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Abstract

We study the structure of the higher-curvature gravitational densities that are induced from

holographic renormalization in AdSd+1. In a braneworld construction, such densities define

a d-dimensional higher-curvature gravitational theory on the brane, which in turn is dual to a

(d−1)-dimensional CFT living at its boundary. We show that this CFTd−1 satisfies a holographic

c-theorem in general dimensions (different than the g-theorem of holographic boundary CFTs),

since at each and every order the higher-curvature densities satisfy c-theorems on their own. We

find that, in these densities, the terms that affect the monotonicity of the holographic c-function

are algebraic in the curvature, and do not involve covariant derivatives of the Riemann tensor.

We examine various other features of the holographically induced higher-curvature densities,

such as the presence of reduced-order traced equations, and their connection to Born-Infeld-

type gravitational Lagrangians.
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1 Introduction and Summary

The quantum fluctuations of a field in a curved spacetime give rise to ultraviolet divergences that

take the form of invariants of the metric and curvature in the quantum effective action. For

holographic conformal field theories dual to Anti-de Sitter spacetime in d + 1 dimensions with

radius `, the form of this action is [1–3]

Idiv =
`

16πGN (d− 2)

∫
∂M

ddx
√
−g
[

2(d− 1)(d− 2)

`2
+R

+
`2

(d− 2)(d− 4)

(
RabR

ab − d

4(d− 1)
R2

)
+ . . .

]
. (1.1)

Here gab is the metric induced near the AdS boundary ∂M, and the divergences arise because gab

grows infinitely large as the asymptotic boundary is approached. After regularization, counterterms

are added with the same structure as (1.1) in order to renormalize the theory.

The effective action expansion in (1.1) can be systematically derived from the bulk Einstein

equations in asymptotically AdS spacetimes [4–8], and we will give the explicit results up to quintic

order for general dimension d, and to sextic order for d = 3. The coefficients of each of the individual

curvature invariants reflect the ultraviolet structure of holographic CFTs,1 and although they have

been known for many years, their specific form appears to have received little attention. In this

article we will investigate some of their properties from a point of view that directly connects them

to (i) higher-curvature theories of gravity, and (ii) holographic c-theorems.

Holographically induced higher-curvature gravity. For this purpose, we will introduce a

brane near the boundary of the AdS bulk, as in a Randall-Sundrum braneworld construction [9].

The brane effectively acts as a cutoff that renders the action (1.1) finite, and furthermore, it makes

the metric gab dynamical. Then, (1.1) is interpreted as the effective action of the gravitational

theory that is induced on the d-dimensional brane, with a Newton’s constant Geff = (d− 2)GN/`,

and with the brane tension adding to the cosmological constant term [10].2 In effect, the Einstein-

Hilbert term and all the higher-curvature operators in the effective action are generated when the

bulk Einstein equations are solved in the region near the boundary excluded by the introduction of

the brane. In dual terms, gravitational dynamics is induced from the integration of the ultraviolet

degrees of freedom of the CFT above the cutoff. As a result, we obtain a holographic realization

of ‘induced gravity’ (figure 1).

In this manner, we can view the braneworld construction as a means of generating a specific

theory of higher-curvature gravity. The d-dimensional action must be regarded as an effective theory

with an infinite series of terms, each naturally smaller than the previous one. Since the (d + 1)-

dimensional Einstein bulk theory is well defined, we expect that this good behavior is inherited by

1Even though it is not known whether non-trivial CFTs exist in arbitrary d, holography suggests that their leading

planar limit exists (at least for generalized free fields).
2See e.g., , [11] for more details. If we consider the brane to be two-sided, then (1.1) will contribute twice to the

effective action. Since we are only interested in the structure of the curvature terms, these considerations will be

immaterial for us.
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Figure 1: Braneworld gravity and holography. The bulk is described by Einstein-AdSd+1 gravity. The

black region is excluded by the introduction of a brane, where a gravitational theory with higher-curvature

terms is induced. When the brane geometry is asymptotically AdSd (as in the figure), this higher-curvature

gravitational theory can be dualized to a CFTd−1 at its boundary (red dots). This leads to a doubly-

holographic construction of boundary CFT, but this view will not be prominent in our article, where we

regard the higher-curvature theory (and its dual CFTd−1) on its own, regardless of its coupling to a CFTd

dual to the AdSd+1 bulk.

the d-dimensional effective theory—at least for the entire series. However, one may also attempt to

truncate the expansion at a finite order, and hope that the higher-curvature gravitational theory

that results is, if not completely well-defined by itself, at least special in some respects. That is, we

are proposing the holographic braneworld perspective as an appealing rationale motivating a class

of higher-curvature theories with distinctive properties, which we shall investigate in this article.

Holographic c-theorem for induced higher-curvature gravities. The braneworld construc-

tion can also have another ramification that we will exploit. In general, depending on the value of

the brane tension, the cosmological constant that is induced on the brane theory can be positive,

negative or zero. The three cases give valid higher-curvature effective theories, but when the cos-

mological constant is negative, and the geometry on the brane is asymptotically AdSd (known as

a Karch-Randall braneworld [12]), we can perform one more holographic dualization. Namely, we

can envisage that the gravitational theory on the brane is itself dual to a CFTd−1 at its boundary.

The usual interpretation of this doubly-holographic setup is in terms of duality to a boundary

CFT, that is, a CFTd in a space with a boundary where a CFTd−1 lives [12, 13]. However, this

view will not play a role in this article. Once we have obtained a gravitational theory on AdSd,

we will be considering it on its own, without regard to its possible coupling to the holographic

CFTd. Then, the CFTd−1 to which our gravitational theory is dual will be different than the

one that resides at the boundary of the CFTd in doubly-holographic setups. In other words,

for us the holographic construction is simply a means of generating a specific class of higher-

curvature gravitational theories which are plausibly dual to conformal field theories, but these are

not necessarily coupled to any other system.

We will prove that these holographic CFTd−1 possess a basic property of well-defined conformal
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theories, namely, they satisfy c-theorems. Holographic theories incorporate renormalization group

flows as bulk solutions that interpolate between two asymptotically AdS regions [14, 15]. These

act as the UV and IR fixed points, while the bulk radial coordinate parametrizes the flow. Holo-

graphically, one expects that the c-function should be a rough measure of the curvature radius of

the geometry, such that it monotonously decreases along the flow from the boundary into the bulk.

We will actually find a stronger result: the higher-curvature theories that are defined by the

Lagrangian densities at each order in the expansion (1.1) separately satisfy holographic c-theorems.

Although this might not be unexpected given the good behavior of the ‘parent theory’ that gives

rise to them, it is not a direct consequence of the c-theorem of the holographic CFTd. Neither is

it the same as the g-theorem for holographic boundary CFTs in [16] since, as we mentioned above

and will discuss later in more detail, our CFTd−1 are differently defined, and our method of proof

and bulk interpretation of the result are also very different.

Other properties of higher-curvature densities. The proof of these holographic c-theorems

relies on particularities of the d-dimensional order-n densities, but not in a very detailed way.

Further examination of their structure, up to the highest order we have computed them, reveals

finer features. In particular, we can decompose each order-n density L(n) appearing in the brane

effective action into a linear combination of a term Sn, that gives a non-trivial c-function, and a

term Tn that does not contribute to it, since it identically vanishes on the renormalization group

flow geometry. We find evidence that this decomposition can always be made in such a way that

all the Sn are algebraic in the Riemann tensor, with no derivatives of it. That is,

L(n) ∝ Sn[Rabcd] + Tn[Rabcd,∇a] . (1.2)

We have proven that this is possible for all n in d = 3, and strong evidence suggests that it should

hold for all n and d.

Using the decomposition (1.2), we have then looked for other special properties of these densities.

In most cases, we do not have proofs that apply to all orders and dimensions, but instead we have

identified particular features by direct inspection of the terms that we have explicitly generated.

