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1 Introduction

Dynamical complex scalar fields may play an important role in the early Universe. Here
we consider (composite) complex scalar fields subject to an approximate U(1) symmetry.
For a homogeneous field configuration, the corresponding approximately conserved charge
corresponds to a rotation of the complex scalar in field space, i.e., a non-vanishing velocity
for the angular degree of freedom. The angular motion may be a source of dark matter
generation [1]. Moreover, this motion spontaneously breaks CP and can thus contribute
to the generation of a matter antimatter asymmetry [2]. Concrete realizations of this are
the Affleck-Dine (AD) mechanism [3], spontaneous baryogenesis [4, 5], or axiogenesis [6].

In AD baryogenesis, the role of an rotating complex AD field is naturally played by
a condensate of scalar particles aligned along a flat direction of the scalar potential of
the minimal supersymmetric standard model (MSSM). See [7] for the list of the MSSM
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flat directions and [8] for a review on their dynamics. The rotation is induced by higher-
dimensional baryon or lepton number-violating operators and the charge associated with
this rotation is transferred to thermal bath through the decay of the AD field into Standard
Model (SM) fermions. In the more recently proposed axiogenesis scenario, the rotating
complex field is instead a fundamental scalar, namely the complex Peccei-Quinn (PQ)
field introduced to explain the absence of any observed CP violation in QCD [9, 10].
The angular degree of freedom is referred to as the axion [11, 12], which simultaneously
provides a promising dark matter candidate [13–15]. The charge transfer between the
rotating axion and the SM thermal bath occurs via sphaleron interactions. The kinetic
energy of the axion field arising from the rotation of the PQ field is transferred into an
axion dark matter density through the kinetic misalignment mechanism [1].

In this paper, we study the charge transfer between Bose-Einstein condensates (BECs)
of different complex scalar fields in the presence of a thermal bath. For two or more scalar
fields coupled through efficient interactions with a thermal bath, the U(1) charge will be
redistributed among the fields and the thermal bath to minimize the free energy. If after
coupling to the thermal bath, the system has more than one relevant conserved charge,
this additional symmetry implies that a charge transfer between the scalar fields would
be accompanied by a large chemical potential in the thermal bath so that the free energy
condition disfavours a charge transfer. On the other hand, in the absence of additional
symmetries we find that the charge transfer can be very efficient, and must be taken
into account in cosmologies involving rotating complex scalar fields. Our work is related
to earlier works that discuss the generation of a non-zero velocity of an axion field by
asymmetries of other particles or fields, such as a quark chiral asymmetry [16], helical
magnetic fields [17], and a baryon asymmetry [18].

Concretely, we study a system of two complex scalar fields coupled to a thermal bath
via sphaleron, Yukawa, and gauge interactions. We consider one of the fields, the ‘AD field’,
to have a large initial charge encoded in an angular motion. The second field, the ‘PQ field’,
is initially at rest at the minimum of its zero-temperature Mexican-hat scalar potential with
the PQ symmetry spontaneously broken. Minimizing the free energy of this system, we
demonstrate that in the ground state of the system, the charge has largely been transferred
to the axion field (i.e., the angular component of the PQ field) unless additional conserved
symmetries (such as a chiral symmetry for the fermions of the thermal bath) require that
the transfer involve a large fermion asymmetry. This charge transfer occurs once the
transfer rates governing this process are efficient compared to the Hubble expansion rate
and once the charge associated with the AD field rotation has been red-shifted close to a
critical value. At earlier times, the system is trapped in a state with the charge largely
stored in the rotation of the AD field. For sufficiently large initial values for the AD field, a
phase of AD field domination with a subsequent kination era by the axion field is possible.

Thermal contributions to the effective potential governing the dynamics of the AD
field and the axion can further facilitate the charge transfer. We compute the relevant
thermodynamic quantities in the presence of rotating scalar fields to obtain the one-loop
thermal effective potential of the coupled system of the AD field, axion, and thermal bath.
If the thermal bath contains particles which obtain zero-temperature masses from a finite
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AD field value (e.g., due to a Yukawa coupling or due to the spontaneous breaking of
a gauge symmetry by the AD field), the resulting contribution to the effective potential
prefers a vanishing AD field value. When the total charge is sufficiently small (but is still
above the critical value), this creates an absolute minimum at the origin, while the state
with a large AD field value remains a local minimum. This is analogous to the shape
of the potential that appears in thermal inflation models [19, 20]. As Hubble expansion
dilutes the charge of the coupled system, the latter vacuum is eventually destabilized
and all the remaining charge is transferred to the axion field. This process may occur
via nucleation of bubbles of true vacuum in which the axion field is rotating [21–23] or
through a more gradual phase mixing driven by sub-critical bubble formation [24–27]. The
former will generate gravitational waves. In both cases, fluctuations of the axion field are
created, which contribute to axion dark matter. Also, the formation of Q-balls [28, 29] is
possible, and the fluctuations associated with the Q-ball formation and decay may lead to
an additional source of axion dark matter.

The remainder of this paper is organized as follows. In section 2, we discuss charge
transfer neglecting the thermal corrections to the potential of the AD field and clarify the
conditions for the transfer to occur by computing the effective potential for a given finite
charge density. We demonstrate how additional conserved charges can prevent the charge
transfer. In section 3, we include the thermal correction to the AD field potential and show
how the shape of the potential is modified. Phenomenological implications of the charge
transfer are discussed in section 4. Finally, we give a summary and discussion in section 5.
Technical details can be found in the appendices. Appendix A provides numerical solution
for the Boltzmann equations of section 2. A derivation of the effective potential of the
Affleck Dine field, key to the discussion in section 3, is given in appendix B.

2 Charge transfer in the zero-temperature potential

In this section, we discuss the charge transfer between a homogeneous complex scalar field
φ and an axion field a = fθa and illustrate the conditions for this charge transfer to occur
efficiently. Throughout this paper, we assume that the radial direction of the complex PQ
symmetry breaking field P is fixed at its VEV∼ f , so that we can integrate it out and use
the effective field theory of the axion field without the radial direction,

P = 1√
2
feiθa . (2.1)

In particular, we discuss the dynamics of the axion at T � f, |φ|, where both complex
scalar fields can be described as coherently rotating in field space. This does however not
exclude a restoration of the PQ symmetry at higher temperatures. The era with |φ| < T

is discussed in detail in section 3.
We assume that the complex scalar field φ initially rotates with a large radius. The

rotation can be initiated by the Affleck-Dine (AD) mechanism [3], and we call the rotating
scalar field φ the AD field. We refer to the radial and angular directions of φ as r and θφ,
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respectively,

φ = 1√
2
reiθφ . (2.2)

To be concrete, we assume that the zero temperature potential of the AD field is nearly
quadratic, m2|φ|2, which is indeed the case when the AD field is a flat direction in the
MSSM. See [7] for the list of MSSM flat directions. Throughout this paper we will assume
m � f , motivated e.g., by the QCD axion with an axion decay constant constrained
to f > 108 GeV and low scale supersymmetry with a supersymmetry breaking scale of
m ∼TeV. In realistic cases, the zero temperature potential is not exactly quadratic. Indeed,
the MSSM flat directions receive logarithmic corrections by renormalization group effects,

V (φ) = m2|φ|2
(

1 +K ln φ2

M2

)
, (2.3)

where K is a constant of O(10−3 − 10−1) and M is a mass scale. We assume K > 0 so
that the rotation is stable against fragmentation into Q-balls [30]. The potential of the AD
field moreover receives thermal corrections, which we will discuss in section 3.

We introduce interactions that can transfer the charge of the AD field to the axion field,
inducing rotations of the axion field with almost all of the charges eventually transferred to
the axion. For simplicity, we will take the axion field to be at rest initially, θ̇a = 0. If the
axion field has a non-zero initial velocity, this should be included in the total charge (see
eq. (2.6) below), and an analogous analysis can be perfomed. We discuss several models
to illustrate the conditions for the efficient transfer to occur. In particular, section 2.1
computes the charge transfer rate in a situation where the charge transfer can occur and
section 2.2 shows how additional (approximate) symmetries can prevent the charge transfer.

2.1 Charge transfer through an anomalous coupling to a gauge field

Setup and conserved charge. We first consider a simple example that will illustrate
the condition on the free energy for the transfer to occur. We introduce a non-Abelian
gauge field G that couples to the AD and axion fields through a quantum anomaly,1

(θφ + θa)GµνG̃µν . (2.4)

Such an interaction of the AD field with a gauge field can be generated through a fermion
which is charged under the non-Abelian gauge group and which obtains a mass from the
coupling with the AD field, see appendix B for a concrete realization. We may neglect

1The charge transfer also occurs for a coupling to an Abelian gauge field F , i.e., (θφ + θa)Fµν F̃µν .
However, its dynamics is much more complicated because, contrary to the case of non-Abelian gauge fields,
Fµν F̃µν can be non-vanishing only in a non-equilibrium situation. The charge transfer is then associated
with the production of helical magnetic fields, which participate in long-distance physics as the magnetic
flux is not cut, thereby leading to the non-linear dynamics of chiral magnetohydrodynamics [31]. On the
contrary, magnetic fields in non-Abelian gauge theories are screened by the magnetic mass due to their self
interactions, which allows us to analyze deviations from thermal equilibrium at linear order. Throughout
this paper, we only consider the coupling to non-Abelian gauge fields for simplicity.
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Figure 1. Free energy (2.7) for different values of the total charge q, leading to a finite vev for the
AD field for q above the critical value qc. For thermal corrections, see section 3.

the fermion dynamics and simply use the interaction in eq. (2.4) as long as the AD field
value, and hence the fermion mass, is much larger than the temperature. This assumption
will break down towards the end of the transfer; we will comment on the relevant fermion
dynamics below. The interaction (2.4) breaks the axion shift symmetry and the U(1)
symmetry of the AD field down to the linear combination,

d
dt
[
R3
(
θ̇φr

2 − θ̇af2
)]

= 0 , (2.5)

allowing the charge of the AD field to be transferred to the axion field. Here R(t) denotes
the scale factor of the Friedmann Robertson Walker metric. The total comoving charge
R3q remains constant, with the physical charge

q = qφ − qa = θ̇φr
2 − θ̇af2 = mr2 − θ̇af2 (2.6)

decreasing as q ∝ R−3 due to cosmic expansion, where in the last equality we have used
θ̇φ = m.2

Free energy. Assuming that the charge transfer is efficient, whether the charge is dom-
inantly stored in the AD or axion fields is determined so that the thermodynamic free
energy density of the system is minimized. The contribution of a coherent rotation to the
free energy density is simply the energy density.3 The AD field should have a vanishing
ellipticity to minimize the energy density. Using the charge conservation, the (free) energy
density can then be expressed as a function of the axion velocity θ̇a or as a function of the

2This equality follows from the AD equation of motion which permits a stationary solution ṙ = 0 for
θ̇φ = m with equal kinetic and potential energy according to the virial theorem.

