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Abstract

Resonant structures in the dipion mass spectrum from χc1(3872)→ π+π−J/ψ decays,
produced via B+ → K+χc1(3872) decays, are analyzed using proton-proton collision
data collected by the LHCb experiment, corresponding to an integrated luminosity
of 9 fb−1. A sizeable contribution from the isospin conserving χc1(3872) → ωJ/ψ
decay is established for the first time, (21.4±2.3±2.0)%, with a significance of more
than 7.1σ. The amplitude of isospin violating decay, χc1(3872) → ρ0J/ψ, relative
to isospin conserving decay, χc1(3872)→ ωJ/ψ, is properly determined, and it is a
factor of six larger than expected for a pure charmonium state.
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After the discovery of the χc1(3872) state in decays through the π+π−J/ψ channel [1],
the ρ0J/ψ process was suggested to explain the observed π+π− mass (mπ+π−) distribution
peaking near the upper kinematic limit, close to the ρ0 pole mass. The isovector nature of
the produced π+π− pairs is also supported by the non-observation of χc1(3872)→ π0π0J/ψ
decays. Since no charged partners of the χc1(3872) state have been observed in the
ρ±J/ψ decay mode [2, 3], the χc1(3872) particle is predominantly an isosinglet state; the
J/ψ isospin is also zero. Together, this makes the χc1(3872) → ρ0J/ψ decay isospin
violating. The χc1(3872) spin and parities, JPC = 1++ [4, 5], match the 23P1 excitation
of the cc system predicted in the relevant mass range [6]. However, isospin violating
decays of charmonium states are highly suppressed. Therefore, quantifying the isospin
violation in χc1(3872) → ρ0J/ψ decays is important to understand the nature of the
χc1(3872) state, which is under intense debate [7, 8]. Isospin conserving χc1(3872) →
ωJ/ψ decays provide a suitable normalization process. Such decays have been recently
established with a significance of 5σ [9] using the dominant ω → π+π−π0 decay, which has
a branching fraction (B) of (89.2±0.7)% [10]. Averaged with earlier measurements [11,12],
B(χc1(3872)→ ωJ/ψ)/B(χc1(3872)→ π+π−J/ψ) = 1.4±0.3. However, ω → π+π− decays,
with B(ω → π+π−) = (1.53± 0.12)% [10], are expected to contribute to the denominator
at the 2% level if ρ0 − ω interference is neglected. The interference can change this
estimate by a large factor. Therefore, an analysis of the mπ+π− spectrum is necessary to
disentangle the ρ0 and ω contributions. Such analyses were performed by the CDF [13]
and the Belle [3] collaborations, using the Breit–Wigner sum model, yielding inconclusive
results due to the large statistical uncertainties.

In this Letter, we report an analysis of a B+ → K+χc1(3872), χc1(3872)→ π+π−J/ψ,
J/ψ → µ+µ− data sample collected using the LHCb detector, with proton-proton (pp)
collision energies of 7, 8 and 13 TeV, corresponding to a total integrated luminosity of
9 fb−1. The inclusion of charge-conjugate processes is implied throughout. This sample is
about six times more sensitive to an ω contribution than those used in Refs. [3, 13]. The
LHCb detector [14,15] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
elements that are particularly relevant to this analysis are: a silicon-strip vertex detector
surrounding the pp interaction region that allows b hadrons to be identified from their
characteristically long flight distance; a tracking system that provides a measurement of
the momentum, p, of charged particles; two ring-imaging Cherenkov detectors that are
able to discriminate between different species of charged hadrons and the muon detector.

The selection of χc1(3872)→ π+π−J/ψ candidates is based on the reconstruction of
B+→ K+π+π−J/ψ(→ µ+µ−) decays, which provides for efficient background suppression
and optimal dipion mass resolution. Both muon candidates are identified by the muon
detector. The dimuon mass must be consistent with the known J/ψ mass [10], and all
five final state particles must form a good-quality vertex significantly displaced from the
closest primary pp interaction vertex (PV). The hadron candidate most likely to be a kaon
is selected as the kaon candidate. Each hadron must have a significant impact parameter
with respect to any PV. To remove multiple entries per event, the B+ candidate with the
largest scalar sum of the hadron and J/ψ candidate transverse-momenta is selected. To
improve mass resolution, the B+ candidates are kinematically constrained to point to
the closest PV and reproduce the known J/ψ mass [16]. The mass of these candidates
must be consistent with the known B+ mass [10], which is then also included among the
kinematic constraints. The resulting mπ+π−J/ψ distribution (Fig. 1) is fit with a signal

1



3800 3850 3900 3950
 [MeV]ψJ/-π+πm

0

200

400

600

800

1000

1200

1400

1600

C
an

di
da

te
s 

/(
1.

