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Abstract

We consider the transfer of a U (1) charge density between Bose-Einstein condensates of complex scalar

fields coupled to a thermal bath, focusing on the case of a homogeneous Affleck-Dine field transmit-

ting the charge stored in its angular motion to an axion field. We demonstrate that in the absence of

additional symmetries this charge transfer, aided by cosmic expansion as well as the thermal effective

potential of the Affleck-Dine field, can be very efficient. The charge redistribution between the scalar

fields becomes possible if the interactions with the thermal bath break the original U (1)×U (1) symme-

try down to a single U (1) symmetry; the charge distribution between the two fields is then determined

by minimizing the free energy. We discuss implications for cosmological setups involving complex

scalars, with applications to axion dark matter, baryogenesis, kination domination, and gravitational

wave production.
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1 Introduction

Dynamical complex scalar fields may play an important role in the early Universe. Here we consider (com-

posite) complex scalar fields subject to an approximate U (1) symmetry. For a homogeneous field configu-

ration, the corresponding approximately conserved charge corresponds to a rotation of the complex scalar

in field space, i.e., a non-vanishing velocity for the angular degree of freedom. The angular motion may

be a source of dark matter generation [1]. Moreover, this motion spontaneously breaks C P and can thus

contribute to the generation of a matter antimatter asymmetry [2]. Concrete realizations of this are the

Affleck-Dine (AD) mechanism [3], spontaneous baryogenesis [4, 5], or axiogenesis [6].

In AD baryogenesis, the role of an rotating complex AD field is naturally played by a condensate of

scalar particles aligned along a flat direction of the scalar potential of the minimal supersymmetric stan-

dard model (MSSM). See [7] for the list of the MSSM flat directions and [8] for a review on their dynam-

ics. The rotation is induced by higher-dimensional baryon or lepton number-violating operators and the

charge associated with this rotation is transferred to thermal bath through the decay of the AD field into

Standard Model (SM) fermions. In the more recently proposed axiogenesis scenario, the rotating complex

field is instead a fundamental scalar, namely the complex Peccei-Quinn (PQ) field introduced to explain

the absence of any observed C P violation in QCD [9, 10]. The angular degree of freedom is referred to as

the axion [11, 12], which simultaneously provides a promising dark matter candidate [13–15]. The charge

transfer between the rotating axion and the SM thermal bath occurs via sphaleron interactions. The ki-

netic energy of the axion field arising from the rotation of the PQ field is transferred into an axion dark

matter density through the kinetic misalignment mechanism [1].

In this paper, we study the charge transfer between Bose-Einstein condensates (BECs) of different

complex scalar fields in the presence of a thermal bath. For two or more scalar fields coupled through

efficient interactions with a thermal bath, the U (1) charge will be redistributed among the fields and the

thermal bath to minimize the free energy. If after coupling to the thermal bath, the system has more than

one relevant conserved charge, this additional symmetry implies that a charge transfer between the scalar

fields would be accompanied by a large chemical potential in the thermal bath so that the free energy con-

dition disfavours a charge transfer. On the other hand, in the absence of additional symmetries we find

that the charge transfer can be very efficient, and must be taken into account in cosmologies involving ro-

tating complex scalar fields. Our work is related to earlier works that discuss the generation of a non-zero

velocity of an axion field by asymmetries of other particles or fields, such as a quark chiral asymmetry [16],

helical magnetic fields [17], and a baryon asymmetry [18].

Concretely, we study a system of two complex scalar fields coupled to a thermal bath via sphaleron,

Yukawa, and gauge interactions. We consider one of the fields, the ‘AD field’, to have a large initial charge

encoded in an angular motion. The second field, the ‘PQ field’, is initially at rest at the minimum of its

zero-temperature Mexican-hat scalar potential with the PQ symmetry spontaneously broken. Minimizing

the free energy of this system, we demonstrate that in the ground state of the system, the charge has largely

been transferred to the axion field (i.e., the angular component of the PQ field) unless additional conserved

symmetries (such as a chiral symmetry for the fermions of the thermal bath) require that the transfer
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involve a large fermion asymmetry. This charge transfer occurs once the transfer rates governing this

process are efficient compared to the Hubble expansion rate and once the charge associated with the AD

field rotation has been red-shifted close to a critical value. At earlier times, the system is trapped in a state

with the charge largely stored in the rotation of the AD field. For sufficiently large initial values for the AD

field, a phase of AD field domination with a subsequent kination era by the axion field is possible.

Thermal contributions to the effective potential governing the dynamics of the AD field and the axion

can further facilitate the charge transfer. We compute the relevant thermodynamic quantities in the pres-

ence of rotating scalar fields to obtain the one-loop thermal effective potential of the coupled system of the

AD field, axion, and thermal bath. If the thermal bath contains particles which obtain zero-temperature

masses from a finite AD field value (e.g., due to a Yukawa coupling or due to the spontaneous breaking of

a gauge symmetry by the AD field), the resulting contribution to the effective potential prefers a vanishing

AD field value. When the total charge is sufficiently small (but is still above the critical value), this creates

an absolute minimum at the origin, while the state with a large AD field value remains a local minimum.

This is analogous to the shape of the potential that appears in thermal inflation models [19,20]. As Hubble

expansion dilutes the charge of the coupled system, the latter vacuum is eventually destabilized and all

the remaining charge is transferred to the axion field. This process may occur via nucleation of bubbles

of true vacuum in which the axion field is rotating [21–23] or through a more gradual phase mixing driven

by sub-critical bubble formation [24–27]. The former will generate gravitational waves. In both cases,

fluctuations of the axion field are created, which contribute to axion dark matter. Also, the formation of

Q-balls [28, 29] is possible, and the fluctuations associated with the Q-ball formation and decay may lead

to an additional source of axion dark matter.

The remainder of this paper is organized as follows. In Sec. 2, we discuss charge transfer neglecting

the thermal corrections to the potential of the AD field and clarify the conditions for the transfer to occur

by computing the effective potential for a given finite charge density. We demonstrate how additional

conserved charges can prevent the charge transfer. In Sec. 3, we include the thermal correction to the AD

field potential and show how the shape of the potential is modified. Phenomenological implications of

the charge transfer are discussed in Sec. 4. Finally, we give a summary and discussion in Sec. 5. Technical

details can be found in the appendices. App. A provides numerical solution for the Boltzmann equations

of Sec. 2. A derivation of the effective potential of the Affleck Dine field, key to the discussion in Sec. 3, is

given in App. B.

2 Charge transfer in the zero-temperature potential

In this section, we discuss the charge transfer between a homogeneous complex scalar field φ and an

axion field a = f θa and illustrate the conditions for this charge transfer to occur efficiently. Throughout

this paper, we assume that the radial direction of the complex PQ symmetry breaking field P is fixed at

its VEV∼ f , so that we can integrate it out and use the effective field theory of the axion field without the
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radial direction,

P = 1p
2

f e iθa . (2.1)

In particular, we discuss the dynamics of the axion at T ¿ f , |φ|, where both complex scalar fields can

be described as coherently rotating in field space. This does however not exclude a restoration of the PQ

symmetry at higher temperatures. The era with |φ| < T is discussed in detail in Sec. 3.

We assume that the complex scalar field φ initially rotates with a large radius. The rotation can be

initiated by the Affleck-Dine (AD) mechanism [3], and we call the rotating scalar field φ the AD field. We

refer to the radial and angular directions of φ as r and θφ, respectively,

φ= 1p
2

r e iθφ . (2.2)

To be concrete, we assume that the zero temperature potential of the AD field is nearly quadratic, m2|φ|2,

which is indeed the case when the AD field is a flat direction in the MSSM. See [7] for the list of MSSM flat

directions. Throughout this paper we will assume m ¿ f , motivated e.g., by the QCD axion with an axion

decay constant constrained to f > 108 GeV and low scale supersymmetry with a supersymmetry breaking

scale of m ∼ TeV. In realistic cases, the zero temperature potential is not exactly quadratic. Indeed, the

MSSM flat directions receive logarithmic corrections by renormalization group effects,

V (φ) = m2|φ|2
(
1+K ln

φ2

M 2

)
, (2.3)

where K is a constant of O(10−3 − 10−1) and M is a mass scale. We assume K > 0 so that the rotation is

stable against fragmentation into Q-balls [30]. The potential of the AD field moreover receives thermal

corrections, which we will discuss in Sec. 3.

We introduce interactions that can transfer the charge of the AD field to the axion field, inducing rota-

tions of the axion field with almost all of the charges eventually transferred to the axion. For simplicity, we

will take the axion field to be at rest initially, θ̇a = 0. We discuss several models to illustrate the conditions

for the efficient transfer to occur. In particular, Sec. 2.1 computes the charge transfer rate in a situation

where the charge transfer can occur and Sec. 2.2 shows how additional (approximate) symmetries can

prevent the charge transfer.

