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In most direct detection experiments, the free nuclear recoil description of dark matter scattering

breaks down for masses ≲ 100 MeV, or when the recoil energy is comparable to a few times the typical

phonon energy. For dark matter lighter than 1 MeV, scattering via excitation of a single phonon

dominates and has been computed previously, but for the intermediate mass range or higher detector

thresholds, multiphonon processes dominate. We perform the first calculation of the scattering rate

via multiphonon production for the entire keV-GeV dark matter mass range, assuming a harmonic

crystal target. We provide an analytic description that connects the single phonon, multiphonon,

and the nuclear recoil regimes. Our results are implemented in the public package DarkELF.
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I. INTRODUCTION

The effort to directly detect dark matter (DM) is en-

tering the sub-GeV mass regime, thanks to experimental

innovations which allow for ever lower energy thresholds.

For kinematic reasons, this regime is especially challeng-

ing for DM which primarily couples to hadronic matter.

For a DM mass (mχ) below 1 GeV, the energy that the

DM can deposit in an elastic collision with a nucleus of

mass mN is bounded by

EN ≤ 2v2m2
χ

mN
. (1)

For mχ ≪ mN this is only a small fraction of the to-

tal available DM kinetic energy, which can make it very

difficult to detect. This problem can be mitigated to

some extent by choosing light element targets such as

H [1], He [2–4], or diamond [5] and by pushing for lower

thresholds. Alternatively, one may leverage inelastic pro-

cesses such as the Migdal effect [6–8] or bremsstrahlung

[9]. Inelastic processes occur at substantially lower rate,

but are not subject to the constraint in (1) and can also

yield signals that are more easily detected than a nu-

clear recoil, such as electronic excitations, ionizations or

X-rays. Which approach is preferable depends on the

characteristics of the detector.

At sufficiently low energy and momentum scales, DM-

nucleus scattering is also not subject to (1) because atom-

atom interactions become important. In particular, the

relevant excitations in a crystal target are phonons in-

stead of elastic nuclear recoils. For mχ ≲ MeV, the

momentum transfer from DM scattering corresponds to

wavelengths comparable or larger than the interatomic
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spacing of a typical target. In this regime, the dominant

process will be coherent scattering off multiple atoms,

with creation of a single phonon. For crystalline targets

with phonon energies as high as ∼100 meV, the energy

deposited from DM can be well above the naive estimate

in (1). Single phonon excitation has been studied exten-

sively for sub-MeV dark matter, where numerical and an-

alytic calculations by different groups are in good agree-

ment [10–17]. These calculations have also been extended

to diphonon production from sub-MeV dark matter1 [25]

as well as to single phonon production from MeV-GeV

dark matter by including Umklapp processes [12, 14].

However, so far there has not been a complete description

of DM scattering for intermediate energy and momentum

transfers, where multiphonon processes are expected to

dominate.

In this work, we develop an analytic treatment of DM

scattering that interpolates between the single phonon

and nuclear recoil regimes. The relevant approximations

are set primarily by the momentum transfer q. For sin-

gle phonon excitations and q < 2π/a, where a is typi-

cal atomic lattice spacing, we use a long-wavelength ap-

proximation used earlier in the literature [10, 11, 13, 25].

For q > 2π/a, we employ the incoherent approximation,

which neglects interference effects between the response

of neighboring atoms. This allows us to organize the

calculation as a systematic expansion in the number of

final state phonons, where each additional phonon comes

with a factor of q/
√
2mdω̄d. Here, md and ω̄d are the

mass and average oscillation frequency of the atom in

the position indexed by d. For q <
√
2mdω̄d it is nu-

merically practical to compute the rate order-by-order in

terms of the phonon density of states of the material.

For q ≫ √
2mdω̄d, scattering into many phonons dom-

inates and the perturbation series requires increasingly

large orders in q/
√
2mdω̄d to converge. It can however be

resummed by making use of the impulse approximation,

which in turn smoothly matches onto the free nuclear re-

coil regime. A similar expansion in number of modes has

been performed previously for the integrable toy model

that is the harmonic oscillator [26]. Here we have gen-

eralized the approach to a harmonic crystal, analogous

to the procedure followed in [27] and [28], in calculations

of the Migdal effect and X-ray backgrounds, respectively.

Fig. 1 illustrates our results from applying these approxi-

mations. All of our calculations are implemented as part

1 Analogous calculations were performed for superfluid He [18–24],

for which diphonon production is the leading observable process

for mχ ≲ 1 MeV.
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FIG. 1. Cross sections needed for 3 events/kg-year for var-

ious target materials and threshold energies. A massive

hadrophilic mediator is assumed.

of the DarkELF public code [29].2

The remainder of this paper is organized as follows: In

Sec. II we introduce the dynamic structure factor, which

captures the material-dependence of the DM scattering

cross section, and motivate the incoherent approximation

for the structure factor. In Sec. III, we describe our ana-

lytic approximations in detail across the different regimes

in energy and momentum transfer. We perform checks

on our use of the incoherent approximation by comparing

with previous calculations for single-phonon production

and analytic calculations for diphonon production. Our

results for GaAs are discussed in detail in Sec. IV and we

conclude in Sec. V. Appendix A contains the formulas

for diphonon production and Appendix B provides de-

tails on the impulse approximation. The implementation

in DarkELF is documented in Appendix C. We further

provide numerical results for Ge, Si and diamond in Ap-

pendix D.

II. DYNAMIC STRUCTURE FACTOR

Our starting point will be a general potential for spin-

independent DM-nucleus interactions, although the for-

malism below could also be applied to spin-dependent

interactions. For a DM particle of mass mχ incident on

a crystal with N unit cells and n ions per unit cell, the

potential in Fourier space is given by

Ṽ(q) = 2πbp
µχ

F̃ (q)

N∑

ℓ

n∑

d=1

fℓde
iq·rℓd . (2)

2 https://github.com/tongylin/DarkELF

https://github.com/tongylin/DarkELF
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Here, we sum over the N unit cells, labeled by lattice

vectors ℓ, and atoms within the unit cell, labeled with

the index d, such that all atoms in the crystal with po-

sitions rℓd are summed over. The DM-proton scattering

length bp is defined by the DM-proton scattering cross

section σp ≡ 4πb2p at some reference momentum, and µχ

is the DM-proton reduced mass. We first consider a gen-

eral coupling strength fℓd of the nucleus labeled by ℓ, d

relative to that of a single proton. fℓd is specified for var-

ious interactions in Section IV, such as nucleon number

for scalar mediators and the effective electric charge for

scattering via a dark photon mediator. In the latter case

fℓd is q dependent when accounting for screening effects.

We consider two form factors in (2) representing limit-

ing cases of interactions: scattering via a heavy mediator,

where F̃ (q) = 1; and scattering via a massless mediator,

where F̃ (q) = q20/q
2 with a model-dependent reference

momentum q0.

Collecting the overall factor 2πbpF̃ (q)/µχ, we define

the differential cross section as

dσ

d3q dω
=

b2p
µ2
χ

1

v

Ωc

2π
|F̃ (q)|2S(q, ω) δ (ω − ωq) (3)

where v is the initial velocity of the dark matter (incident

on a target at rest), Ωc = V/N is the volume of the unit

cell in the crystal, and ωq = q · v − q2/2mχ is the kine-

matic constraint on the momentum and energy transfers

to the crystal q and ω. We have in turn also defined the

dynamic structure factor

S(q, ω) ≡ 2π

V

∑

f

∣∣∣∣∣
N∑

ℓ

n∑

d=1

⟨Φf |fℓdeiq·rℓd |0⟩
∣∣∣∣∣

2

δ (Ef − ω) .

(4)

Note that the convention for S(q, ω) varies across the

literature; here we use the convention that gives a similar

S(q, ω) definition for both phonon interactions and DM-

electron interactions [12, 30]. We also assume the system

is initially in its ground state |0⟩ prior to the collision,

corresponding to a zero temperature system. We sum

over final states with energies Ef , such that each term

represents the probability to excite the final state |Φf ⟩.

A. Coherent and incoherent structure factors

For a given crystal there are many possible configura-

tions of interaction strengths fℓd which may vary even

for different samples of the same material, e.g. the exact

distribution of spins or isotopes in the material for spin-

dependent3 or mass-dependent interactions, respectively.

This can be accounted for by averaging over a large col-

lection of target samples. With a large number of nuclei

in the crystal, we expect the exact distribution of inter-

action strengths in a given sample to be inconsequential

relative to the result averaged over many samples. We

can keep track of fluctuations away from the average con-

figuration by splitting the scattering rate into a coherent

and incoherent contribution, as explained below.

We follow the procedure of Refs. [31, 32] and first re-

express (4) by expanding the square and Fourier trans-

forming the δ-function, giving

S(q, ω) =

N∑

ℓ, ℓ′

n∑

d, d′

fℓdf
∗
ℓ′d′ Cℓ′d′ℓd (5)

where Cℓ′d′ℓd is the time-dependent two-point function:

Cℓ′d′ℓd ≡ 1

V

∞∫

−∞

dt
∑

f

⟨0|e−iq·rℓ′d′ (0)|Φf ⟩

× ⟨Φf |eiq·rℓd(t)|0⟩ e−iωt

≡ 1

V

∞∫

−∞

dt ⟨e−iq·rℓ′d′ (0)eiq·rℓd(t)⟩e−iωt. (6)

In the second line we used the completeness of the basis of

states. It will also be advantageous to define a shorthand

notation for the auto-correlation function for an atom

with itself as

Cℓd ≡ Cℓdℓd

≡ 1

V

∞∫

−∞

dt ⟨e−iq·rℓd(0)eiq·rℓd(t)⟩e−iωt. (7)

We assume that the fℓd are random throughout the

crystal. Under this assumption, the average of fℓdf
∗
ℓ′d′

over target configurations, fdf∗
d′ , must be independent

of the lattice sites ℓ, ℓ′. Making this replacement in (5)

gives

S(q, ω) =

N∑

ℓ, ℓ′

n∑

d, d′

fdf∗
d′ Cℓ′d′ℓd (8)

where the averages may be written as

d ̸= d′ : fdf∗
d′ = fd f∗

d′ ,

d = d′ : fdf∗
d′ = f2

d .