3The change in (Helmholtz) free energy corresponds to the maximal amount of work a thermodynamic
system can perform at a constant temperature. It can be obtained from the canonical partition function,
which assumes a constant temperature and the number of particles. In practice, it is simpler to start from
the grand canonical partition function, which assumes a constant temperature and chemical potential, and
then obtain the Helmholtz free energy through a Legendre transformation. See appendix B for details.
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AD field radius r,

ρ = m2r2 + 1
2 θ̇

2
af

2 = mq +mθ̇af
2 + 1

2 θ̇
2
af

2 ,

= m2f2
[

q2

2m2f4 +
(

1− q

mf2

)
r2

f2 + r4

2f4

]
, (2.7)

which is minimized at θ̇a = −m. The radius of the AD field at this equilibrium point is

r2
eq = r2

0 − f2, (2.8)

where r0 =
√
q/m is the radius of the AD field when all of the charge q is stored in the

AD field. If q � mf2 (r0 � f), the charge remains dominantly stored in the AD field.
Since cosmic expansion implies r0 ∝ R−3/2, even if r0 � f initially, cosmic expansion will
dilute the charge in the AD field, reducing r0 to any critical value rc, triggering the charge
transfer to the axion field. Once q (r0) is close to mf2 (f), the larger fraction of the charge
is transferred to the axion field, and for q → mf2 ≡ qc (r0 → f ≡ rc), almost all charge is
ends up in the axion field as req → 0, see figure 1.

For q < qc, r2
eq formally becomes negative, signaling the breakdown of our computation.

In fact, as q approaches qc, the radius of the AD field decreases. The mass of the fermion
charged under G and coupling to the AD field, responsible for the quantum anomaly in
eq. (2.4), is now much smaller than the temperature and hence this fermion can no longer
be integrated out. The chiral asymmetry of the fermions should hence be also taken into
account in the conservation law. Also, the charge asymmetry of the AD field should be
no longer interpreted as a coherent rotation, but is rather given by particle-antiparticle
asymmetry. The asymmetries of the fermion and the AD field are, however, of the order
of θ̇aT 2, which is much smaller than the charge in the axion rotation. With this, we can
estimate the velocity of the axion field from charge conservation,

θ̇a = − q

f2 = −mr2
0
f2 . (2.9)

See section 3 for a discussion of the transition region q ∼ qc accounting for thermal correc-
tions.

In the above discussion, we implicitly assumed that the thermal bath is “large”, namely,
that the back-reaction of the AD and axion fields to the thermal bath is negligible. In this
picture, the equilibrium state minimizes the combined free energy of the AD and axion
fields. One the other hand, when the energy of the AD field is comparable to the radiation
energy, we must take into account the backreaction and treat the thermal bath together
with the AD and axion fields as an isolated system. In this picture, we should rather
maximise the entropy of the system, but the equilibrium state is still given by minimizing
the energy of the AD and axion fields, since that is the state with the maximal temperature
of the thermal bath and hence with the maximal entropy.

Transfer rate. We have so far implicitly assumed that the charge transfer rate is larger
than the Hubble expansion rate. Let us now estimate this transfer rate, see also appendix A
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for numerical results. The Boltzmann equations governing the transfer are

d
dt
(
θ̇φr

2
)

= −γsT 2
(
θ̇φ + θ̇a

)
− 3Hθ̇φr2,

d
dt
(
θ̇af

2
)

= −γsT 2
(
θ̇φ + θ̇a

)
− 3Hθ̇af2. (2.10)

Here the first terms encode the charge transfer due to sphaleron processes, where γs =
csph α

4
GT is the sphaleron transition rate with e.g. csph ' 100 for SU(3) sphalerons in the

SM and αG = g2/(4π) denoting the gauge coupling constant, and the second terms account
for the cosmic expansion. At the equilibrium, d

dt(R3θ̇af
2) = 0, this yields θ̇a = −θ̇φ = −m,

confirming the computation based on the free energy.
For r0 > f , starting from the initial condition θ̇a = 0, the velocity of the axion field

approaches the equilibrium value −θ̇φ sourced by the term γsT
2θ̇φ/f

2. The rate of the
transfer of comoving charge from the AD to axion fields is therefore given by

Γ(r0 > f) = −
d
dt(qaR3)

(qa − qeqa )R3 = γsT
2(θ̇φ + θ̇a)

f2(θ̇a +m)
= T 2

f2 γs with qeqa = −mf2, (2.11)

which is suppressed by a factor T 2/f2 in comparison with the sphaleron transition rate γs.
Note that in this regime, only a very small fraction of the initial AD charge is transferred
to the axion, q̇φ/qφ � q̇a/qa.

For r0 < f , charge conservation implies the equilibrium value θ̇a = −mr2
0/f

2. The
rate is therefore

Γ(r0 < f) =
d
dt(qaR3)
qeqa R3 ' −γsT

2θ̇φ
−mr2

0
= T 2

r2
0
γs with qeqa = −mr2

0, (2.12)

which is enhanced compared to eq. (2.11) by a factor of f2/r2
0. In this regime, the charge

density in the AD field is rapidly decreasing, q̇φ/qφ ∼ ṙ/r ∼ γsT
2/r2

0. Note that growth
rate of the axion charge in eq. (2.12) is the same as this depletion rate for the AD field.
This can be understood from the observation that once the AD field is depleted, the charge
conservation requires that the depleted charge go to the axion field. In this picture, r0 < f

is crucial, so that at the equilibrium the AD field loses almost all of its charge density.
Note that we have assumed r0 > T . Otherwise, the coherent picture of the AD field is not
applicable and the transfer rate is simply given by γs.

To determine if the charge transfer is efficient, we compare these comoving charge
transfer rates with the Hubble expansion rate. For r0 > f , the transfer rate decreases
in proportion to T 3, faster than the Hubble expansion rate does. If the equilibrium was
not reached initially, it is never reached when r0 > f . Even if the equilibrium is reached
initially, the decoupling may occur later. For these cases, the axion velocity at a given
temperature is given by

θ̇a ' −m×min
[
1, Γ(r0 > f)

3H

]
= −γsT

2m

3f2H
∝ T for Γ� H. (2.13)

Note that the axion velocity decreases only linearly with T , slower than what would be
caused by the Hubble friction (∝ T 3), so the axion velocity at a given temperature is
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dominated by the charge transfer at that temperature and rather insensitive to previous
charge transfer at higher temperatures. Once r0 drops below f , the transfer rate remains
constant (recall r2

0 ∝ q ∝ T 3) and thus eventually dominates over the Hubble expansion
rate. Even if the axion field has not yet reached the equilibrium value when r0 ∼ f (for
which the AD field would collapse toward the origin given an efficient charge transfer), the
equilibrium is eventually reached, and almost all charge is transferred into the axion field.
In summary, cosmic expansion acts towards removing the metastable minimum of vacuum
potential of the AD field at finite field value req and eventually ensures an efficient transfer
of the AD charge to the axion field.

Grand canonical ensemble. Before closing this subsection, we compute the equilibrium
value of r using the grand canonical ensemble with the chemical potential µ associated with
the total charge q and obtaining the free energy density by a Legendre transformation. This
framework is reviewed in appendix B and used in the remainder of this paper. The effective
potential from the rotation of the AD field and axion fields under a fixed chemical potential
µ is4

Vµ,eff(r, µ) = 1
2m

2r2 − 1
2µ

2(r2 + f2), (2.14)

which is related to the thermodynamic pressure p after extremizing it with respect to r
(see appendix B). The relation between q and µ is

q = −∂Vµ,eff(r, µ)
∂µ

= µ(r2 + f2). (2.15)

In our context, we would like to minimize the free energy for a fixed q rather than a fixed
µ since we do not have the bath for the charge q. Hence, the effective potential in our
context is obtained through the Legendre transformation,

Veff(r, q) = Vµ,eff(r, µ) + µq = 1
2m

2r2 + q2

2(r2 + f2) . (2.16)

This is minimized at r2 = q/m − f2, implying µ = m. Using the relation (2.15) and
q = θ̇φr

2 − θ̇af2, we obtain the equilibrium value θ̇φ = −θ̇a = m.

2.2 Charge transfer including charged fermions

Conserved charges and free energy. We next consider an example that will illustrate
an important condition on the symmetries of the system for the transfer to occur in the
presence of additional (approximate) symmetries. To the system discussed in the previous
subsection, let us add a gauge charged Dirac fermion pair ψ and ψ. If the Dirac fermion is
massless, there are three conserved charges (up to cosmic expansion),

θ̇φr
2 − θ̇af2 ≡ q( 6= 0) , 1

2
(
qψ + qψ̄

)
− θ̇af2 ≡ qA(= 0) , qψ − qψ̄ ≡ qB(= 0), (2.17)

4Here the subscript µ is a reminder that this effective potential is obtained under a fixed µ.
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where qψ and qψ̄ are particle-antiparticle asymmetry of ψ and ψ̄, respectively, and we have
chosen the initial condition so that the latter two conserved charges vanish. The associated
chemical potentials are µ, µA, and µB, respectively. The chemical potential-dependent part
of the effective potential is (see appendix B)

−Vµ,eff(r, T,µ) ⊃ 1
2µ

2r2 + 1
2(µ+ µA)2f2 + dψ

6

(1
4µ

2
A + µ2

B

)
T 2, (2.18)

where µ collectively denotes the chemical potentials µ = (µ, µA, µB), and dψ is the dimen-
sion of the gauge representation of ψ, i.e., dψ = 1 for a gauge-singlet Dirac fermion. The
relation between the conserved charges and chemical potentials is

q = −Vµ,eff(r, T,µ)
∂µ

= (µ+ µA)f2 + µr2,

qA = −Vµ,eff(r, T,µ)
∂µA

= (µ+ µA)f2 + dψ
12µAT

2,

qB = −Vµ,eff(r, T,µ)
∂µB

= dψ
3 µBT

2. (2.19)