2.1 Charge transfer through an anomalous coupling to a gauge field

Setup and conserved charge. We first consider a simple example that will illustrate the condition on the

free energy for the transfer to occur. We introduce a non-Abelian gauge field G that couples to the AD and

axion fields through a quantum anomaly, (
θφ+θa

)
GµνG̃µν. (2.4)

Such an interaction of the AD field with a gauge field can be generated through a fermion which is charged

under the non-Abelian gauge group and which obtains a mass from the coupling with the AD field, see
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Figure 1: Free energy (2.7) for different values of the total charge q , leading to a finite vev for the AD field for q above the critical

value qc . For thermal corrections, see Sec. 3.

App. B for a concrete realization. We may neglect the fermion dynamics and simply use the interaction in

Eq. (2.4) as long as the AD field value, and hence the fermion mass, is much larger than the temperature.

This assumption will break down towards the end of the transfer; we will comment on the relevant fermion

dynamics below. The interaction (2.4) breaks the axion shift symmetry and the U (1) symmetry of the AD

field down to the linear combination,

d

dt

[
R3 (

θ̇φr 2 − θ̇a f 2)]= 0, (2.5)

allowing the charge of the AD field to be transferred to the axion field. Here R(t ) denotes the scale factor

of the Friedmann Robertson Walker metric. The total comoving charge R3q remains constant, with the

physical charge

q = qφ−qa = θ̇φr 2 − θ̇a f 2 = mr 2 − θ̇a f 2 (2.6)

decreasing as q ∝ R−3 due to cosmic expansion, where in the last equality we have used θ̇φ = m.\1

Free energy. Assuming that the charge transfer is efficient, whether the charge is dominantly stored in

the AD or axion fields is determined so that the thermodynamic free energy density of the system is min-

imized. The contribution of a coherent rotation to the free energy density is simply the energy density.\2

The AD field should have a vanishing ellipticity to minimize the energy density. Using the charge con-

servation, the (free) energy density can then be expressed as a function of the axion velocity θ̇a or as a

\1This equality follows from the AD equation of motion which permits a stationary solution ṙ = 0 for θ̇φ = m with equal kinetic

and potential energy according to the virial theorem.
\2The change in (Helmholtz) free energy corresponds to the maximal amount of work a thermodynamic system can perform

at a constant temperature. It can be obtained from the canonical partition function, which assumes a constant temperature and

the number of particles. In practice, it is simpler to start from the grand canonical partition function, which assumes a constant

temperature and chemical potential, and then obtain the Helmholtz free energy through a Legendre transformation. See App. B

for details.
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function of the AD field radius r ,

ρ = m2r 2 + 1

2
θ̇2

a f 2 = mq +mθ̇a f 2 + 1

2
θ̇2

a f 2 ,

= m2 f 2
[

q2

2m2 f 4 +
(
1− q

m f 2

)
r 2

f 2 + r 4

2 f 4

]
, (2.7)

which is minimized at θ̇a =−m. The radius of the AD field at this equilibrium point is

r 2
eq = r 2

0 − f 2, (2.8)

where r0 =
√

q/m is the radius of the AD field when all of the charge q is stored in the AD field. If q À m f 2

(r0 À f ), the charge remains dominantly stored in the AD field. Since cosmic expansion implies r0 ∝
R−3/2, even if r0 À f initially, cosmic expansion will dilute the charge in the AD field, reducing r0 to any

critical value rc , triggering the charge transfer to the axion field. Once q (r0) is close to m f 2 ( f ), the larger

fraction of the charge is transferred to the axion field, and for q → m f 2 ≡ qc (r0 → f ≡ rc ), almost all charge

is ends up in the axion field as req → 0, see Fig. 1.

For q < qc , r 2
eq formally becomes negative, signaling the breakdown of our computation. In fact, as

q approaches qc , the radius of the AD field decreases. The mass of the fermion charged under G and

coupling to the AD field, responsible for the quantum anomaly in Eq. (2.4), is now much smaller than

the temperature and hence this fermion can no longer be integrated out. The chiral asymmetry of the

fermions should hence be also taken into account in the conservation law. Also, the charge asymmetry

of the AD field should be no longer interpreted as a coherent rotation, but is rather given by particle-

antiparticle asymmetry. The asymmetries of the fermion and the AD field are, however, of the order of

θ̇aT 2, which is much smaller than the charge in the axion rotation. With this, we can estimate the velocity

of the axion field from charge conservation,

θ̇a =− q

f 2 =−m
r 2

0

f 2 . (2.9)

See Sec. 3 for a discussion of the transition region q ∼ qc accounting for thermal corrections.

In the above discussion, we implicitly assumed that the thermal bath is “large", namely, that the back-

reaction of the AD and axion fields to the thermal bath is negligible. In this picture, the equilibrium state

minimizes the combined free energy of the AD and axion fields. One the other hand, when the energy of

the AD field is comparable to the radiation energy, we must take into account the backreaction and treat

the thermal bath together with the AD and axion fields as an isolated system. In this picture, we should

rather maximise the entropy of the system, but the equilibrium state is still given by minimizing the energy

of the AD and axion fields, since that is the state with the maximal temperature of the thermal bath and

hence with the maximal entropy.

Transfer rate. We have so far implicitly assumed that the charge transfer rate is larger than the Hubble

expansion rate. Let us now estimate this transfer rate, see also App. A for numerical results. The Boltzmann
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equations governing the transfer are

d

dt

(
θ̇φr 2)=−γsT 2 (

θ̇φ+ θ̇a
)−3H θ̇φr 2,

d

dt

(
θ̇a f 2)=−γsT 2 (

θ̇φ+ θ̇a
)−3H θ̇a f 2. (2.10)

Here the first terms encode the charge transfer due to sphaleron processes, where γs = csphα
4
G T is the

sphaleron transition rate with e.g. csph ' 100 for SU(3) sphalerons in the SM and αG = g 2/(4π) denoting

the gauge coupling constant, and the second terms account for the cosmic expansion. At the equilibrium,
d

dt (R3θ̇a f 2) = 0, this yields θ̇a =−θ̇φ =−m, confirming the computation based on the free energy.

For r0 > f , starting from the initial condition θ̇a = 0, the velocity of the axion field approaches the

equilibrium value −θ̇φ sourced by the term γsT 2θ̇φ/ f 2. The rate of the transfer of comoving charge from

the AD to axion fields is therefore given by

Γ(r0 > f ) =−
d

dt (qaR3)

(qa −qeq
a )R3

= γsT 2(θ̇φ+ θ̇a)

f 2(θ̇a +m)
= T 2

f 2 γs with qeq
a =−m f 2, (2.11)

which is suppressed by a factor T 2/ f 2 in comparison with the sphaleron transition rate γs . Note that in

this regime, only a very small fraction of the initial AD charge is transferred to the axion, q̇φ/qφ¿ q̇a/qa .

For r0 < f , charge conservation implies the equilibrium value θ̇a =−mr 2
0 / f 2. The rate is therefore

Γ(r0 < f ) =
d

dt (qaR3)

qeq
a R3

' −γsT 2θ̇φ

−mr 2
0

= T 2

r 2
0

γs with qeq
a =−mr 2

0 , (2.12)

which is enhanced compared to Eq. (2.11) by a factor of f 2/r 2
0 . In this regime, the charge density in the AD

field is rapidly decreasing, q̇φ/qφ ∼ ṙ /r ∼ γsT 2/r 2
0 . Note that growth rate of the axion charge in Eq. (2.12)

is the same as this depletion rate for the AD field. This can be understood from the observation that once

the AD field is depleted, the charge conservation requires that the depleted charge go to the axion field. In

this picture, r0 < f is crucial, so that at the equilibrium the AD field loses almost all of its charge density.

Note that we have assumed r0 > T . Otherwise, the coherent picture of the AD field is not applicable and

the transfer rate is simply given by γs .

To determine if the charge transfer is efficient, we compare these comoving charge transfer rates with

the Hubble expansion rate. For r0 > f , the transfer rate decreases in proportion to T 3, faster than the

Hubble expansion rate does. If the equilibrium was not reached initially, it is never reached when r0 > f .

Even if the equilibrium is reached initially, the decoupling may occur later. For these cases, the axion

velocity at a given temperature is given by

θ̇a '−m ×min

[
1,
Γ(r0 > f )

3H

]
=−γsT 2m

3 f 2H
∝ T for Γ¿ H . (2.13)

Note that the axion velocity decreases only linearly with T , slower than what would be caused by the

Hubble friction (∝ T 3), so the axion velocity at a given temperature is dominated by the charge transfer at

that temperature and rather insensitive to previous charge transfer at higher temperatures. Once r0 drops

below f , the transfer rate remains constant (recall r 2
0 ∝ q ∝ T 3) and thus eventually dominates over the

7



Hubble expansion rate. Even if the axion field has not yet reached the equilibrium value when r0 ∼ f (for

which the AD field would collapse toward the origin given an efficient charge transfer), the equilibrium is

eventually reached, and almost all charge is transferred into the axion field. In summary, cosmic expansion

acts towards removing the metastable minimum of vacuum potential of the AD field at finite field value

req and eventually ensures an efficient transfer of the AD charge to the axion field.

