scenario described in the text. The three sets of lines in each plot correspond

to different values of the common mass term for the third-generation sfermions. The band around

each line is our estimate of the theory uncertainty.

λ2 sin2 2β/2−a2hhs/m2
s scales as λ2, with a coefficient that is positive at low values of tanβ, decreases

for increasing tanβ, eventually turns negative, and finally reaches a constant negative value at large

tanβ. In each of the plots of figure 2, the line corresponding to a given value of MS is split into a left

branch at lower tanβ, where the NMSSM-specific contribution to the matching condition for λSM is

positive, and a right branch at higher tanβ, where the NMSSM-specific contribution is negative. The

point where each line meets the x axis corresponds to a value of tanβ that we denote as (tanβ)MSSM,

for which the required prediction for Mh is obtained in the “MSSM limit” λ → 0. This depends on

the value of MS , because heavier stops induce a larger positive contribution to the matching condition

for λSM and thus allow for lower tanβ in the MSSM limit.

In the left plot of figure 2, where we set κ = λ, the NMSSM-specific contribution to the matching

condition for λSM turns negative for a value of tanβ that is lower than (tanβ)MSSM. At the left edge

of the plot, where tanβ = 1, the MSSM prediction for the Higgs mass is too low, and the required

prediction Mh = 125.25 GeV is obtained thanks to the positive NMSSM-specific contribution. Moving

to higher values of tanβ, the value of λ that yields the required prediction for Mh decreases at first,

as the tree-level, MSSM-like contribution to λSM increases. However, the coefficient of λ2 in the tree-

level,10 NMSSM-specific contribution decreases for increasing tanβ, and as it approaches zero the

value of λ that yields Mh = 125.25 GeV shoots up. In the gap between the value of tanβ for which

the NMSSM-specific contribution turns negative and (tanβ)MSSM there is no value of λ that yields the

10We refer only to the tree-level contribution for a qualitative interpretation of the plots. The presence of the radiative

corrections, some of which scale as λ4 in our scenario, does not alter the overall behavior described here.
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required Higgs-mass prediction. Finally, when tanβ is larger than (tanβ)MSSM the MSSM prediction

for Mh is too high, and the required prediction is obtained thanks to the negative NMSSM-specific

contribution. As both the coefficient of λ2 in (λtree
SM )λ and the MSSM prediction for Mh reach a plateau

at large tanβ, so does the value of λ that brings the Higgs mass down to 125.25 GeV.

In the right plot of figure 2, where we set κ = 2λ, the qualitative behavior of the red line correspond-

ing to MS = 3 TeV is the same as in the left plot. However, the blue and green lines corresponding to

higher values of MS behave differently. In this case, the value of tanβ for which the NMSSM-specific

contribution to the matching condition for λSM turns negative is higher than (tanβ)MSSM. Conse-

quently, as tanβ approaches (tanβ)MSSM from the left, the requirement that Mh = 125.25 GeV drives

λ to zero. On the right of (tanβ)MSSM there is a gap in which the MSSM prediction for Mh is too

high but the NMSSM-specific contribution remains positive, so there is no value of λ that yields the

required Higgs-mass prediction. Finally, when the NMSSM-specific contribution does turn negative,

the value of λ that brings the prediction for Mh down to 125.25 GeV decreases with increasing tanβ,

and eventually reaches a plateau as in the left plot.

4 Conclusions

If SUSY is realized in nature, there appears to be at least a mild hierarchy between the scale of the

superparticle masses and the EW scale. In this kind of hierarchical scenario the prediction for the

mass of the SM-like Higgs boson is best obtained in the EFT approach, which allows for the all-

orders resummation of potentially large corrections enhanced by powers of the logarithm of the two

scales. The EFT calculation of the Higgs masses in the MSSM is by now quite advanced, with full

one-loop and partial two-loop results for the matching conditions for the Higgs self-couplings under a

variety of mass hierarchies (see ref. [8] for a review). In contrast, in the case of the NMSSM analytic

calculations of the matching conditions have been performed so far only at the one-loop level, in an

extremely constrained scenario where all BSM particles are heavy and their masses depend on just

one parameter [60], and in a Split-SUSY scenario where the low-energy EFT includes also the scalar

and pseudoscalar components of the singlet plus all of the SUSY fermions [61].