5 
M

eV
)

LHCb
-19 fb

data

total fit

(3872)
c1

χ

background

C
an

di
da

te
s/

(2
.1

 M
eV

) 

+B

200

400

600

800

 [MeV]ψJ/-π+π+Km
5170 5275

Figure 1: Distribution of mπ+π−J/ψ (mK+π+π−J/ψ in the inset) from B+ → K+π+π−J/ψ can-
didates within ±2σ around the B+ (χc1(3872)) mass, overlaid with the fit including the total
(solid blue), signal (dashed red) and background (dashed green) components.

(background) shape modelled by a double-sided Crystal Ball [17] (quadratic) function,
yielding 6788 ± 117 χc1(3872) → π+π−J/ψ decays with a χc1(3872) mass resolution of
σm = 2.66 ± 0.09 MeV (natural units are used throughout). The signal purity is 77%
within ±2σm around the χc1(3872) mass. The dominant source of background is from
B+ decays to J/ψ meson and excited kaons (K∗+), which decay to K+π+π−. The dipion
mass distribution is obtained by two-dimensional unbinned fits of the χc1(3872) signal
yields to the (mπ+π−J/ψ,mπ+π−) data in mπ+π− intervals. The signal shape in mπ+π−J/ψ

is fixed to the global fit result of Fig. 1, while the background shape may vary in each
mπ+π− interval. The signal and the background mπ+π−J/ψ shapes are then multiplied by a
two-body phase-space factor, i.e. the J/ψ momentum in the χc1(3872) rest frame (pJ/ψ),
which depends on both mπ+π−J/ψ and mπ+π− . The resultant shapes are normalized to
unity using their integral over the fitted phase-space range. The obtained data points are
shown in Fig. 2.

Signal simulation is used to obtain the mπ+π− dependence of the dipion mass
resolution and of the reconstruction efficiency. In the simulation, pp collisions are
generated using Pythia [18] with a specific LHCb configuration [19]. Decays of unstable
particles are described by EvtGen [20], in which final-state radiation is generated
using Photos [21]. In particular, B+ → K+χc1(3872), χc1(3872)→ J/ψρ0, ρ0 → π+π−,
J/ψ → µ+µ− signal decays are simulated using the helicity model where the χc1(3872)
decays via an S-wave, which describes the angular distributions in the data well [5].
When integrating over mπ+π− , the generated mπ+π− distribution is weighted to reproduce
the observed distribution. The interaction of the generated particles with the detector,
and its response, are implemented using the Geant4 toolkit [22] as described in
Ref. [23]. The underlying pp interaction is reused multiple times, with an independently
generated signal decay for each event [24]. The transverse-momentum distribution
of the signal B+ is weighted to match the data. The relative signal reconstruction
efficiency obtained from the simulation is well described by a quadratic function,
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Figure 2: Distribution of mπ+π− in χc1(3872)→ π+π−J/ψ decays, fit with the ρ0-only model.

ε(mπ+π−)=0.966+1.345×10−3 (mπ+π−−700)+1.607×10−6 (mπ+π−−700)2, and the dip-
ion mass resolution by σ(mπ+π−)=2.39 (1−exp(−mπ+π−/220.3))−5.4 exp(−mπ+π−/220.3),
where mπ+π− and σ(mπ+π−) are in MeV. The simulation underestimates the χc1(3872)
and B+ mass resolution by 6% and 14%, respectively. Therefore, σ(mπ+π−) is scaled up
by fm = 1.06, which is varied from 1.00 to 1.14 to assess a systematic uncertainty. All
theoretical probability density functions fit to the data, P(mπ+π−), are multiplied by
the relative efficiency function, ε(mπ+π−) and convolved with a Gaussian distribution
characterized by a root-mean-square value of fmσ(mπ+π−).