Using qA = qB = 0, we obtain

µ = q

r2
1 + dψT

2/(12f2)
1 + dψT 2/(12r2) + dψT 2/(12f2) ,

µA = − q

r2
1

1 + dψT 2/(12r2) + dψT 2/(12f2) ,

µB = 0. (2.20)

The fixed-q effective potential from the AD and axion rotations and the asymmetry of ψ
is obtained as

Veff(r, T, q) = Vµ,eff(r, T,µ)qA,B=0 + µq

= 1
2m

2r2 + q2

2r2
1 + dψT

2/(12f2)
1 + dψT 2/(12r2) + dψT 2/(12f2) '

1
2m

2r2 + q2

2r2 , (2.21)

where we assume r, f � T in the last inequality. The effective potential is minimized at
r2 ' q/m = r2

0. At the equilibrium, the charge of the axion rotation is

(µ+ µA)f2 = dψ
12mT

2 1
1 + dψT 2/(12f2) '

dψ
12mT

2, (2.22)

where we used f � T in the second equality.
In contrast to the situation discussed in section 2.1, the axion obtains a subdominant

fraction of the charge as long as q > mT 2 (i.e., r0 > T ) even if r0 . f . This is due to the
second conservation law in eq. (2.17); for the axion rotation to obtain a large charge, the
charge asymmetry of the fermion must be also large, leading to a large free energy. If the
Dirac fermion has a non-zero Dirac mass, the conservation law is violated and the axion
field can obtain a large charge. In general, in order for the axion field to obtain most of
the charge, all symmetries that would require large charge asymmetry of fermions must be
violated. For example, any chiral symmetry with G anomaly must be explicitly broken.
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Transfer rate. Let us estimate the transfer rate including the mass term mψψψ. The
Boltzmann equation is given by

d
dt
(
θ̇φr

2
)

= −γs
(
θ̇φT

2 + θ̇aT
2 + qχ

)
− 3Hθ̇φr2,

d
dt
(
θ̇af

2
)

= −γs
(
θ̇φT

2 + θ̇aT
2 + qχ

)
− 3Hθ̇af2,

d
dtqχ = −2γs

(
θ̇φT

2 + θ̇aT
2 + qχ

)
− γχqχ − 3Hqχ, (2.23)

where γχ is the chiral symmetry breaking rate ∼ αGm
2
ψ/T and qχ = qψ + qψ. Starting

from the initial condition θ̇aT 2 = qχ = 0 and θ̇φ = m, the fermion charge qχ first reaches
the quasi-equilibrium value determined by d

(
qχR

3) /dt ' dqχ/dt = 0,

qA,eq = − 2γs
γχ + 2γs

(
θ̇φ + θ̇a

)
T 2, (2.24)

with a rate

d
dt(R3qχ)
R3qeqχ

' −
2γs
(
θ̇φ + θ̇a

)
T 2

qA,eq
= γχ + 2γs, (2.25)

for qχ � qeqχ . As we will see shortly, the system reaches the true equilibrium state with a
rate suppressed by T 2/min(r2

0, f
2) and the assumption of qχ reaching the quasi-equilibrium

value is consistent. Putting qA,eq to eq. (2.24), we obtain the Boltzmann equation of θ̇φr2

and θ̇af2 at this quasi-equilibrium,

d
dt
(
R3θ̇φr

2
)

= d
dt
(
R3θ̇af

2
)

= − γsγχ
γχ + 2γs

(
θ̇φ + θ̇a

)
T 2R3. (2.26)

For γχ � γs, we recover eq. (2.10), i.e., an efficient charge between the AD field and the
axion.

Applying the same discussion as section 2.1, we obtain the transfer rate from the AD
to axion field

Γ = γsγχ
γχ + 2γs

T 2

f2 + r2
0
' min(γs, γχ)× T 2

min
(
f2, r2

0
) . (2.27)

As anticipated, the rate is much smaller than the rate in eq. (2.25) and the assumption of
qχ first reaching the quasi-equilibrium value is justified. For γχ < γs, the transfer rate Γ
decreases slower than H does even if r0 > f . Thus, even if the transfer is not effective at
high temperatures, it can be effective at low temperatures.

3 Thermal potential and charge transfer by thermal fluctuations

In the previous section, we have shown how charge can be transferred from an AD field to
an axion field assuming a zero-temperature quadratic potential for the AD field. In realistic
setups, the AD field couples to the thermal bath and may obtain a non-negligible thermal
potential. In this section, we discuss the effect of thermal corrections to the potential and
show that the charge transfer may involve thermal tunneling.
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3.1 Effective potential for the AD field

Setup. Let us first discuss the dynamics of the AD field taking into account thermal
corrections, but for now ignoring the charge transfer to the axion field. We consider the
following exemplary setup:

• The AD field spontaneously breaks a gauge symmetry, giving a mass gr to the gauge
bosons.

• The AD field moreover couples to fermions ψ in a thermal bath (whose mass does
not depend on the AD field), such that the charge of the AD field can be transferred
into a particle-antiparticle asymmetry of these particles.

The conserved charge is

q = qφ + qψ (3.1)

with the associated chemical potential µ. Without loss of generality, we take q > 0. In
realistic setups, there typically also exist fermions which contribute to the conserved charge
q and obtain masses from the AD field. We analyse such a case in appendix B and find
that the qualitative behavior of the potential does not change.

Local minima of the effective potential. Following the formulation described in ap-
pendix B, parts of the effective potential depending on the AD field radius r and the total
charge q are given by

Veff(r, T, q) = V0(r) + Vg(r, T ) + Vq(r, T, q),

V0(r) = 1
2m

2r2, Vg(r, T ) = 2Ng
T 4

2π2

∫
dxx2log

(
1− e−

√
x2+g2r2/T 2

)
,

Vq(r, T, q) = 1
12µ(r, T, q)2

(
T 2 + 6r2

)
+ 1

8π2µ(r, T, q)4, (3.2)

q = 1
6µ(r, T, q)

(
T 2 + 6r2

)
+ 1

6π2µ(r, T, q)3. (3.3)

Here V0 is the vacuum potential of the AD field and Vg is the free energy of Ng gauge
fields which obtain a mass from the AD field. (To be precise, a resummation to include the
thermal mass of the gauge boson is necessary, but we find that this does not change the
qualitative behavior.) Vq is the q-dependent part of the free-energy contribution associated
with the asymmetry of ψ and the rotation of the AD field. The chemical potential µ should
be determined as a function of (r, T, q) according to eq. (3.3). The fluctuations of the AD
field also contribute to the free energy, but their inclusion does not change the qualitative
behaviors of the free energy; see appendix B.

In figure 2, we show the effective potential as a function of r for several values of q.
Here we take m = 10−4T . At large q > T 3, the free-energy density has a unique minimum
at r '

√
q/m = r0. As q approaches T 3, r0 becomes a local minimum and a global

minimum appears at a smaller r. For q � T 3, r0 is no longer a local minimum and the
unique minimum is at r = 0. This behaviour is due to several competing effects as we
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Figure 2. Effective potential including thermal contributions for the case without a charge transfer
to the axion as a function of the radius of the AD field r for several total charges q. The left panel
shows a global picture, while the right panel focuses on the potential around the minimum at r0.

explain below. Large values of the AD charge imply a centrifugal force which creates an
a local minimum for the radial component of the AD field at finite r. This is completely
analogous to our observation in section 2.1 before the charge transfer to the axion becomes
efficient. On the other hand, thermal masses for the gauge bosons drive a restoration of
the gauge symmetry at high T , thus pushing the order parameter r of the spontaneous
gauge symmetry breaking to zero. Consequently we expect a global minimum at r = 0 to
develop once q/T 3 . 1 [29].

Let us understand this behavior analytically. The first and second derivatives of Veff are

∂Veff
∂r

= ∂(V0 + Vg)
∂r

− µ2r,

∂2Veff
∂r2 = ∂2(V0 + Vg)

∂r2 − µ2 − 2µr∂µ
∂r
. (3.4)

Thus, Veff has extrema at r = 0 and at non-zero r which satisfy m2 + (∂Vg/∂r)/r =
µ(r, T, q)2. When ∂Vg/∂r is negligible, in the limit m � T , the latter has a solution
r2 ' q/m− T 2/6 ≡ r2

eq. So when q � mT 2, there is an extrema at r =
√
q/m = r0.

The second derivative at r = 0 is(
∂2Veff
∂r2

)
r=0

= m2 + g2Ng

6 T 2 − µ2. (3.5)

By using the relation between q and µ at r = 0, one can show that if q & 0.07g
√
NgT

3,
the third term dominates and the second derivative is negative; r = 0 is a maximum.
If q . 0.07g

√
NgT

3, r = 0 is an minimum. This can be intuitively understood in the
following way. Having r = 0 requires that all charge be stored in the chiral asymmetry of
the fermions and hence the chemical potential is fixed. For large q, the chemical potential
is so large that the thermal mass from the gauge bosons cannot keep the AD field at the
origin and hence a BEC forms.
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To obtain the second derivative at r = req, we need ∂µ/∂r. This can be obtained by
differentiating eq. (3.3) with respect to r. This yields

(
∂2Veff
∂r2

)
r=req

=

V ′′0 + V ′′g −
V ′0 + V ′g

r
+

4r
(
V ′0 + V ′g

)
r2 + 1

6T
2 + 1

24π2r

(
V ′0 + V ′g

)

r=req

, (3.6)

where the primes denote the derivative with respect to r. For q � mT 2, r2
eq ' q/m� T 2.

For such large r, V ′g is exponentially suppressed and(
∂2Veff
∂r2

)
r=req

' 4m2 > 0, (3.7)

so req is a minimum. As q approaches mT 2, req approaches T and Vg is not negligible, and
the minimum at req eventually disappears. The non-zero value of r for large enough q can
be understood as a result of the centrifugal force provided by the rotation.

For mT 2 � q . 0.07g
√
NgT

3, there are two minima at r = 0 and req. The free
energies at these two minima are

Veff(0, T, q) ' 3q4/3 ,

Veff(r0, T, q) ' mq + π2Ng

15 T 4 ' π2Ng

15 T 4 . (3.8)

Therefore, for q . 0.3N3/4
g T 3, the minimum at r = 0 is the global minimum and that

at req is a local minimum. The inequality is indeed satisfied for q . 0.07g
√
NgT

3 with
perturbative g.