Grand canonical ensemble. Before closing this subsection, we compute the equilibrium value of r using

the grand canonical ensemble with the chemical potential µ associated with the total charge q and ob-

taining the free energy density by a Legendre transformation. This framework is reviewed in Appendix B

and used in the remainder of this paper. The effective potential from the rotation of the AD field and axion

fields under a fixed chemical potential µ is\3

Vµ,eff(r,µ) = 1

2
m2r 2 − 1

2
µ2(r 2 + f 2), (2.14)

which is related to the thermodynamic pressure p after extremizing it with respect to r (see Appendix B).

The relation between q and µ is

q =−∂Vµ,eff(r,µ)

∂µ
=µ(r 2 + f 2). (2.15)

In our context, we would like to minimize the free energy for a fixed q rather than a fixed µ since we do

not have the bath for the charge q . Hence, the effective potential in our context is obtained through the

Legendre transformation,

Veff(r, q) =Vµ,eff(r,µ)+µq = 1

2
m2r 2 + q2

2(r 2 + f 2)
. (2.16)

This is minimized at r 2 = q/m − f 2, implying µ = m. Using the relation (2.15) and q = θ̇φr 2 − θ̇a f 2, we

obtain the equilibrium value θ̇φ =−θ̇a = m.

2.2 Charge transfer including charged fermions

Conserved charges and free energy. We next consider an example that will illustrate an important con-

dition on the symmetries of the system for the transfer to occur in the presence of additional (approximate)

symmetries. To the system discussed in the previous subsection, let us add a gauge charged Dirac fermion

pairψ andψ. If the Dirac fermion is massless, there are three conserved charges (up to cosmic expansion),

θ̇φr 2 − θ̇a f 2 ≡ q( 6= 0) ,
1

2

(
qψ+qψ̄

)− θ̇a f 2 ≡ qA(= 0) , qψ−qψ̄ ≡ qB (= 0), (2.17)

where qψ and qψ̄ are particle-antiparticle asymmetry of ψ and ψ̄, respectively, and we have chosen the

initial condition so that the latter two conserved charges vanish. The associated chemical potentials are µ,

µA , and µB , respectively. The chemical potential-dependent part of the effective potential is (see App. B)

−Vµ,eff(r,T,µ) ⊃ 1

2
µ2r 2 + 1

2

(
µ+µA

)2 f 2 + dψ
6

(
1

4
µ2

A +µ2
B

)
T 2, (2.18)

\3Here the subscript µ is a reminder that this effective potential is obtained under a fixed µ.
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where µ collectively denotes the chemical potentials µ= (µ,µA ,µB ), and dψ is the dimension of the gauge

representation of ψ, i.e., dψ = 1 for a gauge-singlet Dirac fermion. The relation between the conserved

charges and chemical potentials is

q =−Vµ,eff(r,T,µ)

∂µ
= (

µ+µA
)

f 2 +µr 2,

qA =−Vµ,eff(r,T,µ)

∂µA
= (

µ+µA
)

f 2 + dψ
12
µAT 2,

qB =−Vµ,eff(r,T,µ)

∂µB
= dψ

3
µB T 2. (2.19)

Using qA = qB = 0, we obtain

µ= q

r 2

1+dψT 2/(12 f 2)

1+dψT 2/(12r 2)+dψT 2/(12 f 2)
,

µA =− q

r 2

1

1+dψT 2/(12r 2)+dψT 2/(12 f 2)
,

µB = 0. (2.20)

The fixed-q effective potential from the AD and axion rotations and the asymmetry of ψ is obtained as

Veff(r,T, q) =Vµ,eff(r,T,µ)qA,B=0 +µq

= 1

2
m2r 2 + q2

2r 2

1+dψT 2/(12 f 2)

1+dψT 2/(12r 2)+dψT 2/(12 f 2)
' 1

2
m2r 2 + q2

2r 2 , (2.21)

where we assume r, f À T in the last inequality. The effective potential is minimized at r 2 ' q/m = r 2
0 . At

the equilibrium, the charge of the axion rotation is(
µ+µA

)
f 2 = dψ

12
mT 2 1

1+dψT 2/(12 f 2)
' dψ

12
mT 2, (2.22)

where we used f À T in the second equality.

In contrast to the situation discussed in Sec. 2.1, the axion obtains a subdominant fraction of the charge

as long as q > mT 2 (i.e., r0 > T ) even if r0 . f . This is due to the second conservation law in Eq. (2.17);

for the axion rotation to obtain a large charge, the charge asymmetry of the fermion must be also large,

leading to a large free energy. If the Dirac fermion has a non-zero Dirac mass, the conservation law is

violated and the axion field can obtain a large charge. In general, in order for the axion field to obtain most

of the charge, all symmetries that would require large charge asymmetry of fermions must be violated. For

example, any chiral symmetry with G anomaly must be explicitly broken.

Transfer rate. Let us estimate the transfer rate including the mass term mψψψ. The Boltzmann equation

is given by

d

dt

(
θ̇φr 2)=−γs

(
θ̇φT 2 + θ̇aT 2 +qχ

)−3H θ̇φr 2,

d

dt

(
θ̇a f 2)=−γs

(
θ̇φT 2 + θ̇aT 2 +qχ

)−3H θ̇a f 2,

d

dt
qχ =−2γs

(
θ̇φT 2 + θ̇aT 2 +qχ

)−γχqχ−3H qχ, (2.23)

9



where γχ is the chiral symmetry breaking rate ∼ αG m2
ψ/T and qχ = qψ + qψ. Starting from the initial

condition θ̇aT 2 = qχ = 0 and θ̇φ = m, the fermion charge qχ first reaches the quasi-equilibrium value

determined by d
(
qχR3

)
/dt ' dqχ/dt = 0,

qA,eq =− 2γs

γχ+2γs

(
θ̇φ+ θ̇a

)
T 2, (2.24)

with a rate

d
dt (R3qχ)

R3qeq
χ

'−2γs
(
θ̇φ+ θ̇a

)
T 2

qA,eq
= γχ+2γs , (2.25)

for qχ ¿ qeq
χ . As we will see shortly, the system reaches the true equilibrium state with a rate suppressed

by T 2/min(r 2
0 , f 2) and the assumption of qχ reaching the quasi-equilibrium value is consistent. Putting

qA,eq to Eq. (2.24), we obtain the Boltzmann equation of θ̇φr 2 and θ̇a f 2 at this quasi-equilibrium,

d

dt

(
R3θ̇φr 2)= d

dt

(
R3θ̇a f 2)=− γsγχ

γχ+2γs

(
θ̇φ+ θ̇a

)
T 2R3. (2.26)

For γχÀ γs , we recover Eq. (2.10), i.e., an efficient charge between the AD field and the axion.

Applying the same discussion as Sec. 2.1, we obtain the transfer rate from the AD to axion field

Γ= γsγχ

γχ+2γs

T 2

f 2 + r 2
0

' min
(
γs ,γχ

)× T 2

min
(

f 2,r 2
0

) . (2.27)

As anticipated, the rate is much smaller than the rate in Eq. (2.25) and the assumption of qχ first reaching

the quasi-equilibrium value is justified. For γχ < γs , the transfer rate Γ decreases slower than H does

even if r0 > f . Thus, even if the transfer is not effective at high temperatures, it can be effective at low

temperatures.

3 Thermal potential and charge transfer by thermal fluctuations

In the previous section, we have shown how charge can be transferred from an AD field to an axion field as-

suming a zero-temperature quadratic potential for the AD field. In realistic setups, the AD field couples to

the thermal bath and may obtain a non-negligible thermal potential. In this section, we discuss the effect

of thermal corrections to the potential and show that the charge transfer may involve thermal tunneling.

3.1 Effective potential for the AD field

Setup. Let us first discuss the dynamics of the AD field taking into account thermal corrections, but for

now ignoring the charge transfer to the axion field. We consider the following exemplary setup:

• The AD field spontaneously breaks a gauge symmetry, giving a mass g r to the gauge bosons.

• The AD field moreover couples to fermions ψ in a thermal bath (whose mass does not depend on

the AD field), such that the charge of the AD field can be transferred into a particle-antiparticle

asymmetry of these particles.
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The conserved charge is

q = qφ+qψ (3.1)

with the associated chemical potential µ. Without loss of generality, we take q > 0. In realistic setups,

there typically also exist fermions which contribute to the conserved charge q and obtain masses from the

AD field. We analyse such a case in App. B and find that the qualitative behavior of the potential does not

change.