The matrix element, M, describing the three-body decay, χc1(3872)→ π+π−J/ψ,
is related to P(mπ+π−) via a scaling (S) and the phase-space factors,
P(mπ+π−) = S pJ/ψ pπ |M|2, where pπ is the pion momentum in the rest frame of
the π+π− system. The scaling factor S is a nuisance parameter.

Following the previous analyses [3, 13], the ρ0 component is first parameterized as a
Breit–Wigner (BW) amplitude,

M = BW(s |mρ,Γρ) =
mρΓρ

√
B1(pπ)/B1(p

ρ
π)

mρ
2 − s− imρΓ(s)

, Γ(s) = Γρ
pπ
pρπ

mρ√
s

B1(pπ)

B1(p
ρ
π)
, (1)

where s ≡ m2
π+π− , pρπ = pπ(mρ), mρ = 775.26 MeV, Γρ = 147.4 MeV [10] and

B1(p) = p2/[(1 + (Rp)2)] is the Blatt–Weisskopf barrier factor for the P -wave decay
of a vector particle to π+π−, and contains an effective hadron-size parameter R. With
R adjusted to 1.45 GeV−1, a complex phase of the BW amplitude varies in the fitted
mπ+π− range within one degree of the isovector π+π− P -wave parametrization extracted
from the scattering data by the phenomenological analysis of Ref. [25]. A similar value
of 1.5 GeV−1 was used in the previous analyses [3, 13]. The χ2 fit, with S as the only fit
parameter, fails to describe the data as shown in Fig. 2, with a χ2 value per number of
degrees of freedom (χ2/NDoF) equal to 366.6/34. A large disagreement between the data
and the χc1(3872)→ ρ0J/ψ amplitude at high dipion masses was missed in the previous
comparisons with the χc1(3872) → ρ0J/ψ simulation (see Fig. S2 in the supplementary
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material of Ref. [5]; see also Refs. [26, 27]), because the EvtGen [20] model does not
correctly simulate the impact of the phase-space factors (here pJ/ψpπ) on resonant shapes.
As a consequence, the large ρ0 − ω interference in the data (see below) was mistakenly
interpreted as a part of the ρ0 resonance itself.

Adding an ω contribution via the BW sum model with M = BW(s|mρ,Γρ) +
a exp(i φ) BW(s|mω,Γω), where a and φ are the amplitude and phase of the ω component
relative to the ρ0 term [3,13], improves the fit quality substantially, χ2/NDoF = 102.9/33,
yet not enough to be acceptable. Summing BW amplitudes results in matrix elements that
are not unitary, violating first principles of scattering theory. A two-channel K-matrix
(K) model [28], coupling the π+π− and π+π−π0 channels via an ω contribution, resolves
this issue,

K =
1

mρ
2 − s

(
g2ρ→2π 0

0 0

)
+

1

mω
2 − s

(
g2ω→2π gω→2π gω→3π

gω→2π gω→3π g2ω→3π

)
, (2)

where g are the coupling constants described later. The g2ρ→3π coupling is 4–5 orders of
magnitude smaller than g2ρ→2π [10, 29, 30] and has been neglected here. The T -matrix

is obtained from T̂ = [1− iK %]−1 K, where the phase-space matrix % is diagonal,
% = diag(%2π(s), %3π(s)), and is detailed in the supplemental material. The decay amplitude
is given by

M = Â2π

√
B1(pπ), (3)

where Â2π ≡ α2πT̂2π,2π +α3πT̂2π,3π, and the elements of the production Q-vector (α2π, α3π)
are real [31]. The coupling constants are fully determined from other experiments [10],

g2ρ→2π = mρ Γρ/%2π(m2
ρ), (4)

g2ω→3π = mω ΓωB(ω → π+π−π0)/%3π(m2
ω), (5)

g2ω→2π = mω ΓωB(ω → π+π−)/%2π(m2
ω). (6)

Numerically, g2ω→2π/g
2
ρ→2π ≈ 0.0009, while gω→2π gω→3π/g

2
ρ→2π ≈ 0.01. Thus, the diagonal

ω coupling to two pions can be neglected in comparison with the off-diagonal coupling. In
this approximation, equivalent to the full formalism given the precision of this analysis,