In this paper we obtained a full one-loop result, valid for arbitrary values of all relevant parameters,

for the matching condition for the quartic coupling of the Higgs boson, in the NMSSM scenario where

all BSM particles are heavy and the EFT valid below the SUSY scale is just the SM. To this purpose,

we adapted to the NMSSM the results of ref. [59], which provides the one-loop matching of a general

high-energy theory (without heavy gauge bosons) on a general renormalizable EFT. We compared

our results with those of ref. [60] – in the constrained scenario discussed in that paper – and found a

discrepancy related to the definition of the singlet mass entering the tree-level part of the matching

condition for λSM. In addition to the full one-loop calculation of the matching condition, we directly

computed the two-loop contributions that involve the strong gauge coupling. Our result includes also

terms associated with the external-momentum dependence of the two-loop Higgs self-energy that are
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missed by the FO calculations of the corresponding corrections in refs. [21,30–32]. Finally, we proposed

a way to extend to the NMSSM the estimates of the theory uncertainty associated with uncomputed

higher-order effects that had previously been developed for the MSSM.

We found that, in the NMSSM scenario with heavy BSM particles, the matching condition for the

quartic Higgs coupling splits neatly into a part that is in common with the MSSM, and an NMSSM-

specific part which vanishes for λ→ 0. We studied the numerical impact on the Higgs-mass prediction

of the different contributions to the NMSSM-specific part of the matching condition, and found that

the one-loop and two-loop-QCD contributions modify only moderately, and only for quite large values

of λ, the leading behavior driven by the tree-level contribution. We stress that the smallness of

these effects is in fact a desirable feature of the EFT calculation of the Higgs mass, in which the

logarithmically enhanced corrections are accounted for by the evolution of the parameters between

the SUSY scale and the EW scale, and high-precision calculations at the EW scale can be borrowed

from the SM.

Turning to the modern approach of treating the Higgs mass as an input rather than an output

of the calculation, we illustrated how the requirement of a correct prediction for Mh can be used to

constrain some of the yet-unmeasured parameters of the NMSSM. Focusing on the tanβ–λ plane,

we noticed how the shape of the allowed regions can change drastically depending on the choice of

the remaining parameters. This is a well-known aspect of the NMSSM, in which the Higgs sector

depends on a relatively large number of parameters already at the tree level. However, a systematic

phenomenological study of the constraints that the Higgs-mass prediction imposes on the parameter

space of the NMSSM goes beyond the scope of this paper. What we provide here is a set of fully

analytic formulas for the matching condition for λSM, available on request in electronic form. Our

results can be used to implement the resummation of the large logarithmic corrections in the existing

public codes for the Higgs-mass calculation in the NMSSM [37–53], bringing the accuracy of those

codes closer to what has already been attained for the MSSM.
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calculations in (non-)minimal supersymmetry at both high and low scales. JHEP 01 (2017) 079,

arXiv:1609.00371 [hep-ph].

22

http://dx.doi.org/10.1016/j.cpc.2012.05.021
http://arxiv.org/abs/1104.1573
http://arxiv.org/abs/1104.1573
http://dx.doi.org/10.1016/j.cpc.2014.08.005
http://dx.doi.org/10.1016/j.cpc.2014.08.005
http://arxiv.org/abs/1312.4788
http://dx.doi.org/10.1016/S0010-4655(01)00460-X
http://dx.doi.org/10.1016/S0010-4655(01)00460-X
http://arxiv.org/abs/hep-ph/0104145
http://dx.doi.org/10.1016/j.cpc.2014.04.015
http://arxiv.org/abs/1311.7659
http://dx.doi.org/10.1016/j.cpc.2014.12.020
http://arxiv.org/abs/1406.2319
http://dx.doi.org/10.1016/j.cpc.2018.04.016
http://arxiv.org/abs/1710.03760
http://arxiv.org/abs/1710.03760
http://dx.doi.org/10.1016/S0010-4655(99)00364-1
http://dx.doi.org/10.1016/S0010-4655(99)00364-1
http://arxiv.org/abs/hep-ph/9812320
http://dx.doi.org/10.1016/j.cpc.2009.02.014
http://dx.doi.org/10.1016/j.cpc.2009.02.014
http://dx.doi.org/10.1016/j.cpc.2019.107099
http://dx.doi.org/10.1016/j.cpc.2019.107099
http://arxiv.org/abs/1811.09073
http://dx.doi.org/10.1016/j.cpc.2016.01.005
http://dx.doi.org/10.1016/j.cpc.2016.01.005
http://arxiv.org/abs/1507.05093
http://dx.doi.org/10.1140/epjc/s10052-017-4932-4
http://arxiv.org/abs/1612.07681
http://dx.doi.org/10.1007/JHEP01(2017)079
http://arxiv.org/abs/1609.00371


[57] F. Staub and W. Porod, Improved predictions for intermediate and heavy Supersymmetry in the

MSSM and beyond. Eur. Phys. J. C77 (2017) no. 5, 338, arXiv:1703.03267 [hep-ph].
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