Local minima of the effective potential. Following the formulation described in Appendix B, parts of the

effective potential depending on the AD field radius r and the total charge q are given by

Veff(r,T, q) =V0(r )+Vg (r,T )+Vq (r,T, q),

V0(r ) =1

2
m2r 2, Vg (r,T ) = 2Ng

T 4

2π2

∫
dxx2log

(
1−e−

p
x2+g 2r 2/T 2

)
,

Vq (r,T, q) = 1

12
µ(r,T, q)2(T 2 +6r 2)+ 1

8π2µ(r,T, q)4, (3.2)

q =1

6
µ(r,T, q)

(
T 2 +6r 2)+ 1

6π2µ(r,T, q)3. (3.3)

Here V0 is the vacuum potential of the AD field and Vg is the free energy of Ng gauge fields which obtain

a mass from the AD field. (To be precise, a resummation to include the thermal mass of the gauge boson

is necessary, but we find that this does not change the qualitative behavior.) Vq is the q-dependent part

of the free-energy contribution associated with the asymmetry of ψ and the rotation of the AD field. The

chemical potential µ should be determined as a function of (r,T, q) according to Eq. (3.3). The fluctua-

tions of the AD field also contribute to the free energy, but their inclusion does not change the qualitative

behaviors of the free energy; see App. B.

In Fig. 2, we show the effective potential as a function of r for several values of q . Here we take m =
10−4T . At large q > T 3, the free-energy density has a unique minimum at r '√

q/m = r0. As q approaches

T 3, r0 becomes a local minimum and a global minimum appears at a smaller r . For q ¿ T 3, r0 is no

longer a local minimum and the unique minimum is at r = 0. This behaviour is due to several competing

effects as we explain below. Large values of the AD charge imply a centrifugal force which creates an

a local minimum for the radial component of the AD field at finite r . This is completely analogous to

our observation in Sec. 2.1 before the charge transfer to the axion becomes efficient. On the other hand,

thermal masses for the gauge bosons drive a restoration of the gauge symmetry at high T , thus pushing

the order parameter r of the spontaneous gauge symmetry breaking to zero. Consequently we expect a

global minimum at r = 0 to develop once q/T 3. 1 [29].

Let us understand this behavior analytically. The first and second derivatives of Veff are

∂Veff

∂r
=∂

(
V0 +Vg

)
∂r

−µ2r,

∂2Veff

∂r 2 =∂
2
(
V0 +Vg

)
∂r 2 −µ2 −2µr

∂µ

∂r
. (3.4)
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Figure 2: Effective potential including thermal contributions for the case without a charge transfer to the axion as a function of

the radius of the AD field r for several total charges q . The left panel shows a global picture, while the right panel focuses on the

potential around the minimum at r0.

Thus, Veff has extrema at r = 0 and at non-zero r which satisfy m2+ (∂Vg /∂r )/r =µ(r,T, q)2. When ∂Vg /∂r

is negligible, in the limit m ¿ T , the latter has a solution r 2 ' q/m −T 2/6 ≡ r 2
eq. So when q À mT 2, there

is an extrema at r =√
q/m = r0.

The second derivative at r = 0 is (
∂2Veff

∂r 2

)
r=0

= m2 + g 2Ng

6
T 2 −µ2. (3.5)

By using the relation between q and µ at r = 0, one can show that if q & 0.07g
√

Ng T 3, the third term

dominates and the second derivative is negative; r = 0 is a maximum. If q . 0.07g
√

Ng T 3, r = 0 is an

minimum. This can be intuitively understood in the following way. Having r = 0 requires that all charge

be stored in the chiral asymmetry of the fermions and hence the chemical potential is fixed. For large q ,

the chemical potential is so large that the thermal mass from the gauge bosons cannot keep the AD field

at the origin and hence a BEC forms.

To obtain the second derivative at r = req, we need ∂µ/∂r . This can be obtained by differentiating

Eq. (3.3) with respect to r . This yields

(
∂2Veff

∂r 2

)
r=req

=
V ′′

0 +V ′′
g −

V ′
0 +V ′

g

r
+

4r
(
V ′

0 +V ′
g

)
r 2 + 1

6 T 2 + 1
24π2r

(
V ′

0 +V ′
g
)


r=req

, (3.6)

where the primes denote the derivative with respect to r . For q À mT 2, r 2
eq ' q/m À T 2. For such large r ,

V ′
g is exponentially suppressed and (

∂2Veff

∂r 2

)
r=req

' 4m2 > 0, (3.7)

so req is a minimum. As q approaches mT 2, req approaches T and Vg is not negligible, and the minimum

at req eventually disappears. The non-zero value of r for large enough q can be understood as a result of

the centrifugal force provided by the rotation.
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For mT 2 ¿ q . 0.07g
√

Ng T 3, there are two minima at r = 0 and req. The free energies at these two

minima are

Veff
(
0,T, q

)'3q4/3 ,

Veff
(
r0,T, q

)'mq + π2Ng

15
T 4 ' π2Ng

15
T 4 . (3.8)

Therefore, for q . 0.3N 3/4
g T 3, the minimum at r = 0 is the global minimum and that at req is a local mini-

mum. The inequality is indeed satisfied for q . 0.07g
√

Ng T 3 with perturbative g .

To sum up, if q & 0.07g
√

Ng T 3, there is a unique minimum at r 2 = q/m and if mT 2 ¿ q . 0.07g
√

Ng T 3,

there is a global minimum at r = 0 and a local minimum at r 2 = q/m. The local minimum disappears as q

approaches mT 2.

Additional contributions to the thermal potential. Before closing this subsection, we point out another

possible contribution to thermal potential of r that appears in realistic setups and can destabilize the local

minimum at r 2 = q/m. After integrating out the heavy degrees of freedom that obtain masses from the AD

field, some of the couplings of the low energy effective theory may depend on the AD field value. Con-

sequently, the corrections to the free energy arising from these couplings depend on the AD field value,

generating additional thermal potential of the AD field. Let us consider an exemplary situation where

the gauge coupling constant depends on the AD field and a thermal potential ∼ α2T 4ln(r 2/T 2) is gener-

ated [31]. The potential gradient from this term exceeds the gradient arising from V0 +Vq at r 2 = q/m if

q <α2T 4/m (assuming T < q/T 3(m/α2)), leading to a destabilization of the local minimum at r 2 = q/m.

3.2 Effective potential including the axion

We now include the axion field. As we will see, in this case the origin r = 0 becomes the absolute minimum

more easily than in the case discussed above, which neglected the charge transfer to the axion field. This

is in line with the discussion in Sec. 2.1, where we saw that the charge transfer to the axion drives the local

minimum for the AD field to zero. The total conserved charge is now

q = qφ+qψ−qa (3.9)

with the associated chemical potential µ.

Local minima of the effective potential. The effective potential is given by (see App. B)

Veff
(
r,T, q

)=V0(r )+Vg (r,T )+Vq,a(r,T, q),

Vq,a
(
r,T, q

)= 1

12
µ(r,T, q)2(T 2 +6r 2 +6 f 2)+ 1

8π2µ(r,T, q)4, (3.10)

q =1

6
µ(r,T, q)

(
T 2 +6r 2 +6 f 2)+ 1

6π2µ(r,T, q)3. (3.11)
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Figure 3: Effective potential including thermal contributions for the case with charge transfer to the axion as a function of the

radius of the AD field r for several total charges q .

The expression is greatly simplified when q ¿ T f 2, for which the µ4 term in Vq,a and the µ3 term in q are

always negligible. Then Vq,a is given by

Vq,a
(
r,T, q

)' 3q2

6
(
r 2 + f 2

)+T 2
. (3.12)

In the upper panel of Fig. 3, we show the effective potential as a function of r for several representative

values of q . When q is very large, there is a unique minimum at r = r0. As q decreases, even if q > T 3, r0 be-

comes only a local minimum and the global minimum is at r = 0. As q approaches qc , the local minimum

approaches 0 and eventually disappears. The lower panel shows the evolution of the effective potential for

a fixed m, f , and q/T 3 around the time when the transfer completes. Here Tc is the temperature at which

q = m f 2. The minimum at r0 becomes an local one as T approaches Tc , and disappears for T < Tc .

Let us understand this behavior analytically. The first and the second derivatives of Veff are given by

Eq. (3.4), and the second derivative at r = 0 is given by Eq. (3.5). When q À f 2T , Eq. (3.11) gives µ
(
0,T, q

)'
q/ f 2 À T . Then the second derivative of Veff at r = 0 is negative, so the origin cannot be a minimum.