T̂2π,2π ≈
g2ρ→2π

mρ
2 − s− i g2ρ→2π%2π(s)

, (7)

which is the ρ0 Breit–Wigner amplitude (Eq. 1) and α2π is the ρ0 production factor
in the χc1(3872) decay. A mild dependence of α2π on s is possible, since α2π(s) must
be analytic and cannot change much within the resonance widths (see e.g. Ref. [32]).
Using Chebyshev polynomials (Cn) to express the dependence: α2π(s) =

∑n=N
n=0 PnCn(ŝ),

where ŝ ≡ 2 (s− smin)/(smax − smin)− 1, smin = (380 MeV)2 and smax = (775 MeV)2. The
polynomial coefficients Pn are determined from a fit to the data, except for P0, which
is set to unity as the normalization choice. For α2π(s) to have the expected theoretical
behavior, the series must converge, |Pn+1| < |Pn| and N should be kept small.

The ω contribution enters via the element,

T̂2π,3π ≈
gω→2π gω→3π (m2

ρ − s)
(mρ

2 − s− i g2ρ→2π%2π(s))(mω
2 − s− i g2ω→3π%3π(s))

. (8)
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Figure 3: Distribution of mπ+π− in χc1(3872)→ π+π−J/ψ decays, fit with the default K-matrix
model.

This term approaches zero at the bare ρ0 pole mass, which complicates probing the ω
contribution, mω = 782.66 ± 0.13 MeV and Γω = 8.68 ± 0.13 MeV [10]. This zero is an
artifact of the K-matrix approach, rather than an expectation from scattering theory. To
remove it and restore a more physical behavior of the ω term,

α3π = aω
mω

2 −mρ
2

mρ
2 − s

, (9)

is set. The constant term mω
2 −mρ

2 is introduced above to make aω express the ratio
of ω/ρ amplitudes at the ω pole. The value of aω is determined by the fit to the data.
Using Eqs. 7, 8 and 9, with α2π constant (N = 0), is the common method to describe
ρ0 − ω interference in analyses of the π+π− system [33]. The exact K-matrix formulae
are used here. In view of Eq. 7, models with α3π = 0 are interpreted as containing a
ρ0 component only. The following integrals are calculated to quantify a relative rate of
the ω contribution: Itot =

∫
P(mπ+π−)dmπ+π− , Iρ =

∫
P(mπ+π− |α3π = 0)dmπ+π− and

Iω =
∫
P(mπ+π− |α2π = 0)dmπ+π− , where P(mπ+π−) is neither convolved with the mass

resolution, nor multiplied by the efficiency function. The integration is performed over
the full phase space. To quantify the overall impact of ω on the total rate, including
ρ0 − ω interference effects, the ratio R all

ω ≡ 1 − Iρ/Itot is defined. The traditional ω fit
fraction is given by R 0

ω ≡ Iω/Itot. Finally, to probe the ratio of the χc1(3872) isospin
conserving to isospin violating couplings, the ratio R 0

ω/ρ ≡ Iω/Iρ is introduced. Using

the B+ → K+χc1(3872) simulation, the extraction of the dipion mass distribution and
subsequent fit with the K-matrix model, with the efficiency and the mass resolution
corrections included, are verified to a precision an order of magnitude better than the
total systematic uncertainties reported below.

Allowing the ω term in the K-matrix model with the constant α2π improves the
fit quality to χ2/NDoF = 55.1/33, resulting in a significance for the ω contribution of
nσ = (χ2

aω=0 − χ2
aω 6=0)

1/2 = 17.7σ [34]. However, the p-value of the fit is marginal (0.9%).
Introducing a term linear in s to α2π(s) improves the fit with χ2/NDoF = 24.7/32, p-value
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= 82%, and a small slope coefficient, P1 = 0.23± 0.05. This fit, shown in Fig. 3, is taken
as the default model and yields nσ = 8.1σ, R all

ω = 0.214± 0.023, R 0
ω = 0.0193± 0.0044,

R 0
ω/ρ = 0.0246 ± 0.0062 and aω = 0.208 ± 0.024. The ω contribution is at the level of