3 For spin-dependent interactions, fℓd is an operator rather than

a parameter, but otherwise the analysis proceeds analogously.
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For the d ̸= d′ case we assumed that the expectation

values of the fd for different atoms in the unit cell are

uncorrelated. This allows one to split the structure factor

into two contributions:

S(q, ω) =

N∑

ℓ̸=ℓ′

n∑

d̸=d′

fd f∗
d′ Cℓ′d′ℓd +

N∑

ℓ

n∑

d

f2
d Cℓd (9)

=

N∑

ℓ,ℓ′

n∑

d,d′

fd f∗
d′ Cℓ′d′ℓd +

N∑

ℓ

n∑

d

(
f2
d − (fd)

2
)
Cℓd

(10)

≡S(coh)(q, ω) + S(inc)(q, ω) (11)

where the second line is obtained by adding and sub-

tracting the term proportional to (fd)
2 and regrouping.

The first and second term in (11) are usually referred to

as the coherent and incoherent structure factors in the

neutron scattering literature.

The coherent structure factor relays the scattering rate

if the interaction strengths of all atoms in equivalent lat-

tice sites are equal to a common value fd. For example,

one can consider low energy, spin-independent neutron

scattering in a very pure crystal with only a single iso-

tope per atom type. This implies fd = fℓd = Ad, with Ad

the atomic mass number, such that the incoherent con-

tribution in (11) vanishes exactly. The sum in (10) then

crucially includes position correlators between differing

nuclei, which capture the interference between different

lattice sites. In practice, this interference leads to a co-

herence condition, which demands that the momentum

in the scattering process must be conserved up to a recip-

rocal lattice vector. In particular, the 0th order term in a

low q expansion of (6) corresponds to Bragg diffraction.

The incoherent structure factor on the other hand

accounts for the statistical variations in interaction

strengths between different scattering centers in the lat-

tice. The second sum in (10) contains no cross terms and

thus does not include interference between different lat-

tice sites. There is therefore no corresponding coherence

condition and the incoherent structure factor does not

enforce momentum conservation.4

For most earlier DM direct detection calculations the

focus has been on spin-independent scattering in high

purity crystals with little isotopic variation. In this sce-

nario, we take the single isotope approximation f2
d −

(fd)
2 = 0, implying that only the coherent scattering con-

tributes. For spin-dependent dark matter scattering, the

average will be the quantum expectation value of the spin

operator, resulting in f2
d ̸= (fd)

2. We therefore expect

the incoherent piece in (11) to be important in this case.

In this paper we focus exclusively on spin-independent

scattering in the single isotope limit and the correspond-

ing coherent structure factors. The coherent structure

factors are however more difficult to evaluate, due to the

conservation of crystal momentum that is built into (6).

This results in increasingly complicated phase space in-

tegrals for multiphonon processes [25]. For our purposes,

the utility of studying the incoherent structure factor will

be that the auto-correlation function can be used to ob-

tain a reasonable and more manageable approximation

of the coherent structure factor at sufficiently high mo-

menta. Our results can also be extended to the case of

spin-dependent scattering, but we leave this for future

work.

Before venturing further into this approximation and

its validity, we must first develop the structure factors

into a form which lends itself to a direct calculation. In

order to evaluate the structure factors in (4)–(8), the po-

sition vector of each atom may be decomposed in terms

of the equilibrium lattice positions and displacement vec-

tors, rℓd = ℓ + r0d + uℓd. Here r0d is the equilibrium lo-

cation of atom d relative to the origin of the primitive

cell and uℓd is the displacement relative to that equi-

librium. Following this decomposition, we quantize the

displacement vector in the harmonic approximation with

a phonon mode expansion

uℓd(t) =

3n∑

ν

∑

k

1√
2Nmdων,k

(
eν,d,kâν,ke

ik·(ℓ+r0d)−iων,kt

+ e∗ν,d,kâ
†
ν,ke

−ik·(ℓ+r0d)+iων,kt
)

(12)

The index ν denotes the phonon branches, of which there

are 3n, and k labels the phonon momentum in the first

Brillouin Zone (BZ). The â†ν,k and âν,k are the creation

and annihilation operators for the phonons, ων,k is the

energy of the phonon, eν,d,k is the phonon eigenvector for

atom d normalized within a unit cell,
∑

d e
∗
ν,d,k ·eµ,d,k′ =

δµνδk,k′ , and md is the mass of atom d.

The structure factor in (8) can then be explicitly eval-

uated by applying (12) to (6). For a pure single isotopic

crystal with f2
d = (fd)

2, this is given by [25]

4 An alternative but equivalent point of view is that for coherent

scattering, translation symmetry is broken up to a shift sym-

metry, since all unit cells are identical. For incoherent scattering

the scattering centers are treated as independent and translation

invariance is therefore fully broken, resulting in the complete loss

of momentum conservation.
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S(coh)(q, ω) =
2π

V

∑

f

∣∣∣∣∣
N∑

ℓ

n∑

d

fd e
−Wd(q)Mℓd

∣∣∣∣∣

2

δ (Ef − ω) (13)

where

Mℓd ≡ eiq·(ℓ+r0d) ⟨Φf | exp


i
∑

k,ν

q · e∗ν,k,d√
2Nmdων,k

â†ν,ke
−ik·(ℓ+r0d)


 |0⟩ (14)

is the matrix element for scattering into the final state

of the crystal denoted by f . The Debye-Waller fac-

tor e−Wd(q) is given in terms of the function Wd(q) ≡
1
2 ⟨(q · uℓd(0))

2⟩. We may Taylor expand the inner expo-

nential in powers of q where the nth term can excite a

final state consisting of n phonons. The phonon eigenvec-

tors and energies may be obtained numerically using Den-

sity Functional Theory (DFT) (see e.g. [33]); using these,

the leading single phonon structure factor has been calcu-

lated [11, 14, 17]. These DFT-based calculations quickly

become cumbersome, however, and have not yet been

performed for generic n-phonon terms. Analytic calcu-

lations may be performed more easily, and have been

carried out for the single- and two-phonon terms [25],

but are only tractable when assuming an isotropic crys-

tal and that |q| is small relative to the size of the first

Brillouin zone. Such analytic calculations likewise lack

scalability for higher order phonon terms.

In summary, since the direct evaluation of (13) is very

tedious and not always possible, we will rely instead on

an approximate form of S(coh)(q, ω), bypassing the need

to deal with (13). This is described in the next section.

B. Incoherent approximation

The incoherent approximation amounts to dropping

the cross terms in (ℓ ̸= ℓ′ or d ̸= d′) from the sum

in (10), thus neglecting the interference between non-

identical atoms. In other words, one approximates the

coherent structure factor by

S(coh)(q, ω) ≈
N∑

ℓ

n∑

d

(fd)
2Cℓd. (15)

The incoherent structure factor remains unchanged, and

the total structure factor is then given by S(tot)(q, ω) ≈∑N
ℓ

∑n
d f

2
dCℓd. In this work we will focus only on pure

crystals with a single isotope for each type of atom, so

that the total structure factor can be computed with

(15). The incoherent approximation is expected to be

a good approximation when the momentum transfer is

larger than 2π/a with a the inter-particle spacing. Then

the phase factors associated with the interference terms

are expected to add up to a small correction compared

to the ℓ = ℓ′, d = d′ terms in the sum. For an argument

justifying (15) we refer to [31, 34].

For momentum transfers within the first Brillouin

zone, single phonon scattering always dominates the in-

clusive scattering rate. It is however possible that the

detector threshold is such that single phonon processes

cannot be accessed but the double or multiphonon pro-

cesses can. In this case the incoherent approximation

cannot a priori be taken for granted. We nevertheless use

it, but verify the results against our earlier two-phonon

calculations [25] whenever possible (Sec. III B), finding

satisfactory agreement. The accuracy of the calculations

in this part of phase space is however less well understood

and further work is needed.

To evaluate the auto-correlation function, we first re-

place the atomic positions rℓd in (11) with their dis-

placement operator decomposition, noting that the ℓ+r0d
constant cancels, amounting to a simple substitution of

rℓd → uℓd:

Cℓd =
1

V

∞∫

−∞

dt ⟨e−iq·uℓd(0)eiq·uℓd(t)⟩e−iωt (16)

The expectation value may be rewritten with an applica-

tion of the Baker–Campbell–Hausdorff formula, Bloch’s

identity ⟨eÂ⟩ = e
1
2 ⟨Â2⟩, and some matrix algebra [11]

giving:

Cℓd =
1

V

∞∫

−∞

dt e−2Wd(q)e⟨q·uℓd(0)q·uℓd(t)⟩e−iωt. (17)

When we deployed Bloch’s identity, we implicitly used

the harmonic approximation, by only considering dis-

placement operators of the form in (12).

The correlator ⟨q · uℓd(0)q · uℓd(t)⟩ may be evalu-

ated with the form of the displacement operator in (12),
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wherein the ℓ dependence cancels. This gives

⟨q · ud(0)q · ud(t)⟩ =
∑

ν

∑

k

|q · eν,k,d|2
2Nmdων,k

eiων,kt (18)

which can be simplified further by averaging over the

direction of momentum vector q

⟨q · ud(0)q · ud(t)⟩ ≈
q2

3

∑

ν

∑

k

|eν,k,d|2
2Nmdων,k

eiων,kt (19)

=
q2

2md

+∞∫

−∞

dω′Dd(ω
′)

ω′ eiω
′t (20)

where we defined the partial density of states for each

atom in the primitive cell as

Dd(ω) ≡
1

3N

∑

ν

∑

k

|eν,k,d|2δ(ω − ων,k). (21)

The partial density of states was normalized to sat-

isfy
∫ +∞
−∞dωDd(ω) = 1. This can be shown by using

the eigenvector completeness condition, which imposes∑
ν e

∗
ν,k,d,ieν,k,d,j = δij for fixed k, d, where i, j are spa-

tial indices. In addition, the total density of states of the

material is defined by

D(ω) ≡
∑

d

Dd(ω) =
1

3N

∑

ν

∑

k

δ(ω − ων,k), (22)

which satisfies
∫ +∞
−∞dωD(ω) = n with n the number of

atoms in the unit cell.5 In materials such as Ge, Si,

or GaAs all atoms in the primitive cell have the same

or similar mass and as such contribute roughly equally

to the density of states, see Fig. 2. One could therefore

approximateDd(ω) ≈ D(ω)/n in (20) for these materials.