A first observation follows directly from the form of the first three orders in the effective action,

shown in (1.1). In any dimension d, we have

T0 = T1 = T2 = 0 . (1.3)

In particular, in d = 3 the only quadratic order term is, up to an overall factor,

S2 = RabR
ab − 3

8
R2 , (1.4)

which, as noted in [17], is the same density as in the New Massive Gravity (NMG) of [18]. At the

next, cubic order, the Tn make appearance in every d (see (2.17) below). In d = 3, up to an overall

factor, we find

S3 = RbaR
c
bR

a
c +

17

64
R3 − 9

8
RRabR

ab , (1.5)

4



and

T3 =
1

2
CabcC

abc , (1.6)

where Cabc is the Cotton tensor. Both these densities have featured in earlier literature: S3 was

proposed in [19] as a cubic generalization of NMG that satisfies a holographic c-theorem, and T3

defines the only cubic theory whose equations of motion have a third-order trace [20].

The appearance of (1.4) and (1.5) might point to a stronger link between the three-dimensional

massive gravity theories of Karch-Randall braneworlds and the generalized higher-curvature theo-

ries that satisfy holographic c-theorems [21]. Note, however, that the origin of the graviton mass

in Karch-Randall braneworlds is tightly linked to its coupling to the dual CFT [22], which is in

general absent in NMG and its generalizations.3

For general higher dimensions, the cubic densities S3 and T3 are also special in similar ways.

We find that S3 can be identified with a linear combination of the cubic Quasi-topological gravity

density [20, 23, 24], which has second-order traced equations, plus a density which contributes

trivially to the c-theorem. On the other hand, T3 turns out to be given by another previously

identified combination [20], distinguished, just like in three dimensions, by possessing third-order

traced equations.

The reduced-order property of the traced equations is a rather stringent feature, but in holo-

graphically induced gravities it does not seem to generally hold beyond cubic terms. Indeed, the

quartic term T4 already does not satisfy it in d = 3.

Finally, also in three dimensions, we have found an intriguing connection between the full tower

of counterterms and the Born-Infeld-like extension of NMG presented in [25]. At present, we do

not know whether this finding is fortuitous, or instead it has a deeper meaning.

The remainder of the paper proceeds as follows. In section 2, we review the computation of

the effective action (1.1) from holographic renormalization, and then expand it to quintic order in

general dimensions and to sextic order in d = 3. In section 3 we review the holographic c-theorem

construction for higher-curvature gravities, and also present a few new observations on the topic.

Then, in section 4, we prove that all the terms in the effective action separately fulfill a holographic

c-theorem. In sections 5 and 6 we study the structure of each order-n density in (1.1), in d = 3 and

in general dimensions, respectively. We end with comments on possible future directions.

2 Holographic renormalization and induced gravity

We begin with a sketch of how the action (1.1) arises. The starting point is the gravitational bulk

action for a (d+ 1)-dimensional asymptotically AdS spacetime,

I =
1

16πGN

[∫
M

dd+1x
√
−G

(
R[G] +

d(d− 1)

`2

)
+ 2

∫
∂M

ddx
√
−gK

]
. (2.1)

3Note also that the coefficient of the Einstein-Hilbert term in NMG is negative [18], opposite to the ‘normal’ sign

it has in the braneworld, as seen in (1.1).

5



Near the asymptotic boundary, we write the bulk metric in a Fefferman-Graham expansion as [26]

Gµνdx
µdxν =

`2

4ρ2
dρ2 +

`2

ρ
ĝij(ρ, x)dxidxj

=
`2

4ρ2
dρ2 +

`2

ρ

(
ĝ

(0)
ij (x) +O(ρ)

)
dxidxj . (2.2)

We then solve the Einstein equations, order by order in ρ, in terms of the ‘renormalized metric’

ĝ
(0)
ij and its derivatives [1]. This series solution is then plugged back into the bulk action, and, after

introducing a cutoff at ρ = ε, the bulk coordinate ρ is integrated between ε and a finite value of

ρ > ε. The result is a series expansion where the first terms diverge as ε→ 0 in the form

I =
`

16πGN

∫
ddx

√
−ĝ(0)

(
ε−d/2L̂(0) + · · ·+ ε−1L̂(dd/2e−1) − log(ε)L̂(d/2)

)
+O(ε0) . (2.3)

Here the L̂(i) are invariants of ĝ
(0)
ij and its intrinsic curvature. The logarithmic term is present

only in even d, for the holographic Weyl anomaly [27]. At any given d only the terms that diverge

as ε → 0 are uniquely determined by the boundary metric. In dual terms, they are fixed by the

definition of the theory in the ultraviolet, and are independent of the state of the CFTd. We can

rewrite them in terms of the (physical) metric induced at ρ = ε,

gij(x, ε) =
`2

ε
ĝij(x, ε) , (2.4)

which gives a divergent action of the form

Idiv =
1

8πGN

∫
ddx
√
−gL , where L ≡ L(0) + · · ·+ L(dd/2e−1) − log(ε)L(d/2) , (2.5)

and where again the logarithmic term is present only in even d (more about it below).4 The first

three terms of Idiv were presented in (1.1). Then, holographic renormalization is performed by

adding a counterterm action Ict = −Idiv to (2.1) in order to render the action finite when ε → 0.

The action that results is the quantum effective action of the CFTd, and its variation with respect

to the renormalized metric ĝ
(0)
ij generates the expectation value of the renormalized stress tensor of

the CFTd. Adding to the action higher curvature terms that are finite when ε→ 0 corresponds to

changing the renormalization scheme.

Our framework will, however, be different than that of holographic renormalization. Instead

of regarding ρ = ε as a regularization device to be eventually removed, we will keep it finite and

non-zero, taking it to correspond to the location of a physical brane, and adding to the action (2.1)

a purely tensional term for the brane

Ib = −T
∫
ρ=ε

ddx
√
−g . (2.6)

4Notice that we have absorbed a factor of `/2 in L, in order to match the conventions in [4], which we will follow

in the next subsection.
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Since the action is finite when ε 6= 0, no counterterms need to be added, and our theory will be

completely well defined by (2.1) and (2.6), without any other boundary terms.5 The expansion (2.5)

can then be continued to arbitrarily high orders, producing additional densities L(n) which depend

on the metric on the brane gij and its curvature. This expansion now includes terms that would

not diverge when ε → 0. Such terms are necessary in order to correctly reproduce the dynamics

of the brane in the bulk, which is determined by the Israel junction conditions [28] derived from

the brane action (2.6) [10]. The infinite series of these terms constitute an effective gravitational

action Ibgrav in d dimensions, and the fact that the action (2.5) is large for small ε reflects the

strong localization of gravity on the brane. In practice, one obtains all the gravitational terms L(n)

in Ibgrav in a unique manner by deriving them for arbitrary d, without regard to whether they are

finite or divergent in any specific dimension d, as we will do in the next subsection.

Now the entire action, when evaluated on a generic bulk solution, will be

I + Ib = Ibgrav + ICFT . (2.7)

We can think of ICFT as the finite-ε counterpart of the bulk contribution that is not determined by

the boundary metric, thus accounting for the state of the CFTd, but some care must be exercised.

The left-hand side of (2.7) is the action of a finite gravitational system with Einstein-Hilbert

dynamics, plus a brane, in d+ 1 dimensions. The right-hand side recasts it in the form of a higher-

curvature gravitational theory in d dimensions, coupled to a cutoff CFTd. This CFTd backreacts

on the metric gij , so once the cutoff is introduced and the gravitational theory Ibgrav is defined,

there is no more ‘renormalization scheme dependence’ of the CFTd.

Note that the effective action Ibgrav is unambiguously determined (up to total derivatives) by

the exact theory that it is derived from. This is not typically the case with effective theories,

which can be subject to field redefinitions that change their form. For instance, the metric in an

effective gravitational theory may be redefined as gij → gij + εαRij +O(ε2), with some arbitrary

coefficient α.6 However, in our case the metric gij(x, ε) is exactly determined for finite ε by its bulk

definition (2.4), and moreover its dynamics is also exactly specified by the Israel junction conditions

in the bulk. So the effective gravitational theory for gij(x, ε) is free from such ambiguities. A minor

subtlety remains in even d for the anomaly term L(d/2), which we will discuss in the next subsection.