R 0
ω ≈ 2% as expected from the χc1(3872) → ωJ/ψ, ω → π+π−π0 measurements (see

above). The impact on the overall χc1(3872)→ π+π−J/ψ rate given by R all
ω is an order

of magnitude larger, enhanced by the ρ0 − ω interference. Allowing a quadratic term
in α2π(s) lowers the p-value of the fit to 78% with χ2/NDoF = 24.6/31, indicating that
too much freedom is added to the model. The P2 coefficient is small and consistent with
zero, P2 = 0.016± 0.047, while all other fit results remain consistent with the default fit,
P1 = 0.21± 0.07, R all

ω = 0.206± 0.035, R 0
ω = 0.0178± 0.0062, R 0

ω/ρ = 0.0225± 0.088 and
aω = 0.197± 0.042. The significance of the ω contribution remains very high, nσ = 5.5σ,
and is now underestimated, since the null hypothesis (aω = 0) gives an unphysical
polynomial correction (the quadratic term, P2 = 0.17± 0.02, comparable to, and more
significant than the linear term, P1 = 0.16± 0.05).

A number of analysis variations have been performed to evaluate systematic uncer-
tainties on the ω fraction, as summarized in Table 1. In the dipion mass extraction from
the data, Gaussian functions are used for the χc1(3872) shape in mπ+π−J/ψ data, rather
than Crystal Ball functions. A cubic polynomial replaces the quadratic function in the
relative efficiency parametrization.

Data-driven corrections to the simulation of the hadron identification are implemented,
as a cross-check. To check further the relative efficiency simulation and the background
subtraction, a tighter data selection is implemented with a Boosted Decision Tree (BDT)
classifier [35], using inputs from hadron identification variables, the B+ vertex quality,
the PV impact parameters of the final-state particles and the B+ candidate, the hadron
transverse-momenta and the B+ flight distance. The tighter selection reduces the combi-
natoric background under the B+ peak in the mK+π+π−J/ψ distribution from 9.4% to 3.1%,
resulting in an overall background reduction under the χc1(3872) peak in the mπ+π−J/ψ

distribution from 23% to 17%. At the same time, the χc1(3872) signal yield is reduced by
only 0.4%.

To evaluate uncertainties due to the mass resolution used in the fit, the scaling factor fm
is varied and the fit range is reduced to exclude the last interval of the mπ+π− distribution
(775–780 MeV), since this falls beyond the phase-space limit, and therefore its content is
very sensitive to σ(mπ+π−).

To check for interference effects between B+ → K+χc1(3872) and B+ → K∗+J/ψ
decays, the data are split into two subsamples depending on the sign of cos θX , where
θX is the χc1(3872) helicity angle, the angle between the K+ and J/ψ momenta in the
χc1(3872) rest frame. The composition of K∗+ resonances is different in each subsample.

As a variation of the production model, non-resonant (NR) terms are added to
the production vector, (Â2π, Â3π) = [1 − iK %]−1 [K(α2π, α3π) + (f2π, f3π)]. Without
χc1(3872)→ 3πJ/ψ data in the fit, the NR production parameter f3π cannot be probed,
thus it is set to zero. A good-quality fit is obtained with constant α2π, which gives
f2π = (−9.7± 1.6)× 10−7.

The default fit assumes an S-wave χc1(3872) decay. When a D-wave component is al-
lowed in the fit, multiplying |M|2 by 1+AD

2B2(pJ/ψ)/B2(p
ρ
J/ψ), where pρJ/ψ ≡ pJ/ψ(mρ) and

B2(p) ≡ p4/(9 + 3 (Rp)2 + (Rp)4), the AD parameter is consistent with zero, 0.13± 0.41.
Tuning AD to 0.176 produces a 4% D-wave fraction, equal to the upper limit from studies
of the angular correlations [5].
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Table 1: Results for ω fractions with systematic uncertainties. See text for a description of the
individual entries.