We however choose to keep track of the partial density

of states, to keep the calculations as general as possible.

For mono-atomic lattices, the density of states can be

extracted directly from neutron scattering data through

the incoherent structure factor. This is not always possi-

ble for multi-atomic lattices, since the scattering is only

sensitive to the combination
∑

d |fd|2Dd(ω)/md. To in-

fer the individual Dd(ω) as well as D(ω), one therefore

needs a set of scattering techniques which allows one to

effectively vary the fd. This is not available for all mate-

rials, and it is therefore often most convenient to extract

the Dd(ω) from DFT calculations. A comprehensive li-

brary of results has been made available by the materials

project [35].

5 In the literature, the density of states is also sometimes normal-

ized to 3na, where na is the atomic density.
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FIG. 2. Partial and total density of states for GaAs [35]. La-

bels indicate the regions in which a particular phonon branch

dominates.

Returning now to the calculation of the autocorrelation

function, we can expand the exponential term in (17)

using the form of the correlator in (20). This yields an

explicit representation of Cℓd as an expansion in number

of phonons n being excited:

Cℓd =
2π

V
e−2Wd(q)

∑

n

1

n!

(
q2

2md

)n

×
(

n∏

i=1

∫
dωi

Dd(ωi)

ωi

)
δ


∑

j

ωj − ω


 (23)

where the delta function arises from the time integral
1
2π

∫
dt ei(

∑
ωi)te−iωt and ensures energy conservation.

Here, by using (20), the Debye-Waller function takes the

form of

Wd(q) =
q2

4md

∫
dω′Dd(ω

′)
ω′ . (24)

Thus, in comparison to the difficulties discussed sur-

rounding (13), inputting this form of the correlator into

(15) gives an analytic approximation for all phonon terms

in the appropriate regime of validity.

In this paper, we utilize the incoherent approximation

to calculate the contributions from higher-order phonon

terms to an arbitrary degree in a simple and fast manner.

This allow us to make rate predictions for the entire rel-

evant mass range, going from the low-mass (mχ ≳ keV)

single phonon regime to the high-mass (mχ ≳ 50 MeV)

nuclear recoil regime.
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III. PROCESSES

Using the autocorrelation function, (23), we can esti-

mate the scale at which a generic n-phonon term starts

becoming a relevant contribution to scattering. To orga-

nize the multiphonon expansion, it is useful to define an

average phonon energy

ω̄d ≡
∫

dω′ω′Dd(ω
′). (25)

While ω̄d technically depends on the atom d, this just

gives an O(1) dependence in the phonon scale. Since

n! ∝ nn at large n, we see that the nth term of the series

(23) will roughly begin giving an O(1) contribution when

q2

2mdω̄d
∼ n. (26)

This means that for a given q (or consequently, mχ) one

can determine the dominant scattering processes. When
q2

2mdω̄d
≲ 1, single phonon excitations will be the primary

channel; for md ∼ 30 GeV and ω̄d ∼ 30 meV, this cor-

responds to q ≲ 30 keV. Conversely, when q2

2mdω̄d
≫ 1,

phonons are no longer a suitable description and the scat-

tering is instead well modeled by the recoil of a single nu-

cleus. This transition occurs roughly at q ≳ 2
√
2mdω̄d.

In between these two extremes, we have n ∼ few, indicat-

ing multiphonon excitations as the primary process. The

precise nature of the dominant process for a given mχ

will vary based on the mediator mass and experimental

threshold.

In this section, we describe analytic approaches for

characterizing the structure factor in crystal targets,

broken into subsections corresponding to the previously

mentioned processes. Secs. III A and III B deal with sin-

gle phonon and two phonon excitations. Here we can also

compare calculations of the full structure factor with the

incoherent approximation. Sec. III C deals with many

phonon excitations, and Sec. IIID describes the impulse

approximation, which gives a good approximation to the

structure factor for momenta approaching the nuclear re-

coil limit. For all numerical results in this section, we will

assume a coupling to nucleons (replacing the generic av-

erage interaction strength fd with the nucleon number

Ad) for both massive and massless mediators, and take

a GaAs target as a typical example of a simple cubic

crystal of interest.

A. Single phonon production

If the unit cell contains at least two atoms, there are

two types of phonons that can be produced: acoustic

and optical phonons. As discussed in Sec. II, DFT-based

calculations for both single acoustic and single optical

phonon excitations have been performed across a large

dark matter mass range (∼keV to GeV) [11, 14, 17].

Meanwhile analytic calculations so far have been limited

q ≲ 1 keV, which corresponds to mχ ≲ MeV [10, 25]. Al-

though the DFT-based calculations span the entire mass

range of interest and can provide information such as di-

rectional dependence, the numerics are more intensive;

the phonon band structure, eigenvectors and structure

factors must be calculated from first principles for each

material. For high q, the sum over the reciprocal lat-

tice must also be accounted for [12, 16]. Here we extend

the analytic calculations to the high q regime by using

the incoherent approximation. The comparison with the

DFT results of [11] will also serve as a validation of the

incoherent approximation.

To organize the calculations, it is useful to define a mo-

mentum scale (qBZ) which approximately reflects the size

of the first Brillouin zone. We take qBZ = 2π
a ≈ 2 keV,

where a is the lattice constant. We first review the single

phonon response for q < qBZ. In this regime, we com-

pute the structure factors in the isotropic approximation

and in the limit q ≪ qBZ. For this purpose we assume

linear dispersions ω = csq for the longitudinal acous-

tic (LA) and transverse accoustic (TA) modes, with cs
replaced by cLA and cTA for the longitudinal and trans-

verse sound speeds, respectively. The optical modes are

assumed to have flat (constant) dispersions for the longi-

tudinal optical (LO) and transverse optical (TO) phonon

energies ωLO and ωTO. The sound speeds and optical

phonon energies are taken to be their long-wavelength

values (q = 0). We will refer to this set of assumptions

as the long-wavelength approximation.

The matrix element is given by the leading non-trivial

term in the small q expansion of (14). The only relevant

contributions for q ≪ qBZ are those of the single LA

and LO phonons. We approximate the long-wavelength

acoustic eigenvectors as

eLA,k,d ≈
√
Ad√∑
d′ Ad′

k̂; (27)

note that this form is valid for generic crystal targets

and not limited to GaAs. For the LO phonon, we use the

following eigenvectors, which are only valid for diatomic

lattices [25]

eLO,k,1 ≈
√
A2√

A1 +A2

k̂, (28)

eLO,k,2 ≈−
√
A1√

A1 +A2

e−ik·r02 k̂ (29)
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where the first atom is taken to be at the origin of the

primitive cell, and the second atom is taken to be at the

coordinate r02 = (a/4, a/4, a/4) for GaAs. The acous-

tic and optical transverse eigenvectors are orthogonal to

these, but do not contribute to the scattering into a single

phonon. With these approximations and taking fd = Ad,

the analytic expressions for the single phonon contribu-

tions to the structure factor are [25]

Sn=1,LA(q, ω) ≈
2π

Ωc

(
∑

d′ Ad′) q2

2mpωLA,q
δ(ω − ωLA,q)Θ(ωLO − ω)

(30)

Sn=1,LO(q, ω) ≈
2π

Ωc

q4a2

32ωLO

A1A2

mp(A1 +A2)
δ(ω − ωLO)

(31)

S
(q<qBZ)
n=1 (q, ω) = Sn=1,LA(q, ω) + Sn=1,LO(q, ω) (32)

with Ωc the volume of the primitive cell. Here we have in-

troduced a cut-off of ω = ωLO to the longitudinal acoustic

branch to avoid overestimating the scattering rate with

the LA mode near the edge of the Brillouin zone. The

q4 scaling and appearance of the lattice constant a in the

optical structure factor comes from averaging over angles

with the eigenvectors, giving (q · r02)2 ≈ q2a2/16 [13].

For dark matter with a standard velocity dispersion

v ∼ 10−3, the typical momentum transfer begins to

fall outside the first Brillouin zone for mχ ≳ 1 MeV.

Physically, this corresponds to the wavelength becoming

smaller than the interatomic spacing, and the long-wave

length formulas from (27) to (31) are no longer valid. We

can however utilize the incoherent approximation in (15)

and (23), which yields

S
(q>qBZ)
n=1 (q, ω) ≈ 2π

Ωc

n∑

d

e−2Wd(q)(fd)
2 q2

2md

Dd(ω)

ω
. (33)

The forms of the structure factor are qualitatively quite

different in the two q regimes. In the coherent regime

q < qBZ, summing over the response of multiple atoms

with constructive interference leads to a resonant re-

sponse in (32). The impact of the interference is greatly

reduced for q > qBZ, such that the incoherent approxi-

mation becomes a viable description.

While the sharp transition in the structure factor is

an artifact of our approximations, (32)-(33) can accu-

rately describe the integrated structure factor above or

below qBZ. Fig. 3 compares our combined analytic sin-

gle phonon description with numerical DFT calculations.

For the DFT result we follow [11], computing the dy-

namical matrix and phonon dispersions with respectively

VASP [36] and phonopy [33] (see also [14]), and take

the angular average of S(q, ω) over all q directions for

comparison with the isotropic approximation. The top

panels show the structure factors in (32) as a func-

tion of q, integrated over ω. The top left panel shows

S(q, ω) integrated over ω ∈ [1meV, 27meV] to select the

acoustic phonon branches only and the top right panel

shows the integral over ω ∈ [27meV, 40meV] for opti-

cal phonon branches. The analytic approximations are

in good agreement with the DFT result in their respec-

tive regimes of validity. For q < qBZ, integrating (32)

leads to respectively ∼ q and ∼ q4 scaling, while the in-

coherent approximation in (33) always scales as ∼ q2. As

discussed above, the ω-dependence of the analytic struc-

ture factors is quite different in the two regimes, with

the coherent structure factor giving a resonant response

around the single-phonon dispersion while the incoher-

ent approximation is continuous in ω. However, the inte-

grated result matches the full DFT calculation of the co-

herent structure factor well, indicating that the analytic

approach will be useful in calculating integrated quanti-

ties such as rates. Furthermore, the analytic approach

provides physical insight into the change in the q-scaling

of the structure factor in Fig. 3a.

The plots in Fig. 3b show single phonon integrated

rates for both massive and massless scalar mediators.

