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Abstract

We demonstrate that the observed cosmological excess of matter over antimatter may originate

from a heavy QCD axion that solves the strong CP problem but has a mass much larger than

that given by the Standard Model QCD strong dynamics. We investigate a rotation of the heavy

QCD axion in field space, which is transferred into a baryon asymmetry through weak and strong

sphaleron processes. This provides a strong cosmological motivation for heavy QCD axions, which

are of high experimental interest. The viable parameter space has an axion mass ma between

1 MeV and 10 GeV and a decay constant fa < 105 GeV, which can be probed by accelerator-based

direct axion searches and observations of the cosmic microwave background.
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1. INTRODUCTION

Strong CP violation in the Standard Model (SM) is due to the CP-odd θ term that

arises from the nontrivial QCD vacuum structure. For non-zero quark masses, the non-

perturbative θ parameter cannot be removed by chiral rotations of the quarks and therefore

an O(1) θ parameter induces an electric dipole moment for the neutron [1–3] that is O(1010)

times larger than the experimental constraint [4, 5]. This discrepancy is called the strong CP

problem. The strong CP problem may be solved by the Peccei-Quinn (PQ) mechanism [6, 7],

where a spontaneously broken U(1) PQ symmetry and strong QCD dynamics yield a pseudo

Nambu-Goldstone boson known as the QCD axion [8, 9] that dynamically cancels the θ term.

The QCD axion can also play important cosmological roles. Recently, it was shown that

in the early universe the QCD axion may undergo rotations in field space that occur even

through the electroweak phase transition [10]. The rotation corresponds to a non-zero PQ

charge, and the charge is transferred into a quark chiral asymmetry by strong sphaleron

processes and then further reprocessed into a baryon asymmetry by electroweak sphaleron

processes [10]. This mechanism is known as axiogenesis.

However, the minimal axiogenesis scenario faces a difficulty. The rotational kinetic energy

eventually becomes the axion dark matter density [11], and after requiring axiogenesis to

reproduce the observed baryon asymmetry, the axion abundance exceeds the observed dark

matter density. To resolve this overproduction of dark matter, several extensions of the

axiogenesis scenario that enhance the baryon asymmetry have been proposed and their

associated predictions have been investigated [10, 12–16].

In this paper, we consider the production of the baryon asymmetry via axiogenesis with a

QCD axion that obtains a large mass from non-QCD dynamics in a way that still solves the

strong CP problem [17–28]. Namely, the axion potential minimum remains nearly the same

despite additional contributions to the axion potential from the non-QCD dynamics. With

an enhanced mass, the heavy QCD axion can now decay well before the epoch of matter-

radiation equality, so that the overproduction of dark matter in axiogenesis is avoided. Even

though the heavy QCD axion is no longer a dark matter candidate, it changes roles and

instead becomes responsible for generating the baryon asymmetry of the universe as well as

solving the strong CP problem.

Such heavy QCD axions are motivated because they can more naturally explain the
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stringent requirements for the PQ symmetry. To solve the strong CP problem, the PQ

symmetry must be preserved to a high quality, which means that the PQ symmetry is

essentially only explicitly broken by the QCD anomaly. To illustrate the severity of this

requirement, suppose there exists an explicit PQ symmetry breaking term P n/Mn−4
Pl , where

MPl is the reduced Planck scale, and P is the PQ symmetry breaking complex scalar field

with a potential minimum at the scale fa known as the decay constant. In order for the

axion potential minimum to solve the strong CP problem and not be displaced by more than

10−10, n > 8-36 is required for fa = 108-16 GeV. This clearly requires the global symmetry

to be preserved to very high order beyond that expected from effective field theory. These

two aspects of the PQ symmetry, explicit breaking by the QCD anomaly and the extremely

good symmetry of the perturbative potential, are best understood if the PQ symmetry

accidentally arises from other exact symmetries [29], in much the same way as how the

baryon number symmetry of the Standard Model arises from gauge symmetry.

In particular, it is expected that quantum gravity explicitly breaks global symmetries [30–

36] and therefore possibly generates higher-dimensional explicit PQ breaking terms. The

exact symmetries, if gauged, can protect the PQ symmetry from quantum gravity effects [37–

40] and can be realized for the QCD axion but tend to require complicated symmetries

(see [41–54] for additional literature along this direction). Instead, if the QCD axion mass

is larger than that obtained from QCD dynamics, the potential minimum is more stable

against explicit breaking by higher dimensional operators. Furthermore, the decay constant

can be much smaller than that allowed for the usual, light QCD axion (since the heavier

axion mass evades supernova-cooling limits and beam-dump experiments), and thus the

effect of higher dimensional operators is much more suppressed. For these two reasons, a

simple exact symmetry can ensure a PQ symmetry of sufficiently high quality to solve the

strong CP problem [19, 21, 55].

While the overproduction problem of dark matter is avoided, the paradigm of axiogenesis

with a heavy QCD axion is still constrained by the following two requirements. Axion rota-

tions must survive until after the electroweak phase transition, and the electroweak symme-

try cannot be restored subsequently; otherwise the baryon asymmetry previously produced

from axion rotations will be washed out by the sphaleron processes. In the first requirement,

the axion velocity must be larger than the mass to maintain its rotation. Moreover, when

the axion field moves in an anharmonic potential, the axion rotation can fragment into ax-
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ion fluctuations [56–59] by parametric resonance [60–64]. This axion fragmentation must

therefore not occur before electroweak symmetry breaking. In the second requirement, the

created axion fluctuations can thermalize via scattering with the thermal bath, which could

reheat the universe and possibly restore electroweak symmetry. These and other constraints

are derived in detail for the following distinct cosmological histories of the heavy axion:

when the universe undergoes the electroweak phase transition, 1) the axion rotates at the

minimum of the PQ field potential, 2) the axion rotates on the body of the potential, or 3)

parametric resonance occurs during this time. We find viable parameter space in the mass

range 1 MeV - 10 GeV with a decay constant fa < 105 GeV, and interestingly much of this

region can be probed by the collider and beam dump experiments as well as by observations

of the cosmic microwave background (CMB).

The organization of the paper is as follows. In Sec. 2, we review the minimal axiogenesis

scenario, from the initiation of the rotation to the production of the baryon asymmetry and

dark matter. In Sec. 3, we review various models that generate a large axion mass consistent

with the solution to the strong CP problem. In Sec. 4, constraints of the mechanism are

investigated for different cosmological scenarios and the viable parameter space is shown.

Lastly, we conclude and summarize our findings in Sec. 5, while Appendices A, B, and C are

dedicated to a KSVZ-type model construction, the numerical study of parametric resonance,

and the analytical estimation of the washout rate of the rotation via the axion mass and the

depletion of the radial mode, respectively.

2. AXION ROTATIONS AND BARYON ASYMMETRY

In this section, we review how axion rotations can be initiated from the dynamics of the

PQ symmetry breaking field to produce the baryon asymmetry and the axion dark matter

abundance in the context of the usual QCD axion. We assume that the QCD axion arises

from the angular component θ of a complex scalar field

P =
1√
2
Seiθ , (2.1)

where S is the radial component field whose vacuum expectation value is fa, and we have

assumed the domain wall number to be unity.
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2.1. Initiation and evolution of rotations

The rotation of P may be initiated in the same way as the Affleck-Dine mechanism [65].

The PQ symmetry is explicitly broken by a higher-dimensional potential term,

V =
1

Mn−4
UV

P n + h.c., (2.2)

where MUV is a UV mass scale. Although such a term should be negligible near the vacuum

value S = fa, a non-negligible gradient to the angular component can initiate the rotation

of P if S � fa in the early universe. Such a large S can be achieved if S has a flat potential,

which is natural in supersymmetric theories. After the rotation begins, S decreases by the

cosmic expansion and the higher-dimensional term (2.2) becomes negligible. The field P

continues to rotate conserving angular momentum, which is nothing but the PQ charge

associated with the PQ symmetry,

nPQ = θ̇S2. (2.3)

It is also possible to initiate the axion rotation by transferring the charge of another rotating

scalar field into the axion [66], with the rotating scalar field initiated by the Affleck-Dine

mechanism. In this case, the potential of S does not have to be flat.

