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Abstract

A novel technique based on machine learning is introduced to reconstruct the de-
cays of highly Lorentz-boosted particles. Using an end-to-end deep learning strategy,
the technique bypasses existing rule-based particle reconstruction methods typically
used in high energy physics analyses. It uses minimally processed detector data as in-
put and directly outputs particle properties of interest. The new technique is demon-
strated for the reconstruction of the invariant mass of particles decaying in the CMS
detector. The decay of a hypothetical scalar particle A into two photons, A → γγ, is
chosen as a benchmark decay. Lorentz boosts γL = 60–600 are considered, ranging
from regimes where both photons are resolved to those where the photons are closely
merged as one object. A training method using domain continuation is introduced,
enabling the invariant mass reconstruction of unresolved photon pairs in a novel way.
The new technique is validated using π0 → γγ decays in LHC collision data.
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1 Introduction
Since the standard model (SM) of particle physics continues to show excellent agreement with
measurements performed at particle colliders, such as the CERN LHC, the search for physics
beyond the standard model (BSM) has led experiments, such as CMS, to look beyond sim-
ple decay topologies toward more exotic, potentially overlooked ones. An important class of
such exotic signatures is composed of Lorentz-boosted particles that are sufficiently energetic
to induce collimation of their decay products [1]. An important consideration in developing a
robust search program for such phenomena is understanding whether existing particle recon-
struction algorithms are sensitive to the decays of boosted particles.

Particle-flow (PF) algorithms [2, 3] are widely used frameworks for the reconstruction of par-
ticle decays in the LHC detectors. These algorithms reconstruct and identify each individual
particle in an event using an optimized combination of information from the various detec-
tor elements. Although PF algorithms have been successfully used in previous CMS analyses,
they lean heavily on the assumption that particle decays are well-resolved and well-isolated, a
feature not generally true for boosted particle decays that often exhibit some degree of merging.

In its loosest sense, merging may refer to the collimation of particles that are otherwise indi-
vidually resolved but are in overlapping ensembles. For instance, in the hadronic decay of
a boosted high-mass resonance to jets, the jets overlap to form a single, large-radius jet. In
such cases, there is an ambiguity in how to group the decays so as to consistently reconstruct
the properties of the parent particle. Although such ensemble merging may be mitigated, the
corresponding analyses require a fine-tuned strategy for clustering, often at the cost of losing
reconstruction efficiency in some regions of phase space. Therefore, attempts to directly probe
the mass of exotic resonances are rarely pursued in the boosted regime, unlike for the recon-
struction of known SM resonances [4–7].

At higher boosts, a more experimentally challenging form of merging arises when the sepa-
ration between the decay products approaches the detector resolution. Consider, for instance,
decay products interacting with the CMS electromagnetic calorimeter (ECAL). At separations
approaching the Molière radius of the calorimeter material, the particle showers of the decay
products begin to overlap. This effect can cause the merged decay products to be misrecon-
structed as a single-particle candidate. Such shower merging, if within a few Molière radii, might
still be discernible by current dedicated shower clustering tools, even in regimes inaccessible
to PF. The 3×3 clustering algorithm, used for reconstructing low-energy π0 → γγ decays [8],
is a notable example. However, at separations approaching the Molière radius, such clustering
tools are unable to discern distinct clusters and begin to lose their sensitivity. Thus, they are
difficult to adapt to exotic searches that typically probe a wide range of particle masses and
Lorentz boosts.

A special case of shower merging occurs when the decay products are collimated to the point
of depositing their energy within the same calorimeter cell, or less than the Molière radius. In
this limit of fully overlapping particle showers, the resulting shower pattern is nearly indistin-
guishable from that of a true, single-particle shower. The only distinction in such cases is the
slightly greater spreading in the particle shower along the principal axis connecting the points
where the decay products enter the calorimeter. Reconstructing such an instrumentally merged
decay remains a challenge for existing experimental tools. Such a tool must discern subtle
differences in the energy distribution of the fully merged particle shower.

As a concrete example of such a signature, we consider the exotic decay H/X → AA of the
Higgs boson H with a mass of about 125 GeV, or some new resonance X, to a pair of hy-
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pothetical scalar particles A. Such decays are well-motivated in extended Higgs sectors or
BSM models involving two-Higgs doublets, an additional singlet, or axion-like particle pro-
duction [9–11]. Depending on the mass and decay mode of theA, one or more forms of shower
or instrumental merging, as described above, may occur in its decay. In particular, for decays
to diphotons A → γγ [12], since photons are massless, the particle A can be arbitrarily light
and the resulting diphoton system correspondingly merged. For the mass of the A satisfying
mA . 0.4 GeV, the H → AA → 4γ signal is increasingly dominated by events where both
A → γγ decays experience shower or instrumental merging. When this occurs, each A → γγ
decay is misreconstructed as a single photon-like cluster, burying the H → AA → 4γ signal
in existing SM H → γγ events [13, 14]. Moreover, in this mA regime, the decay modes of
the A into more massive particles become inaccessible. This feature further emphasizes the
importance of the diphoton decay mode at low mA.