For the massless mediator, scattering into the acoustic

phonon specifically favors small q due to the ∝ q−4 con-

tribution of the mediator form factor. The analytic result

of (30) therefore applies across the entire DMmass range,

as the large q contributions are negligible. For all other

cases the structure factor scales with a positive power

of q so that large q contributions are the most impor-

tant. We therefore see a change in slope of the σp reach

around mχ ∼ MeV, when q ≳ qBZ becomes kinematically

accessible. These features are captured by the q > qBZ

analytic description from the incoherent approximation,

and again agree with the DFT results.

B. Two-phonon production (q < qBZ)

We next turn to the use and accuracy of the incoherent

approximation for two-phonon production, in particular

for q < qBZ. Single phonon production always dominates

in this regime if above threshold [25]. It is however ex-

pected that there will be a phase in the experimental

program for which the energy threshold will still be too

high to access single optical and accoustic phonons, such

that the formally subleading double phonon production

can be relevant.

While the incoherent approximation is expected to be

the least accurate for q < qBZ, it is still useful to compare
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FIG. 3. Single phonon production.

it with existing analytical results for the structure factor.

The analytic results are obtained in the long-wavelength

approximation, as defined in Sec. IIIA. In this limit, the

Wilson coefficients of the self-interaction operators for

the acoustic modes can be extracted from the measured

or calculated elasticity parameters. With these assump-

tions, one can explicitly evaluate (13) to second order in

q/
√
mdω [25].

In this work, we will extend the long-wavelength calcu-

lations to all final states (see Appendix A) and compare

them with the incoherent approximation. For this pur-

pose we extrapolate the results of Ref. [25] to higher q

values and make a number of additional assumptions to

model the self-interactions of the optical modes, thus giv-

ing the complete structure factor. For these reasons the

calculations in this section should however be considered

only a toy model of a GaAs-like crystal. We will show

below that for this toy model and in the limit of small

momentum transfer, the incoherent and long-wavelength

approximations give qualitatively similar DM scattering

rates.

From Ref. [25], the two-phonon structure factor can be

written as

S(q, ω) = S(harm)(q, ω) + S(anh)(q, ω) (34)
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in the long-wavelength limit. The first term is the struc-

ture factor in the harmonic limit (also referred to as the

contact piece in [25]), where anharmonic corrections to

the atomic potentials are neglected. It can be obtained

by expanding (14) to second order, and evaluated ana-

lytically in the long-wavelength limit. The second term

contains contributions to the structure factor from an-

harmonic interactions. In order to evaluate this, one

needs to include a phonon self-interaction Hamiltonian

in computing (14), as described in detail in [25]. The in-

teractions of acoustic phonons are based on an effective

three-phonon Hamiltonian valid in the long-wavelength

limit, but to obtain a more complete picture we include

a highly approximate three-phonon Hamiltonian for in-

teractions involving optical phonons. These calculations

are summarized in Appendix A.

To perform the most meaningful comparison between

the incoherent and long-wavelength approximations, we

assume the following Debye model for the partial density

of states for a diatomic crystal

D1,2(ω) =
1

q3BZ

1

A1 +A2(
A1,2

ω2

c3LA
Θ(cLAqBZ − ω)Θ(ω)

+A1,2
2ω2

c3TA
Θ(cTAqBZ − ω)Θ(ω)

+A2,1
q3BZ

3
δ(ω − ωLO)

+A2,1
2q3BZ

3
δ(ω − ωTO)

)
. (35)

which is derived from the long-wavelength approximation

as described in Sec. III A.6 The explicit structure factor

from using this toy density of states in (23) is given in

Appendix A, which for simplicity we evaluate with A1 =

A2 for GaAs.

The top panel of Fig. 4 compares the calculations of

the two-phonon structure factor in the incoherent and

long-wavelength approximations. For the incoherent ap-

proximation, we show the result with the toy density of

states in (35) as well as with the true density of states

6 Here the maximum momentum of the modes is determined by re-

quiring that the sum over all modes is equal to the total number

of degrees of freedom. For GaAs and in the isotropic approxi-

mation, the exact momentum cutoff is about 2% different from

qBZ = 2π/a. This error is negligible compared to the uncertain-

ties on the other assumptions made in this section.

from Fig. 2. The dashed line shows the harmonic limit,

meaning that S(anh) is neglected. This is the case that

is most directly comparable to the incoherent approx-

imation, which assumes the harmonic mode expansion

in (12). For the dotted line, the leading phonon self-

interactions were included.

In the harmonic limit, all modes scale as ∼ q4 except

for optical-acoustic final state, which scales as ∼ q6. The

incoherent approximation naturally misses these more

subtle destructive interference effects, but still captures

the correct q4 scaling for most of the modes. We see

in Fig. 4 that the incoherent approximation is within a

factor of ∼ 5 of the long-wavelength approximation for

all ω > ωLO, for both the toy model and true density of

states. The difference at smaller ω is not experimentally

relevant, as the single phonon rate will completely dom-

inate in this region. There are also delta-function terms

from the optical-optical branches which do not appear in

the plot; their contributions to the overall scattering rate

are comparable for the incoherent and long-wavelength

approximations as well. See Appendix A for details.

These terms dominate the scattering rate at higher en-

ergies, and overall we see in Fig. 4 that the incoherent

approximation reproduces the structure factor in the har-

monic limit to within a factor of few.

When anharmonic interactions are included, the differ-

ence becomes larger and the incoherent approximation

may under-predict the rate by up to an order of mag-

nitude in our estimate. However, as discussed above,

the anharmonic Hamiltonian used is itself also only valid

at the order of magnitude level, particularly for opti-

cal modes. We expect that our approach can model the

rate in this regime at the order-of-magnitude level, but a

proper DFT calculation is needed for it to be rigorously

validated.

Finally, we show in the bottom panel of Fig. 4 a com-

parison of the cross sections corresponding to a rate of

3 events/kg year, with the different approximations for

the two-phonon structure factor. We assume ω > 40

meV, since for lower thresholds the rate is dominated

by single-phonon production [25]. We emphasize that

here we are only illustrating that the incoherent approx-

imation is within a factor of few of the full structure

factor, as long as the same assumptions are made for

the phonon dispersion relations. Therefore, we restrict

our comparison to mχ < MeV such that we can restrict

to q < qBZ. The incoherent approximation underesti-

mates the rate by a factor of few in the harmonic limit,

and up to an order of magnitude when anharmonic in-

teractions are included. Using the true density of states

slightly improves the agreement. Though this compari-
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son only applies to a limited q range, our result suggests

that the incoherent approximation should give a reason-

able, order-of-magnitude estimate for multiphonon pro-

duction even at low q. We expect this uncertainty to

decrease for larger q where the incoherent approximation

is most justified, and in particular we will see that the

incoherent approximation reproduces the expected rate

in the free nuclear recoil limit, as discussed in the next

sections.

C. Multiphonon production

In the previous section, where we dealt with q < qBZ,

the incoherent approximation should be viewed as an

order-of-magnitude estimate only. For q > qBZ, it is

however on firm ground [31, 34] and is used routinely

to measure the density of states from neutron scattering

data [31]. Moreover, in the q ≫ qBZ regime multiphonon

processes become important. This follows from the form

of the structure factor, obtained by inserting (23) into

the incoherent approximation (15):

S(q, ω) ≈ 2π

Ωc

n∑

d

(fd)
2e−2Wd(q)

∑

n

(
q2

2md

)n

× 1

n!

(
n∏

i=1

∫
dωi

Dd(ωi)

ωi

)
δ


∑

j

ωj − ω


 . (36)

From the discussion around (26), the typical number

of phonons is n ∼ q2

2mdω̄d
. With ω̄d ≳ 30 meV and
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md ≳ 30 GeV for most crystals, the self-consistency con-

dition for the incoherent approximation (q ≳ qBZ) is

therefore always satisfied for n > 2 processes. The evo-

lution of (36) for increasingly large q is shown in Fig. 5a.

We can obtain an approximate scaling for (36) by sep-

arating each term in the sum over n into q-dependent

and ω-dependent parts. The ω-dependent part is given

by the second line of the equation, which is only non-zero

at ω ≲ nωLO in order to satisfy the delta function. This

part of the structure factor can be estimated to have

at most the value of 1/(n! ω̄n+1
d ); this is illustrated in

Fig. 11 of Appendix C, where we plot the numerical re-

sult. For q ≲
√
2mdω̄d (left and center panels of Fig. 5a),

the Debye-Waller factor can be neglected and the struc-

ture factor then scales as S(q, ω) ∝∑n
1
n!

(
q2

2mdω̄d

)n
. For

q2/(2mdω̄d) ≲ 1, the structure factor therefore scales as

S(q, ω) ∼ q2m, withm the lowest number of phonons that

is kinematically allowed. This scaling will be useful in

Sec. IV, where we use it to extract the approximate scal-

ing behavior of the DM cross section curves. It no longer

holds for q ≳
√
2mdω̄d (right-hand panel of Fig. 5a),

where many modes contribute equally. This regime how-

ever can be understood in the impulse approximation,

which is the subject of the next section.

D. The impulse approximation (q ≫ qBZ)

For q ≫ qBZ the sum of the multiphonon terms asymp-

totes to an approximately Gaussian envelope, as can be

seen most clearly from the rightmost panel in Fig. 5a.

This asymptotic form can be derived directly with a

steepest descent approximation, also known as the im-

pulse approximation. It is valid whenever the interaction

with the probe particle happens on a time scale short

compared to that of the phonon modes.

To derive this, it is most insightful to take a step back

from (36) and return to using (20) in (17). The auto-

correlation function is then

Cℓd =
1

V
e−2Wd(q)

∞∫

−∞

dt e
q2

2md

∫
dω′ Dd(ω′)

ω′ eiω
′t
e−iωt. (37)

When q ≫ √
2mdω̄d, the exponent involving the density

of states integral will be highly oscillatory in t, and the

integral may be approximated by expanding about t = 0

through a steepest descent method. (See Appendix B).

Doing so gives

Cℓd ≈ 1

V

√
2π

∆2
d

exp

(
−
(
ω − q2

2md

)2

2∆2
d

)
(38)

where ∆2
d ≡ q2ω̄d

2md
. This approximation is referred to as

the impulse approximation since the saddle-point around

t = 0 dominates the rate. The true peak is shifted slightly

from the result (38), which can be corrected by includ-

ing higher orders in the expansion [37]. Including these

additional terms has negligible impact on later results.