Initially the rotation is not circular and has non-zero ellipticity; it includes both angular

and radial motion. The field P can be thermalized via its interaction with the thermal

bath. The radial motion dissipates, while the angular motion remains because of PQ charge

conservation. The PQ charge can be converted into a quark chiral asymmetry in the thermal

bath via the strong sphaleron process, but it is free-energetically favored to keep almost all

charges in the form of rotation, with a small fraction ∼ T 2/S2 converted to the chiral

asymmetry, as long as the radius of the rotation is larger than the temperature [10, 67]. The

resultant motion after thermalization is circular without any ellipticity.

The explicit breaking of quark chiral asymmetries leads to a slow washout of the PQ

charge. If one quark chiral asymmetry is unbroken, a linear combination of the PQ symmetry

and the quark chiral asymmetry remains exact and the washout does not occur. Therefore,

the washout rate is suppressed by the smallest Yukawa coupling, namely the up quark

Yukawa coupling, yu. Taking into account the small fraction of the quark chiral asymmetry
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∼ T 2/S2 in comparison with the PQ charge in the rotation, the washout rate is

Γwo,u ' αsy
2
u

T 3

S2
, (2.4)

where αs = g2
s/4π is the QCD coupling. For the usual QCD axion with fa > 108 GeV,

the washout rate does not exceed the Hubble expansion rate and the axion rotation is not

washed out. However, for the heavy QCD axion with low fa, avoiding the washout gives

constraints on the parameter space.

2.2. Baryon asymmetry

The PQ charge is transferred into a baryon asymmetry in the following way, known as

axiogenesis [10]. The PQ symmetry and quark chiral symmetries have a QCD anomaly,

so the strong sphaleron process transfers the PQ charge into quark chiral charges. The

quark chiral symmetry and the B +L symmetry have an electroweak anomaly, so the weak

sphaleron process transfers the quark chiral charges into a B+L asymmetry. These processes

are in thermal equilibrium and the baryon asymmetry at the temperature T is given by

nB = cB θ̇(T )T 2, (2.5)

where cB ∼ 0.1 is a model-dependent coefficient that parameterizes the efficiency of the

charge transfer [10].

The weak sphaleron process freezes out near the electroweak phase transition when the

sphaleron rate falls below the Hubble rate. The baryon asymmetry is also frozen at this

temperature, and the baryon asymmetry normalized by the entropy density s is given by

nB
s

=
cB θ̇T

2

2π2

45
g∗T 3

∣∣∣∣∣
T=Tws

= 8.7× 10−11

(
θ̇(Tws)

5.3 keV

)(
130 GeV

Tws

)( cB
0.1

)
,

= 8.7× 10−11

(
YPQ

510

)( cB
0.1

)(108 GeV

fa

)2(
Tws

130 GeV

)2

, (2.6)

where g∗ is the number of Standard Model degrees of freedom in the thermal bath, Tws is the

temperature below which the weak sphaleron process becomes ineffective, and YPQ = nPQ/s.

The observed baryon asymmetry yield is Y obs
B ≡ nobs

B /s = 8.7× 10−11 [68].
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2.3. Overproduction of axion dark matter

For the conventional, light QCD axion, the rotation can be rapid enough and continue

to a low temperature where the axion oscillation would occur [11]. In this case, the kinetic

energy of the axion rotation is converted to an axion dark matter density in a process called

the kinetic misalignment mechanism. In Ref. [11], the effect of the delay of the axion field

zero-mode oscillation around the axion potential minimum was considered, where it was

found that the axion number density is na ' nPQ.

However, as discussed in Ref. [58] in the context of the relaxion (see also Refs. [56, 57]),

non-zero momentum modes can be produced via parametric resonance [60–64]. Neglecting

the Hubble expansion, the equation of motion of a non-zero mode ak is given by

äk +
[
k2 +m2

acos2(θ̇t)
]
ak = 0. (2.7)

This differential equation can be recast into the Mathieu equation. For θ̇ � ma, the reso-

nance is narrow and the first resonance band occurs at

kpeak =
θ̇

2
,

∆k

k
' m2

a

θ̇2
, (2.8)

with the growth rate at the peak given by

ΓPR '
m2
a

θ̇
. (2.9)

Once this parametric resonance becomes effective, the zero-mode rotation fragments into

axion fluctuations. The narrow resonance causes the following two effects to suppress the

fragmentation: 1) production of axion fluctuations that decreases θ̇ and shifts the resonance

band [58] and 2) cosmic expansion that decreases θ̇ and k [69]. As a result, the effective

parametric resonance rate is smaller than that in Eq. (2.9) [58],

ΓPR,eff '
m4
a

θ̇3
. (2.10)

The number density of axions produced from the parametric resonance is given by [70]

na '
ρrot

kpeak

=
θ̇2f 2

a/2

θ̇/2
= θ̇f 2

a = nPQ, (2.11)

so the axion number density is as large the PQ charge density and gives the same result as

the zero-mode analysis in Ref. [11].
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For the QCD axion with a PQ charge yield that explains the baryon asymmetry of the

universe, the angular velocity around the QCD phase transition is indeed sufficiently large

that kinetic misalignment is at work for the light QCD axion. The resultant axion energy

density normalized by the observed dark matter density is

ρa
ρDM

' 70

(
fa

108 GeV

)(
130 GeV

Tws

)2(
0.1

cB

)
. (2.12)

One can see that for fa satisfying the astrophysical lower bound fa > 108 GeV [71], axion

dark matter is overproduced by the kinetic misalignment mechanism. This problem cannot

be avoided by entropy production, since the baryon asymmetry is also diluted.

Instead, we will consider a heavy QCD axion so that the axions produced by the ki-

netic misalignment mechanism can decay, avoiding the overproduction problem. Thus, in

our scenario the axion will become responsible for generating the baryon asymmetry while

simultaneously solving the strong CP problem (with a high quality).

3. HEAVY QCD AXION MODELS

In this section, we review models of generating a heavy QCD axion. As discussed in the

introduction, such a scenario can more easily explain the origin of the PQ symmetry.

3.1. UV 4D instanton

If SU(3)c is extended to be the diagonal subgroup of a parent product group SU(3)k =

SU(3)1 × SU(3)2 × · · · × SU(3)k that is spontaneously broken to SU(3)c at some UV scale

M , then UV instantons can generate a QCD axion mass that is larger than the usual IR

contribution at the QCD scale [23, 25]. In this setup, k axions ai (i = 1 . . . k) are introduced

and couple to the k SU(3) GG̃ terms, thereby eliminating the k theta terms. Furthermore,

the Standard Model quarks are assumed to be charged under only one of the parent SU(3)

groups, SU(3)1, with no additional colored fermions charged under the other SU(3) groups.

First, suppose that fa is larger than the inverse size of the UV instantons. Then we may

integrate out the KSVZ quarks and use the dimension-five coupling between the axion and

the gluon. The axion mass generated from the instantons at the energy scale µ is

m2
a ∼ κq

µ4

f 2
a

e−
2π

αs(µ) , (3.1)

9



where αs(µ) is the QCD coupling and κq ∼ O(10−23) is the suppression from the SM quark

chiral symmetries. In the SM QCD, the factor µ4e−
2π

αs(µ) is a decreasing function of µ due to

asymptotic freedom, so that UV instantons are never important. However, when SU(3)k is

broken to SU(3)c at the symmetry breaking scale M , the QCD gauge coupling is obtained

from the matching condition

1

αs(M)
=

k∑
i=1

1

αi(M)
. (3.2)

This implies that each individual coupling αi(µ) must be larger than the SM QCD value

αs(µ) and therefore the enhanced couplings of the individual SU(3) groups can make the

UV instanton effects dominate over the IR instanton effect.