In this paper, we introduce a novel particle reconstruction strategy based on a modern machine
learning (ML) approach also known as deep learning. We show that such a strategy addresses
the above merging challenges associated with reconstructing boosted particle decays over a
wide range of boosts. We describe the concept of end-to-end particle reconstruction using ML
algorithms that bypass PF [15] and train directly on minimally processed detector data to recon-
struct a particle property of interest. To benchmark our technique, we reconstruct the invariant
mass of simulated A → γγ decays for masses in the range mA = 0.1–1.0 GeV and for boost
regimes where the diphotons are barely resolved to instrumentally merged. For particle A
boosts γL = EA/mA, where EA is the energy of the A, these correspond to boosts of γL = 60–
600. A single end-to-end ML mass regressor is used, where regressor refers to the output mass
of the ML algorithm. For instrumentally merged diphotons, we further develop a novel ML
technique called domain continuation. This technique involves extending the training domain
to nonphysical values, to include the learning of masses below the detector resolution. Using
both end-to-end particle reconstruction and domain continuation, we are able to reconstruct
the invariant mass of instrumentally merged diphotons in the CMS detector, a first for a parti-
cle reconstruction method. The technique is validated using π0 → γγ decays in LHC collision
data collected by the CMS experiment in 2017. We achieve a substantial sensitivity gain over
existing benchmark algorithms, allowing previously inaccessible boost regimes to be probed.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal ECAL, and a brass and scintillator hadron calorimeter,
each composed of a barrel and two endcap sections. Forward calorimeters extend the pseu-
dorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in
gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

The ECAL consists of 75 848 lead tungstate crystals, which provide a coverage of |η| < 1.48
in the barrel region (EB) and 1.48 < |η| < 3.00 in the two endcap regions. The full azimuthal
range |φ| < π is covered for all regions.

In the barrel section of the ECAL, which is the focus of this paper, an energy resolution of about
1% is achieved for photons in the tens of GeV energy range, for those that do not convert to
an e+e− pair before reaching the EB. The energy resolution for photons converting in the EB is
about 1.3% up to |η| = 1, rising to about 2.5% at |η| = 1.48 [8]. Each EB crystal has dimensions
of 2.18× 2.18× 23 cm3. This corresponds to an angular resolution of ∆η×∆ϕ = 0.0174× 0.0174
in the direction of the collision. The crystal Molière radius is comparable to the crystal width,
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leading to more than 90% of the energy of photons converting only in the ECAL to be laterally
contained within a 3×3 crystal matrix [8].

The material structure of the inner tracking detectors changes with pseudorapidity. As a result,
the number of radiation lengths (X0) that a photon traverses before reaching the EB surface
varies from 0.4 X0 along the central plane (η ≈ 0) up to 1.8 X0 on the forward edge (η ≈ 1.4).
Correspondingly, the amount of energy that a photon loses, and its probability to convert into
an e+e− pair before reaching the ECAL crystals, varies with η.

Finally, an important feature of the proton collisions at the LHC is the presence of additional,
soft collisions concurrent with the primary hard-scattering event. Such additional proton-
proton interactions within the same or nearby bunch crossings, known as pileup (PU), can
contribute additional energy depositions in the ECAL. Since these energy deposits may poten-
tially be misidentified as photons, appropriate pileup mitigation techniques are applied [16].

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, is reported in Ref. [17].

3 End-to-end ML particle reconstruction
A number of LHC-related studies have attempted to use ML techniques to reconstruct boosted
particle decays, particularly for heavy-resonance decays exhibiting ensemble merging. These
included the use of jet images [18, 19], graphs [20–22], and other physics-inspired structures [23–
27]. The large majority of these, however, rely on PF candidates as inputs. Although such at-
tempts show promise over traditional rule-based selection algorithms, they are ultimately con-
strained by the PF information itself. In their current form, such PF-based techniques would
not be sensitive to shower-merged decays since information about the individual decay prod-
ucts is not present.