To sum up, if q & 0.07g
√
NgT

3, there is a unique minimum at r2 = q/m and if
mT 2 � q . 0.07g

√
NgT

3, there is a global minimum at r = 0 and a local minimum at
r2 = q/m. The local minimum disappears as q approaches mT 2.

Additional contributions to the thermal potential. Before closing this subsection,
we point out another possible contribution to thermal potential of r that appears in realistic
setups and can destabilize the local minimum at r2 = q/m. After integrating out the heavy
degrees of freedom that obtain masses from the AD field, some of the couplings of the low
energy effective theory may depend on the AD field value. Consequently, the corrections
to the free energy arising from these couplings depend on the AD field value, generating
additional thermal potential of the AD field. Let us consider an exemplary situation
where the gauge coupling constant depends on the AD field and a thermal potential ∼
α2T 4ln(r2/T 2) is generated [32]. The potential gradient from this term exceeds the gradient
arising from V0 + Vq at r2 = q/m if q < α2T 4/m (assuming T < q/T 3(m/α2)), leading to
a destabilization of the local minimum at r2 = q/m.

3.2 Effective potential including the axion

We now include the axion field. As we will see, in this case the origin r = 0 becomes
the absolute minimum more easily than in the case discussed above, which neglected the
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Figure 3. Effective potential including thermal contributions for the case with charge transfer to
the axion as a function of the radius of the AD field r for several total charges q.

charge transfer to the axion field. This is in line with the discussion in section 2.1, where
we saw that the charge transfer to the axion drives the local minimum for the AD field to
zero. The total conserved charge is now

q = qφ + qψ − qa (3.9)

with the associated chemical potential µ.

Local minima of the effective potential. The effective potential is given by (see
appendix B)

Veff(r, T, q) = V0(r) + Vg(r, T ) + Vq,a(r, T, q),

Vq,a(r, T, q) = 1
12µ(r, T, q)2

(
T 2 + 6r2 + 6f2

)
+ 1

8π2µ(r, T, q)4, (3.10)

q = 1
6µ(r, T, q)

(
T 2 + 6r2 + 6f2

)
+ 1

6π2µ(r, T, q)3. (3.11)

The expression is greatly simplified when q � Tf2, for which the µ4 term in Vq,a and the
µ3 term in q are always negligible. Then Vq,a is given by

Vq,a(r, T, q) '
3q2

6(r2 + f2) + T 2 . (3.12)

In the upper panel of figure 3, we show the effective potential as a function of r for
several representative values of q. When q is very large, there is a unique minimum at
r = r0. As q decreases, even if q > T 3, r0 becomes only a local minimum and the global
minimum is at r = 0. As q approaches qc, the local minimum approaches 0 and eventually
disappears. The lower panel shows the evolution of the effective potential for a fixed m,
f , and q/T 3 around the time when the transfer completes. Here Tc is the temperature
at which q = mf2. The minimum at r0 becomes an local one as T approaches Tc, and
disappears for T < Tc.

Let us understand this behavior analytically. The first and the second derivatives of
Veff are given by eq. (3.4), and the second derivative at r = 0 is given by eq. (3.5). When
q � f2T , eq. (3.11) gives µ(0, T, q) ' q/f2 � T . Then the second derivative of Veff at r = 0
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is negative, so the origin cannot be a minimum. Instead, there is a unique minimum at r
such that µ(r, q, T ) ' m, namely, r2 ' q/m(� f2). When q < f2T , µ(0, T, q) ' q/f2 < T 2,
so the origin is a minimum. For q > mf2, req is also a minimum. The effective potentials
at r = 0 and req are

Veff(0, T, q) ' q2

2f2 ,

Veff(req, T, q) ' mq + π2Ng

15 T 4. (3.13)

When q > (2π2Ng/15)1/2fT 2, req has a smaller effective potential and is the global mini-
mum, while for q < (2π2Ng/15)1/2fT 2, r = 0 is the global minimum. As q approachesmf2,
req =

√
q/m− f2 approaches T , and Vg eventually destabilizes the local minimum at req.

If q/T 3 > (2π2Ng/15)3/4(f/m)1/2, q drops below mf2 before it drops below
(2π2Ng/15)1/2fT 2. In this case, req continues to be the global minimum until q becomes
very close to mf2. For such a large q/T 3, the AD field dominates the energy density of
the universe before q reaches the critical value and kination domination occurs after the
charge is transferred into the axion field, see section 4.

3.3 Phase transition including the thermal corrections

With the effective potentials we have shown above, we now discuss the evolution of the AD
field and the axion field towards the end of the charge transfer around q = qc. We assume
q/T 3 � 1 and T � m.

When q > (2π2Ng/15)1/2fT 2, the state with almost all charge in the rotation of the AD
field has the least free-energy, and the rotation with r2 = q/m − f2 ' q/m is absolutely
stable. As the temperature decreases, q drops below (2π2Ng/15)1/2fT 2 and r2 ' q/m

becomes a local minimum, while the minimal free energy is achieved by the state where
almost all of charges are in the axion rotation and the AD field is trapped around the origin.
A thermal transition from the local minimum to the absolute minimum can occur, but since
r2 ' q/m� T 2, we expect that the transition is suppressed and does not occur within the
cosmological time scale. As q approaches qc = mf2, r2 = q/m−f2 approaches T 2, and the
transition to the absolute minimum may become efficient. Note that at this point q − qc
is much smaller than qc, so almost all charges have been already transferred into the axion
field before the thermal transition becomes effective. The thermal transition may occur as
a first order phase transition, which proceeds via nucleation of bubbles [21–23], or as phase
mixing, where the two minima are populated via creation of subcritical bubbles [24–27].

Uncertainties in the phase transition dynamics. A full investigation of the transi-
tion dynamics is beyond the scope of the present paper. Instead we highlight only some
differences from the usual phase transition problem: first, the fields relevant for the phase
transition rotate rather than just moving in the radial direction. The effect of the angular
motion in field space and associated conserved charges must hence be taken into account.
Second, the charge can be transferred from the AD field both to the axion field and the
thermal bath. Whereas the transfer rate for the former is suppressed by T 2/f2, the latter
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is only suppressed only by T 2/r2, which is much larger than T 2/f2 when q is close to qc.
Also, the transfer involving the axion may require additional processes, further suppressing
the transfer rate. For example, in the toy model discussed in section 2.2, the transfer rate
into the axion involves the chiral symmetry breaking by the fermion mass. This implies
that the charge transfer during the tunneling process may involve only the AD field and
the thermal bath, or could also involve the axion field. In the former case, we expect
bubbles of true vacuum to form with r = 0 and θ̇a = m in a false vacuum with r = req
and θ̇a = m. In the latter case, bubbles are formed with r = 0 and θ̇a > m, with the
charge of the AD field transmitted to the rotation of the PQ field inside the bubble. Once
these bubbles expand, more charge is converted from the AD field into the axion motion
and/or the thermal bath. Again, a comparison between the two competing transfer rates
is required to understand the dynamics of the bubble expansion. Finally, unlike the AD
field, the axion field does not experience any phase transition during the tunneling; only
the axion velocity changes, which is not an order parameter. This means that sub-critical
bubbles can be more important than the usual case; inside the sub-critical bubble, the AD
field is at the origin while the axion field has a larger charge density than outside. As the
sub-critical bubble collapses, the AD field will revert to large field values, but the excess
of the axion charge inside the bubble can spread out as density waves.

Inhomogeneities in the axion field. The first order phase transition or the phase
mixing at the end of the transfer could in fact be phenomenologically interesting. After the
first order phase transition or the phase mixing, the axion field will have large fluctuations,
which can contribute to axion dark matter if they are not thermalized.5 Whether or
not thermalization occurs will depend on the length scale of the fluctuations, since the
interaction of the axion with the thermal bath is suppressed for long-wavelength modes.
We also note that Q-balls may form when q is close to qc. For q & qc, r is not much above
T , for which the thermal potential becomes comparable to the vacuum potential. Since
the thermal potential is flatter than the quadratic one, fluctuations around the rotating
background grow and Q-balls are formed. This occurs only after the majority of the
charges have been transferred into the axion field, so the basic picture of the transfer is
not altered. However, the fluctuations associated with the Q-ball formation may have
some phenomenological implications, such as the production of axion dark matter. These
observations motivate further studies on the dynamics of the transition, which are beyond
the scope of the present paper. We will instead present a lower bound on the axion dark
matter production based on the homogeneous axion component in section 4.1.

4 Phenomenological applications

In this section, we discuss phenomenological applications of the charge transfer from the
AD field to the axion field.

5One may worry that the fluctuations may produce stable domain walls. We expect this is not the case,
since the fluctuations are produced in sub-horizon modes.
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4.1 Axion dark matter by kinetic misalignment

If the axion field receives a large enough charge, the axion field continues to rotate even
after the Hubble expansion rate drops below the axion mass ma and the axion would
begin to oscillate around the minimum. In this case, axions are produced by the kinetic
misalignment mechanism [1], where the kinetic energy of the axion rotation is transferred
into axion dark matter density. The resulting number density of the axion na is as large
as the charge density qa, so

ρa
s
' maYa = 0.4 eV ma

meV
Ya
400 = 0.4 eV109 GeV

f

Ya
70 , (4.1)

where Ya = qa/s. In addition, the axion abundance can receive contributions sourced
by the inhomogeneous axion component generated in a tunneling or phase-mixing process
completing the charge transfer between the AD field and the axion field. Since this process
occurs only after most of the charge has already been transferred to the axion field, we
will focus only on the homogeneous axion component and the production via kinetic mis-
alignment here. This gives a lower bound for the total axion abundance produced. In the
following, we demonstrate how a large enough Ya can be obtained to explain the observed
dark matter abundance via kinetic misalignment.

Efficient transfer. Let us first assume an efficient transfer from the AD field to the
axion field. The transfer to the axion field completes when r0 ' f and qa ' mf2 at this
point. If the entropy production around the completion of the charge transfer is negligible,
Ya is the same as the initial Yφ, which can be easily large enough to produce axion dark
matter by kinetic misalignment.