Instead, there is a unique minimum at r such that µ
(
r, q,T

)' m, namely, r 2 ' q/m(À f 2). When q < f 2T ,

µ
(
0,T, q

) ' q/ f 2 < T 2, so the origin is a minimum. For q > m f 2, req is also a minimum. The effective

potentials at r = 0 and req are

Veff
(
0,T, q

)' q2

2 f 2 ,

Veff
(
req,T, q

)'mq + π2Ng

15
T 4. (3.13)

When q > (2π2Ng /15)1/2 f T 2, req has a smaller effective potential and is the global minimum, while for

q < (2π2Ng /15)1/2 f T 2, r = 0 is the global minimum. As q approaches m f 2, req =
√

q/m − f 2 approaches

T , and Vg eventually destabilizes the local minimum at req.

If q/T 3 > (2π2Ng /15)3/4( f /m)1/2, q drops below m f 2 before it drops below (2π2Ng /15)1/2 f T 2. In this

case, req continues to be the global minimum until q becomes very close to m f 2. For such a large q/T 3,

the AD field dominates the energy density of the universe before q reaches the critical value and kination

domination occurs after the charge is transferred into the axion field, see Sec. 4.
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3.3 Phase transition including the thermal corrections

With the effective potentials we have shown above, we now discuss the evolution of the AD field and the

axion field towards the end of the charge transfer around q = qc . We assume q/T 3 À 1 and T À m.

When q > (2π2Ng /15)1/2 f T 2, the state with almost all charge in the rotation of the AD field has the

least free-energy, and the rotation with r 2 = q/m − f 2 ' q/m is absolutely stable. As the temperature

decreases, q drops below (2π2Ng /15)1/2 f T 2 and r 2 ' q/m becomes a local minimum, while the minimal

free energy is achieved by the state where almost all of charges are in the axion rotation and the AD field

is trapped around the origin. A thermal transition from the local minimum to the absolute minimum can

occur, but since r 2 ' q/m À T 2, we expect that the transition is suppressed and does not occur within the

cosmological time scale. As q approaches qc = m f 2, r 2 = q/m − f 2 approaches T 2, and the transition to

the absolute minimum may become efficient. Note that at this point q − qc is much smaller than qc , so

almost all charges have been already transferred into the axion field before the thermal transition becomes

effective. The thermal transition may occur as a first order phase transition, which proceeds via nucleation

of bubbles [21–23], or as phase mixing, where the two minima are populated via creation of subcritical

bubbles [24–27].

Uncertainties in the phase transition dynamics. A full investigation of the transition dynamics is be-

yond the scope of the present paper. Instead we highlight only some differences from the usual phase

transition problem: First, the fields relevant for the phase transition rotate rather than just moving in the

radial direction. The effect of the angular motion in field space and associated conserved charges must

hence be taken into account. Second, the charge can be transferred from the AD field both to the axion

field and the thermal bath. Whereas the transfer rate for the former is suppressed by T 2/ f 2, the latter is

only suppressed only by T 2/r 2, which is much larger than T 2/ f 2 when q is close to qc . Also, the transfer

involving the axion may require additional processes, further suppressing the transfer rate. For example,

in the toy model discussed in Sec. 2.2, the transfer rate into the axion involves the chiral symmetry break-

ing by the fermion mass. This implies that the charge transfer during the tunneling process may involve

only the AD field and the thermal bath, or could also involve the axion field. In the former case, we expect

bubbles of true vacuum to form with r = 0 and θ̇a = m in a false vacuum with r = req and θ̇a = m. In the

latter case, bubbles are formed with r = 0 and θ̇a > m, with the charge of the AD field transmitted to the

rotation of the PQ field inside the bubble. Once these bubbles expand, more charge is converted from the

AD field into the axion motion and/or the thermal bath. Again, a comparison between the two compet-

ing transfer rates is required to understand the dynamics of the bubble expansion. Finally, unlike the AD

field, the axion field does not experience any phase transition during the tunneling; only the axion velocity

changes, which is not an order parameter. This means that sub-critical bubbles can be more important

than the usual case; inside the sub-critical bubble, the AD field is at the origin while the axion field has

a larger charge density than outside. As the sub-critical bubble collapses, the AD field will revert to large

field values, but the excess of the axion charge inside the bubble can spread out as density waves.
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Inhomogeneities in the axion field. The first order phase transition or the phase mixing at the end of

the transfer could in fact be phenomenologically interesting. After the first order phase transition or the

phase mixing, the axion field will have large fluctuations, which can contribute to axion dark matter if they

are not thermalized.\4 Whether or not thermalization occurs will depend on the length scale of the fluctu-

ations, since the interaction of the axion with the thermal bath is suppressed for long-wavelength modes.

We also note that Q-balls may form when q is close to qc . For q & qc , r is not much above T , for which the

thermal potential becomes comparable to the vacuum potential. Since the thermal potential is flatter than

the quadratic one, fluctuations around the rotating background grow and Q-balls are formed. This occurs

only after the majority of the charges have been transferred into the axion field, so the basic picture of

the transfer is not altered. However, the fluctuations associated with the Q-ball formation may have some

phenomenological implications, such as the production of axion dark matter. These observations moti-

vate further studies on the dynamics of the transition, which are beyond the scope of the present paper.

We will instead present a lower bound on the axion dark matter production based on the homogeneous

axion component in Sec. 4.1.

4 Phenomenological applications

In this section, we discuss phenomenological applications of the charge transfer from the AD field to the

axion field.

4.1 Axion dark matter by kinetic misalignment

If the axion field receives a large enough charge, the axion field continues to rotate even after the Hubble

expansion rate drops below the axion mass ma and the axion would begin to oscillate around the min-

imum. In this case, axions are produced by the kinetic misalignment mechanism [1], where the kinetic

energy of the axion rotation is transferred into axion dark matter density. The resulting number density of

the axion na is as large as the charge density qa , so

ρa

s
' maYa = 0.4 eV

ma

meV

Ya

400
= 0.4 eV

109 GeV

f

Ya

70
, (4.1)

where Ya = qa/s. In addition, the axion abundance can receive contributions sourced by the inhomoge-

neous axion component generated in a tunneling or phase-mixing process completing the charge transfer

between the AD field and the axion field. Since this process occurs only after most of the charge has al-

ready been transferred to the axion field, we will focus only on the homogeneous axion component and

the production via kinetic misalignment here. This gives a lower bound for the total axion abundance pro-

duced. In the following, we demonstrate how a large enough Ya can be obtained to explain the observed

dark matter abundance via kinetic misalignment.

\4One may worry that the fluctuations may produce stable domain walls. We expect this is not the case, since the fluctuations

are produced in sub-horizon modes.
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Efficient transfer. Let us first assume an efficient transfer from the AD field to the axion field. The trans-

fer to the axion field completes when r0 ' f and qa ' m f 2 at this point. If the entropy production around

the completion of the charge transfer is negligible, Ya is the same as the initial Yφ, which can be easily large

enough to produce axion dark matter by kinetic misalignment.

As discussed in Sec. 3.3, the charge transfer may be completed by a tunneling process in the thermal

potential. From the local minimum at req < r0 ' f the AD field can tunnel to the true minimum at r = 0.

Let us parameterize the AD field value when the tunneling occurs by r = X T . The parameter X (> 1 and

¿ f /T ) can be computed once the tunneling rate has been determined. The energy density of the thermal

bath is then bounded from below by X 2m2T 2. From this, we obtain

Ya . 6×105
(

f

109 GeV

100 TeV

m

)2 ( g∗
200

)1/2
(

10

X

)3

(4.2)

where g∗ is the number of effective degrees of freedom of the thermal bath. The bound is saturated when

the entropy of the universe is dominantly created by the tunneling process. Requiring that the maximal

possible Ya can explain the axion dark matter by kinetic misalignment, we obtain an upper bound on the

mass of the AD field,

m. 104 TeV

(
f

109 GeV

)1/2 ( g∗
200

)1/4
(

10

X

)3/2

. (4.3)

Interpreting the AD field as a supersymmetric flat direction, this upper bound does not require low scale

supersymmetry.