Then, in (2.7), the terms I, Ib and Ibgrav are well defined, but the action of the CFTd is only

specified through (2.7)7. That is, the value of the CFTd action ICFT, and of any other magnitude

derived from it (stress tensor, entropy, etc), is obtained as the difference between the bulk action

I + Ib and the d-dimensional action Ibgrav, when these are evaluated on any solution of the theory.

All of these considerations simply set the stage for our statement that, in this article, we will

not be concerned with ICFT, but only with the gravitational action Ibgrav. It is interpreted as the

5This is the case for de Sitter or Minkowski branes, but in Karch-Randall models infinite renormalization must

still be performed. It will become clear that, for our purposes, we need not concern ourselves with this.
6Field redefinitions that involve the conformal fields reduce to the previous ones by using the lower-order effective

equations of motion.
7That is, unless we work in some specific version of AdS/CFT where the CFT is independently defined. We will

not be assuming this.
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effective action of the gravity theory that is induced on the brane through the integration of the

bulk degrees of freedom in the region 0 ≤ ρ ≤ ε. In dual terms, we integrate the ultraviolet degrees

of freedom of the CFTd at energy scales above the cutoff. Once we have obtained it this way, we

study the effective gravitational theory on its own.

2.1 Algorithm for Counterterms

The method of computing the effective action described previously is cumbersome, but there exist

iterative algorithms that greatly simplify the calculations [4, 5, 8]. Here we will follow [4].

Let us define Πab as the stress-energy tensor associated to the full effective action Ibgrav, with

Lagrangian L ≡ L(0) + L(1) + · · · ,

Πab ≡ 2√
−g

δ

δgab

∫
ddx
√
−gL , (2.8)

and Π as its trace, Π ≡ gabΠab.

The Gauss-Codazzi equations starting at the boundary are equivalent to the bulk Einstein

equations in a Fefferman-Graham expansion. The Gauss scalar constraint is

1

d− 1
Π2 −ΠabΠ

ab =
d(d− 1)

`2
+R , (2.9)

where R is the scalar curvature of the boundary metric gab. We will solve this equation order

by order in the curvature, and then integrate (2.8) to find the corresponding order-n effective

Lagrangian, L(n).

Two key observations were made in [4]. First, one can start by taking

Πab
(0) =

d− 1

`
gab , (2.10)

since at the leading order the terms that are proportional to the curvature can be neglected,

implying that Πab
(0) must be proportional to the metric. Second, by studying the behaviour of the

counterterms under Weyl rescalings, one finds that the integration of (2.8) must simply be

L(n) =
1

d− 2n
Π(n) , (2.11)

up to total derivatives. This procedure then generates the corresponding order-n term in the

effective Lagrangian, and it can be iterated to compute the counterterms. We start from

Πab
(0) =

d− 1

`
gab, Π(0) =

d(d− 1)

`
, L(0) =

d− 1

`
, (2.12)

and then we follow these steps iteratively:

1. Knowing all Π(i) and Πab
(i) of order less than n, solve for Π(n) using (2.9).

2. Compute L(n) using (2.11).

3. Vary L(n) to find Πab
(n).

8



In step 1, it is important to notice that at each order n, equation (2.9) involves terms of the form

Π(n)Π(n−i) and Π
(i)
abΠab

(n−i), with i ≤ n. Since Πab
(0) is proportional to gab, the term Π

(0)
ab Πab

(n) is

proportional to Π(n), and so indeed we find an equation for Π(n). Moreover, for all orders n ≥ 2,

there are no other terms on the right-hand side of (2.9), so we can directly solve for Π(n) to find

Π(n≥2) = − `
2

n−1∑
i=1

[
1

d− 1
Π(i)Π(n−i) −Π

(i)
abΠab

(n−i)

]
. (2.13)

Notice that when d is even, the algorithm seems to break down for n = d/2 due to the divergence

in (2.11). The reason for this is the following. Even if, in our context, for ε 6= 0 the action I + Ib

is finite, when we expand it in powers of ε there appears a logarithmic term. It reflects the fact

that the integration of conformal degrees of freedom produces non-local terms, and in the effective

theory it shows up as the trace anomaly [27]. In the algorithmic approaches to the computation of

counterterms, it was shown in [5] that one must effectively replace 1/(d− 2n)→ log ε. Therefore,

in a braneworld construction where ε is finite, the apparent divergence in L(d/2) for even d is an

artifact. A similar argument would also work for the divergences appearing in L(n) for n ≥ d/2.

For our purposes in this paper, we will not concern ourselves with these effects. The overall

coefficients of each of the L(n) terms will not play a role in our discussion, except in Sec. 5.5, where

we consider them in d = 3 where there is no anomaly.

The iterative procedure explained above gives for the first terms, already presented in [4], the

result

L(0) =
d− 1

`
, (2.14)

L(1) =
`

2(d− 2)
R, (2.15)

L(2) =
`3

2(d− 2)2(d− 4)

[
RabR

ab − d

4(d− 1)
R2

]
, (2.16)

L(3) = − `5

(d− 2)3(d− 4)(d− 6)

[
3d+ 2

4(d− 1)
RRabR

ab − d(d+ 2)

16(d− 1)2
R3

− 2RabRacbdR
cd +

d− 2

2(d− 1)
Rab∇a∇bR−Rab�Rab +

1

2(d− 1)
R�R

]
. (2.17)

Since we are computing the brane effective action and not its counterterms, our results differ from

those in [4] by an overall minus sign.

Using the Mathematica packages xAct [29, 30], we have been able to extend these results to

quartic and quintic order for general dimension d, and to sextic order for d = 3. For general

dimension, the quartic term reads

L(4) = − `7

(d− 2)4(d− 4)(d− 6)(d− 8)[
13d2 − 38d− 80

8(d− 1)(d− 4)
RabR

abRcdR
cd +

−15d3 + 18d2 + 192d+ 64

16(d− 4)(d− 1)2
RabR

abR2

9



+
d(5d3 + 10d2 − 112d− 128)

128(d− 4)(d− 1)3
R4 +

5d2 − 16d− 24

(d− 1)(d− 4)
RabRcdRRacbd

− 12Ra
cRabRdeRbdce + 8RabRcdRac

efRbdef − 8RabRcdRa
e
c
fRbedf

− 2(d− 6)

d− 4
RabRcdRa

e
b
fRcedf +

d2 + 4d− 36

2(d− 4)(d− 1)
RbcR

bc∇a∇aR

+
−7d2 + 22d+ 32

4(d− 4)(d− 1)2
R2∇a∇aR+

4

d− 1
Rbc∇aRbc∇aR−

d+ 8

4(d− 1)2
R∇aR∇aR

+
3d− 8

d− 1
Rab∇aRcd∇bRcd +

d(d− 6)

8(d− 4)(d− 1)2
∇a∇aR∇b∇bR

+
1

d− 1
R∇b∇b∇a∇aR−

(d− 4)(d+ 2)

4(d− 1)2
Rab∇aR∇bR+

d− 4

d− 1
Ra

cRbc∇b∇aR

− 5d3 − 38d2 + 64d+ 16

4(d− 4)(d− 1)2
RabR∇b∇aR+

3d2 − 20d+ 28

(d− 1)(d− 4)
RcdRacbd∇b∇aR

− (d− 6)(d− 2)2

8(d− 4)(d− 1)2
∇b∇aR∇b∇aR+

d− 4

d− 1
Rbc∇aR∇cRab − 8Rab∇eRacbd∇eRcd

+
5d2 − 6d− 64

2(d− 1)(d− 4)
RabR∇c∇cRab +

(d− 2)(d− 6)

2(d− 1)(d− 4)
∇b∇aR∇c∇cRab

+
(d− 2)

d− 1
Rab∇c∇c∇b∇aR+

5

d− 1
R∇cRab∇cRab + 12RabRcd∇d∇bRac

+
11d− 6

d− 1
RabRcd∇d∇cRab −

d− 6

2(d− 4)
∇c∇cRab∇d∇dRab − 2Rab∇d∇d∇c∇cRab

− 4Rab∇bRcd∇dRac + 4Rab∇cRbd∇dRac +
2(5d− 22)

d− 4
RabRacbd∇e∇eRcd

]
. (2.18)

The quintic and sextic terms are too large to present here, and so we include them as a Mathematica

ancillary file.