The powerful feature-learning capabilities of modern ML algorithms provide an alternative.
Using inputs that are as unfiltered and informationally rich as possible, such algorithms have
been shown to outperform cut-based or even ML-based methods utilizing input variables mod-
eled by hand [28–34]. This is expected if the input variables are difficult to model by hand or if
their correlations are difficult to extract. Moreover, by encompassing the majority of the recon-
struction workflow into the functionality of the ML algorithm, potential information loss due
to step-wise optimizations is avoided. Such end-to-end ML algorithms are thus trained directly
on minimally processed detector data with the objective of predicting the desired quantity of
interest. This motivates an end-to-end ML-based particle reconstruction strategy for the chal-
lenges of shower merging. We accomplish this by transforming the detector data into high-
fidelity images [15, 35, 36], and using these to train a convolutional neural network (CNN) that
outputs the final parent particle property of interest. Similar applications in the literature have
employed order-invariant graph-based ML models as well [37, 38].

The end-to-end ML approach has specific advantages for boosted particle decays. The first
is the gain in information granularity offered by detector data for features that cannot easily
be reduced to a particle-level, or shower-shape-type representation. Second, the choice of a
CNN, or any similar hierarchical ML architecture like a graph-based network, allows detector
features to be learned across several length scales. Features from the crystal level to the cluster
level and beyond are learned in a complementary way. This is particularly advantageous for
boosted particle decays that may exhibit merging at multiple scales. Third, by training on
minimally processed data rather than heavily filtered or clustered data, the ML algorithm may
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learn to adapt to more varied, higher-dimensional changes in the data, potentially developing
a greater robustness to evolving data-taking conditions. Finally, there is the computational
simplicity of using a single ML algorithm versus a hierarchy of algorithms each with its own
intermediate optimizations. Admittedly, transitioning to a fully end-to-end ML-based particle
reconstruction framework would involve an extensive overhaul of the workflows employed by
the LHC experiments such as CMS. Moreover, to what extent the entire particle reconstruction
workflow can or should be reduced to a single ML algorithm remains an open question.

Although a comprehensive end-to-end particle reconstruction framework is a long-term under-
taking, its benefits can already be demonstrated through targeted applications. In this paper,
we test the potential of this technique by investigating a previously inaccessible boost regime,
namely the merged A → γγ decay. We train an ML regression algorithm to reconstruct the
generated mass mA using only the electromagnetic shower pattern of the merged diphoton de-
cay in the CMS ECAL. This enables us to exploit subtle differences in the energy distribution
of the ECAL shower pattern [39] to analyze even extremely merged decays.

We parametrize the diphoton merging in terms of the Lorentz boost of the particle A. Figure 1
illustrates the typical merging regimes at three different boosts. Samples of A → γγ decays
misreconstructed by PF as single photons passing candidate selection criteria (discussed in
Section 5) are used. The A → γγ samples are derived from simulated H → AA events in
which the true positions of the diphoton decays are known. The distribution of the opening
angles between the higher-pT (leading, γ1) and lower-pT (subleading, γ2) photons from the
simulated particleA decay is shown in Fig. 1 (left column). The angles are expressed in number
of ECAL crystals in the η direction, ∆η(γ1, γ2)

gen, versus the φ direction, ∆ϕ(γ1, γ2)
gen. Typical

ECAL energy deposition patterns from a single A → γγ decay are also displayed in Fig. 1
(right column). The diphoton particle showers are resolved in the ECAL for boosts of γL . 50
(Fig. 1, upper row), they are shower merged for 50 . γL . 250 (Fig. 1, middle row), and
instrumentally merged for γL & 250 (Fig. 1, lower row). Note that the same γL value can lead
to considerably different merging, depending on the opening angle between the diphotons.

The barely resolved decays (γL ≈ 50) represent the challenge of ensemble merging. First,
rule-based methods may fail to categorize the A → γγ shower pattern as either one or two
photon objects, potentially causing the event to be discarded. Second, resolvedA → γγ decays
can resemble both a photon conversion to an e+e− pair and low-energy deposits from pileup.
For these latter two possibilities, track information, if present, can potentially be exploited to
distinguish between energy deposits from A → γγ decays where the photons do not convert
before reaching the ECAL and those arising from single photons converting before reaching the
ECAL and from pileup, as is done in PF. For the shower-merged regime, not even dedicated
shower clustering tools have the sensitivity to reconstruct the invariant mass of the A → γγ
system. As we will show in this paper, only the end-to-end ML approach can effectively operate
in all three regimes. The A → γγ decay thus provides a simple but comprehensive test case
for all the merging regimes occurring in the decays of boosted particles.

