CERN Accelerating science

002807914 001__ 2807914
002807914 003__ SzGeCERN
002807914 005__ 20221027183910.0
002807914 0247_ $$2DOI$$a10.1098/rsfs.2021.0018
002807914 0248_ $$aoai:cds.cern.ch:2807914$$pcerncds:CERN
002807914 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2072734$$d2022-04-28T14:57:59Z$$h2022-04-29T04:00:08Z$$mmarcxml
002807914 035__ $$9Inspire$$a2072734
002807914 041__ $$aeng
002807914 100__ $$aBhati, Agastya P$$uUniversity Coll. London
002807914 245__ $$9submitter$$aPandemic drugs at pandemic speed: infrastructure for accelerating COVID-19 drug discovery with hybrid machine learning- and physics-based simulations on high-performance computers
002807914 260__ $$c2021
002807914 300__ $$a12 p
002807914 520__ $$9submitter$$aThe race to meet the challenges of the global pandemic has served
as a reminder that the existing drug discovery process is expensive, inefficient
and slow. There is a major bottleneck screening the vast number of potential
small molecules to shortlist lead compounds for antiviral drug development.
New opportunities to accelerate drug discovery lie at the interface between
machine learning methods, in this case, developed for linear accelerators,
and physics-based methods. The two in silico methods, each have their own
advantages and limitations which, interestingly, complement each other.
Here, we present an innovative infrastructural development that combines
both approaches to accelerate drug discovery. The scale of the potential resulting workflow is such that it is dependent on supercomputing to achieve
extremely high throughput. We have demonstrated the viability of this workflow for the study of inhibitors for four COVID-19 target proteins and our
ability to perform the required large-scale calculations to identify lead antiviral compounds through repurposing on a variety of supercomputers.
002807914 540__ $$3publication$$aCC-BY-4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002807914 542__ $$3publication$$dThe Authors$$f© 2021 The Authors$$g2021
002807914 65017 $$2INSPIRE$$aComputing and Computers
002807914 690C_ $$aARTICLE
002807914 690C_ $$aCERN
002807914 700__ $$aWan, Shunzhou$$uU. Coll. London
002807914 700__ $$aAlfè, Dario$$uU. Coll. London
002807914 700__ $$aClyde, Austin R$$uChicago U.
002807914 700__ $$aBode, Mathis$$uRWTH Aachen U.
002807914 700__ $$aTan, Li$$uBrookhaven Natl. Lab.
002807914 700__ $$aTitov, Mikhail$$uRutgers U., Piscataway
002807914 700__ $$aMerzky, Andre$$uRutgers U., Piscataway
002807914 700__ $$aTurilli, Matteo$$uRutgers U., Piscataway
002807914 700__ $$aJha, Shantenu$$uBrookhaven Natl. Lab.$$uRutgers U., Piscataway
002807914 700__ $$aHighfield, Roger R$$uUnlisted, GB
002807914 700__ $$aRocchia, Walter$$uItalian Inst. Tech., Genoa
002807914 700__ $$aScafuri, Nicola$$uItalian Inst. Tech., Genoa
002807914 700__ $$aSucci, Sauro$$uItalian Inst. Tech., Genoa
002807914 700__ $$aKranzlmüller, Dieter$$uLeibniz Rechenzentrum, Garching
002807914 700__ $$aMathias, Gerald$$uLeibniz Rechenzentrum, Garching
002807914 700__ $$aWifling, David$$uLeibniz Rechenzentrum, Garching
002807914 700__ $$aDonon, Yann$$uCERN
002807914 700__ $$aDi Meglio, Alberto
002807914 700__ $$aVallecorsa, Sofia$$uCERN
002807914 700__ $$aMa, Heng$$uArgonne
002807914 700__ $$aTrifan, Anda$$uArgonne
002807914 700__ $$aRamanathan, Arvind$$uArgonne
002807914 700__ $$aBrettin, Tom$$uArgonne
002807914 700__ $$aPartin, Alexander$$uArgonne
002807914 700__ $$aXia, Fangfang$$uArgonne
002807914 700__ $$aDuan, Xiaotan$$uChicago U.
002807914 700__ $$aStevens, Rick$$uArgonne
002807914 700__ $$aCoveney, Peter V$$uU. Coll. London$$uAmsterdam U.
002807914 773__ $$c20210018$$n6$$pInterface Focus$$v11$$y2021
002807914 960__ $$a13
002807914 980__ $$aARTICLE