Fit type χ2/NDoF p-value R all
ω R 0

ω R 0
ω/ρ nσ

Default 24.7/32 0.82 0.214± 0.023 0.019± 0.004 0.025± 0.006 8.1σ

P2 6= 0 24.6/31 0.78 0.206± 0.035 0.018± 0.006 0.023± 0.009 5.5σ

Gaussian χc1(3872) 20.0/32 0.95 0.194± 0.024 0.016± 0.004 0.020± 0.006 7.3σ

cubic ε(mπ+π−) 24.5/32 0.83 0.221± 0.023 0.021± 0.005 0.027± 0.007 8.1σ

had.ID corrections 24.6/32 0.82 0.214± 0.023 0.019± 0.004 0.025± 0.006 8.1σ

BDT selection 24.6/32 0.82 0.207± 0.022 0.018± 0.004 0.023± 0.006 7.9σ

σ(mπ+π−)× 1.0 26.6/32 0.74 0.213± 0.023 0.019± 0.004 0.025± 0.006 8.1σ

σ(mπ+π−)× 1.14 22.6/32 0.89 0.215± 0.023 0.020± 0.004 0.026± 0.006 8.1σ

mπ+π− < 775 MeV 18.0/31 0.97 0.196± 0.024 0.016± 0.004 0.021± 0.006 7.1σ

cos θX < 0 26.9/32 0.72 0.211± 0.035 0.019± 0.007 0.024± 0.010 5.2σ

cos θX > 0 42.2/32 0.11 0.217± 0.030 0.021± 0.006 0.027± 0.009 4.2σ

NR prod. of 2π 24.7/32 0.82 0.214± 0.022 0.019± 0.004 0.025± 0.006 8.1σ

D-wave free 24.5/31 0.79 0.210± 0.029 0.017± 0.005 0.021± 0.007 7.8σ

D-wave fixed at 4% 24.5/32 0.82 0.208± 0.023 0.018± 0.004 0.023± 0.006 7.9σ

ρ′ 25.1/32 0.80 0.209± 0.023 0.018± 0.004 0.024± 0.006 8.1σ

Rprod = 0 GeV−1 24.7/32 0.82 0.209± 0.023 0.019± 0.004 0.024± 0.006 7.9σ

Rprod = 30 GeV−1 24.6/32 0.82 0.229± 0.022 0.021± 0.004 0.028± 0.006 8.7σ

R = 1.3 GeV−1 24.7/32 0.82 0.216± 0.022 0.020± 0.004 0.026± 0.006 8.2σ

R = 1.6 GeV−1 24.7/32 0.82 0.212± 0.023 0.019± 0.004 0.025± 0.006 8.0σ

GS model 24.8/32 0.81 0.221± 0.024 0.021± 0.005 0.028± 0.007 7.8σ

Summary 0.214±0.023±0.020 0.019±0.004±0.003 0.025±0.006±0.005 > 7.1σ

Since the hadron size parameter R is tuned to the scattering data, which automatically
includes any ρ0 excitations, there is no strong motivation to include the ρ(1450) pole [10]
(ρ′) in the K-matrix model. When included, the fit quality is slightly reduced.

The size parameter R used in B1(pπ) of Eq. 3 could be related to the χc1(3872) size,
rather than the ρ0 or ω sizes. Thus, fit variations are tried in which it has an independent
value, Rprod, varied from zero to 30 GeV−1. The R value itself is varied within the range
1.3–1.6 GeV−1. An alternative model of the ρ0 shape, that does not include an R-dependent
Blatt–Weisskopf form factor, is provided by the Gounaris–Sakurai (GS) formula [36],
and was utilized by the BaBar collaboration to describe high statistics e+e− → π+π−(γ)
data [37]. As discussed in the supplemental material, when applying this prescription with
ρ0, ρ′ and ω contributions, an excellent fit to the data is obtained, χ2/NDoF = 24.8/32,
p-value = 81%, matching the fit quality of the default fit.

Total systematic uncertainties, given at the bottom of Table 1, are set to cover the
maximal deviation from the default fit results, and are comparable to the statistical
uncertainties. The lowest ω significance is 7.1σ, excluding the subsamples and P2 6= 0 fit
as discussed above. This is a more significant observation of χc1(3872) → ωJ/ψ decays
than achieved using the dominant ω → π+π−π0 decay channel.
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In addition to the resonant coupling constants, the limited phase space in χc1(3872)→
π+π−J/ψ decays has a large impact on the R 0

ω/ρ value capturing a much smaller fraction

of the ω resonance than for the ρ0 resonance. To probe the resonant coupling constants,
the phase space can be artificially extended to contain both resonance peaks by setting
mχc1(3872) = 4000 MeV, as illustrated in the supplemental material. Integrating the default

P(mπ+π−) model in the extended phase space, R 0
ω/ρ
′
= 0.18± 0.05 is obtained and then

used to deduce the ratio of the isospin violating to isospin conserving χc1(3872) couplings,

gχc1(3872)→ρ0J/ψ
gχc1(3872)→ωJ/ψ

=

√
B(ω → π+π−)

R 0
ω/ρ
′ = 0.29± 0.04.