4 Detector images
Since the photons from A → γγ decays deposit energy primarily in the ECAL, for simplicity,
we use an image construction strategy that consists of only ECAL information. We take a 32×32
matrix of ECAL crystals around the most energetic (seed) crystal of the reconstructed photon
candidate and create an image array. This corresponds to an angular cone of

√
(∆η)2 + (∆φ)2 ≈

0.3, and ensures the subleading photon in the A → γγ decay is fully contained in the image.
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Figure 1: Simulation results for the decay chain H → AA, A → γγ at various boosts: (upper
plots) barely resolved, mA = 1.0 GeV, γL = 50; (middle plots) shower merged, mA = 0.4 GeV,
γL = 150; and (lower plots) instrumentally merged, mA = 0.1 GeV, γL = 625. The left column
shows the normalized distribution of opening angles between the leading (γ1) and subleading
(γ2) photons from the particle A decay, expressed by the number of crystals in the η direction,
∆η(γ1, γ2)

gen, versus the φ direction, ∆φ(γ1, γ2)
gen. Note that the distributions include con-

tributions outside of the plotted ranges and thus may not sum to unity within the displayed
ranges. The right column displays the ECAL energy shower pattern for a singleA → γγ decay,
plotted in relative ECAL crystal index coordinates and color-coded by energy. In all cases, only
decays reconstructed as a single PF photon candidate passing selection criteria are used.
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Although generous, our results are not strongly sensitive to the size of the image. Each pixel in
the image exactly corresponds to the energy deposited in a single ECAL crystal. These energy
depositions represent the actual interaction of the incident photon with the detector material
(Fig. 1, right column). This approach is distinct from those that use PF candidates, in which
case the A → γγ decay, reconstructed as a single particle, would be displayed as a single
image pixel, by construction. No rotation is performed on the images since electromagnetic
showers are not rotationally symmetric. In addition to the η-φ symmetry being broken by the
CMS magnetic field, general rotations of square pixels are destructive operations that distort
the particle shower pattern.

For simplicity, only photons depositing energy in the barrel section of the ECAL are used in
this paper. For general particle decays, the ECAL images can be combined with additional
subdetector images [35], or parsed into a multi-subdetector graph if one is using such an archi-
tecture. Including such tracking images, even as a complement to the A → γγ ECAL images,
could enable a better accounting of contributions from e+e− conversions and pileup. However,
they were not included in this study.

As noted in Section 2, because of the η-dependent material structure of the inner tracker, elec-
tromagnetic shower development varies significantly with η. Once the 32×32 crystal matrix of
the particle shower is taken, the resulting image no longer contains explicit information about
where in the ECAL the shower was located. We thus perform two modifications to recover
this information during the training of our ML algorithm. The first is to split the ECAL images
described above into a two-layer image that contains the transverse and longitudinal compo-
nents of the crystal energy, which are defined as E sin θ and E|cos θ|, respectively, where E is
the crystal energy and θ is the polar angle of the crystal energy deposit position. The second is
to include the crystal seed coordinates.

The calibrated ECAL detector data exist at various levels of processing: from minimally pro-
cessed to the filtered and clustered version more easily accessible at the analysis level. Since the
clustered detector data are historically optimized for the needs of PF, it is worth revisiting this
choice for the end-to-end ML technique. As discussed in Appendix A.1, training on minimally
processed instead of clustered data significantly improves our results. We thus emphasize our
earlier statement that using minimally processed detector data is critical in realizing the full
potential of ML. We make exclusive use of minimally processed detector data in this paper.
One caveat is that accessing such data is becoming logistically challenging because of the trend
toward more compact CMS file formats, necessitated by the growing volume of LHC data.

5 Candidate selection and data sets
To address the most challenging diphoton particle decays, we require that the diphoton system
be misreconstructed by the PF algorithm as a single photon candidate, labeled Γ. As a conse-
quence of the PF ambiguities in categorizing low-boost A → γγ decays (γL . 50) as either
one- or two-photon objects, this requirement does not necessarily imply that the diphotons are
merged. For diphotons that are barely resolved, if one of the photons is too low in energy
(pT < 10 GeV), it is not reconstructed by PF as a separate photon even if it is sufficiently sepa-
rated from the other photon. Acceptance of this information results in a range of boost regimes.
Reconstructed photons are also required to pass shower shape and isolation criteria that would
accept single photons with > 90% efficiency. These photon selection criteria are similar to those
used by CMS in the SM H → γγ analysis [13], which emphasizes how a merged signal might
be buried in such events. For each selected photon candidate Γ, a single detector image is con-
structed (described in Section 4), which is then passed to the ML algorithm for either training
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or inference.