The small instanton contributions can enhance the axion mass over the QCD contribu-

tions for very high breaking scales M and k ≥ 3 [23]. A full calculation [25] that directly

computes the Higgs loop effects obtains for k = 3 and M = 1014 GeV a maximum enhance-

ment of 4 × 1010 for the (lightest) axion mass compared to the QCD contribution. In the

limit k � 1, the axion masses scale as ma1 ∼
√
κqM

2/fa1 and mai ∼M2/fai for i = 2 . . . k,

showing that the lightest axion mass is much heavier than the QCD axion mass contribution

for M � ΛQCD, where ΛQCD is the QCD strong coupling scale.

Instead, if fa < M , one must UV complete the dimension-five axion-gluon coupling and,

for example, include the contribution of KSVZ quarks to compute the axion mass enhance-

ment. For simplicity, we will consider one pair of KSVZ quarks (Q, Q̄) in the fundamental

representation and include the KSVZ quarks in the t’ Hooft vertex at the scale M . Assuming

LQ = yQPQ̄Q + h.c., the KSVZ quark legs are closed using this Yukawa interaction which

generates a tadpole term for P ,

κqyQPM
3e
− 2π
α1(M) + h.c.. (3.3)

This tadpole term gives rise to an axion mass which is suppressed by mQ ∼ yQS < M

compared to the case with mQ > M . On the other hand, the QCD coupling at the scale

M is larger than the case with mQ > M because of the KSVZ quark contribution to the

running QCD coupling, giving a smaller action which enhances the axion mass. The net

result of these two effects causes an extra axion mass suppression given by

ma

∣∣∣
mQ<M

'
(mQ

M

)1/6

×ma

∣∣∣
mQ>M

. (3.4)
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For example, assuming mQ = 104 GeV and M = 1014 GeV, the extra suppression factor is

O(10−2).

Using these results, we can determine the 4D instanton parameter values that give axion

masses in the range 1 MeV . ma1 . 10 GeV, which will be relevant for the axiogenesis

mechanism discussed in Sec. 4. For example, assuming fa ∼ 104 GeV, the usual QCD

contribution is mQCD
a = 570 eV [72] and requires an axion mass enhancement of ∼ 104 to

obtain ma1 ∼ 10 MeV. Given that fa < M , and therefore including the extra suppression

(3.4), the required axion masses can be obtained for k = 3 and M ∼ 108 GeV [25]. Similarly,

axion masses & 1 GeV with 10 GeV . fa . 103 GeV are obtained for M ∼ 109 GeV.

However, to avoid light KSVZ quarks requires going beyond the minimal KSVZ model and

a particular model is given in Appendix A.

Furthermore, in the axiogenesis scenario, the field value of P in the early universe is

different from the vacuum value, and thus one needs to know the axion mass at high tem-

peratures or equivalently its dependence on S, as discussed in Sec. 2.3 in the context of

parametric resonance. For example, when one pair of KSVZ quarks is present, the axion

mass squared, m2
a ∝ S−1. In general, for nQ pairs of KSVZ quarks, a potential term P nQ

is induced by the UV 4D instantons, giving m2
a ∝ SnQ−2, and therefore unless nQ = 2, the

field-dependence of the axion mass must be taken into account to study the dynamics of P .

3.2. UV 5D instanton

An alternative possibility to enhance the axion mass from UV small instantons is to

assume that QCD gluons propagate in a 5th dimension at high energies [27]. It is well

known that above the compactification scale 1/R the QCD coupling αs becomes large again,

therefore giving rise to a new UV instanton contribution to the axion mass.

A minimal setup is to assume a flat extra dimension compactified on a Z2 orbifold with

the SM quarks confined to one of the boundaries. The enhancement of the axion mass

follows from the fact that there is now a power-law term R/ρ, where ρ is the instanton size,

in the effective action in the instanton density that arises from the positive frequency modes

of the Kaluza-Klein gluon states in the instanton background. This leads to the axion mass

squared [27]

m2
a ∼ κq

1

f 2
aR

4
e−

2π
αs(1/R)

+Λ5R, (3.5)

11



where Λ5 is the 5D strong coupling scale. Note that the maximum possible enhancement

for the axion mass occurs when the 5D theory is strongly coupled at Λ5 leading to the naive

dimensional analysis estimate m2
a ∼ κqΛ

4
5/f

2
a .

To implement the axiogenesis mechanism with a large angular velocity, it is crucial that

the initial field value of the PQ symmetry breaking field S � fa. In the minimal setup

the axion is identified as the 5th component of a bulk U(1) gauge field with fa ∼ 1/R that

would lead to field values S � 1/R and require a 5D description. To maintain an effective

4D description of the axiogenesis mechanism, the minimal setup can be modified to assume

that the axion is a localized boundary field which couples to GG̃. The decay constant fa can

now be generated by adding a boundary potential and KSVZ quarks that induce a linear P

term via the 5D instanton (similar to the 4D instanton case). The decay constant is then

a free parameter and can be chosen to satisfy fa � S < 1/R. Constraints from possible

higher-dimensional CP breaking terms on the boundaries are given in [73].

For example, assuming that only one pair of KSVZ quarks is localized on the UV bound-

ary, a tadpole term for P can be generated analogous to the 4D instanton case. Since

fa < 1/R, there is an extra suppression in the axion mass enhancement from the KSVZ

quarks given by

ma

∣∣∣
mQ<1/R

' (mQR)1/6 ×ma

∣∣∣
mQ>1/R

, (3.6)

where ma

∣∣∣
mQ>1/R

is given by Eq. (3.5) with αs(1/R) determined by the running without

the KSVZ quarks. To obtain O(10 MeV) axion masses with fa ∼ 104 GeV corresponding

to an enhancement of order 104 over the usual QCD axion mass requires 1/R ∼ 108 GeV

for perturbativity parameter values ε ∼ 0.3 where the perturbativity parameter ε is defined

via the relation, Λ5R = 6πε/αs(1/R) [27]. Similarly, allowed axion masses with 10 GeV

. fa . 103 GeV require 1/R ∼ 109 GeV assuming ε ∼ 0.3.

Finally, as in the case with UV 4D instantons, the field-dependent axion mass must be

taken into account unless nQ = 2 in order to study the dynamics of P .

3.3. Mirror QCD

Next we consider a mirror copy of the SM and a Z2 symmetry that exchanges the SM

with the mirror SM. The QCD axion is assumed to be Z2 neutral and couples to both QCD
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and mirror QCD,

1

64π2

a

fa
εµνρσ

(
GµνGρσ +G′µνG

′
ρσ

)
, (3.7)

where Gµν(G
′
µν) is the QCD (mirror QCD) field strength. Because of the Z2 symmetry, the

theta terms as well as the couplings of QCD and mirror QCD to the axion are the same.

Even though the axion obtains an extra mass from the mirror QCD dynamics, the strong

CP problem is still solved [18–21, 26].

The axion mass contribution from mirror QCD may be much larger than the usual QCD

contribution. This is achieved by requiring a larger mirror electroweak scale VEV v′ than

the electroweak scale VEV v that makes the mirror quarks heavier than the SM quarks,

thereby accelerating the running of the gauge coupling toward the IR. Assuming v′ � v,

this Z2 breaking can arise spontaneously from radiative corrections to the Higgs and mirror

Higgs potential [74, 75] or from a Z2 odd order parameter that couples to the Higgs and

mirror Higgs field. For KSVZ-type models [21], the axion mass is then given by

ma ' 40 MeV

(
v′

109 GeV

)8/11(
105 GeV

fa

)
, (3.8)

where the mirror quark masses are assumed to be above the mirror QCD scale. For DFSZ-

type models [19], fa ∼ v′ and the axion mass is . MeV. Also, constraints on the decay

constant from beam-dump experiments are stronger.