This value is an order of magnitude larger than expected for pure cc states, as exemplified
by the corresponding value for the ψ(2S) state [10],

gψ(2S)→π0J/ψ

gψ(2S)→ηJ/ψ
=

√
B(ψ(2S)→ π0J/ψ)

B(ψ(2S)→ ηJ/ψ)

pη3

pπ0
3

= 0.045± 0.001,

where pη and pπ0 are the breakup momenta [38]. Therefore, the χc1(3872) state cannot
be a pure charmonium state. Large isospin violation is naturally expected in models in
which the χc1(3872) state has a significant DD∗ component, either as constituents (i.e. in
the “molecular model”) or generated dynamically in the decay [39–48]. The proximity
of the χc1(3872) mass to the D0D∗0 threshold, enhances such contributions over D+D∗−

combinations, which are 8 MeV heavier. It has also been suggested in compact tetraquark
models that two neutral states could be degenerate and mix, giving rise to large isospin
violation in χc1(3872) decays [49–51].

In summary, the ρ0 and ω contributions to χc1(3872)→ π+π−J/ψ decays are resolved
for the first time using a much larger data sample than previously available. Through
ρ0 − ω interference, the ω contribution accounts for (21.4± 2.3± 2.0)% of the total rate.
Excluding interference effects, the ω contribution, (1.9 ± 0.4 ± 0.3)%, is found to be
consistent with, but more precise than the previous χc1(3872) → ωJ/ψ measurements
utilizing ω → π+π−π0 decays [9, 11,12]. The isospin violating ρ0 contribution, quantified
for the first time with proper subtraction of the ω contribution, is an order of magnitude
too large for χc1(3872) to be a pure charmonium state.
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Observation of
sizeable ω contribution

to χc1(3872)→ π+π−J/ψ decays

Supplemental material

1 K-matrix phase-space matrix elements

A notation in which the Blatt–Weisskopf barrier factors (Bl) are integrated with the
phase-space matrix is used in this Letter,

%2π(s) =
2pπ√
s
B1(pπ). (S1)

Since the ω meson decays to three pions via a P -wave ρπ decay,

%3π(s) =

∫ (
√
s−mπ)2

(2mπ)2
dσ

2pπ(σ)√
σ

B1(pπ(σ))

(mρ
2 − σ)2 + (mρ Γρ)2

2p′3(s, σ)√
s

B1(p
′
3(s, σ)) (S2)

p′3(s, σ) =

√
(s− (

√
σ +mπ)2)(s− (

√
σ −mπ)2)

2
√
s

. (S3)

2 Gounaris–Sakurai resonant mπ+π− shape

An alternative model to the R-dependent Blatt–Weisskopf form factor in the Breit–Wigner
amplitude is provided by the Gounaris–Sakurai formula [36],

BWGS
ρ (s |mρ,Γρ) =

m2
ρ [1 + d(mρ)Γρ/mρ]

m2
ρ − s+ f(s,mρ,Γρ)− imρΓ(s,mρ,Γρ)

, (S4)

where,

Γ(s,m,Γ0) =Γ0
m√
s

[
pπ(s)

pπ(m2)

]3
, (S5)

d(m) =
3

π

m2
π

p2π(m2)
log

[
m+ 2pπ(m2)

2mπ

]
+

m

2πpπ(m2)
− m2

πm

πp3π(m2)
, (S6)

f(s,m,Γ0) =
Γ0m

2

p3π(m2)

[
p2π(s)

[
h(s)− h(m2)

]
+ (m2 − s)p2π(m2)h′(m2)

]
, (S7)

h(s) =
2

π

pπ(s)√
s

log

[√
s+ 2pπ(s)

2mπ

]
, (S8)

and h′(s) is the derivative of h(s), with respect to s, calculated numerically. To in-
clude the P -wave momentum barrier in the ρ0 decay, the matrix element is set to
M = pπ(s)/pπ(mρ) BWGS