As discussed in section 3.3, the charge transfer may be completed by a tunneling
process in the thermal potential. From the local minimum at req < r0 ' f the AD field
can tunnel to the true minimum at r = 0. Let us parameterize the AD field value when
the tunneling occurs by r = XT . The parameter X (> 1 and � f/T ) can be computed
once the tunneling rate has been determined. The energy density of the thermal bath is
then bounded from below by X2m2T 2. From this, we obtain

Ya . 6× 105
(

f

109 GeV
100 TeV

m

)2 ( g∗
200

)1/2 (10
X

)3
(4.2)

where g∗ is the number of effective degrees of freedom of the thermal bath. The bound is
saturated when the entropy of the universe is dominantly created by the tunneling process.
Requiring that the maximal possible Ya can explain the axion dark matter by kinetic
misalignment, we obtain an upper bound on the mass of the AD field,

m . 104 TeV
(

f

109 GeV

)1/2 ( g∗
200

)1/4 (10
X

)3/2
. (4.3)

Interpreting the AD field as a supersymmetric flat direction, this upper bound does not
require low scale supersymmetry.
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Inefficient transfer. The transfer may not be efficient when r0 reaches f . In this case,
the transfer completes for r0 < f . The value of such r0 depends on the model, but let us con-
sider a representative case where a process with γ = εT is the bottleneck process. Since the
transfer occurs by an interaction coming into equilibrium, the transfer is a non-thermal pro-
cess and entropy is produced. Using the following relations at the completion of the transfer,

m2r2
0 <

π2g∗
30 T 4, ε

T 3

r2
0

= H(T ), (4.4)

we obtain

Ya . 1000
(10 TeV

m

)1/3 (200
g∗

)1/2 ( ε

10−2

)1/3
, (4.5)

where we use as reference value the strong sphaleron process, ε = 100α3 ' 10−2. The
upper bound on m from successful DM production from kinetic misalignment is

m . 105 TeV
(

109 GeV
f

)3 (200
g∗

)3/2 ε

10−2 . (4.6)

For f < 1011 GeV, the upper bound does not require low scale supersymmetry if the
strong sphaleron process is indeed the bottleneck process. The bound can be strong
enough to have implications for low scale supersymmetry if a less efficient process is the
bottleneck process. For example, explicit R symmetry breaking provided by the gaugino
mass mλ may be required for the transfer to be free-energetically favored. In this case,
γ ∼ 0.1m2

λ/T , and we obtain a bound

m3

m2
λ

. 40TeV
(

109 GeV
f

)5 (200
g∗

)3/2
. (4.7)

The compatibility with m, mλ >TeV requires f < few 109 GeV. In the context of the
MSSM (or its extension), the transfer rate can be computed for different flat directions.
The rate may also depend on the sfermion mixing, since this can enhance chiral symmetry
breaking rate [33]. We leave the detailed estimation of the transfer rate for future work.

4.2 Baryogenesis

A rotating axion field generically induces a non-zero baryon number as long as the baryon
number violation from the electroweak sphaleron process is efficient [6, 34, 35]. The baryon
number is frozen after the electroweak phase transition.

For the QCD axion, however, the axion velocity that can explain the observed baryon
asymmetry produces too much axion dark matter via the kinetic misalignment mecha-
nism [6]. This problem can be avoided by introducing additional BSM physics which raises
temperature of the electroweak phase transition in comparison with the standard model
prediction.

Alternatively, the mass of an axion-like particles can be lighter than that of the QCD
axion, so that the overproduction of dark matter is avoided, see eq. (4.1). However, in this
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case it turns out to be non-trivial to transfer the charge of the AD field to the axion-like
particle. The transfer requires the violation of the shift symmetry of the axion-like particle,
see section 2. If this is induced by the QCD anomaly, this also gives a mass to the axion-like
particle and dark matter is overproduced by kinetic misalignment. One can additionally
introduce the QCD axion which couples to QCD more strongly than the axion-like particle
does, so that the axion-like particle does not obtain a mass. However, when the QCD
anomaly induces the rotation of the axion-like particle, the QCD axion also rotates, and
the overproduction occurs. If the violation of the shift symmetry is instead induced by
the weak anomaly, the axion-like particle does not obtain too large a mass. However,
within the standard model, electroweak sphalerons are the only interaction which violates
B+L through the weak anomaly, so the transfer into the axion-like particle requires large
asymmetry of B + L fermions and thus does not minimize the free energy. This can be
avoided if the initial rotation of the AD field carries B+L charge and can thus absorb the
change in the total B + L charge without invoking large fermion asymmetries or if there
are additional B+L violating interactions. In the former case, the B−L charge of the AD
field should be zero to avoid the overproduction of baryon asymmetry. In the latter case,
the extra B+L violation can directly create a baryon asymmetry if B−L is simultaneously
violated [34, 36] (see also [33, 37–39]), so the production from the axion motion through
the electroweak sphaleron process may be subdominant. We conclude that if the axion-
like particle couples to the weak anomaly, there is explicit B + L violation in the system
(which initiates the rotation of the AD field or washes-out B + L charges) and B − L is
(approximately) preserved, then the motion of this axion-like particle at the electroweak
phase transition could be responsible for the observed matter-antimatter asymmetry of the
universe without overproducing dark matter.

4.3 Kination domination by axion rotation

Since the energy density of the rotation of the AD field decreases as R−3, if the initial field
value of the AD field is sufficiently large, the rotation energy of the AD field can come to
dominate over the energy of the thermal bath. We show that in this case the universe can
enter a kination-dominated era driven by the axion rotation.

From an AD field era to a kination era. Let us start from the initial state where the
universe is dominated by the AD field and almost all of the charge q > qc is in the AD field,
with the initial charge in the axion much below the equilibrium value ∼ mf2. Once the
charge transfer becomes efficient and the axion rotation reaches equilibrium, the total en-
ergy density of the AD and axion fields decreases by m2f2/2. This amount of energy should
go to the thermal bath and entropy is created. If the thermal bath has an energy density
smaller than this before this entropy production, the temperature of the universe when the
axion and AD field begin to be in chemical equilibrium is determined by T 4 ∼ m2f2. Other-
wise, the temperature of the bath remains approximately constant up to cosmic expansion.

As long as the charge transfer between the axion and AD fields continues to be effi-
cient, the system evolves adiabatically. In particular, the axion and AD fields follow the
equilibrium values θ̇a = −m and r2 = r2

0 − f2, and the entropy and energy density of the
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thermal bath decrease as R−3 and R−4, respectively. Thus, the universe continues to be
dominated by the AD field.

The energy density of the axion and AD fields is given by

ρ = ρa + ρφ = 1
2 θ̇

2
af

2 +m2r2 = mq − 1
2m

2f2, (4.8)

and decreases following

dlnρ
dlnR = −3q

q −mf2/2 →

−3 : q � qc = mf2

−6 : q → qc
, (4.9)

where we used the charge conservation q ∝ R−3. For q � qc, the equation of state is that
of matter, while as q approaches qc, it approaches that of kination. The charge transfer
completes at q = qc, after which the universe is dominated by the axion rotation with
θ̇a ∝ R−3, and the universe is kination-dominated.

Implications. A kination-dominated era due to a rotating axion, called axion kination,
is realized in [6] starting from the rotation of a PQ symmetry breaking field that has a
nearly quadratic potential. Our realization is applicable to more generic potentials of the
PQ symmetry breaking field since the rotation is initiated in another sector. The duration
of the kination-dominated era depends on the amount of the radiation energy density at
the completion of the charge transfer, and thus on the preceding cosmological history, e.g.,
the initial field value of the AD field, the reheating temperature, and when the AD field
is thermalized. Also, as we discussed in section 3, the very end of the charge transfer can
involve tunneling process that creates small amount of entropy, which will also limit the
duration of the kination-dominated era. We leave an investigation of the duration of the
kination era to future work.

In the above discussion, we assume m � T to argue that the energy density of the
bath decreases as R−4. If m is larger than T , the chemical potential µ ∼ m > T ensures
that the energy density remains constant ∼ m4. This is smaller than the axion energy
density, m2f2, as long as m � f and hence the axion kination era still occurs. Note that
in this limit, scalar fields do not receive thermal masses larger than µ ∼ m. If there exist
an additional scalar field that can receive charges from the AD field and has a smaller
energy per charge, the scalar field necessarily is destabilized by the negative mass from the
chemical potential; see also section 5.

4.4 Gravitational waves

The charge transfer between an AD field and an axion field offers two interesting possibili-
ties for gravitational wave observations. First, any gravitational waves produced prior to a
kination era (such as those produced by inflation or cosmic strings) are enhanced [40, 41].
As in the setup in [6], the kination-dominated era in our setup is preceded by a matter-
dominated era. This leaves peculiar signatures in the spectrum of primordial gravitational
waves [42–44]. Second, if the charge transfer occurs via a first order phase transition
(see discussion in section 3.3), the associated bubble dynamics source gravitational waves
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(see [45] for a recent review.) The magnitude of the gravitational waves will depend on
the detail of the phase transition, such as the latent heat and the duration of the phase
transition, motivating the detailed investigation of the dynamics.

5 Summary and discussion

In this paper, we discussed charge transfer between complex scalar fields. A rotating
complex field φ has a non-zero U(1)φ charge. This U(1) charge can be transferred into a
U(1)P charge of another complex scalar field P so that P begins rotation if U(1)φ×U(1)P
is explicitly broken with only one linear combination of the original charges conserved. We
considered the charge transfer through couplings to a thermal bath and focused on the case
where φ has a nearly quadratic potential with a mass m, the angular direction of P is an
axion field, and the radial direction of P is strongly fixed at a constant value f . Whether
or not the U(1) charge is dominantly in φ or P is determined by minimizing the free energy.
We found that almost all of the U(1) charge is transferred into the axion field once the
total charge has been redshifted to a critical value of about mf2 as long as no conservation
law requires the state with large U(1) charge in P to have a large fermion asymmetry. The
latter condition requires that all linear combinations of U(1)φ and chiral symmetry as well
as those of U(1)P and chiral symmetry be explicitly broken. We moreover find that the
transfer rate is suppressed by the ratio between the temperature and the smaller of the
radii of φ and P as well as by explicit symmetry breaking rates.

The scenario has an immediate phenomenological application. The kinetic energy of
the induced axion rotation, if large enough, contributes to the axion dark matter density
through so-called the kinetic misalignment mechanism. Unlike the original realization
in [1], our case does not require a flat potential of the radial direction of the PQ symmetry
breaking field, and thus is compatible with a wider class of PQ symmetry breaking models
including dynamical symmetry breaking models [46].6 This comes with the advantage
that in dynamical PQ symmetry breaking models, the smallness of the PQ breaking scale
compared to the Planck scale is understood by dimensional transmutation and the PQ
symmetry is more easily understood as an accidental symmetry than the models with a
fundamental PQ scalar [48]. Also, the axion rotation can be induced even when the PQ
breaking occurs after cosmic inflation, leading to cosmic string configurations rotating in
field space. See [49] for the existence of rotating cosmic string solutions. This may impact
the axion dark matter abundance produced from the string-domain wall network.