4. BARYON ASYMMETRY FROM A HEAVY QCD AXION

In this section, we derive the conditions for the baryon asymmetry to be explained by

the axion rotations via axiogenesis elaborated in Sec. 2. We only assume that the axion has

interactions with the gluons and a mass larger than that provided by pure QCD dynamics,

which can be achieved by the models in Sec. 3. There remain distinct possibilities of cosmo-

logical evolution because, during the electroweak phase transition, the axion rotation may

already be at the minimum of the PQ field potential as we will study in Sec. 4.1 or else the

axion rotation will be on the body of potential as will be studied in Sec. 4.2. The implications

for a mirror QCD model will be discussed in Sec. 4.3. Lastly, Sec. 4.4 analyzes the special

case where parametric resonance and the electroweak phase transition occur simultaneously.
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4.1. Constant axion mass

We first consider the case where the axion mass is constant in temperature and the radial

component is already at the PQ potential minimum at the electroweak phase transition. If

there is no entropy production after the electroweak phase transition, the angular velocity

of the axion when the electroweak sphaleron processes fall out of equilibrium must be

θ̇(Tws) =
2π2

45
g∗(Tws)

TwsY
obs
B

cB
' 5 keV

(
Tws

130 GeV

)(
0.1

cB

)(
g∗(Tws)

106.75

)
, (4.1)

based on Eq. (2.6). Here Tws = 130 GeV is the prediction of the Standard Model [76]. For

consistency with the assumption that the axion is rotating at Tws, the kinetic energy must be

larger than the potential barriers, i.e., θ̇ > 2ma. However, the BBN constraint ma & MeV

implies an overproduction of the baryon asymmetry according to Eq. (4.1). Therefore, in

what follows, we consider the scenario where the universe undergoes a period of reheating

during the electroweak phase transition by either the inflaton or generic moduli so that the

baryon asymmetry is diluted.

For reheating with a constant rate, e.g., via perturbative decays, the temperature scales

as T ∝ a−3/8 when the entropy is efficiently produced from reheating. For maximal dilution,

we focus on the case where entropy is already efficiently produced at T = Tws. Accordingly,

the baryon asymmetry yield YB = nB/s scales as a−3/T 3 ∝ T 5 until the end of reheating

at T = TR. Equivalently, this means that the baryon asymmetry is diluted by a factor of

(Tws/TR)5. The required angular velocity is then

θ̇(Tws) ' 2 GeV

(
Tws

130 GeV

)6(
0.1

cB

)(
g∗(Tws)

106.75

)(
10 GeV

TR

)5

. (4.2)

We now discuss several constraints on the reheat temperature TR. The aforementioned

constraint θ̇(Tws) > ma is satisfied for

TR . 50 GeV

(
Tws

130 GeV

)6
5
(

0.1

cB

)1
5
(

MeV

ma

)1
5
. (4.3)

The blue region in the left panel of Fig. 1 is therefore excluded. For reference, the blue line

shows the contour when θ̇(Tws) = 103ma. On the other hand, in the derivation of the baryon

asymmetry, it is assumed that θ̇(Tws) < Tws, which is satisfied when1

TR & 4 GeV

(
Tws

130 GeV

)(
0.1

cB

)1
5
. (4.4)

1 The following happens when this condition is violated. Given that θ̇ > T and S > T imply the rotation
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FIG. 1. Left: Individual constraints that determine the viable parameter space in the right panel

are explicitly shown with the reheat temperature TR as a free parameter. Right: The brown

hatched region shows the viable parameter space where the baryon asymmetry can be explained

by axiogenesis with a heavy QCD axion, specifically for the case where the axion mass is a constant

after the electroweak phase transition.

This excludes the orange region in the left panel of Fig. 1. Since θ̇ originates from the mass of

the radial component, which in turn must be smaller than fa, we must impose θ̇(Tws) < fa,

leading to a lower bound on the reheat temperature

TR & 2 GeV

(
Tws

130 GeV

)6
5
(

0.1

cB

)1
5
(

104 GeV

fa

)1
5

. (4.5)

While the axion is moving over the potential barriers, the axion self-interactions lead

to parametric resonance [60–64], and the coherent rotation fragments into axion fluctua-

tions [56–59]. The growth rate of the axion fluctuations is given by Eq. (2.10). Using the

required θ̇(Tws) from Eq. (4.2) and the scaling θ̇ ∝ a−3 ∝ T 8, one finds that parametric

dominates the energy density of the universe, the potential of S must then be quadratic and thus θ̇ remains

constant when S > fa [10]. Although θ̇ < T as the rotation is initiated, T eventually falls below θ̇. The

Higgs field obtains a large chemical potential ∼ θ̇ and is destabilized to obtain a field value ∼ θ̇ > T , so

the sphaleron process becomes ineffective. Once S reaches fa, θ̇ decreases rapidly and becomes smaller

than T after T = Tws. The baryon asymmetry is fixed when θ̇ first becomes larger than T . One can show

that the resultant baryon asymmetry is smaller than that for θ̇(Tws) ∼ Tws. Hence, the baryon asymmetry

is underproduced in the orange shaded region. 15



resonance occurs when ΓPR ' 10H at a temperature

TPR ' 100 GeV

(
Tws

130 GeV

) 3
14 ( cB

0.1

) 3
28

(
TR

10 GeV

)17
28 ( ma

MeV

)1
7

(
106.75

g∗(Tws)

)1
8
. (4.6)

For successful baryogenesis to occur by the coherent axion rotation, parametric resonance

should not occur before T = Tws, giving an upper bound on the reheat temperature

TR . 10 GeV

(
Tws

130 GeV

)22
17
(

0.1

cB

) 3
17
(
g∗(Tws)

106.75

) 7
34
(

MeV

ma

) 4
17
. (4.7)

This constraint excludes the red region in the left panel of Fig. 1.

The axion fluctuations created from parametric resonance scatter with gluons to produce

radiation that can reheat the universe. The rate of axion-gluon scattering is given by

Γagg '
1

4π

(αs
4π

)2 k2
aT

f 2
a

, (4.8)

with ka the energy of each axion, which is of order θ̇(TPR). The universe should not be

reheated above the electroweak scale, which would restore the electroweak symmetry and

the baryon asymmetry produced previously will be washed out by the sphaleron processes.

This constraint is expressed as

ρrot ×min

(
1,

Γagg
H

)
<
π2

30
g∗(Tws)T

4
ws. (4.9)

In the parameter range of interest, Γagg > H is always true at T = TPR, in which case

Eq. (4.9) leads to the constraint

TR & 10 GeV

(
130 GeV

Tws

)16(
0.1

cB

)( ma

10 MeV

)8
(

fa
104 GeV

)7(
106.75

g∗(Tws)

)7
2
. (4.10)

This constraint is shown in Fig. 1 as the green region, where the solid (dashed) boundary

assumes fa = 104 GeV (fa = 5 × 103 GeV). Therefore, for a given fa, there is an upper

bound on ma due to the green and red regions. The viable parameter space in ma and fa is

accordingly obtained and displayed as the brown hatched region in the right panel of Fig. 1.

The brown lower boundary is understood from the inconsistency between the green and

red regions in the left panel, while the brown right boundary is due to the incompatibility

between the red and orange regions in the left panel. The gray-shaded regions are excluded

by the dark radiation constraints from the CMB [77], the supernova-cooling bound [71], or

accelerator searches [78–84]. Much of the predicted parameter space can be probed by the
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kaon decay searches at NA62 [82] and future CMB observations [77], whose sensitivities are

shown by the magenta and gray lines, respectively. We include the sensitivities of accelerator

searches at the HL-LHC [26] in orange, CODEX-b [85] in purple, MATHUSLA [86] in blue,

FASER 2 [81, 87] in pink, Belle II [88, 89] in cyan, and DUNE near detector [90] in green.