From (38), we see that the structure factor in the im-

pulse approximation is

SIA(q, ω) =

n∑

d

(fd)
2

Ωc

√
2π

∆2
d

exp

(
−
(
ω − q2

2md

)2

2∆2
d

)
(39)

which is a sum of Gaussians peaked around q =
√
2mdω,

one for each atom in the unit cell. In Fig. 5a we see

that (39) is a reasonable approximation for q ≈ √
2mdω̄d

and converges rapidly to the full result in (36) for q ≳
2
√
2mdω̄d. As expected, it does not capture the features

in the structure factor for q ≲
√
2mdω̄d. In our final

results, we use (39) for q > 2
√
2mdω̄d, as it is numerically

much faster than (36). For crystals composed of multiple

atoms, we define the boundary as maxd
[
2
√
2mdω̄d

]
. At

this scale, the average number of phonons is about four,

and it is sufficient to truncate the sum at n = 10 for all

smaller q.

As we consider larger DM masses which access larger q

and ω, the Gaussian becomes more sharply peaked. This

can be seen by comparing the width ∆d to the peak value

ω = q2/2md. In the large-q limit, we have

lim
q→∞

∆d

ω
≈
√

ω̄d

ω
(40)

so the Gaussian becomes narrow for ω well above the typ-

ical phonon energy. Then the narrow width limit exactly

reproduces the expected free nuclear recoil delta function

response:

lim
q, ω→∞

Cℓd =
2π

V
δ

(
ω − q2

2md

)
(41)

SFR(q, ω) =
∑

d

2π

Ωc
(fd)

2 δ

(
ω − q2

2md

)
. (42)

We therefore recover the familiar free nuclear recoil re-

sponse for each individual atom in the unit cell.

In Fig. 5b we show cross section curves with a GaAs

target, for both massive and massless scalar mediators.

We compare the reach obtained with the full structure

factor (in the incoherent approximation), the impulse

approximation, and the free nuclear recoil limit. For

mχ ≲ 20−40 MeV, the full structure factor must be used

to capture the rate, depending on the mediator mass and

threshold. For mχ ≳ 20− 40 MeV, the q values compat-

ible with the impulse approximation start to dominate,
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(b) Cross sections for 3 events/kg-yr in GaAs for a hadrophilic mediator. Rates are computed with the n ≤ 10 phonon terms in

the incoherent approximation (solid lines), the impulse approximation (IA; dashed), and the analytic free nuclear recoil result (NR;

dotted). We see that at sufficiently high masses–and hence momentum transfers–the impulse approximation sufficiently recovers the

result of summing the phonon terms. Likewise, for yet larger momenta the impulse approximation merges onto the free nuclear recoil

result, as discussed in Sec. IIID.

FIG. 5. Multiphonon transition into the nuclear recoil regime.

and we see that it reproduces the full result very closely.

At even higher masses, the free nuclear recoil response

becomes an excellent approximation, as expected.

A particular feature to notice from Fig. 5b is that the

free nuclear recoil rate agrees with the impulse approx-

imation result even in regions of the q, ω phase space

where the Gaussian is not narrow. For example, for the

massive mediator and mχ = 50 MeV, the rate will be

dominated by momentum transfers q ∼ 2mχv ∼ 100

keV, corresponding most closely to the rightmost panel

of Fig. 5a. From (40) this gives ∆d/ω ≈ 0.5 which is

not particularly small. The nuclear recoil approximation

nevertheless works remarkably well. The reason is that

phase space integral in (3) has a trivial ω dependence

aside from the S(q, ω) factor, since the delta function in

ω just determines the region of phase space that is inte-

grated over. Therefore, as long as the energy threshold is

small compared to the peak in ω, the phase space integral

over (39) and (42) yields similar answers.
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FIG. 6. Schematic figure (not to scale) depicting the ap-

proximation used to calculate the structure factor in various

regions of phase space. The “1-ph long wavelength” regime is

discussed in Sec. IIIA, the “n-ph incoherent approximation”

regime in Sec. III B and III C and the “Impulse approxima-

tion” region in Sec. IIID.

E. Summary

Fig. 6 schematically illustrates the various approxima-

tions for the structure factor discussed in this section.

The boundaries reflect only our choice of approximation

and not a sharp transition in the behavior of the structure

factor. The dotted gray parabola represents the phase

space boundary for a given mχ and v (see Sec. IV). This

parabola extends upwards and rightwards as mχ is in-

creased, such that multiple different regimes are sampled

for high enough mχ.

For the single phonon excitations (n = 1) described

in Sec. III A, we use the long-wavelength and incoherent

approximations for q < qBZ and q > qBZ, respectively.

This combination gives good agreement with a full DFT

calculation of the scattering rate, at least for a cubic

crystal such as GaAs.

For multiphonon excitations (n ≥ 2), we use the in-

coherent approximation for the structure factor for all q

below maxd[2
√
2mdω̄d]. This is motivated by Sec. III B,

where we argued that the incoherent approximation can

serve as an order-of-magnitude estimate even for q ≪
qBZ. Given the limitations of the long-wavelength ap-

proximation, a dedicated DFT calculation is needed in

this regime. For multiphonon excitations, we sum terms

in (36) until we achieve convergence, as explained in

Sec. III C. Finally, for q ≥ maxd[2
√
2mdω̄d] we make use
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FIG. 7. GaAs structure factor. Density plot of the

structure factor in the same regimes of (q, ω) as shown in

Fig. 6. Dotted lines are phase space boundaries for various

DM masses with a typical initial velocity v = 10−3. At low q

and ω, the solid yellow lines are the dispersion relations of the

single LA and LO phonons. At large q, the black dashed line

is the free nuclear recoil dispersion relation; in general, there

are separate lines for Ga and As but for clarity we show only

one line corresponding to the average mass of Ga and As.

of the impulse approximation, which ultimately transi-

tions into the well-known free nuclear recoil regime. This

was explained in Sec. IIID.

Fig. 7 shows our full calculation of the structure fac-

tor for GaAs, overlaid with the phase space boundaries

for a few representative DM masses. In the low q, sin-

gle phonon regime, the response is given by a set of δ-

functions on the LO and LA phonon dispersions, repre-

sented by the orange curves. At intermediate and high q,

the structure function is modeled by a continuous func-

tion, where the layered structure for ω ≲ 50 meV re-

flects the various single and multiphonon contributions.

At higher q and ω the individual resonances cease to be

visible and one transitions into the smooth S(q, ω) pre-

dicted by the impulse approximation. At very high ω

the structure function converges towards its free nuclear

recoil form, which is represented by the black dashed line.

IV. RESULTS

In this section we convert our newly-gained under-

standing of the structure factor into concrete predictions

for the DM scattering rate in a crystal target. The event
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FIG. 8. Cross section plots corresponding to a rate of 3 events/kg-yr for massive and massless scalar mediators in GaAs for

various thresholds. The structure factors used are the analytic results demarcated in Fig. 6 for each corresponding regime in

the (q, ω) phase space. For the massive mediator, we see the dominance of the single acoustic phonon at low masses and low

thresholds, and of the optical phonon for intermediate thresholds. Eventually, for sufficiently high masses the process becomes

dominated by the free nuclear recoil response. For the massless mediator, the q−4 form factor favors small momenta, and the

rate is dominated by the lowest accessible mode for a given threshold.

rate per unit of target mass is

R =
1∑
d md

ρχ
mχ

∫
d3v vf(v)

∫
d3q dω

dσ

dqdω
(43)

where the experimental energy threshold is implicit in

the boundary of the ω integral. f(v) is the DM velocity

distribution, which we take to be

f (v) =
1

N0
exp

[
− (v + ve)

2

v20

]
Θ(vesc − |v + ve|) ,

N0 = π3/2v30

[
erf

(
vesc
v0

)
− 2

vesc
v0

exp

(
−v2esc

v20

)]
, (44)

with v0 = 220 km/s, the Earth’s average velocity ve =

240 km/s, and vesc = 500 km/s the approximate local

escape velocity of the Milky Way. The scattering rate

can be further simplified in the isotropic limit; using (3),

R =
1

4πρT

ρχ
mχ

σp

µ2
χ

∫
d3v

f(v)

v

q+∫

q−

dq

ω+∫

ωth

dω q |F̃ (q)|2S(q, ω)

(45)

where ωth is the energy threshold of the experiment, and

the other integration limits7 are

q± ≡ mχv

(
1±

√
1− 2ωth

mχv2

)
(46)

ω+ ≡ qv − q2

2mχ
. (47)

Note (47) defines the phase space boundary shown in

Fig. 6 for a given mχ and v. Finally, ρT is the mass

density of the target material and we have recast the

rate in terms of the DM-proton scattering cross section

σp ≡ 4πb2p.

A. Massive hadrophilic mediator

In the case of a massive mediator coupling to baryon

number, we calculate the scattering rate by taking

fd = Ad and F̃ (q) = 1. The cross sections correspond-

ing to a rate of 3 events/kg-year exposure are shown in

the left panel of Fig. 8, assuming a GaAs target and for

different energy thresholds. The same figures for Si, Ge

and diamond can be found in Appendix D.

We can understand the numerical results in Fig. 8 ana-

lytically using the scaling of the structure factor discussed

7 In numerical implementations of (45), as done in DarkELF, it is

beneficial to change the order of integration by first integrating

over v, then q, and finally over ω.
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in Secs. III A–IIID. First, from (45), the mχ dependence

of the rate is contained in

R ∝ σp

mχµ2
χ

q+∫

q−

dq

ω+∫

ωth

dω q S(q, ω). (48)

The structure factor only contains positive powers of q

across the entire phase space, so for a massive media-

tor, the integral (48) will be dominated by the largest

kinematically accessible momentum transfers.

For mχ ≫ 30 MeV, the kinematically allowed phase

space is extended to q and ω where the free nuclear re-

coil approximation can be used. The rate therefore ap-

proximately scales as R ∼ 1/mχ for mp ≳ mχ ≫ 30

MeV. For low enough thresholds, this scaling holds even

as the dark matter mass comes within O(few) of 30 MeV,

where the structure factor is relatively broad in ω. The

reason is that the kinematically allowed phase space is

wide enough in ω that the integral over the Gaussian in

the impulse approximation gives within a factor of few of

the integral over the delta function in (42), as discussed

earlier in Sec. IIID.