ρ (s,mρ,Γρ). A fit of this ρ0 shape to the data is only slightly
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Figure S1: Distribution of mπ+π− in χc1(3872)→ π+π−J/ψ decays, fit with the Gounaris–Sakurai
model. The dashed line represents the ρ′ contribution multiplied by a factor of 10.

better than the fit of the Breit–Wigner shape given by Eq. 1 (χ2/NDoF = 290.0/34,
p-value = 2× 10−42). A good-quality fit to the data is achieved following the prescription
used by the BaBar collaboration to describe a large e+e− → π+π−(γ) data sample [37],

M =
pπ(s)

pπ(mρ)

{
BWGS(s,mρ,Γρ) [1 + AGS

ω eiφω BWω(s,mω,Γω)
]

(S9)

+ AGS
ρ′ e

iφρ′ BWGS(s,mρ′ ,Γρ′)
}
.

Following this work, a simple Breit–Wigner amplitude for the ω meson is used,
BWω(s,mω,Γω) = m2

ω/(m
2
ω − s− imωΓω), and the ρ0, ω and ρ′ masses and widths are

taken from Table VI of Ref. [37]. The term including the ρ0 and ω resonances (Eq. S9)
is equivalent to Eqs. 8-9, and thus originates from the coupled-channel approach. No
complex phase is expected in this approach, thus φω is set to zero. Using the small phase,
consistent with zero, obtained by the BaBar collaboration, gives almost identical results.
Since, the ρ′ contribution is not added via the K-matrix, its phase can be different from
zero and is fixed to the central value of the BaBar result, φρ′ = 3.76 ± 0.10 rad. The
mπ+π− distribution, fit with this model, is shown in Fig. S1. The fit quality is excellent
(χ2/NDoF = 24.8/32, p-value = 0.81), matching the fit quality of the default fit. The ρ′

significance is 3.1σ using Wilks’ theorem [34]. Its production parameter relative to the
ρ0 meson, AGS

ρ′ = 0.302± 0.099, is consistent within the large uncertainty with the value
obtained by the fit to the BaBar data, 0.158± 0.018 [37]. The ω significance is 7.8σ, and
its production parameter, AGS

ω = 0.0171± 0.0024, is an order of magnitude larger than
that obtained by the BaBar collaboration, 0.001644± 0.00061 [37]. This is not surprising,
since in e+e− collisions, the ρ0 meson is produced via electromagnetic interactions, which
do not follow isospin symmetry, while in χc1(3872) decays, the ρ0 state is produced via
strong interactions, which suppress isospin violating decays. The ω fractional contributions
are consistent with the default model, R all

ω = 0.221 ± 0.024, R 0
ω = 0.021 ± 0.005 and

R 0
ω/ρ = 0.028 ± 0.007. Here, R all

ω = 1 − Rρ+ρ′ , where Rρ+ρ′ = 0.780 ± 0.023 is the

10



400 600 800
 [MeV]-π+πm

0

500

1000

1500

2000

2500

In
te

ns
ity

 (
ar

bi
tr

ar
y 

un
its

)

total
0ρ

ω

actual mass limit

model obtained from the LHCb data

Figure S2: Amplitude model for χc1(3872)→ π+π−J/ψ decays, obtained by the default fit to
the LHCb data (Fig. 3), with the phase-space integration limit extended by setting the χc1(3872)
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coherent fit fraction of the ρ0 and ρ0
′

contributions together. The individual fit fractions
are Rρ = 0.833± 0.037 and Rρ′ = 0.013± 0.008.

3 Extended χc1(3872)→ π+π−J/ψ decay phase space

To estimate the ratio of the isospin violating to isospin conserving χc1(3872) couplings,
the mass of the χc1(3872) state in the model obtained by the default fit to the dipion
mass distribution is replaced by 4000 MeV. The extended decay phase space is integrated
over both the ρ0 and ω resonant peaks, as illustrated in Fig. S2. The obtained ratio,
gχc1(3872)→ρ0J/ψ/gχc1(3872)→ωJ/ψ = 0.29±0.04, is an order of magnitude larger than the value
for the well established charmonium state, gψ(2S)→π0J/ψ/gψ(2S)→ηJ/ψ = 0.045± 0.001.
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