For training, we use a sample of simulated A → γγ decays in which the particle A decays
promptly. The sample includes pileup but otherwise no additional particles. An ensemble of
continuously distributed masses mA is used, such that the ML model described in Section 6
does not learn the discretization of the mass points. These samples are generated with pT,A =
20–100 GeV, mA = 0–1.6 GeV, and |ηA| < 1.4. This corresponds to Lorentz boosts with γL
in the approximate range 10–1000 and adequately covers the regimes of interest (discussed
in Section 3). After applying photon selection criteria, samples with closely merged photons
(γL & 150) are preferentially selected over samples with resolved photons (γL . 50), since
the latter are more likely to fail single-photon shower-shape criteria. This tends to sculpt the
phase space in (pT,A, mA), which can result in the mass regressor preferring to output masses
in regions with higher populations. To prevent this from happening, the training samples are
generated to ensure that the (pT,A, mA) phase space is uniformly distributed after the photon
selection criteria have been applied. After applying these requirements, approximately 780k
A → γγ decays are available for training, a sample of about 26k decays for validation, and
another 26k for testing. In addition, as explained in Section 6.2, the training samples are aug-
mented with true, single-photon samples with similar kinematic properties. After the selection
requirements, there are 150k, 26k, and 26k simulated single photons for training, validation,
and testing, respectively. The validation set is used to optimize the ML model hyperparame-
ters, and the test set is used to assess the performance of the chosen model on a statistically
independent sample.

To benchmark the ML technique, we use both simulated and actual CMS collision data. The
benchmark studies are described further in Section 6.4. In addition to pileup, underlying events
are included in the simulated A → γγ samples to make them more realistic. The simulated
samples are obtained from H → AA → 4γ events generated at fixed masses of mA = 0.1, 0.4,
and 1.0 GeV, all with promptA decays. The decays correspond to median boosts of 〈γL〉 = 600,
150, and 60, respectively, covering a similar boost range as used for training. The collision data
contain events enriched in π0 → γγ decays selected from the 2017 and 2018 CMS data-taking
periods [40], corresponding to an integrated luminosity of 41.5 and 56.9 fb−1, respectively. To
enrich the data sample with π0 → γγ decays from hadronic jets, as explained in Section 8.2,
only reconstructed photon candidates with pT = 20–35 GeV are used. Shower-shape and iso-
lation requirements, which are slightly tighter than for the A → γγ analysis described above,
are applied.

To study the robustness of the ML technique as a function of various parameters, as described
in Section 9, events enriched with electrons from Z → e+e− decays are used. The electrons are
obtained from 2017 data and simulation using the “tag-and-probe” method [41]. The selected
electron is required to coincide with a photon candidate passing the photon selection criteria
described earlier.

For all simulated samples, events are generated with corresponding 2017 data-taking pileup
conditions and fully simulated CMS geometry and detector response [17].

6 Mass regression model and training
A RESNET CNN architecture [42] forms the basis of our mass regression model. Although
other ML architectures exist, including those that use graph-based techniques, the emphasis in
this paper is placed on the general reconstruction method rather than the optimization of the
ML model.
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The energy deposits in the ECAL detector images are first scaled by a sample-wide constant
so that the sample-wide energy distribution is approximately within the [0, 1] interval. Each
image associated with a reconstructed photon candidate Γ is then passed to the RESNET model,
which outputs to a global maximum pooling layer. A more detailed description of the RESNET

model used is presented in Ref. [15]. The outputs are then concatenated with the crystal seed
coordinates of the photon candidate. The seed coordinates are also scaled to lie within the [0, 1]
interval. The concatenated outputs are then fully connected to a final output node that gives
the predicted or regressed value of the scalar-particle mass mA for that photon candidate. The
above ML mass regressor contains 89k trainable parameters.

To train the mass regressor, the regressed mass mΓ is compared with the true (generated) mA by
calculating the absolute error loss function |mΓ −mA|, averaged over the training batch. Other
loss functions are equally performant. This loss function is then minimized using the ADAM
optimizer [43]. To facilitate convergence, the mass values are also scaled to lie within [0, 1]
before they are passed to the optimizer. This procedure represents our basic training strategy.

6.1 Performance limitations when mA → 0

Relying solely on this basic training strategy has significant performance limitations. As shown
in Fig. 2 (left), naively training the mass regressor as described above results in a nonlinear re-
sponse near either boundary of the mass regression range. At the high-mA boundary, this issue
can be resolved by trivially extending the training mass range. Thus, if one wanted to obtain a
usable regression range up to mA ≈ 1.2 GeV, one would train with a sample including higher
masses, as we have, up to mA ≈ 1.6 GeV, depending on the mass resolution at the upper mass
range. Predictions in the extended mass range are then discarded during the physics analy-
sis. This approach cannot, however, be used in any obvious way for the low-mA boundary,
since it is constrained by the physical requirement mA > 0. The mass region mΓ . 200 MeV,
of considerable theoretical interest for the diphoton decay mode in BSM models (discussed
in Section 1), would therefore be inaccessible. The use of the mass regressor as a tool for re-
constructing π0 → γγ decays would also be lost. Moreover, significant biases in the regressed
masses of true photons would arise. As illustrated in Fig. 2 (right), photons would be regressed
as a peak around mΓ . 200 MeV, reducing even further the usable range of the mass regressor
when single-photon backgrounds are included.