To finish, let us mention that the algorithm of [4] was improved in [5] into the dilatation

operator method using a Hamiltonian formulation. This allowed to include matter fields, prove the

equivalence of these algorithmic techniques to the holographic renormalization method of [1], and

rigorously recover the trace anomaly. The method has been further explored [6, 7], and a practical

implementation that circumvents the Hamiltonian framework has been presented in [8].

3 Holographic c-theorem and higher-curvature gravities

The theory of gravity Ibgrav that is induced on the brane may admit solutions that are asymptoti-

cally AdS, and indeed, this can always be achieved with a brane tension T below a critical value.

In this case, the theory may be thought of as putatively dual to a CFTd−1 (at least at planar level).

A necessary condition for this theory to be well defined is that it satisfies a c-theorem. One of our

goals is to show that, not only the CFTd−1 dual to the theory Ibgrav satisfies this condition, but

also that all the higher-curvature terms in this effective action separately do so.

In this section we review the holographic proof of the c-theorem, and the characterization of

higher-curvature gravities which satisfy it. Most of the content here is a compilation of previous

10



results, but we also make a few observations which do not seem to have appeared explicitly in the

literature before.

3.1 RG flow geometry and c-function

The holographic c-theorem involves a domain-wall type ansatz

ds2 = e2A(r)
[
−dt2 + dx2

]
+ dr2 , (3.1)

which, in the presence of a matter stress-energy tensor Tab satisfying the null energy condition

(NEC), produces a profile for A(r) which makes the solution interpolate between two asymptotically

AdSd regions [14, 15]. From the dual CFT perspective, these correspond to UV and IR fixed points,

where the metric function is asked to behave as

A(r → +∞) =
r

LAdSUV

, A(r → −∞) =
r

LAdSIR

, (3.2)

where LAdSUV
, LAdSIR

characterize the AdS curvature radii at each end of the geometry. Since the

central charge of a holographic CFT is in general proportional to a power of the AdS curvature

radius measured in Planck units, these geometries appear to adequately represent holographic RG

flows when going from r → +∞ to r → −∞.

The idea of the holographic c-theorem8 is then to construct a function c(r)—the RG monotone

or ‘c-function’—which monotonously decreases along the flow. A weak version of the theorem would

require that cUV > cIR, whereas a strong one (which we will aim for) demands monotonicity along

the entire flow,

c′(r) ≥ 0 ∀ r . (3.3)

A natural way of constructing a candidate c(r) is to find an expression for c′(r) that is pro-

portional to the combination T tt − T rr . Then, if the matter stress-tensor satisfies the NEC, this

combination is negative semidefinite,

T tt − T rr
NEC

≤ 0 , (3.4)

and hence any c′(r) ∝ −(T tt − T rr ) with a non-negative proportionality constant does the job. In

this article we will always assume that matter is minimally coupled to gravity, so that the NEC

does not involve any curvature terms.

If we denote the equations of motion of a given higher-curvature theory with Lagrangian L by

Eab ≡
1√
−g

δ

δgab

∫
ddx
√
−g L, (3.5)

then the combination E tt − Err evaluated on (3.1) will in general be a complicated combination of

terms involving A(r) and its higher-order derivatives, making the identification of c(r) cumbersome

(or directly impossible).

8Here we will use the term ‘c-theorem’ to refer to monotonicity theorems in general dimensions, often called the

‘c-theorem’, ‘F-theorem’ and ‘a-theorem’ in two-, three- and four-dimensional CFTs [31–34].
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An important simplification occurs for theories with equations of motion that become second-

order in derivatives of A(r) and are at most linear in A′′(r) when evaluated on (3.1). This condition

can be most easily implemented, for general families of higher-curvature theories, at the level of

the action [21]. Indeed, let

I[A] =

∫
ddx
√
−gL [A] (3.6)

be the on-shell action from the evaluation of the corresponding higher-curvature action on the

metric (3.1). It is easy to show that the Euler-Lagrange equation of A(r) is proportional to the tt

component of the field equations evaluated on (3.1), namely,

δI[A]

δA
= −2(d− 1)e(d−1)A(r) E tt

∣∣
A
. (3.7)

It follows that, whenever I[A] is second-order in derivatives of A(r) and linear in A′′(r), so is E tt .
The additional independent equation, corresponding to Err , is related to E tt by the Bianchi

identity

∂r Err |A + (d− 1)A′(r) Err |A = (d− 1)A′(r) E tt
∣∣
A
. (3.8)

This immediately implies that Err does not contain terms involving derivatives of A(r) higher than

one (since it is the scalar constraint9) and that the combination E tt−Err is second-order in derivatives

and linear in A′′(r). Throughout the paper, when speaking about theories satisfying the holographic

c-theorem, we will be referring to theories that satisfy these reduced-order properties.10

For theories of the above type, it is straightforward to construct a function c(r) such that

[14, 40, 41]

c′(r) = − π
d−3
2

8Γ
[
d−1

2

]
GN

T tt − T rr
A′(r)d−1

, (3.9)

where, as required, the right-hand side is positive semidefinite, including for even d [41]. As observed

in [19, 41], c(r) can be obtained for these theories from the Wald-like [42] formula

c(r) ≡ π
d−1
2

2Γ[d−1
2 ]A′(r)d−2

∂L
∂Rtr tr

, (3.10)

where the Lagrangian derivative components are evaluated on (3.1). By construction, c(r) coincides

at the fixed points with the holographic central charges c.

3.2 Constraints on theories

When trying to construct theories that satisfy simple holographic c-theorems, Lovelock gravities

[43–45] are natural candidates, as they have second-order equations on general backgrounds. The

9The explicit form of the equation Err can be obtained from the on-shell action of ds2 = e2A(r)
[
−dt2 + dx2

]
+

N(r)2dr2 by varying with respect to the lapse function N(r) [35].
10These requirements are identical to the ones satisfied by higher-curvature gravities which produce generalized

Friedman equations of second order for the scale factor when evaluated on a Friedmann-Lemâıtre-Robertson-Walker

ansatz with flat spatial slices—see e.g., [35–39].
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n-th order Lovelock density is

L(n)
Lovelock ≡ X2n ≡

(2n)!

2n
δ[b1
a1 δ

b2
a2 · · · δ

b2n]
a2n R

a1a2
b1b2
· · ·Ra2n−1a2n

b2n−1b2n
. (3.11)

When d is even, the density with n = d/2 is a topological invariant. All the higher order densities

(with n > (d − 1)/2 when d is odd, and with n > d/2 when d is even) vanish identically. Hence,

Lovelock theories are too restricted to provide a non-trivial family of order-n densities in arbitrary

dimensions.

A different set can be obtained using the Schouten tensor

Sab =
1

d− 2

[
Rab −

1

2(d− 1)
gabR

]
(3.12)

as a building block. The general relation

Rabcd = Cabcd − 2(ga[cSd]b + gb[dSc]a) (3.13)

and the fact that the Weyl tensor vanishes on the RG flow ansatz (3.1), suggests considering the

family [46]

P(n) = δ[b1
a1 δ

b2
a2 · · · δ

bn]
an S

a1
b1
· · ·Sanbn . (3.14)

This vanishes for n > d because the totally antisymmetric product of Kronecker deltas is identically

zero in that case, but it has been shown that a simple limiting procedure11 can be applied to P(n),

which gives non-trivial densities for additional orders and dimensions [47] (see also [48, 49]).

One may also systematically consider all the densities of a given curvature order for fixed d,

with arbitrary relative coefficients, and identify the combinations that satisfy the aforementioned

conditions. At quadratic order, this selects the Gauss-Bonnet density

X4 = R− 4RabR
ab +RabcdR

abcd (3.15)

and the Weyl-square term CabcdC
abcd, which identically vanishes on (3.1). The cubic case was

studied in [41] for general d. At that order there exist eight independent densities (there are fewer

for low enough d), and the holographic c-theorem imposes two constraints on them, leaving six

independent densities that satisfy all the requirements.