Inefficient transfer. The transfer may not be efficient when r0 reaches f . In this case, the transfer com-

pletes for r0 < f . The value of such r0 depends on the model, but let us consider a representative case

where a process with γ = εT is the bottleneck process. Since the transfer occurs by an interaction com-

ing into equilibrium, the transfer is a non-thermal process and entropy is produced. Using the following

relations at the completion of the transfer,

m2r 2
0 < π2g∗

30
T 4, ε

T 3

r 2
0

= H(T ), (4.4)

we obtain

Ya . 1000

(
10 TeV

m

)1/3 (
200

g∗

)1/2 ( ε

10−2

)1/3
, (4.5)

where we use as reference value the strong sphaleron process, ε = 100α3 ' 10−2. The upper bound on m

from successful DM production from kinetic misalignment is

m. 105 TeV

(
109 GeV

f

)3 (
200

g∗

)3/2 ε

10−2 . (4.6)

For f < 1011 GeV, the upper bound does not require low scale supersymmetry if the strong sphaleron

process is indeed the bottleneck process. The bound can be strong enough to have implications for low
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scale supersymmetry if a less efficient process is the bottleneck process. For example, explicit R symme-

try breaking provided by the gaugino mass mλ may be required for the transfer to be free-energetically

favored. In this case, γ∼ 0.1m2
λ

/T , and we obtain a bound

m3

m2
λ

. 40TeV

(
109 GeV

f

)5 (
200

g∗

)3/2

. (4.7)

The compatibility with m, mλ > TeV requires f < few 109 GeV. In the context of the MSSM (or its exten-

sion), the transfer rate can be computed for different flat directions. The rate may also depend on the

sfermion mixing, since this can enhance chiral symmetry breaking rate [32]. We leave the detailed estima-

tion of the transfer rate for future work.

4.2 Baryogenesis

A rotating axion field generically induces a non-zero baryon number as long as the baryon number viola-

tion from the electroweak sphaleron process is efficient [6, 33, 34]. The baryon number is frozen after the

electroweak phase transition.

For the QCD axion, however, the axion velocity that can explain the observed baryon asymmetry pro-

duces too much axion dark matter via the kinetic misalignment mechanism [6]. This problem can be

avoided by introducing additional BSM physics which raises temperature of the electroweak phase transi-

tion in comparison with the standard model prediction.

Alternatively, the mass of an axion-like particles can be lighter than that of the QCD axion, so that the

overproduction of dark matter is avoided, see Eq. (4.1). However, in this case it turns out to be non-trivial to

transfer the charge of the AD field to the axion-like particle. The transfer requires the violation of the shift

symmetry of the axion-like particle, see Sec. 2. If this is induced by the QCD anomaly, this also gives a mass

to the axion-like particle and dark matter is overproduced by kinetic misalignment. One can additionally

introduce the QCD axion which couples to QCD more strongly than the axion-like particle does, so that the

axion-like particle does not obtain a mass. However, when the QCD anomaly induces the rotation of the

axion-like particle, the QCD axion also rotates, and the overproduction occurs. If the violation of the shift

symmetry is instead induced by the weak anomaly, the axion-like particle does not obtain too large a mass.

However, within the standard model, electroweak sphalerons are the only interaction which violates B +L

through the weak anomaly, so the transfer into the axion-like particle requires large asymmetry of B +L

fermions and thus does not minimize the free energy. This can be avoided if the initial rotation of the AD

field carries B +L charge and can thus absorb the change in the total B +L charge without invoking large

fermion asymmetries or if there are additional B +L violating interactions. In the former case, the B −L

charge of the AD field should be zero to avoid the overproduction of baryon asymmetry. In the latter case,

the extra B +L violation can directly create a baryon asymmetry if B −L is simultaneously violated [33,

35] (see also [32, 36–38]), so the production from the axion motion through the electroweak sphaleron

process may be subdominant. We conclude that if the axion-like particle couples to the weak anomaly,

there is explicit B +L violation in the system (which initiates the rotation of the AD field or washes-out

B +L charges) and B −L is (approximately) preserved, then the motion of this axion-like particle at the

18



electroweak phase transition could be responsible for the observed matter-antimatter asymmetry of the

universe without overproducing dark matter.

4.3 Kination domination by axion rotation

Since the energy density of the rotation of the AD field decreases as R−3, if the initial field value of the AD

field is sufficiently large, the rotation energy of the AD field can come to dominate over the energy of the

thermal bath. We show that in this case the universe can enter a kination-dominated era driven by the

axion rotation.

From an AD field era to a kination era. Let us start from the initial state where the universe is dominated

by the AD field and almost all of the charge q > qc is in the AD field, with the initial charge in the axion

much below the equilibrium value ∼ m f 2. Once the charge transfer becomes efficient and the axion ro-

tation reaches equilibrium, the total energy density of the AD and axion fields decreases by m2 f 2/2. This

amount of energy should go to the thermal bath and entropy is created. If the thermal bath has an energy

density smaller than this before this entropy production, the temperature of the universe when the axion

and AD field begin to be in chemical equilibrium is determined by T 4 ∼ m2 f 2. Otherwise, the temperature

of the bath remains approximately constant up to cosmic expansion.

As long as the charge transfer between the axion and AD fields continues to be efficient, the system

evolves adiabatically. In particular, the axion and AD fields follow the equilibrium values θ̇a = −m and

r 2 = r 2
0 − f 2, and the entropy and energy density of the thermal bath decrease as R−3 and R−4, respectively.

Thus, the universe continues to be dominated by the AD field.

The energy density of the axion and AD fields is given by

ρ = ρa +ρφ = 1

2
θ̇2

a f 2 +m2r 2 = mq − 1

2
m2 f 2, (4.8)

and decreases following

dlnρ

dlnR
= −3q

q −m f 2/2
→

−3 : q À qc = m f 2

−6 : q → qc

, (4.9)

where we used the charge conservation q ∝ R−3. For q À qc , the equation of state is that of matter, while

as q approaches qc , it approaches that of kination. The charge transfer completes at q = qc , after which

the universe is dominated by the axion rotation with θ̇a ∝ R−3, and the universe is kination-dominated.

Implications. A kination-dominated era due to a rotating axion, called axion kination, is realized in [6]

starting from the rotation of a PQ symmetry breaking field that has a nearly quadratic potential. Our

realization is applicable to more generic potentials of the PQ symmetry breaking field since the rotation

is initiated in another sector. The duration of the kination-dominated era depends on the amount of the

radiation energy density at the completion of the charge transfer, and thus on the preceding cosmological

history, e.g., the initial field value of the AD field, the reheating temperature, and when the AD field is
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thermalized. Also, as we discussed in Sec. 3, the very end of the charge transfer can involve tunneling

process that creates small amount of entropy, which will also limit the duration of the kination-dominated

era. We leave an investigation of the duration of the kination era to future work.

In the above discussion, we assume m ¿ T to argue that the energy density of the bath decreases as

R−4. If m is larger than T , the chemical potential µ∼ m > T ensures that the energy density remains con-

stant ∼ m4. This is smaller than the axion energy density, m2 f 2, as long as m ¿ f and hence the axion

kination era still occurs. Note that in this limit, scalar fields do not receive thermal masses larger than

µ∼ m. If there exist an additional scalar field that can receive charges from the AD field and has a smaller

energy per charge, the scalar field necessarily is destabilized by the negative mass from the chemical po-

tential; see also Sec. 5.

4.4 Gravitational waves

The charge transfer between an AD field and an axion field offers two interesting possibilities for gravi-

tational wave observations. First, any gravitational waves produced prior to a kination era (such as those

produced by inflation or cosmic strings) are enhanced [39,40]. As in the setup in [6], the kination-dominated

era in our setup is preceded by a matter-dominated era. This leaves peculiar signatures in the spectrum of

primordial gravitational waves [41–43]. Second, if the charge transfer occurs via a first order phase transi-

tion (see discussion in Sec. 3.3), the associated bubble dynamics source gravitational waves (see [44] for a

recent review.) The magnitude of the gravitational waves will depend on the detail of the phase transition,

such as the latent heat and the duration of the phase transition, motivating the detailed investigation of

the dynamics.

5 Summary and Discussion

In this paper, we discussed charge transfer between complex scalar fields. A rotating complex field φ has a

non-zero U (1)φ charge. This U (1) charge can be transferred into a U (1)P charge of another complex scalar

field P so that P begins rotation if U (1)φ×U (1)P is explicitly broken with only one linear combination of

the original charges conserved. We considered the charge transfer through couplings to a thermal bath

and focused on the case where φ has a nearly quadratic potential with a mass m, the angular direction of

P is an axion field, and the radial direction of P is strongly fixed at a constant value f . Whether or not the

U (1) charge is dominantly in φ or P is determined by minimizing the free energy. We found that almost all

of the U (1) charge is transferred into the axion field once the total charge has been redshifted to a critical

value of about m f 2 as long as no conservation law requires the state with large U (1) charge in P to have

a large fermion asymmetry. The latter condition requires that all linear combinations of U (1)φ and chiral

symmetry as well as those of U (1)P and chiral symmetry be explicitly broken. We moreover find that the

transfer rate is suppressed by the ratio between the temperature and the smaller of the radii of φ and P as

well as by explicit symmetry breaking rates.