Further phenomenological implications are tied to the detailed dynamics of the charge
transfer. Contributions to the effective potential of φ induced by particles coupling to φ
favour φ = 0, and hence the state with most charge in P . Once the total charge density be-
comes sufficiently small through cosmic expansion, the state with most charge in φ becomes
a metastable state and the state with most charge in P becomes the absolute minimum.
The charge transfer can then involve a first order phase transition or phase mixing. The

6In supersymmetric models [47], the PQ charged scalar degree of freedom may have a flat potential at
field values much above the dynamical scale. However, the potential may be flatter than a quadratic one
and the dynamics of the PQ field be complicated by Q-ball formation.
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former will source gravitational waves. Both will create fluctuations of the axion field,
which can contribute to axion dark matter. We hope that these observations can serve as
a motivation for a more detailed investigation of the dynamics of this charge transfer.

Our work can be immediately generalized to charge transfer process between generic
complex fields. Transfer is possible as long as it is favored by the free energy and the
transfer rate exceeds the Hubble expansion rate. For example, charge transfer can occur
from a MSSM flat direction to another flat direction, if no conservation law requires a large
fermion asymmetry and if the latter flat direction has a smaller energy per charge. It is also
possible that the final state is composed of rotations of several flat directions. The charge
transfer may complete by first order phase transition or phase mixing, depending on the
thermal potentials of the fields involved in the charge transfer. We note that the axion case,
i.e., a recipient field for the charge with a fixed value for the radial component, is special
in the sense that the energy per charge of the axion rotation ∼ q/f2 is always smaller than
that of a complex scalar in a quadratic potential for a sufficiently small total U(1) charge.
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A Boltzmann equations for charge transfer

In this appendix we show numerical results obtained by solving the Boltzmann equa-
tions (2.10) for the model discussed in section 2.1. We fix f = 109 GeV,m = 103 GeV, αG =
0.1 and consider a radiation-dominated background, H = T 2/M∗ with M∗ = 7 · 1017 GeV.
We initialize the AD field at r = r0 = 10f , treating the temperature T0 at this time as a
free parameter. We denote the temperature at which the AD field would collapse assuming
an efficient charge transfer (q = qc) as Tc. The results are shown in figure 4 as a function
of the temperature of the thermal bath T .

The left panel of figure 4 shows the evolution of the radial component of the AD field
(recall that the angular component is fixed to θφ = m). For low temperatures, the charge
transfer is not efficient, and we observe that the field value decreasing as r ' r0 ∝ R−3/2,
in agreement with the conserved charge R3r2

0m in the absence of charge transfer. At larger
temperatures the charge transfer becomes efficient, tracing the equilibrium value for r for
γs(T/f)2 > H. Once we reach r ∼ f the AD field collapses if the charge transfer is efficient,
otherwise the collapse is delayed until the Hubble rate falls below the charge transfer rate.

The right panel shows the evolution of the axion velocity, starting from θ̇a = 0. The
equilibrium value θ̇a = −m is reached if the transfer is efficient at T = T0. More generally
the axion velocity is well described by eq. (2.13), as indicated by the dashed lines. The
curves for larger values of T0 end once the AD field collapses, and all charge is transferred
to the axion, see left panel. After this occurs, θ̇a should decrease in proportion to R−3.

In the model discussed in section 2.2, the charge density for the fermions efficiently
tracks the equilibrium value given in eq. (2.24) as long as at least one of the two interactions
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Figure 4. Evolution of charges stored in the AD field and the axion, governed by the AD field
radius r and the axion velocity θ̇a for different initial temperatures T0. The black curve depicts
their equilibrium values, obtained if the charge transfer rate is significantly faster than the Hubble
expansion. Here cosmic expansion is accounted for but thermal contributions to the effective po-
tential are not included.

rates γs and γχ is faster than the Hubble expansion. In this case, after replacing the qχ by
its equilibrium value in eq. (2.23), the dynamics of the axion and AD field are analogous
to the model of section 2.1. For the impact of thermal corrections, see section 3.

B Thermodynamics of rotating scalar fields

The main purpose of this section is to demonstrate how to obtain thermodynamic quantities
in the presence of rotating scalar fields by performing explicit calculations in a simplified
model. Unlike the simplified setup in section 3, we include an AD-field dependent mass
term for the fermion which participates in the charge transfer between the AD and the
axion field. We moreover include the fluctuations of the AD field. Nevertheless, we find a
qualitatively similar result as in section 3.

B.1 Preliminary

Model. To make our discussion concrete, we consider the following toy model,

L = |∂φ|2 −m2|φ|2 + ψi /Dψ + 1
2f

2(∂θa)2 − 1
2 TrGµνGµν

−
(
yφψPLψ + H.c.

)
− g2θa

16π2 TrGµνG̃µν . (B.1)

Here φ is a complex scalar field whose charge is transferred to the axion θa in the end,
and ψ is a Dirac fermion charged under a gauge group with field strength tensor Gµν . The
chiral symmetry of the fermion is explicitly broken by the chiral anomaly. Through the
Yukawa coupling y, the fermion obtains a φ-dependent mass. In a supersymmetric theory,
where a nearly quadratic potential of φ can be achieved, y is as large as the gauge coupling
constant, so we assume y = O(1) in the following. The relevant current equations are

∂ · Jφ + 1
2∂ · J5 = − g2

16π2 TrGµνG̃µν , ∂ · Ja = − g2

16π2 TrGµνG̃µν , (B.2)
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where each current is defined by

Jµφ = φ†i
←→
∂ φ, Jµ5 = ψγµγ5ψ, Jµa = f2∂µθa. (B.3)

This Lagrangian has a U(1) symmetry, whose conserved charge is given by

Q = Qφ + 1
2Q5 −Qa, (B.4)

with Q• =
∫
x J

0
• . We also define charge densities for later convenience as q• = 〈Q•〉/V

with V being a spatial volume. On top of eq. (B.1), we introduce a higher dimensional
operator for φ that explicitly breaks this U(1) symmetry. When the field value of φ is
large in the early Universe, this breaking term induces the rotation of φ via the Affleck-
Dine mechanism. After some time, the breaking becomes inefficient as the field value of φ
decreases due to the cosmic expansion, and then Q becomes conserved.

When the field value of φ is large enough, one may integrate out the Dirac fermion ψ.
The Lagrangian in this case reads

L = 1
2(∂r)2 − 1

2
(
m2 − (∂θφ)2

)
r2 + 1

2f
2(∂θa)2 − 1

2 TrGµνGµν −
g2(θa + θφ)

16π2 TrGµνG̃µν ,
(B.5)

and the current equations are

∂ · Jφ = − g2

16π2 TrGµνG̃µν , ∂ · Ja = − g2

16π2 TrGµνG̃µν . (B.6)

We can see that the model (B.1) is a simple realization of the toy model discussed in
section 2.1.

Review of thermal field theory. Before going into our model calculations, we briefly
summarize some basic facts of thermal field theory [50, 51]. Starting from the Hamiltonian
H, thermodynamic quantities with a conserved charge Q are obtained from the grand
canonical ensemble of

ρGC = 1
Z
e−

1
T

(H−µQ), Z = Tr ρGC, (B.7)

which is related to the thermodynamic pressure

p(T, µ) = T

V
lnZ, (B.8)

with V being a spatial volume. The charge density is obtained from7

q = ∂p(T, µ)
∂µ

. (B.9)

These quantities are useful when considering a bath of fixed temperature T and chemical
potential µ. However, we are rather interested in the case of a fixed charge 〈Q〉. The

7In the main text, we often simply refer to q as ‘charge’ for brevity.
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Helmholtz free energy, f(T, q), is more useful in this case, which is obtained from the
Legendre transformation

f(T, q) = µq − p. (B.10)

In the context of field theory, it is more convenient to express these quantities by means
of an effective potential, i.e., as a function of φ. Thermodynamic quantities are obtained
by evaluating it at its extrema,

p(T, µ) = − Vµ,eff(φ, T, µ)|dVµ,eff/dφ=0 , f(T, q) = Veff(φ, T, q)|dVeff/dφ=0 . (B.11)

with the subscript indicating the thermodynamic quantity taken to be constant. These
effective potentials are related through the Legendre transform of

Veff(φ, T, q) = µq + Vµ,eff(φ, T, µ), q = −∂Vµ,eff(φ, T, µ)
∂µ

, (B.12)

Note that we assume that the background φ is homogeneous. The grand canonical partition
function can be expressed as an Euclidean path integral

Z = e
V
T
p(T,µ) =

∫
b.c.

[dµ] exp
[
−
∫ 1

T

0
dτd3xLE(∂τ → ∂τ − cφµ)

]
, (B.13)

with cφ denoting the charge of φ with respect to the conserved charge Q. The boundary con-
dition (b.c.) is taken so that the bosonic fields are periodic while fermionic fields are anti-
periodic. The effective potential Vµ is obtained by performing this path integral on a back-
ground of φ. Then we obtain the second effective potential Vq via the Legendre transform.

B.2 Effective potential

Without axion. We first consider the case where the conversion of charge between φ

and θa mediated by the sphaleron is negligible. The axion is sequestered and hence we
omit it hereafter, as in section 3.1. The relevant conserved charge is then

QAD = Qφ + Q5
2 . (B.14)

The Euclidean Lagrangian reads

LE = (∂τφ† + µφ†)(∂τφ− µφ) + |∇φ|2 +m2|φ|2 + ψ

(
γ0∂τ − iγi∂i + µ

2 γ
0γ5

)
ψ

+
(
yφψPLψ + H.c.