Hence, in general, for fixed d and n there will be several independent densities satisfying the

holographic c-theorem. However, it is natural to expect that the functional on-shell dependence on

A(r) for fixed d and n is unique—in particular, given j order-n densities satisfying the c-theorem,∑
j αjLj , we would have

E tt |A − Err |A =

(∑
j

cjαj

)
· Fn(A,A′, A′′) , (3.16)

11The idea involves computing P(n) for some d̄ greater than the dimension of interest d, dividing by (d̄ − d) and

then taking the limit d̄→ d of the resulting expression.
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where the dependence on the gravitational couplings fully factorizes. This always allows us to

change the basis of densities so that a single one of them contributes non-trivially to E tt −Err , while

all the others produce a vanishing contribution—e.g., the Weyl-square density at quadratic order.

As for the explicit form of E tt , Err and Fn(A,A′, A′′) when evaluated on (3.1) for individual non-

trivial densities, a quick inspection of various cases strongly suggests that these are always given

by

E tt
∣∣
A
∝ A′(r)2(n−1)

[
(d− 1)A′(r)2 + 2nA′′(r)

]
, Err |A ∝ (d− 1)A′(r)2n , (3.17)

up to an overall factor, and

Fn(A,A′, A′′) = 2nA′(r)2(n−1)A′′(r) , (3.18)

for general n and d. The functional dependence of the c-function is then c(r) ∝ A′(r)2n−d. This

sort of ‘uniqueness’ has been argued to hold for general curvature orders in d = 3 in [21], and

has been recently proven in [50]. In the same references, one can find a characterization of all the

densities of any curvature order in d = 3 that satisfy the c-theorem and which are constructed from

general contractions of the metric and the Riemann tensor.

Several other properties have been observed to hold for gravities in three dimensions that satisfy

a c-theorem. At quadratic order, the resulting theory is the New Massive Gravity of [18]—more on

this below. At higher curvature orders, theories of this kind arise from an order-by-order expansion

[25, 50, 51] of a Born-Infeld-type gravity [25], which in turn satisfies the holographic c-theorem

by itself [51, 52]. In addition, it has been found that certain theories that satisfy the holographic

c-theorem—some of which involve explicit covariant derivatives—are equivalent to Chern-Simons

gravities [53]. More recently, theories of this kind have been related to truncations of certain infinite-

dimensional Lie algebras [49]. It has also been shown that theories of this kind never propagate

the scalar mode that is present in the linearized spectrum of generic higher-curvature theories [50].

This feature is likely valid for general d.

4 Holographic c-theorem for induced gravity

We will now prove one of our main results: all the densities in the action of holographically induced

gravity, at arbitrary order n and in general dimension d, belong in the class of theories whose dual

CFTs satisfy a holographic c-theorem.

Before we proceed, let us emphasize that this is not the same as the monotonicity theorem—the

g-theorem—for the theory that is dual to the brane in the doubly-holographic construction. The

latter is dual to the entire system of the induced gravity on the brane plus the cutoff CFTd coupled

to it. The holographic g-theorem proven for this system in [16] amounts to showing that, as the

brane moves deeper into the bulk, its curvature decreases—in CFT terms, flowing to the IR reduces

the number of degrees of freedom that are dual to the brane. This is not what we are doing. After

deriving the induced gravitational action Ibgrav, we take this theory on its own and disregard its

coupling to the CFTd. Then, our proof of a c-theorem for the putative dual CFTd−1 is no longer

related to the properties of the brane moving in the bulk.
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To prove the c-theorem we shall assume that our gravitational theory is coupled to a matter

sector that satisfies the NEC and that this condition can be readily translated, via the field equa-

tions, into a condition on the curvature terms as shown in the previous section. For this purpose

we assume that matter is minimally coupled to gravity, so that no curvature terms enter the NEC.

This assumption is consistent but technically unnatural, and it could be interesting to investigate

if it can be relaxed.

That the entire theory Ibgrav might satisfy a holographic c-theorem might not be unexpected,

given its origin in a ‘good’ theory (Einstein-AdS in d + 1 dimensions, plus a brane) but it is less

obvious that the separate order-n densities should also do it.

We will give two proofs of this result, the first one applying an induction method to the algo-

rithm described in Sec. 2, and the second one using the counterterms adapted for conformally flat

boundaries obtained in [54].

Inductive algorithm proof. An examination of the terms L(n) obtained in Section 2, evaluated

on the RG-flow metric (3.1), suggests that the following expression may be valid for general orders

and dimensions,

L(n)

∣∣
A

= −Cn
d− 1

d− 2n
(A′)2(n−1)

[
d(A′)2 + 2nA′′

]
, where Cn ≡ `2n−1 (2n− 3)!!

(2n)!!
. (4.1)

Remarkably, this expression, if correct, directly implies that each and all of the L(n) satisfy a

holographic c-theorem. We will now prove that (4.1) is indeed correct.

We proceed by induction. We assume that (4.1) is true for all orders k < n, and then we

perform the algorithm of Section 2 to see that it is also valid for order n.

From (2.11), the induction hypothesis implies that, for all k < n, we have

Π(k)

∣∣
A

= −Ck(d− 1)(A′)2(k−1)
[
d(A′)2 + 2kA′′

]
. (4.2)

Then, following equations (3.7) and (3.8), with Eab = Πab/2, we obtain

Πtt
(k)

∣∣
A

= −Cke−2A(A′)2(n−1)
[
(d− 1)(A′)2 + 2nA′′

]
= −Πxixi

(k)

∣∣
A

(4.3)

Πrr
(k)

∣∣
A

= Ck(d− 1)(A′)2n. (4.4)

Now, using equations (2.11) and (2.13) we can compute L(n)

∣∣
A

. The result reads

L(n)

∣∣
A

=
1

d− 2n
Π(n)

∣∣
A

(4.5)

= − `

2(d− 2n)

n−1∑
k=1

[
1

d− 1
Π(k)Π(n−k) −Π

(k)
ab Πab

(n−k)

]
A

(4.6)

= − d− 1

d− 2n
(A′)2(n−1)

[
d(A′)2 + 2nA′′

] `
2

n−1∑
k=1

CkCn−k . (4.7)

Finally, using the identity

`

2

n−1∑
k=1

CkCn−k =
`2n−1

2

n−1∑
k=1

(2k − 3)!!(2(n− k)− 3)!!

(2k)!!(2(n− k))!!
= `2n−1 (2n− 3)!!

(2n)!!
= Cn , (4.8)
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it follows that L(n)

∣∣
A

indeed reduces to the form (4.1), which means that all the order-n Lagrangians

appearing in the effective action Ibgrav satisfy holographic c-theorems.

It would appear that the proof breaks down at n = d/2 for even d, but as discussed in Sec. 2.1,

these divergences are easily avoided artifacts.

Proof with conformally flat counterterms. Instead of computing the general brane effective

action, and then evaluating it on the conformally flat metric (3.1), we can directly compute the

effective action for a conformally flat brane. For this, we can use (minus) the counterterms for an

AdSd+1 bulk with a conformally flat boundary, recently obtained in [54].12 For n ≤ d/2 these are

L(n)|c.flat = (−1)n`2n−1 (2n− 3)!!(d− n)!

(d− 2)!(d− 2n)
P(n), (4.9)

where P(n) is the product of Schouten tensors defined in (3.14), along with the necessary dimensional

regularization prescription for the n = d/2 term.

Since we have seen in the previous section that the P(n) satisfy the holographic c-theorem,

(4.9) directly proves our result. Indeed, when evaluated on the metric (3.1), the expression above

coincides with (4.1), since

P(n)|A =
(−1)n+1

(2n)!!

(d− 1)!

(d− n)!
(A′)2(n−1)

[
d(A′)2 + 2nA′′

]
. (4.10)

For n > d/2, the limiting procedure of [47], described in the previous section, gives non-trivial

densities when applied to P(n). When we evaluate these densities on (3.1), they also match our

results above.

5 Structure of counterterm densities in three dimensions

Now we take a closer look at the explicit structure of the densities L(n) for n ≥ 2. We shall first

study the case d = 3, and then d ≥ 4.