6.2 Domain continuation to negative masses

Fundamentally, the above boundary problem arises because, when training the mass regressor,
the physically observable A → γγ invariant mass distribution becomes underrepresented for
samples with mA < σ(mA), where σ(mA) is the mass resolution. This issue is illustrated in
Fig. 3 (left). For samples where mA ≈ σ(mA), the full, physically observable mass distribu-
tion (fobs), visualized as a Gaussian distribution, is barely represented in the training set. As
mA → 0, shown in Fig. 3 (middle), only half of the mass distribution is now observable. For
these underrepresented samples, the mass regressor defaults to the last full mass distribution
at mA ≈ σ(mA) since these will appear the most similar. This results in a gap and accumulation
of masses at mΓ ≈ 200 MeV. More generally, this boundary problem manifests itself when re-
gressing a quantity q, with resolution σ(q), over the range (a, b), for samples with q . a + σ(q)
or q & b− σ(q). This effect only becomes negligible at either boundary in the limit σ(q)� a, b.

This motivates a solution for the low-mA boundary problem by extending the regression range
below mA = 0, into the nonphysical domain. These are then populated with “topologically
similar” samples. We thus augment the training set with samples artificially and randomly la-
beled with negative masses. During inference, we remove the nonphysical predictions mΓ < 0.
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Figure 2: Left: The regressed mass mΓ vs. the generated mA value for simulatedA → γγ decays
generated uniformly in (pT, mA) before domain continuation is implemented. The regressed
mΓ is normalized in 0.025 GeV vertical slices of the generated mA. The color scale to the right
of the plot gives the normalized number of events per vertical slice in 0.025 GeV bins of mΓ.
Right: The regressed mΓ distribution for simulated single-photon samples only, before domain
continuation, resulting in a distinct peak in the low-mΓ region. The distribution is normalized
to unity with the vertical bars on the points indicating the statistical uncertainty.
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regressor to see a full mass distribution over the entire region of interest (unhatched region).
Predictions in the black hatched regions are discarded.
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As a topologically similar sample, either a sample of decays with a fixed mass mA ≈ 0.001 MeV
or a sample of single photons can be used. In this paper, we use the latter, although we find
either method works well. If we require that the “negative mass” samples have the same mass
density as the “positive mass” samples in the training set (c.f. Fig. 3, right), then only a sin-
gle hyperparameter is needed, the minimum artificial mass value, min(mA). This can be set
by choosing the negative value with the smallest magnitude that closes the low-mA gap (c.f.
Fig. 2, left) and linearizes the mass response in the physical domain, mΓ > 0. We find a value
of min(mA) = −0.3 GeV to be sufficient. Other applications may seek to optimize both the
minimum artificial mass value and the number density of the augmented samples. Note that
having the augmented samples carry negative mass values is simply a consequence of the low-
mA boundary coinciding with mΓ = 0. Had the boundary coincided with a positive mass,
positive artificial mass values would be involved as well.

The above procedure effectively tricks the mass regressor into seeing a full invariant mass dis-
tribution for all physical A → γγ decays, even when they reside below the detector mass
resolution. As a result, the full low-mA regime becomes accessible. In addition, this proce-
dure provides a simple way for suppressing single-photon backgrounds by requiring mΓ > 0.
Since single photons will tend to be regressed with negative masses, removing samples with
mΓ < 0 reduces single-photon contributions in a mass decorrelated way. The only trade-off is
that low-mA samples incur a selection efficiency to be regressed within mΓ > 0. However, this
is expected for most A → γγ merged cases that cannot be distinguished from true photons.

By analogy to complex analysis, we denote the above procedure as domain continuation. Similar
procedures, however, all occur in the statistical tests used in high energy physics [44]. Our
final training strategy implements domain continuation on top of the basic training strategy
described at the beginning of this section.

6.3 Out-of-sample response

An important feature of ML-based regression algorithms is that their predictions are bound by
the regression range on which they were trained. This is true even when out-of-sample decays,
or decays not represented in the training set, are given to the mass regressor. If this fact is
not addressed, unexpected peaks and features in the regressed mass spectrum can potentially
appear. Although hadronic jets are indeed out-of-sample, it is desirable not to reject them at the
stage of the mass regressor in order to enable the reconstruction of, e.g., embedded π0 → γγ
decays. If desired, these can instead be suppressed by modifying the photon selection criteria,
for instance, as described in Section 8.2.