For dark matter masses of 1 to 30 MeV, the allowed

phase space is restricted to values of q <
√
2mdω̄.

Here the structure factor can be expanded in powers of

q/
√
2mdω̄ and favors small ω. As noted in Sec. III C

the structure factor scales as ∼ q2m, with m the small-

est number of phonons whose total energy is above the

energy threshold. We see there is significant threshold

dependence: the single phonon final state strongly dom-

inates the rate if it is above the energy threshold, while

for higher thresholds only multiphonons contribute. The

rate integral now scales as

R ∝ σp

m3
χ

2mχv∫
dq q2m+1

∫

ωth

dω ∝ σp m
2m−1
χ , (49)

where q was evaluated at its maximum q ∼ 2mχv. The ω

integral does not contribute to the mχ scaling of the rate,

since the integrand is peaked in ω somewhere near the

energy threshold ωth. This expression then gives the ap-

proximate scaling R ∝ m2m−1
χ . Since m is dependent on

the energy threshold, this explains why different thresh-

olds in Fig. 8 result in a different scaling as a function of

mχ.

At even lower dark matter masses (mχ < 1 MeV),

the phase space is restricted to q values within the first

Brillouin zone, which is dominated by single phonon pro-

duction in the long wavelength regime. If the threshold is

low enough to access a single phonon, the scaling further

depends on whether the threshold captures an apprecia-

ble part of the LA branch. If so, the leading contribution

comes from the acoustic mode (30), which gives

R ∝ σp

m3
χ

2mχv∫
dq q2

∫
dω δ(ω − cLAq) ∝ σp, (50)

approximately independent of mχ. This behavior is

clearly reproduced in Fig. 8 for the 1 meV threshold,

for which the acoustic branch is always accessible. If the

threshold is too high to access the acoustic branch, but

can detect the optical branch, the structure factor has an

extra q3 scaling and we find R ∝ m3
χ. This case occurs

for mχ ≲ 0.3 MeV on the 20 meV curve in Fig. 8. For

mχ ≳ 0.3 MeV the DM can excite the acoustic branch,

resulting in a sharp enhancement of the rate.

B. Massless hadrophilic mediator

If we instead have a massless mediator that couples to

baryon number, then by convention, the mediator form

factor is taken to be |F̃ (q)|2 =
(mχv0

q

)4
with v0 = 220

km/s. The cross section curves for this scenario are given

in the right panel of Fig. 8 again for different thresholds.

As in Sec. IVA, we can analytically explain the scaling

of the different curves across the DM mass range. The

main difference with the massive mediator case is that for

a massless mediator, there is a 1/q4 scaling in the form

factor, which leads to a scattering rate that generally

favors low q and ω. The main contribution to the rate

will therefore be much more threshold dependent across

all DM masses.

If the threshold is small enough to access single acous-

tic phonon excitations, then this will be the dominant

contribution to the rate at all masses. Again from (45)

and using the analytic acoustic structure factor, the

rate for thresholds that are sensitive to a single acous-

tic phonon scales as

R ∝ σp mχ

∫

ωth/cLA

dq
1

q2

∫
dω δ(ω − cLAq). (51)

The integrand is largest at the smallest q, so we estimate

the q integral by evaluating the integrand at q ≈ ωth/cLA
in (46). The integrand therefore has no mχ dependence

and gives the scaling R ∝ mχ for the ω > 1 meV curve

in Fig. 8. Note however that this scaling behavior is sen-

sitive to our convention for the reference momentum in

F̃ (q). For example, in models with both electron and nu-

cleon couplings one often chooses to normalize the form
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factor with the reference momentum q0 = αme, which

would yield R ∝ m−3
χ .

If the LA branch is not accessible but the LO branch

is, the production of a single LO mode will generally

dominate. This introduces a different mχ dependence,

which can be seen in Fig. 8 by comparing the 1 meV

and 20 meV curves in the region with mχ ≲ 30 MeV. If

mχ < 1 MeV, using the expression in (31) gives

R ∝ σpmχ

2mχv∫
dq q

∫
dω δ(ω − ωLO). (52)

Unlike for the acoustic phonon, the structure factor fa-

vors high q so that the largest contribution is near

q ∼ 2mχv, giving R ∝ m3
χ. If mχ > 1 MeV, the rate

integrand is dominated by momentum transfers q ∼ qBZ.

This is because when q > qBZ and ω ≤ ωLO we are us-

ing the incoherent approximation for single phonon pro-

duction, where the q integrand drops as q−1. Thus, we

estimate the rate by integrating up to qBZ only:

R ∝ σpmχ

qBZ∫
dq q

∫
dω δ(ω − ωLO), (53)

and find that R ∝ mχ. This is the reason why the 20

meV curve in Fig. 8 changes slope around mχ ∼ 1 MeV.

We next turn to the intermediate mass range (1 − 30

MeV) with ωth > ωLO, such that n ≥ 2 phonons. In

Fig. 8 this corresponds to the curves with thresholds of

40 meV and above. As in Sec. IVA, we again notice

that the leading contribution to the structure factor will

be given by the smallest number of phonons, m, that can

exceed the threshold energy. In this regime, the integrand

∝ S(q, ω)/q3 scales with positive powers of q for m ≥ 2

phonons, since (23) grows faster than q3. The analysis

for multiphonons then follows exactly the same logic as

the discussion in the previous section and we find that

R ∝ m2m−1
χ .

For large dark matter masses (≫ 30 MeV), again if the

threshold is well above the single phonon energy, we can

apply the free nuclear recoil approximation to obtain the

scaling. Using the free nuclear structure factor gives

R ∝ σp

m3
χ

∫

√
2mdωth

dq q
(mχv0

q

)4 ∫
dω δ

(
ω − q2

2md

)
. (54)

The q-integral is dominated by low-momentum transfers

along the free nuclear recoil dispersion, so we evaluate

the integral at the intersection of ω = ωth and ω = q2

2md
,

or q =
√
2mdωth. Then, the approximate scaling in this

regime is R ∝ mχ/ωth, which we verify numerically in

Fig. 8.
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FIG. 9. Momentum dependence of the effective ion charge for

atomic elements, as computed in [38].

C. Dark photon mediators

The defining feature of a dark photon mediator is that

it couples to the electric charge of the SM particles. In

the regime where phonons are the relevant degrees of

freedom, the charge of the nucleus is (partially) screened

by the electrons. This means that we need a notion of

an effective charge, as seen by the DM, which is mo-

mentum dependent. For individual atoms, this effec-

tive charge interpolates between zero in the low momen-

tum, fully screened regime and the nuclear charge in the

high momentum regime. We use the calculations from

Brown et. al. [38] of the effective charge for individual

atoms, as shown in Fig. 9. We expect this approximation

to hold only for q ≳ qBZ, since additional many-body ef-

fects should be relevant for q < qBZ. This is particularly

true for a polar material such as GaAs, where the Born

effective charge of the Ga and As atoms is non-zero in

the q → 0 limit. In this regime a full DFT calculation

of the momentum dependence of the effective charge is

needed, which we do not attempt here.

In this work, we will therefore focus on the momentum

regime q ≳ qBZ, which corresponds to mχ ≳ MeV. In

this case we can use the incoherent approximation and

take fd = Zd(q), with Zd(q) the atomic effective charges

in Fig. 9. This allows us to compute scattering rates with

dark photon mediators for the production of two or more

phonons, which is dominated by the highest kinemati-

cally accessible momentum transfers.

The regime q < qBZ is relevant primarily for massless

dark photon mediators. (For massive dark photon me-

diators, there are strong BBN constraints that severely

limit the scattering rate for sub-MeV dark matter, see

e.g. [40].) In this regime, there are substantial devia-
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FIG. 10. Cross section plots for a rate of 3 events/kg-year in GaAs, for massive and massless dark photon mediators. For

comparison, the dashed black lines represent the cross sections required for DM-electron scattering with a 2e− ionization

threshold with the same exposure, as computed using DarkELF [29, 39].

tions from the atomic effective charges due to the delo-

calized nature of the valence electrons. For instance, a

polar material such as GaAs, SiC and sapphire can have a

residual dipole moment associated with atomic displace-

ments even for q → 0. The effective couplings f̄d in this

limit are given by Z∗
d/ϵ∞, where Z∗

d is the Born effective

charge and ϵ∞ is a screening due to valence electrons; the

Born effective charges can be calculated with DFT meth-

ods [11, 14, 16]. This was treated in previous studies of

single-phonon production through a massless dark pho-

ton mediator [10–17]. For non-polar materials such as Si,

Ge and diamond, the Born effective charges vanish and

instead multiphonon production is expected to dominate.

This can be estimated with the energy loss function [29],

at least for sub-MeV dark matter. Since this q < qBZ

regime is already included in DarkELF [29], we restrict

our results here to multiphonon processes with q > qBZ

and ω > ωLO.

Our results are shown in Fig. 10 for GaAs; the results

for Ge, Si and diamond are deferred to Appendix D. As

is conventional for dark photon mediators, we choose the

reference momentum for the massless mediator to be q0 =

αme and present the results in terms of the effective DM-

electron cross section σ̄e [41], with

σ̄e =
µ2
χe

µ2
χ

σp (55)

and µχe the DM-electron reduced mass. In our calcu-

lations using the atomic effective charges, we impose

q > qBZ to ensure we are not sampling the area of phase

space for which these charges are clearly invalid. This

means that our rate calculations for mχ ≲ 10 MeV are a

slight underestimate of the true result.

V. CONCLUSIONS AND OUTLOOK

It is well-known that DM scattering in crystals can

lead to one or more phonons being produced if DM has

MeV-scale mass, as well as a recoiling nucleus if DM has

GeV or higher mass. These processes are two sides of the

same coin, depending on whether the momentum transfer

is comparable to the inverse of the interparticle spacing

and whether the energy deposition is comparable to the

typical phonon energy ∼ ω̄. When both momentum and

energy scales are small, single phonon production domi-

nates, and when both are large, nuclear recoils dominate.

Here we studied the intermediate regime which is domi-

nated by many phonons, which allows us to smoothly in-

terpolate between single phonon production and nuclear

recoils (see Fig. 8).