As argued in e.g., [21, 50, 55], in d = 3 the most general higher-curvature density constructed

from contractions of the metric and the Riemann tensor is a function of the three densities13

R ≡ gabRab , R2 ≡ RabRab , R3 ≡ RbaRcbRac . (5.1)

This follows from the fact that all Riemann curvatures are Ricci curvatures due to the vanishing

of the Weyl tensor, along with the existence of Schouten identities which relate terms involving

higher-order contractions of the Ricci tensor to the ones above. In three dimensions, conformal

flatness is equivalent to the vanishing of the Cotton tensor,

Cabc ≡ 2∇[cRa|b] +
1

2
∇[b|Rga|c] . (5.2)

Then, the metric (3.1) used for holographic RG flows has Cabc = 0.

12We are grateful to I. Papadimitriou for bringing these results to our attention.
13In [21], the notation R2, R3 is used for the same contractions as in (5.1) but with the Ricci tensor replaced by

its traceless part.
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5.1 Quadratic order

As mentioned in the introduction, in d = 3 the density L(n) coincides, up to an overall factor, with

the quadratic term in the New Massive Gravity [18]. This is given by

L̄2 = RabR
ab − 3

8
R2 , (5.3)

where the overbar in L̄ simply indicates that we remove the overall factors containing ` from the

expressions in (2.16)–(2.18). NMG is known to satisfy a holographic c-theorem [19]. An additional

property of L̄2 is that, when linearized around maximally symmetric backgrounds, it propagates

no scalar mode. Moreover, the equations of motion of L̄2 have second-order trace [20].

5.2 Cubic order

To cubic order, and up to an overall factor, (2.17) gives

L̄3 =
11

8
RR2 −

15

64
R3 − 2RacRbdRabcd +

1

4
Rab∇a∇bR−Rab�Rab +

1

4
R �R . (5.4)

Integrating by parts and substituting the three-dimensional Riemann tensor in terms of Ricci

tensors, this can be rewritten as

L̄3
∇
= −29

8
RR2 + 4R3 +

49

64
R3 +

3

8
R�R−Rab�Rab , (5.5)

where we have introduced the notation

∇
= : equal up to total derivatives . (5.6)

If we use that

CabcC
abc ∇= −2Rab�R

ab +
3

4
R�R+ 6R3 − 5RR2 +R3 , (5.7)

then (5.5) can be further rewritten as

L̄3
∇
= S3[Rab] + T3[Cabc · · · ,∇a] , (5.8)

where

S3[Rab] ≡ R3 +
17

64
R3 − 9

8
RR2 , (5.9)

and

T3[Cabc · · · ,∇a] ≡
1

2
CabcC

abc . (5.10)

On the one hand, S3 is the cubic generalization of NMG identified in [19] as the most general

density of that order —not involving covariant derivatives of the Ricci tensor— which satisfies a

holographic c-theorem. On the other hand, T3 involves explicit covariant derivatives of the Ricci

tensor. However, since it is proportional to the Cotton tensor, which identically vanishes on (3.1),

it has no effect on the holographic RG flow. Then, L̄3 satisfies a holographic c-theorem.
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As it turns out, this density has interesting additional properties. On the one hand, as ob-

served in [53], the criterion that cubic extensions of NMG do not propagate a scalar mode usually

present in the spectrum of higher-curvature gravities, and that they admit a Chern-Simons formu-

lation, restricts them to a general linear combination of S3 and T3. Hence, L̄3 satisfies these two

requirements—the first one is in fact implied when the holographic c-theorem is required, as shown

in [50].

On the other hand, T3 had been previously singled out in [20] using yet a different criterion: it

is the cubic density with the lowest-order traced field equations in three dimensions. Indeed, it is

the only cubic theory whose equations of motion have a trace which only contains terms involving

up to three derivatives of the metric.14

5.3 Quartic order

At quartic order, evaluating (2.18) for d = 3 gives

L̄4 =− 83

16
R2

2 − 17RR3 +
1155

64
R2R2 −

3635

1024
R4

− 31

4
R2�R+

57

16
R2�R− 10Rbc∇aRbc∇aR+

53

16
R∇aR∇aR

+
1

2
Rab∇aRcd∇bRcd +

9

32
�R�R+

1

2
R�2R+

5

16
Rab∇aR∇bR

− 11

2
Ra

cRbc∇b∇aR+
61

16
RabR∇b∇aR−

3

32
∇b∇aR∇b∇aR

− 1

2
Rbc∇aR∇cRab −

47

4
RabR∇c∇cRab +

3

4
∇b∇aR�Rab +

1

2
Rab�∇b∇aR

− 11

2
R∇cRab∇cRab + 12Rab Rcd∇d∇bRac −

27

2
RabRcd∇d∇cRab

− 3

2
�Rab�Rab + 28Ra

cRab�Rbc − 2Rab�2Rab − 4Rab∇bRcd∇dRac

+ 4Rab∇cRbd∇dRac + 16Rab∇dRbc∇dRac . (5.11)

Again, when we decompose it as

L̄4
∇
= S4[Rab] + T4[Cabc · · · ,∇a] , (5.12)

where

S4[Rab] ≡
5

4
R3R−

15

16
R2

2 −
45

64
R2R2 +

205

1024
R4 , (5.13)

and

T4[Cabc · · · ,∇a] ≡ +RCabcC
abc − 11

2
RabCaefC

bef +
23

4
RacRbd∇aCbcd

− 17

2
RebR

e
c∇aCbac +

5

2
RRbc∇aCbac −

5

4
CbcdR

ac∇aRbd −
11

2
RecC

bac∇aRbe . (5.14)

14Note that S3 does not have equations of motion with a reduced-order trace, which means that the c-theorem

property and the reduced-order trace one are not directly connected, even though there are cases in which they do

coincide, such as NMG itself and the T3 density.
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Similarly to the cubic case, we find that S4 is the quartic generalization of NMG—algebraic in the

curvature—which non-trivially satisfies a holographic c-theorem [19, 21]. On the other hand, we

see that T4 is a linear combination of terms which always involve at least one Cotton tensor and

therefore identically vanish when evaluated on the RG-flow metric (3.1). Again, this makes evident

that L̄4 satisfies a holographic c-theorem.

Motivated by the cubic case, we have tried to express T4 as one of the theories identified in [53]

by the criterion that they admit a Chern-Simons description, but we have not succeeded in doing

so. It seems that such identification only works for the quadratic and cubic terms. Similarly, while

T3 had the property of possessing a reduced order for the trace of its equations of motion, this is

no longer the case for T4, whose traced equations are of order six.

5.4 Higher orders

It seems, then, that of all the special properties that we identified for S3 and T3 in d = 3, only

those that refer to the holographic c-theorem extend to higher orders. Of course we have already

given a general proof that all the L(n) satisfy this theorem, but we can aim at distinguishing a finer

structure of how this happens.

We decompose the L̄n into terms Sn and Tn such that the Sn contain all of the non-vanishing

contribution to the c-function, and the Tn vanish identically on the RG-flow metric (3.1). For the

lowest orders we have seen that this separation can be performed in such a way that Sn is algebraic

in the curvature, that is,

L̄n
∇
= Sn[Rab] + Tn[∇a, Rab] . (5.15)

In fact, in d = 3 this decomposition can be performed in all n. This follows from the results in

[21, 50], which show that, at every n, there always exists a density Cn[Rab] which non-trivially

satisfies the c-theorem.

For the cubic and quartic terms, we have found that the Tn are proportional to the Cotton

tensor. It is unclear whether this is the case also for the quintic term, since the expressions are

exceedingly complicated. On the other hand, the structure of Sn[Rab] is uniquely constrained not

only in n = 3, 4, as we have seen, but also in n = 5. Up to that order, there is a single order-n

algebraic density Cn which non-trivially satisfies the holographic c-theorem [21], and so Sn[Rab]

must be proportional to it. The proportionality constant can be found by evaluating both L̄n and

Cn on the RG-flow metric (3.1). For the quintic case, we obtain S5 = 5
64C5, where

C5 =
61R5

960
− 7R3R2

12
+

2R2R3

15
+

7RR2
2

5
− 16R2R3

15
. (5.16)

However, degeneracies start to appear at order 6. From that order on, there exist densities that

are algebraic in the Ricci tensor and which trivially satisfy the holographic c-theorem [21]. These

have been characterized in a precise manner. As shown in [50], there is a unique sextic density of
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this type,15

Ω(6) =
1

3

[
R6 − 9R4R2 + 8R3R3 + 21R2R2

2 − 36RR2R3 − 3R3
2 + 18R2

3

]
, (5.17)

with the important property that, at any order n ≥ 6, all the densities algebraic in curvature that

vanish on the RG flow geometry are proportional to Ω(6). Then, by taking Lgeneral
n−6 to be the most

general density that is algebraic in the curvature, we have that Lgeneral
n−6 · Ω(6) is the most general

density of that type at order n that vanishes on RG flows.