)
. (B.15)

Assuming a homogeneous background of φ = reiθφ/
√

2, one may compute its effective
potential

Vµ,eff(r,T,µ) =
(
m2−µ2

)r2

2 −dψ lndet
(
i/∂+ yr√

2
+ µ

2 γ
0γ5

)
+lndet

(
�+m2−µ2 +µi

←→
∂t
)

(B.16)
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at the one-loop level. Here dψ counts the number of Dirac fermions (e.g., dψ = 1/2 for a
Weyl fermion, 3 for a Dirac color triplet, . . . ). The determinants are evaluated as

lndet
(
i/∂+ yr√

2
+µ

2 γ
0γ5

)
=2
∫ d3p

(2π)3

[
ω′

2 +T ln
(
1+e−ω′/T

)]
ω′=
√
y2r2/2+(p−µ/2)2

+(µ→−µ),

=
∫ d3p

(2π)3

[
ω′

2 +T ln
(
1−e−ω′/T

)]
ω′=
√
m2+p2−µ

+(µ→−µ). (B.17)

for the fermionic and bosonic contribution, respectively. The first terms in the integrands
lead to UV divergence, which are the usual zero temperature divergent parts and can be
dropped.8 From (B.17), the approximate form of the fermion contribution is

Vµ,f/dψ '


−47

8
π2T 4

90 −
µ2T 2

24 −
µ4

192π2 + y2T 2r2

24 yr � T,

−
√

2
π3/2 e

− yr√
2T
(
yr√

2

)3/2
T 5/2 − 3

4
√

2π2 e
− yr√

2T
√

yr√
2T

3µ2 − µ4

192π2 yr � T.
(B.18)

For the fluctuations of the AD field, (B.17) yields

Vµ,AD ' −
π2

45T
4 − 1

6µ
2T 2, (B.19)

where we have assumed m,µ < T and have dropped higher-order terms in µ.
Around r = 0, assuming µ < T (dropping O(µ4) terms),

Vµ,eff(r,T,µ)'
(
m2−µ2

)r2

2 −dψ
(

47
8
π2T 4

90 + µ2T 2

24 + µ4

192π2 −
y2T 2r2

24

)
−
(
π2T 4

45 + µ2T 2

6

)
.

(B.20)
Using the Legendre transform, the effective potential for a fixed charge density q is

Veff(r, T, q) = −π
2

45

(
1 + 7

4dψ
)
T 4 + 1

2

(
m2 + dψ

12 y
2T 2

)
r2 + 6q2

12r2 + (4 + dψ)T 2 . (B.21)

This has an extremum at r = 0. The second derivative of Vq with respect to r at r = 0 is(
∂2Veff(r, T, q)

∂r2

)
r=0

= m2 + dψ
12 y

2T 2 − 144q2

(4 + dψ)2T 4 . (B.22)

This is positive and the origin is a (local) minimum if the charge q is small enough,

q2 <
(4 + dψ)2dψ

1728 y2T 6 + (4 + dψ)2

144 m2T 4 (B.23)

This condition is qualitatively the same as the one derived below eq. (3.8). Note that
q satisfying this condition implies µ < T , and hence our assumption of µ < T is self-
consistent. When q significantly violates this condition, µ2 > m2 + dψy

2T 2/12. The
integration in eq. (B.17), even after the resummation to include the thermal mass ∼ yT ,

8The divergence in the fermion contribution includes the logarithmic divergence of the coefficient of
µ2r2. One may worry about this divergence at finite densities, but this contribution is cancelled by the
wave-function renormalization of φ, owing to the non-renormalization of the charge.
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results in an imaginary part, signaling the instability of r = 0 and leading to the formation
of the BEC of the AD field.

For yr � T , assuming µ < T ,

Vµ,eff(r, T, µ) '
(
m2 − µ2

)r2

2 −
(
π2T 4

45 + µ2T 2

6

)
. (B.24)

The effective potential for a fixed charge density q is

Veff(r, T, q) = −π
2

45T
4 + 1

2m
2r2 + 3q2

6r2 + 2T 2 . (B.25)

This has an extremum at r2 = |q|/m ≡ r2
eq. The second derivative at req is 4m2. The

assumption of yreq � T is valid if q � mT 2/y2. At req, |µ| = m, so the integration
in eq. (B.17) does not yield an imaginary part and Vq can be interpreted as the effective
potential as usual. Moreover, for m < T , the assumption µ = m < T is again self-
consistent. For m > T , eq. (B.16) is simply dominated by the first term, and thermal
corrections are irrelevant to the dynamics of the phase transition.

There are two minima of the effective potential for mT 2/y2 < q < yT 3. As in sec-
tion 3.1, one can compare the effective potential at these two minima and determine which
is the absolute minimum, obtaining qualitatively the same result.

We are interested in the possible transition from r = req to r = 0 by bubble nucleation.
To compute the nucleation rate, one needs the effective potential for intermediate field
values, 0 < r < req. When |q| > mT 2 and r < req, |µ| is larger than m. Also, for
yr > T , the thermal mass squared of the AD field given by the coupling y is negative.
Therefore, for T/y < r < req, the integration in eq. (B.17) yields an imaginary part, and
the effective potential inside the bubble wall formally contains an imaginary part. This
may cast a doubt on the validity of the computation, but we argue that the appearance
of the imaginary part is an artifact of the inclusion of long-wave length modes despite
the finiteness of the width of the bubble wall [52]. In computing the effective potential,
the field value r is approximated to be homogeneous, which is justified only for the
excitations with wavelength shorter than the wall width. The effective potential contains
a term −µ2(q, r)r2/2, so the width of the bubble-wall is at most O(µ−1). We should,
therefore, use a prescription where p < µ is excluded from the integration in eq. (B.17).
This regularization prescription introduces some uncertainty in the coefficient of µ2T 2

terms; they depend on the choice the IR cut off. However, since we are interested in
r > T/y > T , for which the µ2r2 term dominates over µ2T 2 terms, this IR dependence
does not introduce any relevant uncertainty in the computation of the bubble nucleation
rate. An explicit computation of this nucleation rate is beyond the scope of this paper.

With axion. Finally, we turn on the sphaleron processes to consider the charge transfer
to the axion through a Chern-Simons coupling, as in section 3.2. In this case, the axion
and AD charges are no longer separately conserved. Rather their linear combination is the
only conserved quantity of the system, i.e.,

Q = QAD −Qa = Qφ + Q5
2 −Qa. (B.26)
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Assuming a homogeneous background of φ = reiθφ/
√

2 again, the one-loop effective poten-
tial acquires an additional contribution from the axion

Vµ,eff(r, T, µ) ' Vµ,eff(r, T, µ)|Eq. (B.16) −
µ2f2

2 + 1
2 ln det�. (B.27)

Here we neglect the potential from the coupling with GG̃ and non-perturbative gauge
dynamics, which makes a particular linear combination of θφ − θa massive. The last term
comes from the axion fluctuations, which does not lead to a µ-dependent effective potential
and hence one may omit it for our purpose.

Using eq. (B.27), we may compute Vq and check the minimum of the effective potential.
The result is identical to the discussion in section 3.2 up to the modification of O(1) factors.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] R.T. Co, L.J. Hall and K. Harigaya, Axion kinetic misalignment mechanism, Phys. Rev. Lett.
124 (2020) 251802 [arXiv:1910.14152] [INSPIRE].

[2] A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the
universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp.
34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

[3] I. Affleck and M. Dine, A new mechanism for baryogenesis, Nucl. Phys. B 249 (1985) 361
[INSPIRE].

[4] A.G. Cohen and D.B. Kaplan, Thermodynamic generation of the baryon asymmetry, Phys.
Lett. B 199 (1987) 251 [INSPIRE].

[5] A.G. Cohen and D.B. Kaplan, Spontaneous baryogenesis, Nucl. Phys. B 308 (1988) 913
[INSPIRE].

[6] R.T. Co and K. Harigaya, Axiogenesis, Phys. Rev. Lett. 124 (2020) 111602
[arXiv:1910.02080] [INSPIRE].

[7] T. Gherghetta, C.F. Kolda and S.P. Martin, Flat directions in the scalar potential of the
supersymmetric standard model, Nucl. Phys. B 468 (1996) 37 [hep-ph/9510370] [INSPIRE].

[8] K. Enqvist and A. Mazumdar, Cosmological consequences of MSSM flat directions, Phys.
Rept. 380 (2003) 99 [hep-ph/0209244] [INSPIRE].

[9] R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.
38 (1977) 1440 [INSPIRE].

[10] R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of
instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

[11] S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

[12] F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev.
Lett. 40 (1978) 279 [INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.124.251802
https://doi.org/10.1103/PhysRevLett.124.251802
https://arxiv.org/abs/1910.14152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.14152
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://inspirehep.net/search?p=find+J%20%22Pisma%20Zh.Eksp.Teor.Fiz.%2C5%2C32%22
https://doi.org/10.1016/0550-3213(85)90021-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB249%2C361%22
https://doi.org/10.1016/0370-2693(87)91369-4
https://doi.org/10.1016/0370-2693(87)91369-4
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB199%2C251%22
https://doi.org/10.1016/0550-3213(88)90134-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB308%2C913%22
https://doi.org/10.1103/PhysRevLett.124.111602
https://arxiv.org/abs/1910.02080
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.02080
https://doi.org/10.1016/0550-3213(96)00095-8
https://arxiv.org/abs/hep-ph/9510370
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9510370
https://doi.org/10.1016/S0370-1573(03)00119-4
https://doi.org/10.1016/S0370-1573(03)00119-4
https://arxiv.org/abs/hep-ph/0209244
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0209244
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C38%2C1440%22
https://doi.org/10.1103/PhysRevD.16.1791
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD16%2C1791%22
https://doi.org/10.1103/PhysRevLett.40.223
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C40%2C223%22
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C40%2C279%22


J
H
E
P
0
8
(
2
0
2
2
)
2
3
4

[13] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120
(1983) 127 [INSPIRE].

[14] L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120
(1983) 133 [INSPIRE].

[15] M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

[16] L.D. McLerran, E. Mottola and M.E. Shaposhnikov, Sphalerons and axion dynamics in high
temperature QCD, Phys. Rev. D 43 (1991) 2027 [INSPIRE].

[17] T. Kobayashi and R.K. Jain, Impact of helical electromagnetic fields on the axion window,
JCAP 03 (2021) 025 [arXiv:2012.00896] [INSPIRE].

[18] R. Alonso and J. Scholtz, Matter asymmetry sourced dark matter, Phys. Rev. D 104 (2021)
023513 [arXiv:2012.14907] [INSPIRE].

[19] K. Yamamoto, Phase transition associated with intermediate gauge symmetry breaking in
superstring models, Phys. Lett. B 168 (1986) 341 [INSPIRE].

[20] D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev. D 53
(1996) 1784 [hep-ph/9510204] [INSPIRE].