To make the multiphonon calculation tractable, we re-

lied on the isotropic, incoherent, and harmonic crystal

approximations. This allowed us to obtain analytic re-

sults for the scattering rate in terms of the phonon den-

sity of states in the crystal. These approximations are

expected to be very good for q ≫ qBZ (mχ ≫ 1 MeV),

as they explicitly reproduce the nuclear recoil limit when

q ≫ √
2mN ω̄. For q ≲ qBZ (mχ ≲ 1 MeV) the ex-

perimental threshold determines which theoretical treat-

ment is most appropriate: for single phonon production,

one can obtain analytic formulas by instead using a long

wavelength, isotropic approximation. These results are

currently only valid for cubic crystals such GaAs, Si, Ge

and diamond. For strongly anisotropic materials such as

sapphire, one must find a way to generalize them further

or rely on DFT calculations. For multiphonon produc-

tion and q ≲ qBZ, the situation is more complicated:
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in this case it cannot be taken for granted that anhar-

monic corrections to the various multiphonon channels

can be neglected. The anharmonic multiphonon contri-

butions involving optical modes are particularly difficult

to model analytically, and at the moment we perform a

simple estimate in a toy model to justify extrapolating

the incoherent and harmonic approximations to q ≲ qBZ.

A dedicated DFT calculation is needed to improve their

accuracy.

Our approach provides a smooth description of sub-

GeV dark matter scattering down to keV masses for

hadrophilic mediators. For dark photon mediators, a

DFT calculation of the momentum-dependent couplings

in the q ∼ qBZ regime is needed to complete the interpo-

lation. For both mediators, we have provided results for

multiple direct detection materials of interest, and also

included our calculation as part of the DarkELF public

code package. These will be essential to interpret direct

detection results as experimental thresholds for calori-

metric detectors reach the eV scale and lower.
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Appendix A: Two phonon analytic structure factors

In Sec. III B we compared the long-wavelength and in-

coherent approximations for the two-phonon final states,

for q within the first BZ. In this appendix we provide the

analytic expressions for both approximations.

1. Long-wavelength approximation

Here we discuss how we extend the analytic calcula-

tions from [25] for the coherent two-phonon structure

factor to additional combinations of final state phonon

pairs. As in Sec. III B, we assume a hadrophilic mediator

with fd = Ad throughout this appendix. It was shown

in [25] that the structure factor separates into harmonic

and anharmonic contributions

S(q, ω) = S(harm)(q, ω) + S(anh)(q, ω) (A1)

which do not interfere at leading order in the long wave-

length limit. The first term involves expanding (13) to

second order; note that it was referred to as the contact

term in [25]. The anharmonic term is computed using

an anharmonic phonon interaction Hamiltonian to first

order. The specific matrix elements to be used are given

in equations (12) and (13) of [25]. We take the long-

wavelength approximation for the phonon modes, as de-

scribed in Sec. III A. For a crystal with two atoms in the

unit cell, the longitudinal eigenvectors can be approxi-

mated by

eLA,k,1 ≈
√
A1√

A1 +A2

k̂, (A2)

eLA,k,2 ≈
√
A2√

A1 +A2

e−ik·r02 k̂ (A3)

eLO,k,1 ≈
√
A2√

A1 +A2

k̂, (A4)

eLO,k,2 ≈ −
√
A1√

A1 +A2

e−ik·r02 k̂. (A5)

with k̂ the unit vector along the phonon propagation di-

rection. Note that the r02 dependence was neglected in

the LA eigenvector in (27) and in [25]; here we have kept

this additional phase so that the acoustic and optical

eigenvectors are explicitly orthogonal across a unit cell.

This additional phase factor will only be relevant in cases

where there is a destructive interference in the leading

coupling to acoustic phonons, which occurs for some final

states [13]. The transverse eigenvectors lay in the plane

perpendicular to k̂ and have analogous normalizations.

Analytic expressions for the harmonic structure fac-

tor were provided in Ref. [25] for acoustic-acoustic fi-

nal states only. We require expressions for the optical-

optical and optical-acoustic final states as well to per-

form the comparison with the incoherent approximation.

A straightforward application of (16) in [25] to the lowest

order in q gives

S
(harm)
LOLO =

2π

Ωc

π q4

120m2
pω

2
LO

δ(ω − 2ωLO)

S
(harm)
LOTO =

2π

Ωc

π q4

90m2
pωLOωTO

δ(ω − (ωLO + ωTO))

S
(harm)
TOTO =

2π

Ωc

π q4

45m2
pω

2
TO

δ(ω − 2ωTO) (A6)

for the optical-optical modes.

For the optical-acoustic modes, the harmonic structure

factors are of the form
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S
(harm)
LOLA =

2π

Ωc

a5

2304π2c2LAm
2
pωLO

A1A2

(A1 +A2)2

(
ω − ωLO

cLA

)7

× g
(harm)
LOLA (x)Θ(cLAqBZ − (ω − ωLO)), (A7)

where x ≡ cLAq
ω−ωLO

. The other structure factors for

optical-acoustic final states are given by relabelings

LO → TO, LA → TA, where the expressions g expanded

at small q are

g
(harm)
LOLA (x ≪ 1) ≈ 3

10
x6 − 1

7
x8 +

1

15
x10

g
(harm)
LOTA (x ≪ 1) ≈ 1

5
x6 +

12

35
x8 − 4

105
x10

g
(harm)
TOLA (x ≪ 1) ≈ 1

5
x6 +

1

7
x8 − 1

15
x10

g
(harm)
TOTA (x ≪ 1) ≈ 4

5
x6 − 12

35
x8 +

4

105
x10. (A8)

We see that at leading order in small q, the optical-

acoustic structure factors are all suppressed by an ad-

ditional factor of q2 relative to the optical-optical modes,

which is due to destructive interference. Since we will be

comparing with the incoherent approximation at small q,

we can effectively neglect these final states.

We would also like to compute the anharmonic con-

tributions to the 2-phonon structure factor, which we do

with the inclusion of an anharmonic interaction Hamilto-

nian. For acoustic phonons in the long-wavelength limit,

we have an effective Hamiltonian for acoustic phonons

where the interactions are given in terms of macroscopic

properties of the crystal through the Lamé parameters, as

described in [25]. For the interactions of optical phonons,

however, it is more difficult to write down a reliable an-

alytic Hamiltonian. In this case we use (45) of Ref. [25],

which comes from [42]. This Hamiltonian should be taken

only at the order-of-magnitude level. We restrict the use

of both effective Hamiltonians to the first BZ. The ana-

lytic expressions for the acoustic-acoustic and acoustic-

optical final states are given already, so we complete this

by calculating the optical-optical terms. At leading order

in q, this gives

S
(anh)
LOLO =

2π

Ωc

π

6m2
p

c2LA
c2

ω2
LOq

4

((2ωLO)2 − (cLAq)2)2

× δ(ω − 2ωLO)

S
(anh)
LOTO =

2π

Ωc

2π

3m2
p

c2LA
c2

ωLOωTOq
4

((ωLO + ωTO)2 − (cLAq)2)2

× δ(ω − ωLO − ωTO)

S
(anh)
TOTO =

2π

Ωc

2π

3m2
p

c2LA
c2

ω2
TOq

4

((2ωTO)2 − (cLAq)2)2

× δ(ω − 2ωTO), (A9)

where c ≡ (cLA+cTA)/2. We have also assumed that the

Grüneisen constant γG ≈ 1.

2. Incoherent approximation

The second result needed for the comparison in

Sec. III B is the two-phonon structure factor for GaAs

in the incoherent approximation. To calculate this, we

use the simplified density of states in (35) correspond-

ing to the long-wavelength limit. Performing the n = 2

integral in (23) gives

Sn=2(q, ω) = SLALA + SLATA + . . . (A10)

where each S is a contribution to the n = 2 structure

factor from the part of the density of states associated

with the subscripted modes, and the ellipsis indicates we

sum over all combinations of modes. The first term of

the sum in (A10) is

SLALA =
2π

Ωc

q4

96c6LAq
6
BZm

2
p

(
ω3Θ(cLAqBZ − ω)

−
(
4c3LAq

3
BZ − 6c2LAq

2
BZω + ω3

)

×Θ(ω − cLAqBZ)Θ(2cLAqBZ − ω)

)
, (A11)

and STATA is given by SLALA with the replacement

LA → TA and an additional overal factor of 4. The

same procedure gives the LATA term as

SLATA =
2π

Ωc

q4

24c3LAq
6
BZm

2
p

(
ω3

c3TA
Θ(cTAqBZ − ω)

+
−2cTAq

3
BZ + 3ωq2BZ

cTA
Θ(ω − cTAqBZ)Θ(cLAqBZ − ω)

+
−2(c3LA + c3TA)q

3
BZ + 3(c2LA + c2TA)q

2
BZω − ω3

c3TA

×Θ(ω − cLAqBZ)Θ((cLA + cTA)qBZ − ω)

)
. (A12)

as well as the LOLA term,

SLOLA =
2π

Ωc

a5
(
q2BZq

4
)

768π5c3LAm
2
pωLO

(ω − ωLO)

×Θ(ω − ωLO)Θ((cLAqBZ + ωLO)− ω). (A13)

Again we may find SLOTA, STOLA, and STOTA by rela-

belings and inserting relevant factors of two for polar-

izations. Note that, since the incoherent approximation

does not recover the q6 scaling resulting from interfer-

ence, we have written the structure factor here using
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qBZ = 2π/a to make the comparison more explicit. At

lowest order in x and for A1 ≈ A2, such a comparison

of (A7) and (A13) shows a relative factor of 40/π3 ≈ 1

for the LOLA channel. Lastly, for the remaining optical-

optical channels we find

SLOLO =
2π

Ωc

q4

144m2
pω

2
LO

δ(ω − 2ωLO)

SLOTO =
2π

Ωc

q4

36m2
pωLOωTO

δ(ω − (ωLO + ωTO))

STOTO =
2π

Ωc

q4

36m2
pω

2
TO

δ(ω − 2ωTO). (A14)

A comparison now of (A6) and (A14) shows the inco-

herent approximation gives a smaller structure factor by

factors of 2π/5 – 6π/5 ≈ 2 – 4.