This implies that the characterization of the terms in (5.15) is ambiguous for n ≥ 6, since we

can redefine

S ′n = Sn + Ln−6Ω6 , , T ′n = Tn − Ln−6Ω6 (5.18)

where Ln−6 is an arbitrary order-(n− 6) density algebraic in the curvature. Still, it is possible that

a particular separation exists such that Tn≥6 does not involve any Ω6 and vanishes exclusively due

to the presence of Cotton tensors in all its terms. If that is the case, one can use this criterion to

give a unique definition for Sn≥6.

As far as we know, there are two different proposals for special order-n densities that non-

trivially satisfy the holographic c-theorem. The first results from the expansion of the Born-Infeld-

like extension of NMG presented in [25], and in the following subsection we find hints that this may

indeed coincide with Sn≥6 as defined by the above criterion. The second corresponds to a basis of

densities selected by the fact that they satisfy a simple recursive formula which relates the order-n

representative to the order-(n− 1) and order-(n− 2) ones [50].

5.5 Born-Infeld gravities and counterterms

An interesting generalization of NMG with a Born-Infeld-type Lagrangian was proposed in [25].

The Lagrangian is

LBI-NMG = α
√

det (δba + βGba) , (5.19)

where Gab is the Einstein tensor and α, β are constants. This theory satisfies the holographic c-

theorem [51], and when expanded at low curvatures it also generates higher-derivative densities

which non-trivially satisfy it at any truncated order [52]. As we have seen, this property is shared

by the effective gravitational action induced on the braneworld.

Following [50] we can expand LBI-NMG order by order, to find higher-curvature densities B(n)

which, on the RG flow metric (3.1), give

B(n)[α, β]
∣∣
A

= α (−β)n
(2n− 5)!!

(2n)!!
(A′)2(n−1)

[
3(A′)2 + 2nA′′

]
. (5.20)

Remarkably, if we take α = 2/` and β = −`2, then this result coincides, for all n, with the RG flow

of the order-n braneworld density (4.1) in d = 3, namely

L(n)

∣∣
A

= B(n)[2/`,−`2]
∣∣
A
. (5.21)

15This is more easily written in terms of contractions of the traceless Ricci tensor R̃2 ≡ R̃b
aR̃

a
b , R̃3 ≡ R̃b

aR̃
c
bR̃

a
c ,

where R̃ab ≡ Rab − 1
3
gabR, namely, Ω(6) = 6R̃2

3 − R̃3
2.
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This result is highly non-trivial, since the coincidence occurs also for the relative factors between the

different order-n Lagrangians, and not only for the functional dependence in A and its derivatives,

which might have been expected. It is then natural to conjecture that the d = 3 counterterm

Lagrangian may be resummed as

L =
2

`

√
det (δba − `2Gba) + T [Cabc · · · ,∇a], (5.22)

where again

T [Cabc · · · ,∇a]
∣∣
A

= 0. (5.23)

An even stronger conjecture would be that the whole tower of counterterms (including T ) could

be written as a Born-Infeld-like action. The idea that Born-Infeld type actions may act as suitable

AdS counterterms has been considered before in [56–58].

6 Structure of counterterm densities in higher dimensions

Let us now move to d ≥ 4. The expressions become considerably more involved than in three

dimensions, but we can still infer a similar general structure based on the lowest orders. For the

following discussion, it will be useful to keep in mind that the Weyl tensor Cabcd identically vanishes

on the RG-flow geometry (3.1).

6.1 Quadratic order

Up to an overall factor, the quadratic term reads

L̄2 = RabR
ab − d

4(d− 1)
R2 , (6.1)

which is the d-dimensional generalization of NMG. Since it can be rewritten as a linear combination

of the Weyl tensor squared and the quadratic Lovelock density, namely,

L̄2 =
d− 2

4(d− 3)

[
CabcdC

abcd −X4

]
, (6.2)

it is easy to see why it also fulfills a holographic c-theorem. Similar to the d = 3 case, L̄2 propagates

no scalar mode when linearized around maximally symmetric backgrounds [59, 60]. Moreover,

L̄2 also belongs to the set of quadratic theories which have the property of possessing equations

of motion whose trace is second-order, since for d ≥ 4, that set is given by an arbitrary linear

combination of CabcdC
abcd and the quadratic Lovelock density X4 [20, 23, 61].

6.2 Cubic order

The cubic density was written in (2.17) above. Observe first that integrating by parts this can be

rewritten as

L̄3
∇
= +

3d+ 2

4(d− 1)
RRabR

ab − d(d+ 2)

16(d− 1)2
R3 − 2RabRacbdR

cd
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− d

4(d− 1)
∇aR∇aR+∇cRab∇cRab . (6.3)

Now, following inspiration from the three-dimensional case, we can try to rewrite L̄3 as a linear

combination of densities with special properties. We find that, indeed, L̄3 can be written for general

d ≥ 4 as

L̄3 =
d− 2

16(d− 3)
N6 + Ξ + ∆ , (6.4)

where N6, Ξ and ∆ are distinguished for different reasons. On the one hand, N6, which is defined

as

N6 ≡− 24RabcdRcdbeR
e
a −

3(d+ 2)

d− 1
RRabcdRabcd −

24d

d− 2
RabcdRacRbd (6.5)

− 16d(d− 1)

(d− 2)2
RabRbcR

c
a +

12(d3 − 2d2 + 6d− 8)

(d− 2)2(d− 1)
RRabRab

− d4 − 3d3 + 10d2 + 4d− 24

(d− 2)2(d− 1)2
R3 ,

is the cubic Quasi-topological density [20, 23, 24]. This satisfies a number of interesting properties.

Firstly, it can be written as

N6 =
d− 2

d− 5
[4W1 + 8W2 −X6] , (6.6)

where W1 ≡ CabcdC
cd
efC

ef
ab, W2 ≡ CabcdC

ebcfCa ef
d and X6 is the cubic Lovelock density. This

expression makes manifest that N6 satisfies the holographic c-theorem [41]. N6 identically vanishes

in d = 4 but it is non-trivial for d ≥ 5. It is in fact the term involving N6 (actually X6) the

one which makes L̄3 be non-trivial when evaluated on (3.1) for d ≥ 5 (d ≥ 6). In addition, N6

is one of the few cubic densities which possess second-order traced equations for general d ≥ 5

[23].16 Finally, N6 only propagates the usual massless graviton when linearized around maximally

symmetric backgrounds and it admits particularly simple black hole solutions [23, 24].

On the other hand, Ξ is the piece which contains the terms involving explicit covariant deriva-

tives. It is explicitly given by

Ξ ≡ (d− 2)2

4(d− 3)(d− 6)

[
Σ +

2(d− 3)

3(d− 2)2
Θ

]
, (6.7)

where Σ and Θ were previously identified again in [20] as the two only densities which possess field

equations whose trace is third-order in derivatives for d ≥ 4. They are given, respectively, by17

Σ =− 3d− 2

2
RabcdRcdefR

ef
ab +

8d

3
RabcdR

ce
bfR

df
ae +

4d

d− 2
RabcdRacRbd (6.9)

16For d = 5, 6 there are two independent densities which possess second-order traced equations whereas for d ≥ 7

there exist three.
17Similarly to the case of N6 in d = 5, the combination inside the brackets in (6.7) vanishes identically in d = 6,

and then one finds

Ξ|d=6 ≡+
2

9
RabcdRcdefR

ef
ab −

8

9
RabcdRacRbd −

4

3
RabcdRacRbd +

10

9
RabRbcR

c
a (6.8)

+
1

450
R3 − 3

10
∇aR∇aR +∇aRbc∇aRbc .
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+
4(d− 4)

d− 2
RabRbcR

c
a −

2d

3(d− 1)2
R3 − d(d− 3)

(d− 2)(d− 1)
∇aR∇aR

+
4(d− 3)

d− 2
∇aRbc∇aRbc ,

and

Θ = + 2(d2 − 4)RabcdRcdefR
ef
ab − 4(d2 − 4)RabcdR

ce
bfR

df
ae − 12(d− 2)RabcdRacRbd (6.10)

− 16RabRbcR
c
a +

d2 − d+ 2

(d− 1)2
R3 +

6d

d− 1
∇aR∇aR− 24∇aRbc∇aRbc .