The scenario has an immediate phenomenological application. The kinetic energy of the induced

axion rotation, if large enough, contributes to the axion dark matter density through so-called the kinetic
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misalignment mechanism. Unlike the original realization in [1], our case does not require a flat potential

of the radial direction of the PQ symmetry breaking field, and thus is compatible with a wider class of

PQ symmetry breaking models including dynamical symmetry breaking models [45].\5 This comes with

the advantage that in dynamical PQ symmetry breaking models, the smallness of the PQ breaking scale

compared to the Planck scale is understood by dimensional transmutation and the PQ symmetry is more

easily understood as an accidental symmetry than the models with a fundamental PQ scalar [47]. Also, the

axion rotation can be induced even when the PQ breaking occurs after cosmic inflation, leading to cosmic

string configurations rotating in field space. See [48] for the existence of rotating cosmic string solutions.

This may impact the axion dark matter abundance produced from the string-domain wall network.

Further phenomenological implications are tied to the detailed dynamics of the charge transfer. Con-

tributions to the effective potential of φ induced by particles coupling to φ favour φ = 0, and hence the

state with most charge in P . Once the total charge density becomes sufficiently small through cosmic ex-

pansion, the state with most charge in φ becomes a metastable state and the state with most charge in

P becomes the absolute minimum. The charge transfer can then involve a first order phase transition or

phase mixing. The former will source gravitational waves. Both will create fluctuations of the axion field,

which can contribute to axion dark matter. We hope that these observations can serve as a motivation for

a more detailed investigation of the dynamics of this charge transfer.

Our work can be immediately generalized to charge transfer process between generic complex fields.

Transfer is possible as long as it is favored by the free energy and the transfer rate exceeds the Hubble ex-

pansion rate. For example, charge transfer can occur from a MSSM flat direction to another flat direction,

if no conservation law requires a large fermion asymmetry and if the latter flat direction has a smaller en-

ergy per charge. It is also possible that the final state is composed of rotations of several flat directions. The

charge transfer may complete by first order phase transition or phase mixing, depending on the thermal

potentials of the fields involved in the charge transfer. We note that the axion case, i.e., a recipient field for

the charge with a fixed value for the radial component, is special in the sense that the energy per charge

of the axion rotation ∼ q/ f 2 is always smaller than that of a complex scalar in a quadratic potential for a

sufficiently small total U (1) charge.
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Figure 4: Evolution of charges stored in the AD field and the axion, governed by the AD field radius r and the axion velocity

θ̇a for different initial temperatures T0. The black curve depicts their equilibrium values, obtained if the charge transfer rate is

significantly faster than the Hubble expansion. Here cosmic expansion is accounted for but thermal contributions to the effective

potential are not included.

A Boltzmann equations for charge transfer

In this appendix we show numerical results obtained by solving the Boltzmann equations (2.10) for the

model discussed in Sec. 2.1. We fix f = 109 GeV, m = 103 GeV,αG = 0.1 and consider a radiation-dominated

background, H = T 2/M∗ with M∗ = 7 · 1017 GeV. We initialize the AD field at r = r0 = 10 f , treating the

temperature T0 at this time as a free parameter. We denote the temperature at which the AD field would

collapse assuming an efficient charge transfer (q = qc ) as Tc. The results are shown in Fig. 4 as a function

of the temperature of the thermal bath T .

The left panel of Fig. 4 shows the evolution of the radial component of the AD field (recall that the

angular component is fixed to θφ = m). For low temperatures, the charge transfer is not efficient, and we

observe that the field value decreasing as r ' r0 ∝ R−3/2, in agreement with the conserved charge R3r 2
0 m

in the absence of charge transfer. At larger temperatures the charge transfer becomes efficient, tracing the

equilibrium value for r for γs(T / f )2 > H . Once we reach r ∼ f the AD field collapses if the charge transfer

is efficient, otherwise the collapse is delayed until the Hubble rate falls below the charge transfer rate.

The right panel shows the evolution of the axion velocity, starting from θ̇a = 0. The equilibrium value

θ̇a =−m is reached if the transfer is efficient at T = T0. More generally the axion velocity is well described

by Eq. (2.13), as indicated by the dashed lines. The curves for larger values of T0 end once the AD field

collapses, and all charge is transferred to the axion, see left panel. After this occurs, θ̇a should decrease in

proportion to R−3.

In the model discussed in Sec. 2.2, the charge density for the fermions efficiently tracks the equilibrium

value given in Eq. (2.24) as long as at least one of the two interactions rates γs and γχ is faster than the

Hubble expansion. In this case, after replacing the qχ by its equilibrium value in Eq. (2.23), the dynamics

of the axion and AD field are analogous to the the model of Sec. 2.1. For the impact of thermal corrections,

see Sec. 3.
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B Thermodynamics of rotating scalar fields

The main purpose of this section is to demonstrate how to obtain thermodynamic quantities in the pres-

ence of rotating scalar fields by performing explicit calculations in a simplified model. Unlike the simpli-

fied setup in Sec. 3, we include an AD-field dependent mass term for the fermion which participates in the

charge transfer between the AD and the axion field. We moreover include the fluctuations of the AD field.

Nevertheless, we find a qualitatively similar result as in Sec. 3.

B.1 Preliminary

Model. To make our discussion concrete, we consider the following toy model,

L =∣∣∂φ∣∣2 −m2
∣∣φ∣∣2 +ψi /Dψ+ 1

2
f 2(∂θa)2 − 1

2
TrGµνGµν

− (
yφψPLψ+H.c.

)− g 2θa

16π2 TrGµνG̃µν. (B.1)

Here φ is a complex scalar field whose charge is transferred to the axion θa in the end, and ψ is a Dirac

fermion charged under a gauge group with field strength tensor Gµν. The chiral symmetry of the fermion

is explicitly broken by the chiral anomaly. Through the Yukawa coupling y , the fermion obtains a φ-

dependent mass. In a supersymmetric theory, where a nearly quadratic potential of φ can be achieved,

y is as large as the gauge coupling constant, so we assume y = O (1) in the following. The relevant current

equations are

∂ · Jφ+ 1

2
∂ · J5 =− g 2

16π2 TrGµνG̃µν, ∂ · Ja =− g 2

16π2 TrGµνG̃µν, (B.2)

where each current is defined by

Jµ
φ
=φ†i

←→
∂ φ, Jµ5 =ψγµγ5ψ, Jµa = f 2∂µθa . (B.3)

This Lagrangian has a U(1) symmetry, whose conserved charge is given by

Q =Qφ+ 1

2
Q5 −Qa , (B.4)

with Q• =
∫
x J 0• . We also define charge densities for later convenience as q• = 〈Q•〉/VwithV being a spatial

volume. On top of Eq. (B.1), we introduce a higher dimensional operator for φ that explicitly breaks this

U(1) symmetry. When the field value of φ is large in the early Universe, this breaking term induces the

rotation of φ via the Affleck-Dine mechanism. After some time, the breaking becomes inefficient as the

field value of φ decreases due to the cosmic expansion, and then Q becomes conserved.

When the field value of φ is large enough, one may integrate out the Dirac fermion ψ. The Lagrangian

in this case reads

L =1

2
(∂r )2 − 1

2

(
m2 − (

∂θφ
)2

)
r 2 + 1

2
f 2(∂θa)2 − 1

2
TrGµνGµν− g 2

(
θa +θφ

)
16π2 TrGµνG̃µν, (B.5)

and the current equations are

∂ · Jφ =− g 2

16π2 TrGµνG̃µν, ∂ · Ja =− g 2

16π2 TrGµνG̃µν. (B.6)

We can see that the model (B.1) is a simple realization of the toy model discussed in Sec. 2.1.
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Review of thermal field theory. Before going into our model calculations, we briefly summarize some

basic facts of thermal field theory [49, 50]. Starting from the Hamiltonian H , thermodynamic quantities

with a conserved charge Q are obtained from the grand canonical ensemble of

ρGC = 1

Z
e−

1
T (H −µQ), Z = TrρGC, (B.7)

which is related to the thermodynamic pressure

p(T,µ) = T

V
ln Z , (B.8)

with V being a spatial volume. The charge density is obtained from \6

q = ∂p
(
T,µ

)
∂µ

. (B.9)

These quantities are useful when considering a bath of fixed temperature T and chemical potential µ.

However, we are rather interested in the case of a fixed charge 〈Q〉. The Helmholtz free energy, f (T, q), is

more useful in this case, which is obtained from the Legendre transformation

f
(
T, q

)=µq −p. (B.10)

In the context of field theory, it is more convenient to express these quantities by means of an effective

potential, i.e., as a function of φ. Thermodynamic quantities are obtained by evaluating it at its extrema,

p
(
T,µ

)=− Vµ,eff
(
φ,T,µ

)∣∣
dVµ,eff/dφ=0 , f

(
T, q

)= Veff
(
φ,T, q

)∣∣
dVeff/dφ=0 . (B.11)

with the subscript indicating the thermodynamic quantity taken to be constant. These effective potentials

are related through the Legendre transform of

Veff
(
φ,T, q

)=µq +Vµ,eff
(
φ,T,µ

)
, q =−∂Vµ,eff

(
φ,T,µ

)
∂µ

, (B.12)

Note that we assume that the background φ is homogeneous. The grand canonical partition function can

be expressed as an Euclidean path integral

Z = e
V
T p(T,µ) =

∫
b.c.