4.2. Axion mass dependence on radial field value

In this section, we consider the possibility that the axion mass at the electroweak scale

is different from the vacuum value of the mass, which is in contrast to the constant mass

scenario analyzed in Sec. 4.1. A varying axion mass can be the case if the explicit PQ

breaking term depends on the radial field value S and the field has not been relaxed to the

minimum fa by Tws, i.e., S(Tws) > fa. The field-value dependence of the axion mass appears

in the UV models presented in Sec. 3.

The required angular velocity at the electroweak phase transition θ̇(Tws) remains the same

as Eq. (4.2). Several bounds considered in Sec. 4.1 also identically apply in this scenario

because the axion mass and/or the radial field value at Tws is irrelevant: 1) θ̇(Tws) < Tws in

Eq. (4.4) and 2) θ̇(Tws) < fa in Eq. (4.5).

We now revisit other constraints that are modified because of S(Tws) > fa and/or

ma(Tws) < ma. The constraint that the axion is in the rotating phase, θ̇(Tws) > ma(Tws),

appears to be relaxed due to a smaller ma(Tws) than the vacuum value of the mass. However,

a stronger constraint persists when S(Tws) > fa because the equation of motion of S fixes

θ̇2 = V ′(S)/S ' m2
S in this regime with mS the mass of the radial component; in turn,

mS > ma must hold for the description of a pseudo Nambu-Goldstone boson to apply. Alto-

gether, θ̇(Tws) > ma is hence still necessary (with ma the vacuum mass), in which case the

constraint in Eq. (4.3) applies identically and a period of reheating with TR < Tws remains

necessary as in Sec. 4.1.

Moreover, even for a theory with suppressed quantum corrections to the potential of S,

namely supersymmetry, the mass mS receives a minimum contribution from the quantum

correction ∆mS = yQmQ̃/4π that arises from the Yukawa interaction, yQPQQ̄, between the

PQ breaking field P and the KSVZ fermions Q and mQ̃ is the soft mass for the sfermion

Q̃. The Yukawa coupling yQ in principle is constrained experimentally by the mass of Q,
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namely mQ = yQfa & 1 TeV. Requiring θ̇ ' mS ≥ ∆mS gives a constraint

TR . 8 GeV

(
0.1

cB

)1
5
(

Tws

130 GeV

)6
5
(

fa
104 GeV

)1
5
(

TeV

mQ

)1
5

(
TeV

mQ̃

)1
5 (g∗(Tws)

106.75

)1
5
.

(4.11)

This strong upper bound is in tension with various lower bounds on TR, such as θ̇(Tws) <

Tws in Eq. (4.4) and θ̇(Tws) < fa in Eq. (4.5). The experimental lower bound on the

Yukawa coupling responsible for the quantum correction, however, is model-dependent. In

Appendix A, we present an example of a model where the Yukawa coupling therein, yP , can

be as small as 10−6 independently of fa. This leads to a significantly weaker constraint

TR . 80 GeV

(
0.1

cB

)1
5
(

Tws

130 GeV

)6
5
(

10−6

yP

)1
5

(
TeV

mQ̃

)1
5 (g∗(Tws)

106.75

)1
5
. (4.12)

We will show the viable parameter space for each of the cases in Eqs. (4.11) and (4.12).

The remaining constraints depend also on the field value S(Tws) in addition to TR. There-

fore, for a given set of model parameters (ma, fa), one has to examine all of the constraints

in the two dimensional parameter space of S(Tws) and TR in order to determine whether

(ma, fa) is viable for explaining the baryon asymmetry.

The parametric resonance rate given in Eq. (2.10) is modified when S > fa. This occurs at

the least because the axion mass is suppressed by an amount ma ∝ S−1/2 based on Sec. 3.1.

Also, in a supersymmetric theory, the potential V (P ) becomes increasingly quadratic when

S > fa (see Eq. (B.2)) and parametric resonance cannot occur in this limit due to the lack

of self-interactions. The motion is highly non-linear since the complex field P is probing the

minimum in the radial direction and also the details of the S-dependent cosine potential in

the angular direction. As a result, we perform a numerical computation of the parametric

resonance rate and find the following rate suppressed compared to Eq. (2.9)

ΓPR =
m2
a(S = fa)

θ̇

(
fa
S

)n
, (4.13)

with n ' 5 estimated numerically for S . 10fa in a limited setting as discussed in Ap-

pendix B. For larger S, the rate becomes too suppressed to be determined in a numerically

stable manner. Note that the width of the resonance also matters in computing the effective

parametric resonance rate. We take ma(S = fa) not much below θ̇ so that the resonance at
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S ∼ fa is wide (δk/k ∼ 1) and can be easily found numerically. We find that the resonance

width remains wide for S . 10fa. It is, however, possible that the width becomes narrower

at larger S. It is also possible that for ma(S = fa) � θ̇, where the resonance width is

already narrow at S = fa, it becomes even narrower for S > 10fa. We conservatively take

the effective parametric resonance rate to be

ΓPR,eff =
m4
a(S = fa)

θ̇3

(
fa
S

)n
(4.14)

, with n = 5, which is suppressed compared to Eq. (2.10). We will comment on how larger

n affects the viable parameter space at the end of this subsection. With this large-field

suppression, the temperature at which parametric resonance occurs is

TPR ' 60 GeV

(
Tws

130 GeV

) 1
12 ( cB

0.1

)1
8

(
TR

10 GeV

)17
24 ( ma

MeV

)1
6

(
106.75

g∗(Tws)

) 7
48
(

10fa
S(Tws)

) 5
24
,

(4.15)

where S(Tws) > fa delays parametric resonance compared to Eq. (4.6). In particular, TPR <

Tws is necessary for the axion rotation to survive until after the electroweak phase transition

in order to generate the baryon asymmetry from the charge transfer. The resultant constraint

from dangerous electroweak symmetry restoration is estimated in a similar way as Eqs. (4.8)

and (4.9) except for the following two differences. First, the field value is now S(TPR) =

max(S(Tws)(TPR/Tws)
4, fa) where S ∝ R−3/2 ∝ T 4 during the inflationary reheating era.

Second, the scattering rate is enhanced by (T/ka)
2 relative to Eq. (4.8) because the radial

component fluctuations δS are created during parametric resonance and δS scatters with

the thermal bath without the momentum suppression ka that originates from the axion

derivative coupling.

Once S(Tws) is fixed in the exploration of the parameter space, a number of constraints

are in order. First, the energy density of the rotation θ̇2S2 should not exceed that of the

field reheating the universe as we have assumed. Second, the washout of the rotation may

occur when the rotation is approaching the minimum of the radial direction for the following

reason. When the rotating field starts to experience the gradient in the angular direction

near the minimum, the motion becomes elliptical and thus radial oscillations are induced.

The induced radial components get depleted by scattering with the thermal bath. However,

the angular gradient continues to induce radial components, and therefore the rotation

eventually gets washed out completely. As is shown in Appendix C, this washout via the
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FIG. 2. The purple hatched region shows the viable parameter space where the baryon asymmetry

can be explained by axiogenesis with a heavy QCD axion, specifically for the case where the axion

mass is suppressed at the electroweak phase transition because the radial component has not yet

settled to the minimum of the potential.

radial component occurs at a rate given by

Γwo,S ' 10−5T
3

S2

(
ma

mS

)4

, (4.16)

and we impose Γwo,S < H for T > Tws so that the rotation survives until the baryon

asymmetry production is completed.

The viable parameter space in the ma, fa plane is shown in Fig. 2. In particular, all of the

aforementioned constraints are satisfied in the purple hatched region for some appropriate

choices of S(Tws) and TR, and thus the observed baryon asymmetry is successfully explained.

