Probing the CP nature of the top-Higgs Yukawa coupling in ttH and tH events with H→bb using

the ATLAS detector

Zak Lawrence, University Of Manchester

2.CP Mixing

 $\mathcal{L}'_{t\bar{t}H} = -\kappa'_t y_t \Phi \overline{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$

- → In the SM the Higgs boson is a **CP-even** scalar particle, a pure CP-odd coupling has been excluded at 95% confidence level [1].
- → Admixtures of CP-even and CP-odd are still allowed experimentally.
- → Mixing between CP-even and CP-odd couplings is parametrised in terms of a mixing angle α and coupling strength modifier κ'_t [3]

4.Background

- \rightarrow Analysis is dominated by $t\bar{t}$ background.
 - $\rightarrow t\bar{t} + \geq 1b$ component has the largest contribution.
 - \rightarrow Systematics on $t\bar{t} + \ge 1b$ background limit the sensitivity of the analysis.
 - → Separation of signal and background improved by using Classification BDT to separate $t\bar{t}H$ from $t\bar{t} + \geq 1b$

1.Motivation

- The ttH process allows for direct access to the top-Higgs Yukawa coupling.
- Previous analyses have measured CP of the interaction in ttH events with $H \rightarrow \gamma \gamma$ [1]
- This analysis gives a first measurement of the CP properties in the H→ bb decay channel [2]

3.Signal

- Analysis targets **ttH** events with $H \rightarrow bb$
- tWH and tHjb processes are also considered as signal.
 - → The tH cross section exhibits a strong dependence on κ'_t and α .
- → Events split into channels based on decay products of the top quark pair:
- → Dilepton channel, 4 b-tagged jets, 2 charged leptons
- → l+jets channel, 6 jets including 4 btagged jets, 1 charged lepton

5. Analysis Strategy

- → CP Mixing angle and coupling strength are extracted from profile likelihood fit.
- → 3b Control Regions (CR): fit yield
- \rightarrow 4j Signal Regions (SR): fit b_4
- \rightarrow 4j Non-reconstructed* CR: fit $\Delta \eta_{II}$
- \rightarrow 5j CR: fit ΔR_{hh}
- \rightarrow 6j SR: fit $b_2^{t\bar{t}H}$
- → 6j boosted SR: fit Classification BDT

* Neutrino weighting used in top quark reconstruction fails

6.CP Variables

- \rightarrow Sensitivity to α and κ'_t obtained by fitting CPsensitive observables.
- → Observables exploit angular and kinematic differences in events caused by CP effects
- \rightarrow Observables b_4 and $b_2^{t\bar{t}H}$ found to be most sensitive to use in analysis [4].
- \rightarrow I+jets: $b_2^{t\bar{t}H}$ used:
- → Computed in ttH rest frame to enhance sensitivity
- \rightarrow Dilepton: b_4 and $\Delta \eta_{ll}$ used:
 - $\rightarrow \Delta \eta_{II}$: Used for events where top reconstruction fails, acts a proxy for pseudorapidity difference between top quarks

Channel (PSR)		Final SRs and CRs	Classification BDT selection	Fitted observable
		$CR_{\text{no-reco}}^{\geq 4j, \geq 4b}$	_	$\Delta\eta_{\ell\ell}$
Dilepton ($\mathbf{p} (\mathbf{D}\mathbf{S}\mathbf{D} \ge 4j, \ge 4b)$	$CR^{\geq 4j, \geq 4b}$	BDT∈ [-1, -0.086)	b_4
	r(rsk · ·)	31.	BDT∈ [-0.086, 0.186)	b_4
		$SR_2^{\geq 4j, \geq 4b}$	BDT∈ [0.186, 1]	b_4
ℓ+ jets (PSF		$CR_1^{\geq 6j, \geq 4b}$	BDT∈ [-1, -0.128)	b_2
	$(PSR^{\geq 6j, \geq 4b})$	$CR_2^{\frac{1}{\geq}6j,\geq 4b}$	BDT∈ [-0.128, 0.249)	b_2
		$SR^{\stackrel{7}{\geq}6j,\geq 4b}$	BDT∈ [0.249, 1]	b_2
ℓ+ jets	(PSR _{boosted})	SR _{boosted}	BDT∈ [-0.05, 1]	Classification BDT score

7.Results

- \rightarrow The best fit point gives a mixing angle of $\alpha = 11^{\circ + 56^{\circ}}_{-77^{\circ}}$ and coupling strength modifier $\kappa'_t = 0.83^{+0.30}_{-0.46}$
- \rightarrow A pure CP-odd coupling is **disfavoured at 1.2** σ significance.

References

- [1] ATLAS Collaboration, "CP Properties of Higgs Boson Interactions with Top Quarks in the ttH and tH Processes Using H→γγ with the ATLAS Detector", Phys. Rev. Lett. 125, 061802 [2] ATLAS Collaboration, "Probing the CP nature of the top-Higgs Yukawa coupling in ttH and tH events with H →bb using the ATLAS detector at the LHC", ATLAS-CONF-2022-016
- [3] F. Demartin, F. Maltoni, K. Mawatari, B. Page & M. Zaro, "Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction", Eur. Phys. J. C 74, 3065 (2014) [4] J. F. Gunion and X.-G.He, "Determining the CP Nature of a Neutral Higgs Boson at the CERN Large Hadron Collider", Phys. Rev. Lett. 76 (1996) 4468

The University of Manchester