[21] S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977)
2929 [Erratum ibid. 16 (1977) 1248] [INSPIRE].

[22] C.G. Callan, Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum
corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

[23] A.D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216 (1983) 421
[Erratum ibid. 223 (1983) 544] [INSPIRE].

[24] M. Gleiser, E.W. Kolb and R. Watkins, Phase transitions with subcritical bubbles, Nucl.
Phys. B 364 (1991) 411 [INSPIRE].

[25] M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the
electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].

[26] T. Shiromizu, M. Morikawa and J. Yokoyama, Thermal fluctuations in electroweak phase
transition, Prog. Theor. Phys. 94 (1995) 795 [hep-ph/9501312] [INSPIRE].

[27] T. Hiramatsu, Y. Miyamoto and J. Yokoyama, Effects of thermal fluctuations on thermal
inflation, JCAP 03 (2015) 024 [arXiv:1412.7814] [INSPIRE].

[28] S.R. Coleman, Q-balls, Nucl. Phys. B 262 (1985) 263 [Addendum ibid. 269 (1986) 744]
[INSPIRE].

[29] M. Laine and M.E. Shaposhnikov, Thermodynamics of nontopological solitons, Nucl. Phys. B
532 (1998) 376 [hep-ph/9804237] [INSPIRE].

[30] E.J. Copeland and M.I. Tsumagari, Q-balls in flat potentials, Phys. Rev. D 80 (2009) 025016
[arXiv:0905.0125] [INSPIRE].

[31] R. Durrer and A. Neronov, Cosmological magnetic fields: their generation, evolution and
observation, Astron. Astrophys. Rev. 21 (2013) 62 [arXiv:1303.7121] [INSPIRE].

[32] A. Anisimov and M. Dine, Some issues in flat direction baryogenesis, Nucl. Phys. B 619
(2001) 729 [hep-ph/0008058] [INSPIRE].

[33] R.T. Co, K. Harigaya, Z. Johnson and A. Pierce, R-parity violation axiogenesis, JHEP 11
(2021) 210 [arXiv:2110.05487] [INSPIRE].

– 29 –

https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB120%2C127%22
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB120%2C133%22
https://doi.org/10.1016/0370-2693(83)90639-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB120%2C137%22
https://doi.org/10.1103/PhysRevD.43.2027
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD43%2C2027%22
https://doi.org/10.1088/1475-7516/2021/03/025
https://arxiv.org/abs/2012.00896
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.00896
https://doi.org/10.1103/PhysRevD.104.023513
https://doi.org/10.1103/PhysRevD.104.023513
https://arxiv.org/abs/2012.14907
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.14907
https://doi.org/10.1016/0370-2693(86)91641-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB168%2C341%22
https://doi.org/10.1103/PhysRevD.53.1784
https://doi.org/10.1103/PhysRevD.53.1784
https://arxiv.org/abs/hep-ph/9510204
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9510204
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.15.2929
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD15%2C2929%22
https://doi.org/10.1103/PhysRevD.16.1762
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD16%2C1762%22
https://doi.org/10.1016/0550-3213(83)90293-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB216%2C421%22
https://doi.org/10.1016/0550-3213(91)90592-L
https://doi.org/10.1016/0550-3213(91)90592-L
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB364%2C411%22
https://doi.org/10.1103/PhysRevD.46.550
https://arxiv.org/abs/hep-ph/9203203
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9203203
https://doi.org/10.1143/PTP.94.795
https://arxiv.org/abs/hep-ph/9501312
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9501312
https://doi.org/10.1088/1475-7516/2015/03/024
https://arxiv.org/abs/1412.7814
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7814
https://doi.org/10.1016/0550-3213(85)90286-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB262%2C263%22
https://doi.org/10.1016/S0550-3213(98)00474-X
https://doi.org/10.1016/S0550-3213(98)00474-X
https://arxiv.org/abs/hep-ph/9804237
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9804237
https://doi.org/10.1103/PhysRevD.80.025016
https://arxiv.org/abs/0905.0125
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.0125
https://doi.org/10.1007/s00159-013-0062-7
https://arxiv.org/abs/1303.7121
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.7121
https://doi.org/10.1016/S0550-3213(01)00550-8
https://doi.org/10.1016/S0550-3213(01)00550-8
https://arxiv.org/abs/hep-ph/0008058
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0008058
https://doi.org/10.1007/JHEP11(2021)210
https://doi.org/10.1007/JHEP11(2021)210
https://arxiv.org/abs/2110.05487
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.05487


J
H
E
P
0
8
(
2
0
2
2
)
2
3
4

[34] V. Domcke, Y. Ema, K. Mukaida and M. Yamada, Spontaneous baryogenesis from axions
with generic couplings, JHEP 08 (2020) 096 [arXiv:2006.03148] [INSPIRE].

[35] R.T. Co, L.J. Hall and K. Harigaya, Predictions for axion couplings from ALP cogenesis,
JHEP 01 (2021) 172 [arXiv:2006.04809] [INSPIRE].

[36] R.T. Co, N. Fernandez, A. Ghalsasi, L.J. Hall and K. Harigaya, Lepto-axiogenesis, JHEP 03
(2021) 017 [arXiv:2006.05687] [INSPIRE].

[37] K. Harigaya and I.R. Wang, Axiogenesis from SU(2)R phase transition, JHEP 10 (2021) 022
[Erratum ibid. 12 (2021) 193] [arXiv:2107.09679] [INSPIRE].

[38] S. Chakraborty, T.H. Jung and T. Okui, Composite neutrinos and the QCD axion:
baryogenesis, dark matter, small Dirac neutrino masses, and vanishing neutron electric
dipole moment, Phys. Rev. D 105 (2022) 015024 [arXiv:2108.04293] [INSPIRE].

[39] J. Kawamura and S. Raby, Lepto-axiogenesis in minimal SUSY KSVZ model, JHEP 04
(2022) 116 [arXiv:2109.08605] [INSPIRE].

[40] M. Giovannini, Gravitational waves constraints on postinflationary phases stiffer than
radiation, Phys. Rev. D 58 (1998) 083504 [hep-ph/9806329] [INSPIRE].

[41] Y. Cui, M. Lewicki, D.E. Morrissey and J.D. Wells, Cosmic archaeology with gravitational
waves from cosmic strings, Phys. Rev. D 97 (2018) 123505 [arXiv:1711.03104] [INSPIRE].

[42] R.T. Co et al., Gravitational wave and CMB probes of axion kination, arXiv:2108.09299
[INSPIRE].

[43] Y. Gouttenoire, G. Servant and P. Simakachorn, Revealing the primordial irreducible
inflationary gravitational-wave background with a spinning Peccei-Quinn axion,
arXiv:2108.10328 [INSPIRE].

[44] Y. Gouttenoire, G. Servant and P. Simakachorn, Kination cosmology from scalar fields and
gravitational-wave signatures, arXiv:2111.01150 [INSPIRE].

[45] C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with
LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].

[46] K. Choi and J.E. Kim, Dynamical axion, Phys. Rev. D 32 (1985) 1828 [INSPIRE].

[47] K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from dynamical
supersymmetry breaking, Phys. Rev. D 92 (2015) 075003 [arXiv:1505.07388] [INSPIRE].

[48] L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77
[INSPIRE].

[49] R.T. Co, K. Harigaya and A. Pierce, Cosmic perturbations from a rotating field,
arXiv:2202.01785 [INSPIRE].

[50] J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications,
Cambridge University Press, Cambrige, U.K. (2011) [INSPIRE].

[51] M. Laine and A. Vuorinen, Basics of thermal field theory, Lect. Notes Phys. 925 (2016) 1
[arXiv:1701.01554] [INSPIRE].

[52] C.G. Boyd, D.E. Brahm and S.D.H. Hsu, Corrections to the electroweak effective action at
finite temperature, Phys. Rev. D 48 (1993) 4952 [hep-ph/9206235] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP08(2020)096
https://arxiv.org/abs/2006.03148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03148
https://doi.org/10.1007/JHEP01(2021)172
https://arxiv.org/abs/2006.04809
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04809
https://doi.org/10.1007/JHEP03(2021)017
https://doi.org/10.1007/JHEP03(2021)017
https://arxiv.org/abs/2006.05687
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.05687
https://doi.org/10.1007/JHEP10(2021)022
https://arxiv.org/abs/2107.09679
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.09679
https://doi.org/10.1103/PhysRevD.105.015024
https://arxiv.org/abs/2108.04293
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.04293
https://doi.org/10.1007/JHEP04(2022)116
https://doi.org/10.1007/JHEP04(2022)116
https://arxiv.org/abs/2109.08605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.08605
https://doi.org/10.1103/PhysRevD.58.083504
https://arxiv.org/abs/hep-ph/9806329
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9806329
https://doi.org/10.1103/PhysRevD.97.123505
https://arxiv.org/abs/1711.03104
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03104
https://arxiv.org/abs/2108.09299
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.09299
https://arxiv.org/abs/2108.10328
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.10328
https://arxiv.org/abs/2111.01150
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.01150
https://doi.org/10.1088/1475-7516/2020/03/024
https://arxiv.org/abs/1910.13125
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.13125
https://doi.org/10.1103/PhysRevD.32.1828
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD32%2C1828%22
https://doi.org/10.1103/PhysRevD.92.075003
https://arxiv.org/abs/1505.07388
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.07388
https://doi.org/10.1016/0370-2693(92)91928-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB284%2C77%22
https://arxiv.org/abs/2202.01785
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2202.01785
https://doi.org/10.1017/CBO9780511535130
https://inspirehep.net/search?p=find+doi%20%2210.1017%2FCBO9780511535130%22
https://doi.org/10.1007/978-3-319-31933-9
https://arxiv.org/abs/1701.01554
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.01554
https://doi.org/10.1103/PhysRevD.48.4952
https://arxiv.org/abs/hep-ph/9206235
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9206235

	Introduction
	Charge transfer in the zero-temperature potential
	Charge transfer through an anomalous coupling to a gauge field
	Charge transfer including charged fermions

	Thermal potential and charge transfer by thermal fluctuations
	Effective potential for the AD field
	Effective potential including the axion
	Phase transition including the thermal corrections

	Phenomenological applications
	Axion dark matter by kinetic misalignment 
	Baryogenesis
	Kination domination by axion rotation
	Gravitational waves

	Summary and discussion
	Boltzmann equations for charge transfer
	Thermodynamics of rotating scalar fields
	Preliminary
	Effective potential