Furthermore, A → γγ decays from more massive A particles than those used during training
are a potential issue. These will be regressed as a false mass peak near the upper mA boundary.
For this and other reasons stated earlier, when addressing the boundary problem at the upper
mass range, we ignore predictions above mΓ > 1.2 GeV (Fig. 3, right). Lastly, to suppress single
photons, as noted above, we ignore predictions with mΓ < 0. During inference, the use of the
mass regressor is thus limited to samples regressed within the region of interest (ROI): mA-ROI
∈ [0, 1.2]GeV. The impact of this method on the sample selection efficiency is estimated in
Section 7.

6.4 Evaluation

In Section 7, we validate the ML training using a number of figures-of-merit. We primarily use
the mean absolute error, MAE = 〈|mA−mΓ|〉 over the test set, but also consider its normalized
counterpart, the mean relative error, MRE = 〈|mA−mΓ|/mA〉. The MAE (MRE) approximately
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corresponds to the mean absolute (relative) mass resolution. If treating the mass distribution at
a fixed mA as a signal model, a lower MRE, similar to a lower relative mass resolution, implies
a better signal significance assuming some fixed background contribution. The regression effi-
ciency, or the number of samples regressed within mA-ROI ∈ [0, 1.2]GeV, divided by the total
number of samples considered, is also used as a figure-of-merit. Similarly, if treating the mass
distribution at a fixed mA as a signal model, a higher regression efficiency implies a higher
signal significance for a given background contribution.

In Section 8, we benchmark the physics performance of the end-to-end ML mass regressor
(end-to-end) by comparing its response with both a traditional neural network-based mass re-
gressor (photon NN) and a shower cluster-based algorithm used for mass reconstruction (3×3
algorithm). The photon NN is trained on a mix of 11 shower-shape and isolation variables, iden-
tical to those used by CMS for multivariate photon tagging [13]. These variables are passed to
a fully connected neural network of 128 nodes and 3 hidden layers that regresses the scalar-
particle mass. For a fair comparison, it is also trained with domain continuation. The resulting
performance was insensitive to small increases or decreases in network size. The 3×3 algo-
rithm is similar to that used by CMS for the reconstruction of low-energy π0 → γγ decays
in the calibration of the ECAL [8]. It first identifies a local crystal energy maximum (seed). If
the seed energy is above some energy threshold, then a 3×3 crystal matrix (cluster) around the
seed is formed. If a pair of nearby clusters is found, the reconstructed mass is calculated as the
invariant mass of the two clusters. If a pair of clusters cannot be found, a default mass value
outside of the mA-ROI range is passed.

Lastly, in Section 9, to assess the robustness and generalizability of the end-to-end mass regres-
sor, we compare its mass response versus various kinematic and detector quantities of interest.
We conclude with a comparison of the regressed mass spectrum in data versus simulation.

7 Training validation
To validate the training of the mass regressor and to characterize its performance, we use a
test sample of A → γγ decays with a continuous uniform mA distribution. The regressed
versus generated mass is shown in Fig. 4 (upper). We observe a linear and well-behaved mass
response throughout the mA-ROI range. Since the regressed mass range spans more than an
order of magnitude, some variation can be seen in the mass resolution, and thus in the shape of
the regressed mΓ versus mA response. Notably, the mass regressor is able to probe the low-mA
regime where it exhibits a gentle and gradual loss in resolution upon approaching the mΓ = 0
boundary. As discussed in Section 6, this behavior is the result of using domain continuation.
This performance confirms the ability of the end-to-end ML technique to access the highest
boost regimes, where shower and instrumental merging are present, yet maintain performance
into the high-mA regime, where the particle showers become resolved.