We first discuss the solid boundary of the purple hatched region, which is obtained

when we impose Eq. (4.12) (assuming the model presented in Appendix A) rather than

Eq. (4.11). In this case, the upper right boundary is set by the requirement that the axion is

a Nambu-Goldstone boson, fa > ma, while the lower boundary is set by the consistency be-

tween Eq. (4.3) from θ̇(Tws) > ma, Eq. (4.9) from evading dangerous electroweak symmetry

restoration, and Eq. (4.15) from avoiding parametric resonance before the electroweak phase

transition. On this boundary, the constraint TPR ≤ Tws is saturated. If n > 5 in Eq. (4.14),
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which is plausible for S � fa, the lower boundary in fact only expands towards large fa by

roughly a factor of three for any n ≥ 6 since other constraints become more stringent.

We caution that the experimental constraints and prospects in Fig. 2 may change for

fa < O(TeV) because a model with the QCD anomaly mediated by some of the SM quarks,

as presented in Appendix A, is necessary to avoid collider constraints on colored particles.

The dimension-five operator aGG̃/fa is no longer the correct description of the model, which

was assumed in the constraints and prospects.

Next we comment on the dashed boundary of the purple hatched region, which imposes

Eq. (4.11) instead of Eq. (4.12). The upper boundary arises from the conflict between

θ̇(Tws) < Tws and θ̇(Tws) > ∆mS, whereas the lower boundary originates from the conflict

between S(Tws) > fa, θ̇(Tws) > ∆mS, and avoidance of electroweak symmetry restoration.

Moreover, the preferred region remains unchanged for n ≥ 6 because the dominant constraint

is no longer TPR < Tws.

4.3. Mirror QCD

We next discuss the heavy QCD axion arising from the mirror QCD model. The ax-

ion mass is suppressed when T > Λ′QCD, so we may relax the constraint from parametric

resonance. This scenario, however, is strongly constrained by the washout of the rotation.

The PQ charge is washed out by the mirror strong sphaleron process. Because of the

heavy mirror quark masses, the mirror quark chiral asymmetry no longer suppresses the

washout rate, which is given by

Γwo′ ' min

(
α′s
m′2u
T
, 100α′4s T

)
× T 2

S2
. (4.17)

Here we assume Λ′QCD < T < v′, for which the chiral symmetry breaking is dominantly given

by the mass rather than the Yukawa coupling. We find that no parameter space is allowed

after imposing the washout constraint.

However, the washout constraint can be avoided if Λ′QCD is sufficiently large. Indeed,

for T < Λ′QCD, the washout from mirror QCD is given by the scattering of the ax-

ion with the mirror hadrons, whose rate is exponentially suppressed. We find Λ′QCD &

106 GeV (106 GeV/S(Tws)) (Tws/130 GeV)3/2. For such a large Λ′QCD, the constraints on

the parameter space are the same as those in the previous two subsections that assume a
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FIG. 3. The blue hatched region shows the viable parameter space where the baryon asymmetry

can be explained by axiogenesis with a heavy QCD axion, specifically for the tuned case where

parametric resonance occurs precisely during the electroweak phase transition.

temperature-independent axion mass. Note that if the KSVZ quark masses exceed Λ′QCD,

the axion mass dependence on S changes and the results in Sec. 4.2 may change.

Unfortunately, the large Λ′QCD makes the axion too heavy, terminating the axion rotation

before the electroweak phase transition. To have successful axiogenesis, the axion mass

must therefore be suppressed by extra approximate chiral symmetry. This can occur in

supersymmetric theories where the approximate R symmetry can suppress the axion mass.

However, care must be taken so that the possible extra CP phases in supersymmetric theories

do not shift the axion potential minimum in the SM QCD by more than 10−10. We leave

the investigation of supersymmetric scenarios to future work.

4.4. Axion fragmentation at the electroweak phase transition

As argued at the beginning of Sec. 4.1, in the absence of entropy production after the

electroweak phase transition, the required θ̇(Tws) ' 5 keV (from Eq. (4.1)) is too small for the

axion to be consistently in the rotating phase in the mass range of interest, ma & O(MeV).

To avoid this problem the universe was assumed to undergo a reheating phase during the
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electroweak phase transition so that entropy production dilutes the baryon asymmetry and

the required value of θ̇(Tws) is accordingly larger. In this section, we consider another

possibility where θ̇(T > Tws)� ma is exponentially dropping at T = Tws due to parametric

resonance so that the instantaneous θ̇(Tws) is the required value without the need of dilution.

The growth rate of the axion fluctuations from parametric resonance is given in Eq. (2.10).

Parametric resonance becomes efficient when both of the following conditions are satisfied.

First, the growth rate in Eq. (2.10) needs to be & 10H so that the exponential growth is

significantly large. Second, the fundamental parametric resonance rate in Eq. (2.9) needs to

be larger than the axion-gluon scattering rate in Eq. (4.8) so that the scattering processes

do not rapidly disturb the Bose enhancement on which parametric resonance relies. Once

parametric resonance becomes efficient, the spatial average of θ̇, denoted by 〈θ̇〉, drops

exponentially quickly, which we have numerically verified. The coherent rotation is then

completely destroyed. Therefore, the mechanism considered in this subsection requires that

parametric resonance occurs immediately before Tws so that 〈θ̇〉 decreases to the right amount

when the electroweak sphaleron processes fall out of equilibrium at Tws.

Requiring parametric resonance to occur at Tws leads to an angular velocity

θ̇(Tws) '

30 GeV
(

ma
10 MeV

)4
3

(
130 GeV
Tws

)2
3
, ma . 20 MeV

(
fa

10 TeV

) (
Tws

130 GeV

)1
2

200 GeV
(

ma
100 MeV

)2
3

(
130 GeV
Tws

)1
3 ( fa

10 TeV

)2
3 , ma & 20 MeV

(
fa

10 TeV

) (
Tws

130 GeV

)1
2

,

(4.18)

where the upper, lower limits arise from the two aforementioned conditions, respectively. The

baryon asymmetry is exponentially sensitive to the parameters of theory. Indeed, starting

from the value of θ̇(Tws) in Eq. (4.18), parametric resonance needs to exponentially suppress

θ̇(Tws) down to the value in Eq. (4.1) to explain the observed baryon asymmetry of the

universe. Although this requires fine-tuning of the parameters of order 10−6, the baryon

asymmetry is known to be constrained by anthropic requirements [91], which may justify

the tuning. We therefore analyze this possibility in detail despite the necessity of fine-tuning.

Eq. (4.18) fixes the energy density of the axion fluctuations right after parametric res-

onance, ρa ' k2
af

2
a , where ka ' θ̇(Tws) is the typical axion momentum determined by the

resonant condition. This energy density must not reheat the universe from axion-gluon
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scattering and gives the condition

ρa ×min

(
1,

Γagg
H

)
<
π2

30
g∗(Tws)T

4
ws. (4.19)

The expressions of θ̇(Tws) in Eq. (4.18) then lead to an upper bound on the decay constant

fa .

3 TeV
(

10 MeV
ma

)4
3 ( Tws

130 GeV

)8
3 , ma . 8 MeV

(
Tws

130 GeV

)19
14

4 TeV
(

10 MeV
ma

)2
5 ( Tws

130 GeV

)7
5 , ma & 8 MeV

(
Tws

130 GeV

)19
14

, (4.20)

of which the two cases determine the lower boundaries of the blue hatched region in Fig. 3.

For the small values of fa constrained here, we find that Γagg > H at Tws so that the axion

fluctuations are immediately thermalized after being produced by parametric resonance. We

note that for fa & 6×107 GeV(ma/10 MeV)4/3(130 GeV/Tws)
7/6, axion fluctuations are not

immediately thermalized at Tws, whose evolution requires a further analysis, but such a large

fa is anyway constrained by SN1987A and also outside the parameter space of interest.