[
dµ

]
exp

[
−

∫ 1
T

0
dτd3x LE

(
∂τ→ ∂τ− cφµ

)]
, (B.13)

with cφ denoting the charge of φ with respect to the conserved charge Q. The boundary condition (b.c.) is

taken so that the bosonic fields are periodic while fermionic fields are anti-periodic. The effective potential

Vµ is obtained by performing this path integral on a background ofφ. Then we obtain the second effective

potential Vq via the Legendre transform.

\6In the main text, we often simply refer to q as ‘charge’ for brevity.
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B.2 Effective potential

Without axion. We first consider the case where the conversion of charge between φ and θa mediated

by the sphaleron is negligible. The axion is sequestered and hence we omit it hereafter, as in Sec. 3.1. The

relevant conserved charge is then

QAD =Qφ+ Q5

2
. (B.14)

The Euclidean Lagrangian reads

LE = (∂τφ
† +µφ†)(∂τφ−µφ)+ ∣∣∇φ∣∣2 +m2

∣∣φ∣∣2 +ψ
(
γ0∂τ− iγi∂i + µ

2
γ0γ5

)
ψ+ (

yφψPLψ+H.c.
)
. (B.15)

Assuming a homogeneous background of φ= r e iθφ/
p

2, one may compute its effective potential

Vµ,eff
(
r,T,µ

)= (
m2 −µ2)r 2

2
−dψ lndet

(
i /∂+ yrp

2
+ µ

2
γ0γ5

)
+ lndet

(
�+m2 −µ2 +µi

←→
∂t

)
(B.16)

at the one-loop level. Here dψ counts the number of Dirac fermions (e.g., dψ = 1/2 for a Weyl fermion, 3

for a Dirac color triplet, ...). The determinants are evaluated as

lndet

(
i /∂+ yrp

2
+ µ

2
γ0γ5

)
=2

∫
d3p

(2π)3

[
ω′

2
+T ln

(
1+e−ω

′/T
)]
ω′=

p
y2r 2/2+(p−µ/2)2

+ (
µ→−µ)

,

=
∫

d3p

(2π)3

[
ω′

2
+T ln

(
1−e−ω

′/T
)]
ω′=

p
m2+p2−µ

+ (
µ→−µ)

. (B.17)

for the fermionic and bosonic contribution, respectively. The first terms in the integrands lead to UV

divergence, which are the usual zero temperature divergent parts and can be dropped.\7 From (B.17), the

approximate form of the fermion contribution is

Vµ, f /dψ '
−4 7

8
π2T 4

90 − µ2T 2

24 − µ4

192π2 + y2T 2r 2

24 yr ¿ T,

−
p

2
π3/2 e−

yrp
2T

(
yrp

2

)3/2
T 5/2 − 3

4
p

2π2 e−
yrp
2T

√
yrp

2
T 3µ2 − µ4

192π2 yr À T.
(B.18)

For the fluctuations of the AD field, (B.17) yields

Vµ,AD '−π
2

45
T 4 − 1

6
µ2T 2, (B.19)

where we have assumed m,µ< T and have dropped higher-order terms in µ.

Around r = 0, assuming µ< T (dropping O(µ4) terms),

Vµ,eff(r,T,µ) ' (
m2 −µ2)r 2

2
−dψ

(
4

7

8

π2T 4

90
+ µ2T 2

24
+ µ4

192π2 − y2T 2r 2

24

)
−

(
π2T 4

45
+ µ2T 2

6

)
. (B.20)

\7The divergence in the fermion contribution includes the logarithmic divergence of the coefficient of µ2r 2. One may worry

about this divergence at finite densities, but this contribution is cancelled by the wave-function renormalization of φ, owing to

the non-renormalization of the charge.
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Using the Legendre transform, the effective potential for a fixed charge density q is

Veff(r,T, q) =−π
2

45

(
1+ 7

4
dψ

)
T 4 + 1

2

(
m2 + dψ

12
y2T 2

)
r 2 + 6q2

12r 2 + (4+dψ)T 2 . (B.21)

This has an extremum at r = 0. The second derivative of Vq with respect to r at r = 0 is(
∂2Veff(r,T, q)

∂r 2

)
r=0

= m2 + dψ
12

y2T 2 − 144q2

(4+dψ)2T 4 . (B.22)

This is positive and the origin is a (local) minimum if the charge q is small enough,

q2 < (4+dψ)2dψ
1728

y2T 6 + (4+dψ)2

144
m2T 4 (B.23)

This condition is qualitatively the same as the one derived below Eq. (3.8). Note that q satisfying this

condition implies µ < T , and hence our assumption of µ < T is self-consistent. When q significantly

violates this condition, µ2 > m2+dψy2T 2/12. The integration in Eq. (B.17), even after the resummation to

include the thermal mass ∼ yT , results in an imaginary part, signaling the instability of r = 0 and leading

to the formation of the BEC of the AD field.

For yr À T , assuming µ< T ,

Vµ,eff(r,T,µ) ' (
m2 −µ2)r 2

2
−

(
π2T 4

45
+ µ2T 2

6

)
. (B.24)

The effective potential for a fixed charge density q is

Veff(r,T, q) =−π
2

45
T 4 + 1

2
m2r 2 + 3q2

6r 2 +2T 2 . (B.25)

This has an extremum at r 2 = |q |/m ≡ r 2
eq. The second derivative at req is 4m2. The assumption of yreq À T

is valid if q À mT 2/y2. At req, |µ| = m, so the integration in Eq. (B.17) does not yield an imaginary part and

Vq can be interpreted as the effective potential as usual. Moreover, for m < T , the assumption µ= m < T is

again self-consistent. For m > T , Eq. (B.16) is simply dominated by the first term, and thermal corrections

are irrelevant to the dynamics of the phase transition.

There are two minima of the effective potential for mT 2/y2 < q < yT 3. As in Sec. 3.1, one can compare

the effective potential at these two minima and determine which is the absolute minimum, obtaining

qualitatively the same result.

We are interested in the possible transition from r = req to r = 0 by bubble nucleation. To compute

the nucleation rate, one needs the effective potential for intermediate field values, 0 < r < req. When

|q| > mT 2 and r < req, |µ| is larger than m. Also, for yr > T , the thermal mass squared of the AD field given

by the coupling y is negative. Therefore, for T /y < r < req, the integration in Eq.(B.17) yields an imaginary

part, and the effective potential inside the bubble wall formally contains an imaginary part. This may

cast a doubt on the validity of the computation, but we argue that the appearance of the imaginary part

is an artifact of the inclusion of long-wave length modes despite the finiteness of the width of the bubble

wall [51]. In computing the effective potential, the field value r is approximated to be homogeneous, which
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is justified only for the excitations with wavelength shorter than the wall width. The effective potential

contains a term −µ2(q,r )r 2/2, so the width of the bubble-wall is at most O(µ−1). We should, therefore, use

a prescription where p < µ is excluded from the integration in Eq. (B.17). This regularization prescription

introduces some uncertainty in the coefficient of µ2T 2 terms; they depend on the choice the IR cut off.

However, since we are interested in r > T /y > T , for which the µ2r 2 term dominates over µ2T 2 terms, this

IR dependence does not introduce any relevant uncertainty in the computation of the bubble nucleation

rate. An explicit computation of this nucleation rate is beyond the scope of this paper.

With axion. Finally, we turn on the sphaleron processes to consider the charge transfer to the axion

through a Chern-Simons coupling, as in Sec. 3.2. In this case, the axion and AD charges are no longer

separately conserved. Rather their linear combination is the only conserved quantity of the system, i.e.,

Q =QAD −Qa =Qφ+ Q5

2
−Qa . (B.26)

Assuming a homogeneous background ofφ= r e iθφ/
p

2 again, the one-loop effective potential acquires an

additional contribution from the axion

Vµ,eff(r,T,µ) ' Vµ,eff(r,T,µ)
∣∣
Eq. (B.16) −

µ2 f 2

2
+ 1

2
lndet�. (B.27)

Here we neglect the potential from the coupling with GG̃ and non-perturbative gauge dynamics, which

makes a particular linear combination of θφ−θa massive. The last term comes from the axion fluctuations,

which does not lead to a µ-dependent effective potential and hence one may omit it for our purpose.

Using Eq. (B.27), we may compute Vq and check the minimum of the effective potential. The result is

identical to the discussion in Sec. 3.2 up to the modification of O(1) factors.
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