Appendix B: Impulse approximation

In this section we discuss how to obtain the im-

pulse approximation form of the structure factor, (39)

in Sec. IIID. To achieve this we must approximate the t

integral in (37) for large q. The expression in (37) can

be written as

Cℓd =
1

V
e−2Wd(q)

∞∫

−∞

dt ef(t). (B1)

with

Re[f(t)] ≡ q2

2md

∫
dω′Dd(ω

′)
ω′ cos(ω′t)

Im[f(t)] ≡ q2

2md

∫
dω′Dd(ω

′)
ω′ sin(ω′t)− ωt. (B2)

From this, we see there is a global maximum in the real

part and a global minimum in the modulus of the imagi-

nary part at t = 0. This allows us to perform a steepest-

descent expansion about t = 0, giving

Cℓd ≈ 1

V

∞∫

−∞

dt e
it( q2

2md
−ω)− t2

2

q2ω̄d
2md , (B3)

where again ω̄d =
∫
dω′ω′Dd(ω

′). Note that the leading

term in the expansion about t = 0 cancelled the Debye

Waller factor, assuming the form given in (24). Evaluat-

ing the above gives

Cℓd ≈ 1

V

√
2π

∆2
d

e
−

(
ω− q2

2md

)2
2∆2

d , (B4)

which is the impulse approximation result.

In obtaining this form, we have assumed that any other

local maxima in t gives a subdominant contribution to

the t = 0 maximum. In particular, aside from the t = 0

point, which is a global maximum in Re[f(t)], there are

local maxima in the real part which will generally be

near integer multiples of 2π/ω̄d. The leading order con-

tribution from each additional maxima tmax is given by

evaluating the real part in the exponential at the location

of the maxima.

This must necessarily be smaller than the t = 0 contri-

bution since the following inequality is always satisfied

∫
dω′Dd(ω

′)
ω′ cos(ω′tmax) <

∫
dω′Dd(ω

′)
ω′ . (B5)

Since tmax ∼ 2π/ω̄d, the left hand side will be suppressed

by an O(1) amount due to presence of the cos(ω′tmax).

Then, the contribution from the local maxima will be

exponentially suppressed:

e
q2

2md

∫
dω′ Dd(ω′)

ω′ cos(ω′tmax) ≪ e
q2

2md

∫
dω′ Dd(ω′)

ω′ (B6)

as long as the following condition is satisfied

q2

2md
≫ 1∫

dω′Dd(ω′)
ω′

∼ ω̄d. (B7)

Here we have taken
∫
dω′Dd(ω

′)
ω′ ∼ 1/ω̄d as a typical scale

for this integral, although it will differ by an O(1) factor.

Therefore, as long as the free nuclear recoil energy ω =

q2/(2md) is well above the typical phonon energy ω̄d for a

scattering off of atom d, the t = 0 maximum is dominant

and the impulse approximation should be accurate.

In the regime where q2/2md is comparable to ω̄d, the

contributions from the additional maxima in t can be-

come important. Nevertheless, the impulse approxima-

tion is still accurate at large ω even in this case be-

cause of cancellations from the rapidly changing phase

in Im[f(t)]. When ω ≫ ω̄d, then Im[f(t)] ≈ −ωt for t

around tmax ∼ 2π/ω̄d. This implies large oscillations of

f(t) around tmax, which suppresses the contribution from

these local maxima. On the other hand, if ω ≲ ω̄d, there

may be large corrections to the impulse approximation

due to these additional maxima.

These effects were shown in Fig. 5a when compar-

ing the multiphonon expansion result to the impulse

approximation. The middle panel showed the result if

q =
√
2mdω̄d, in the mGa ≈ mAs approximation. For

ω ≳ ω̄d the structure factor falls smoothly and can be

reasonably captured by the impulse approximation, while

for ω ≲ ω̄d ≈ 22 meV or at the optical phonon energies

31 and 33 meV there are sharp peaks in the multiphonon
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FIG. 11. Here we have plotted ω̄nFn(ω), where Fn(ω) is the

ω-dependent part of the structure factor in the incoherent

approximation and given explicitly in (C5). At fixed q, the

structure factor decreases quickly with increasing ω.

response that are not captured by the impulse approxi-

mation. For q = 2
√
2mdω̄d the many multiphonon peaks

merge and add up to a shape similar to the impulse ap-

proximation over the whole ω range. Practically, for our

calculations, we use the impulse approximation for the

structure factor at q > 2
√
2mdω̄d. Though the approxi-

mation has small differences with the exact result when

q ∼ 2
√
2mdω̄d, integrating over the allowed phase space

for the rate largely washes out these differences.

Appendix C: Implementation in DarkELF

In the main text, we presented the formulas in the

manner which is most clear from the point of view of

the various approximations and their regimes of validity.

These formulas were not always suitable however for an

efficient numerical implementation, which we address in

this section. We also provide details on their implemen-

tation in the DarkELF package [29].

In the main text we gave the rate in the isotropic limit,

(45). In order to calculate the rate for any mediator and

to obtain the differential rate dR/dω, it is convenient to

perform the v-integral first and rewrite the rate as:

R =
1

4πρT

ρχ
mχ

σp

µ2
χ

ω+∫

ωth

dω

q+∫

q−

dq q |F̃ (q)|2S(q, ω) η(vmin(q, ω))

(C1)

where now the integration limits are given by

q± = mχ

(
vmax ±

√
v2max −

2ω

mχ

)
(C2)

ω+ =
1

2
mχv

2
max (C3)

with vmax = vesc+ ve the maximum DM speed in the lab

frame. The η function is given by

η(vmin) =

∫
d3v

f(v)

v
Θ(v − vmin) (C4)

with vmin(q, ω) =
q

2mχ
+ ω

q .

To evaluate the rate using incoherent approximation,

we provide look-up tables for the structure factor. At

each n for the sum in (36), the q and ω parts of the

integral are separable, so we can capture the ω-dependent

part with the family of functions

Fn,d(ω) ≡
1

n!

(
n∏

i=1

∫
dωi

Dd(ωi)

ωi

)
δ

(∑

i

ωi − ω

)
,

(C5)

and calculate the rate in terms of functions Fn,d. These

functions are simple to calculate numerically up to n ≤
10, which we have tabulated and provided in DarkELF

as look-up tables to speed up the calculation. The com-

bination ω̄nFn(ω) is shown in Fig. 11 for GaAs in the

mGa ≈ mAs approximation. For increasingly high n, the

Fn,d become increasingly smooth.

We have added several additional functions to DarkELF

for the differential and integrated rate calculations from

the single phonon to the nuclear recoil regime. Tab. I

describes some of the new relevant functions. These

functions currently work for materials with up to two

atoms per unit cell. We have included the necessary data

files for the multiphonon calculation for GaN, Al, ZnS,

GaAs, Si, and Ge from a combination of DFT and ex-

perimental sources. We also allow the user to input their

own calculations or extractions of the (partial) density

of states, as well as momentum-dependent dark matter-

nucleon couplings. Before calculating multiphonon scat-

tering rates in DarkELF, it is necessary to tabulate the

auxiliary function (C5) for each atom. This is done us-

ing the DarkELF function create Fn omega. This step is

the most time consuming part of the calculation, so we

provide these pre-tabulated for the aforementioned ma-

terials. For calculations with a user-supplied (partial)

density of states, these tables must first be updated by

running create Fn omega. DarkELF will save these new

look-up tables for future computations, such that this

step only need to be performed once. Next we describe
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DM-multiphonon scattering

function description available for

dRdomega_multiphonons_no_single(omega) Differential rate dR/dω in 1/kg/yr/eV all except SiO2, Al2O3

excluding long-wavelength single phonons

R_multiphonons_no_single(omega) Total phonon rate in 1/kg-yr all except SiO2, Al2O3

excluding long-wavelength single phonons

sigma_multiphonons(omega) Nucleon cross section to produce 3 events/kg-yr all except SiO2, Al2O3

TABLE I. List of public functions in DarkELF related to multiphonon excitations from DM scattering. Only mandatory

arguments are shown; for optional arguments and flags, see text and the documentation in repository. Some functions are only

available for select materials, as indicated in the righthand column.

the functions that return important results. All of the

following straightforwardly apply equations (C1-C4).

R single phonon: This function takes the energy

threshold and DM-nucleon cross sections and outputs the

rate in the long-wavelength single phonon regime using

the analytic functions (30-31).

R multiphonons no single: This function takes the en-

ergy threshold and DM-nucleon cross section as inputs

and calculates the total integrated rate, excluding the

single phonon processes at long wavelengths q < qBZ.

In other words, this calculation includes only the purple

(multiphonon expansion) and red (impulse approxima-

tion) phase space regions in Fig. 6.

sigma multiphonons: This takes the energy thresh-

old as input and returns the necessary DM-nucleon

cross section to produce three events per kg-year for

any number of phonons. In order to return this

cross section, this function first calculates the total

rate by summing the outputs of R single phonon and

R multiphonons no single, so it includes the entire cal-

culation scheme depicted in Fig. 6.

dR domega multiphonons no single: This function

takes the energy transfer ω and DM-nucleon cross sec-

tion and returns the differential rate dR
dω at that energy

excluding single phonons in the long wavelength regime.

This comes from equation (C1) without evaluating the

ω integral. We exclude the single coherent phonon here

since the long-wavelength approximation has delta func-

tions in energy in the differential rate.

Appendix D: Additional results

Here, we provide additional results for Ge, Si, and di-

amond. Concretely, Fig. 12 shows the density of states

for these three materials, as extracted from [35]. Fig. 13

shows the differential scattering rate via a massive scalar

mediator for two example DM masses in GaAs, Ge and Si

targets. Finally, Figs. 14, 15, and 16 are the cross section
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FIG. 12. Densities of states for germanium, silicon, and dia-

mond [35].

plots corresponding to an integrated rate of 3 events/kg-

year for Ge, Si, and diamond, respectively. The electron

recoil cross sections shown (dashed black lines) are based

on calculations in [39] for Ge, Si and in [43] for diamond.
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FIG. 13. Differential rate for various materials and a massive scalar mediator, compared with the nuclear recoil approximation.

The single phonon contribution from the long wavelength regime is not shown, since it gives a delta function contribution.
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FIG. 14. Cross section plots for a rate of 3 events/kg-year exposure for different thresholds in Ge.
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FIG. 15. Cross section plots for a rate of 3 events/kg-year exposure for different thresholds in Si.
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FIG. 16. Cross section plots for a rate of 3 events/kg-year exposure for different thresholds in diamond.
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