5. SUMMARY AND DISCUSSION

In this paper, we have considered the production of the baryon asymmetry of the universe

from the rotation of a heavy QCD axion in field space. Unlike the usual scenario where

the axion is light and long-lived, the heavy QCD axion is unstable and the dark matter

overproduction problem associated with the rotating axion is avoided. This provides a new

way to generate the baryon asymmetry and solve the strong CP problem. Nevertheless, the

scenario is constrained by various processes, such as the fragmentation of the rotation by

parametric resonance, the washout of the rotation by the strong dynamics, and electroweak

symmetry restoration after the rotation disappears. We derived the nontrivial constraints

and the associated predictions on the axion mass ma and the decay constant fa.

Without entropy production after the electroweak phase transition, the required angu-

lar velocity of the axion at the electroweak phase transition is O(1) keV, which is much

smaller than the viable heavy QCD axion mass & 1 MeV. The axion then begins to oscil-

late around the minimum before the electroweak phase transition and the scenario does not

work. Instead, we have considered three viable scenarios.

1. Entropy production occurs after the electroweak phase transition (Fig. 1). The re-

quired angular velocity is raised and may be much larger than the axion mass. Most
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of the viable parameter space can be probed by CMB observations and rare K decay

searches.

2. The PQ breaking field still rotates on the body of the potential at the electroweak

phase transition (Fig. 2). The axion mass is suppressed because of the larger PQ

symmetry breaking scale. In the viable parameter space, entropy production is still

necessary. Some of the parameter space can be probed by CMB observations and rare

K and B decay searches.

3. The rotation fragments into fluctuations during the electroweak phase transition

(Fig. 3). When the sphaleron process goes out of equilibrium, the angular velocity

is exponentially suppressed compared to the angular velocity before the fragmenta-

tion becomes effective. Almost all of the parameter space can be probed by CMB

observations and rare K and B decay searches.

In all cases, the decay constant fa is bounded from above and hence the allowed parameter

space can be probed by observations and experiments as summarized in Fig. 4. This is

because a large fa means a large energy density of the rotation for a given angular velocity,

and the reheating of the universe from the dissipation of the axion rotation tends to wash

out the baryon asymmetry by restoring the electroweak symmetry.

Since the heavy QCD axion is cosmologically unstable and cannot be dark matter, a

cosmological motivation has been lacking for the regime fa . 105 GeV, even though this

part of parameter space is especially interesting for experimental searches. In the paradigm

we have presented, heavy QCD axions in the mass range 1 MeV-10 GeV play an important

cosmological role in explaining the observed baryon asymmetry via axiogenesis while still

solving the strong CP problem. The viable parameter space we have identified in Fig. 4 can

therefore serve as a well-motivated target of experimental searches for heavy QCD axions.
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FIG. 4. A summary of viable parameter space shown in the hatched regions in which the baryon

asymmetry is successfully reproduced, while different colors of hatching correspond to different

models and/or cosmological evolution. The brown and blue hatched regions both assume the axion

mass is constant, whereas the brown (blue) region considers the case where parametric resonance

occurs after (precisely during) the electroweak phase transition at Tws. The purple hatched region

assumes that TPR < Tws but the axion mass evolves with the radial field value S such that

ma(Tws) < ma and S(Tws) > fa. The gray shaded regions are excluded by existing constraints,

while the regions enclosed by thin boundaries are within the reach of future experimental probes.
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Appendix A: Weakly coupled PQ breaking field in the KSVZ model

As discussed in Sec. 4.2, the quantum correction from the Yukawa coupling of the PQ

symmetry breaking field P to the KSVZ quarks puts a lower bound on the mass of S. In

this Appendix we present a setup where the Yukawa coupling may be small and therefore

reduces the lower bound on the S mass. This model also allows fa to be much below the

mass of new colored particles, thereby realizing fa < TeV without conflicting with limits

from new quark searches at collider experiments.

We introduce vector-like fermions U and Ū where Ū has the same gauge quantum number

as the right-handed up quark. The vector-like fermions couple to the right-handed up quark

ū, the left-handed quark doublet Qu, the Higgs H, and P via the interactions

L = yPPūU +MU ŪU + λQuŪH
† + h.c.. (A.1)

This structure is enforced by the PQ charge assignment P (1), ū(−1) with vanishing charges

for all other fields. Assuming that MU � yPfa, we may integrate out UŪ , to obtain the

effective Lagrangian

Leff =
yPλP

MU

QuūH
† + h.c.. (A.2)

The up quark Yukawa coupling (yu(TeV) ' 6× 10−6 [92]) is then explained by requiring

yP ' 10−6

(
MU

TeV

)(
10 TeV

fa

)(
1

λ

)
, (A.3)

where we have assumed a lower bound on the U quark mass of approximately 1 TeV from

collider limits. With this small yP , the quantum correction to the mass of S can therefore

be sufficiently suppressed.

However, the setup in general leads to flavor-violating couplings of the axion to up-type

quarks. In particular, consider the interactions with the right-handed charm quark c̄ and

the left-handed charm quark doublet Qc. The generic couplings are

L = yPPūU +MU ŪU + λQuŪH
† + λεcQcŪH

† + ycQcc̄H
†, (A.4)

where all couplings yP , λ, λεc, yc can be made real. The possible mass term c̄ U and in-

teraction Quc̄H
† can be removed by rotations of (c̄, Ū) and (Qc, Qu), respectively. After
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integrating out U and Ū , substituting the VEVs for P and H, and removing the axion from

the mass terms by the rotation of ū, we obtain

Leff =
1

fa
∂µa ū

†σ̄µū+
(
u c
) yu 0

εcyu yc

ū
c̄

 v√
2
. (A.5)

The diagonalization of the mass term involves a (ū, c̄) rotation with an angle ' εcyu/yc.

Because of the mismatch between the axion-interaction basis and the mass basis, the axion

obtains a flavor-violating coupling

L ⊃ εc
yu
yc

1

fa
∂µa ū

†σ̄µc̄+ h.c.. (A.6)

This coupling is constrained by rare D meson decays. Using the limit from [93], we find

εc . 0.05

(
fa

104 GeV

)
. (A.7)

For fa & 104 GeV, the upper bound on εc is consistent with the naive expectation from the

flavor structure needed to explain the Cabibbo angle, which would predict εc ∼ 0.1. On

the other hand, fa . 104 GeV requires εc < 0.1, which can be explained in a flavor model

beyond the Froggatt-Nielsen mechanism with a U(1) symmetry [94]. Indeed, the Cabibbo

angle may arise from the down Yukawa coupling that has SU(3)Q × SU(3)d̄ flavor charge

and the Yukawa coupling of Q with Ū that has SU(3)Q×U(1)Ū charge, so we may arrange

the flavor symmetry breaking structure to obtain εc � 0.1.

Note that including the third generation of fermions does not change the result (A.7).

The top quark acquires flavor-violating couplings with the axion and decays into an axion

and up/charm quark. The upper bound on the coupling from the rare decay of top quarks is

much weaker than the naive expectation from the CKM mixing. All couplings can be made

real by rotations of quarks.

Alternatively one may consider a model with vector-like fermions that have the same

gauge quantum numbers as the right-handed down-type quarks and mix mainly with the

down quark. In this case, a similar analysis shows that the parameter analogous to εc is

constrained by rare K meson decays and should be . 10−7(fa/104 GeV). Thus for fa ∼

104 GeV, the upper bound is substantially smaller than the naive expectation from the

Cabibbo angle.

Finally, note that in our setup (A.1) there is a mass scale MU . One may wonder if

this mass scale suppresses the axion mass contribution from UV instanton effects when the
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instanton scale is larger than MU (due to the necessity of an MU insertion). However, when

the instanton scale is much above MU , the dominant contribution comes from the diagram

without an MU insertion; U and ū are attached to P , while Qu and Ū are attached to H†.