Both Σ and Θ non-trivially fulfill the holographic c-theorem when evaluated on (3.1). However,

the combination appearing in the density Ξ trivially satisfies the holographic c-theorem for general

d, as it becomes a total derivative when evaluated on (3.1).

Finally, ∆ is a density which does not involve explicit covariant derivatives, which is trivial

when evaluated on the holographic c-theorem ansatz for general d and which does not satisfy any

additional special property involving a reduced order for its traced equations. It is given by

∆ ≡ 1

d− 3

[
(d− 10)(d− 2)

24
RabcdRcdefR

ef
ab +

36− d(10 + 7d)

4(d− 2)(d− 1)
RRabRab (6.11)

+
3(d− 2)

2
RabcdRcdbeR

e
a +

3(d− 2)(d+ 2)

16(d− 1)
RRabcdRabcd +

d+ 8

2
RabcdRacRbd

+
11d− 16

2
RabRbcR

c
a +

2(d− 2)

3
RabcdR

ce
bfR

df
ae +

−28 + d(21d− 16)

24(d− 2)(d− 1)2
R3

]
.

As mentioned earlier, the general set of cubic theories constructed from arbitrary contractions of

the metric and the Riemann tensor satisfying the holographic c-theorem property was obtained in

[41]. ∆ is one of the 5 independent densities which contribute trivially to the c-function.

In view of the three-dimensional case, it is natural to wonder whether all terms appearing in

Ξ and ∆ may be rewritten in a simplified way in terms of the Weyl tensor—so that the fact that

they vanish when evaluated on (3.1) becomes manifest.

An alternative decomposition of L̄3, found in [54], is

L̄3 = Sab

(
Scd +

1

d− 3
∇c∇d

)
Cacbd + 3(d− 4)P(3). (6.12)

Since the Weyl tensor and P(3) are explicit in this form, it makes manifest that L̄3 satisfies the

holographic c-theorem.

6.3 Higher orders

Going to higher orders complicates the expressions considerably. We presented the result for the

general-d quartic density in (2.18). We have verified that, analogously to the d = 3 case, it is

also possible to write L̄4 as a sum of a term which does not involve explicit covariant derivatives

and which non-trivially satisfies the c-theorem, plus another one which does contain covariant
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derivatives and is trivial when evaluated on (3.1). It is then natural to expect that the n-th order

density in d dimensions can always be written as

L̄n = Sn[Rabcd] + Tn[Rabcd,∇a] , (6.13)

where Sn[Rabcd] is linear in A′′(r) when evaluated on (3.1) and does not involve higher-derivative

terms, and where Tn[Rabcd,∇a] vanishes (or it is a total derivative) for the same ansatz.

7 Conclusions and Outlook

Let us close with a few observations and possible future directions.

Computation of higher order counterterms. We have implemented the algorithm of [4] in

Mathematica to obtain the quartic and quintic counterterms for pure AdSd+1 gravity. It would be

interesting to see if the methods of [5, 8] allow easier computation of higher orders. Formulating

the algorithm on a basis of Weyl and Schouten tensors may also reveal finer structures in the

counterterms.

Higher-curvature gravities in the bulk. We have seen that starting from Einstein gravity in

the (d+ 1)-dimensional bulk, the effective d-dimensional higher-curvature theories induced on the

brane satisfy holographic c-theorems. What would happen if the bulk gravitational theory were

itself a higher-curvature theory? It seems likely that the c-theorem we have proven is an imprint

of the healthy dynamics of bulk Einstein gravity: good parents raise good children. In that case,

we would expect it to fail for a general higher-curvature bulk theory. Natural exceptions to be

expected are Lovelock gravities [43, 44], which also have second order equations. In fact, it has

been suggested in [62] that in that case the counterterm at a given order is a linear combination of

the same Einstein gravity-induced counterterm plus a new piece proportional to the d-dimensional

Lovelock density of the corresponding order. Hence, for instance, L3 would be a linear combi-

nation of (2.17) plus the cubic Lovelock density X6, and so on. It would then follow that these

modified brane actions also satisfy holographic c-theorems, since the Lovelock terms satisfy the

required conditions—namely, second-order on-shell action and linearity in A′′(r) when evaluated

on the (3.1) ansatz. On a different front, it would be interesting to study possible implications or

connections of the present results, both for Einstein gravity and higher-curvature bulk theories, to

the ‘Kounterterm’ holographic renormalization approach, which requires Weyl-flat boundaries and

(in even d) vanishing Euler class [54, 63, 64].

Counterterms as Born-Infeld gravities in higher-dimensions? In Section 5.5, we showed

that the order-n counterterm Lagrangian Ln coincides, when evaluated on the holographic c-

theorem metric ansatz (3.1), with the general term resulting from the expansion of the Born-

Infeld-type generalization of NMG [25]. This suggests that the full three-dimensional counterterms

Lagrangian might be rewritten in such a Born-Infeld form plus a possible term which would vanish
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when evaluated on the RG-ansatz metric (3.1). A possible d-dimensional generalization of these

observations is far from obvious at the moment, but a quick inspection of some low-dimensional

cases suggests that the modified Born-Infeld-like Lagrangian

L(d)
BI = α

[
det
(
δba + βGba

)] 1
d−1

(7.1)

also fulfills a simple holographic c-theorem. Moreover, when (7.1) is evaluated on-shell (on (3.1))

and expanded order by order, we find densities B(n)|A with the same functional dependence on A

as in the on-shell counterterm Lagrangians (4.1). We have found, however, no straightforward way

to define α and β such that the relative (overall) coefficients match our findings in equation (4.1).

It would be interesting to analyze this possibility in more detail and, more generally, to study the

properties of the Lagrangian defined by (7.1).

Holographic c-theorem gravities and scalar modes. We have seen that the counterterm

Lagrangians of the lowest orders often satisfy additional properties besides the holographic c-

theorem. One of them is the absence of the scalar mode that generically appears in the linearized

spectrum around maximally symmetric backgrounds of higher-curvature theories—see e.g., [60].

Many higher-curvature theories which satisfy the holographic c-theorem also seem to share this

property. In fact, it has recently been proven in [50] that in d = 3 all the higher-curvature theories

that satisfy a holographic c-theorem propagate no scalar mode. It would be interesting to prove or

disprove this for d ≥ 4. Observe that the class of theories which do not propagate the scalar mode

is larger than the class of theories that admit a holographic c-theorem, so the question is whether

or not the latter class is fully contained within the former.

In the case considered in this work, it seems natural that the higher-curvature gravities holo-

graphically induced on the brane should propagate no scalar mode when linearized around maxi-

mally symmetric backgrounds. This fact is true in d = 3 to all orders, as we have just said, and in

general d at least for n = 2. After all, these theories are induced from Einstein gravity in AdSd+1.

And from the bulk perspective and to linear order, it was shown already in [12] that one can choose

an axial TT gauge for the (massless spin-2) d+1-dimensional graviton to induce an almost massless

spin-2 d-dimensional graviton on the brane, plus an infinite tower of massive spin-2 modes.

On a similar note, it was recently shown in [65] that the effective action of wedge holography

(with two branes instead of one), which has the same structure as the brane effective action, could

be described as a ghost-free multi-gravity. Again, the important point here was the fact that the

bulk is Einstein gravity, so the brane effective action should not have ghosts. It could be interesting

to investigate the absence of scalar modes in this approach.
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