Compared to the usual KSVZ model this leads to an axion mass-squared contribution that

is larger by a factor of MU/fa, and including the effects of the running coupling gives an

overall enhancement of (MU/fa)
1/6 to the axion mass provided MU > fa.

Appendix B: Suppression of parametric resonance for large radial field values

The parametric resonance rate for a fixed axion mass is derived in Ref. [58] and the

results are shown in Eqs. (2.9) and (2.10) in the absence (presence) of cosmic expansion. In

this Appendix, we examine the rate by means of a numerical analysis in the case where the

axion mass is a function of the radial field value, which is discussed in Sec. 3 for the different

models and in Sec. 4.2 for the viable parameter space with axiogenesis.

The scenario we analyze in this Appendix assumes that the radial component of the

complex field P has a nearly quadratic potential while the angular component receives a

mass from explicit PQ breaking that decreases with a large radial field value. To be concrete,

we consider a two-field supersymmetric model where the superpotential of the form

W = X(PP̄ − v2
PQ) (B.1)

fixes the two fields P and P̄ to the moduli space PP̄ = v2
PQ due to the stabilizer field X.

The soft masses of P and P̄ , written as Vsoft = m2
P |P |2 +m2

P̄
|P̄ |2, then generate a minimum

along the moduli space. In addition, we include an explicit PQ breaking term of the form

V��PQ = µ3P + h.c.. Using P̄ = v2
PQ/P , we arrive at the effective Lagrangian

L =

(
1 +

v4
PQ

|P |4

)
|∂P |2 −m2

P |P |2
(

1 + r2
P

v4
PQ

|P |4

)
−
(
µ3P + h.c.

)
, (B.2)

where rP ≡ mP̄/mP . In the limit µ→ 0, |P | has a minimum at
√
rPvPQ ≡ vP .

We apply linear perturbation theory to study the coherent motion and the growing fluctu-

ations. Parametrizing P according to Eq. (2.1), the equations of motion for the zero modes
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of the radial component S0 and the angular component θ0 are given by

S̈0

(
1 +

v4
P

r2
PS

4
0

)
+ Ṡ0

[
3H

(
1 +

v4
P

r2
PS

4
0

)
− 2Ṡ0

S0

v4
P

r2
PS

4
0

]

+S0

[
m2
P

(
1− v4

P

S4
0

)
− θ̇2

0

(
1− v4

P

r2
PS

4
0

)]
+
√

2µ3 cos θ0 = 0 , (B.3)

θ̈0

(
1 +

v4
P

r2
PS

4
0

)
+ θ̇0

[
3H

(
1 +

v4
P

r2
PS

4
0

)
+

2Ṡ0

S0

(
1− v4

P

r2
PS

4
0

)]
−
√

2µ3 sin θ0

S0

= 0 . (B.4)

These equations are solved numerically to obtain the zero-mode solutions S0(t) and θ0(t)

and then we consider fluctuations, S(x, t) = S0(t) + δS(x, t) and θ(x, t) = θ0(t) + δθ(x, t)

around the zero-mode solutions. We further decompose the fluctuations δS, δθ into Fourier

modes Sk and θk with momentum k. The linearized equation of motion of the fluctuations

of mode k in momentum space is

S̈k [1 + ε] + Ṡk

[
3H (1 + ε)− 4Ṡ0

S0

ε

]

+ Sk

k2 (1 + ε) +m2
P

(
1 + 3r2

P ε
)
− θ̇2 (1 + 3ε) + 2ε

5

(
Ṡ0

S0

)2

− 6H
Ṡ0

S0

− 2S̈0

S0


− θ̇k

[
2S0θ̇0 (1 + ε)

]
+ θk

[√
2µ3 sin θ0

]
= 0 , (B.5)

θ̈k [1 + ε] + θ̇k

[
3H (1 + ε) +

2Ṡ0

S0

(1− ε)

]
+ θk

[
k2 (1 + ε)−

√
2µ3

S0

sin θ0

]
+ Ṡk

[
2θ̇0

S0

(1− ε)

]

+ Sk

[
2
θ̈0

S0

(1− ε) +
θ̇0

S0

(
6H (1− ε) +

2Ṡ0

S0

(1 + 3ε)

)
−
√

2µ3 sin θ0

S2
0

]
= 0 , (B.6)

where we have defined ε ≡ v4
P/r

2
PS

4
0 . After obtaining the solutions Sk and θk, we con-

sider the time average 〈θk,f〉 of θk in the final stage of the numerical solution over a time

interval much larger than the oscillation period and compute the growth rate defined as

µk ≡ log (〈θk,f〉 /θk,i) /∆t with θk,i the initial value. The growth of fluctuations is shown in

Fig. 5 for a benchmark point, where the initial condition θ̇i = mP corresponds to an initial,

approximately circular motion. In the left panel, we show the growth rate µk as a function

of the mode k, while in the right panel, the solution of the fluctuation θk is shown for a fixed

momentum mode. A maximum rate, µmax can then be identified among all modes for each

given Si. In Fig. 6, we show the scaling of the maximum growth rate µmax with the radial

field value Si, where the suppression power in Eq. (4.13) is estimated to be n ' 5 from the

best fit.
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FIG. 5. Growth of axion fluctuations due to parametric resonance. The left panel shows the growth

rate µk as a function of the momentum mode k both in units of mP . The right panel shows the

solution of the fluctuation θk normalized to the initial value θk,i as a function of time.
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FIG. 6. Parametric resonance rate µmax as a function of the radial field value Si. The black data

points obtained numerically suggest a scaling law of µmax ∝ Sni with n ' 5.
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Appendix C: Washout by the axion mass and depletion of the radial component

In this Appendix, we derive the washout rate from the axion mass and the depletion

of the radial component when S � fa. We consider the following processes. Initially, the

rotation is circular. The explicit breaking of the PQ symmetry that generates the axion

mass causes deviations from the circular rotation, which induces the radial component. The

radial component is then depleted by a rate ΓS. We treat the explicit breaking and the

depletion as small perturbations.

The potential of the PQ symmetry breaking field at S � fa is approximately given by

V (P ) = m2
S|P |2 + µ3(P + P †), (C.1)

where the second term is responsible for the axion mass. We consider small fluctuations

(α(t), β(t)) around the circular motion,

P =
1√
2
Seiθ =

1√
2
S̄(1 + α(t))ei(mSt+β(t)), (C.2)

where S̄ is approximately constant. In fact S̄ decreases with a rate H, but since we are

interested in the case where the washout rate exceeds H, we can assume S̄ is a time-

independent constant.

The α and β equations of motion are, to leading order in α, β, and µ3,

α̈− 2mSβ̇ =−
√

2
µ3

S̄
cos(mSt),

β̈ + 2mSα̇ = +
√

2
µ3

S̄
sin(mSt). (C.3)

The solution for α̇ is given by

α̇ =
√

2
µ3

mSS̄
sin(mSt), (C.4)

where we impose α̇ = 0 for µ3 = 0. The depletion of the rotational energy density is given by

ρ̇ = −ΓSṠ
2 = −ΓSS̄

2α̇2 = −ΓS
2µ6

m2
S

sin2(mSt)→ −ΓS
µ6

m2
S

, (C.5)

where the time average has been taken in the last term. Dividing this by the total energy

density of the rotation m2
SS̄

2, we obtain

Γwo,S =
µ6

m4
SS̄

2
ΓS ∼

m4
a(S̄)

m4
S

ΓS, (C.6)
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where ma(S̄) is the mass of the angular component at the large field value S̄ � fa. The

coupling of the radial component to the gluon gives ΓS ∼ 10−5T 3/S̄2 [95–97] and the final

result of Γwo,S is used in Eq. (4.16).
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