The MAE and MRE as functions of the generated mass are displayed in Fig. 4 (lower left).
The MAE varies from 0.14 (0.20) GeV for mA in the range 0.1 (1.2) GeV, corresponding to
mean boosts of 〈γL〉 = 600 (50), respectively. In general, the absolute mass resolution wors-
ens with increasing mA, as reflected in the MAE trend. However, the relative mass resolution
tends to improve with mass, as is evident in the MRE values, converging to about 20% for
mA = 1.2 GeV. If the A → γγ mass distribution is used as a signal model, then, for a fixed
regression efficiency, a lower relative resolution implies better signal significance, given some
fixed background contribution. Notably, as shown in Fig. 4 (lower left), for mA . 0.3 GeV, the
MAE starts worsening with decreasing mass. This can be attributed to the gradual deteriora-
tion of the mass regressor below the detector’s mass resolution.
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These figures-of-merit are achieved with a regression efficiency between 70 and 95%, as shown
in Fig. 4 (lower right). The regression efficiency for a given sample as a function of mA is defined
as the number of events in a particular mA bin that has mΓ within mA-ROI, divided by the total
number of samples in that bin. If theA → γγ mass distribution is used as a signal model, then,
for a fixed mass resolution, a higher regression efficiency implies better signal significance, for
some fixed background contribution. The efficiency is primarily driven by how much of the
mass peak can fit within mA-ROI. Thus, it is highest at the midway point of mA-ROI and falls
off to either side. The relatively poorer mass reconstruction at low mA causes the efficiency
to fall off more steeply than it does at high mA. About 50% of single photons are rejected by
the mA-ROI requirement, as seen by the hatched region in Fig. 4 (lower right). Photons with
mΓ > 0 are primarily due to e+e− conversions.

8 Physics validation
To validate the physics performance of the end-to-end mass regressor, we compare it with two
traditional reconstruction strategies: a photon NN-based mass regressor trained on shower-
shape and isolation variables, and a 3×3 shower clustering algorithm (described in Section 6.4).
Although the figures-of-merit from the previous section provide a high-level characterization
of the reconstruction performance, the ultimate physical quantity of interest is the regressed
mass spectrum itself, which is the focus of this section.

8.1 Simulation

The validation on simulated data compares the mass spectra for A → γγ decays for various
fixed-mass values. As described in Section 5, we useA → γγ samples obtained from simulated
H → AA → 4γ events with masses mA = 0.1, 0.4, and 1.0 GeV. In these events, the particle
A energy is distributed around a median of EA ≈ mH/2 ≈ 60 GeV, corresponding to median
boosts of 〈γL〉 ≈ 600, 150, and 60 for the respective mA masses. In addition to the photon
selection criteria, event selection criteria similar to those used in the CMS H → γγ analysis
are applied. The reconstructed mass spectra are shown in Fig. 5 for the different algorithms
and mA mass values. For each mass value, representing a different median boost regime, the
samples are further broken down by ranges of reconstructed pT, Γ, to highlight the stability of
the mass spectrum with energy. These pT, Γ ranges are:

• low pT, Γ: 30 < pT, Γ < 55 GeV,

• mid pT, Γ: 55 < pT, Γ < 70 GeV,

• high pT, Γ: 70 < pT, Γ < 100 GeV,

• ultra pT, Γ: pT, Γ > 100 GeV.

Some overlap in the boost values across different mA masses is to be expected. Note that the
mass regressor has been trained on samples with pT, Γ < 100 GeV and that reconstructed candi-
dates only in the range |ηΓ| < 1.44 are used.

For boosts 〈γL〉 ≈ 60 and mA = 1.0 GeV, only the end-to-end algorithm (Fig. 5, upper left) con-
sistently reconstructs a mass peak for all pT, Γ ranges. The position of the mass peak remains
stable, with the resolution improving in the high-pT, Γ category. The end-to-end regression
performs best when the A → γγ decay products are moderately merged, and neither fully re-
solved nor fully merged. The mass peak in the ultra-pT, Γ category is well reconstructed despite
being outside the trained phase space. This demonstrates that the phase space extrapolation is
effective for internally learned quantities like pT, Γ.
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Figure 4: Mass regression performance for simulated A → γγ samples generated uniformly
in (pT, mA), corresponding to mean boosts in the range 〈γL〉 = 600–50 for mA = 0.1–1.2 GeV.
Upper: Regressed mΓ vs. generated mA. The regressed mΓ is normalized in 0.025 GeV vertical
slices of the generated mA. The color scale to the right of the plot gives the normalized number
of events per vertical slice in 0.025 GeV bins of mΓ. Lower left: The MAE (blue circles, use left
scale) and MRE (red squares, use right scale) vs. the generated mA. For clarity, the MRE for
mA < 0.1 GeV is not shown since its value diverges as mA → 0. Lower right: The mA regres-
sion efficiency as a function of the generated mA. The hatched region shows the efficiency for
single photons. The vertical bars on the points show the statistical uncertainty in the simulated
sample.
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Figure 5: Reconstructed mass spectra for end-to-end (left column), photon NN (middle col-
umn), and 3×3 algorithms (right column) forA → γγ decays with mA = 1.0 GeV (upper row),
mA = 0.4 GeV (second row), mA = 0.1 GeV (third row), and for isolated single photons (lower
row). The A → γγ decays (single photons) are obtained from simulated H → AA → 4γ
(H → γγ) events. For each panel, the mass spectra are separated by reconstructed pT, Γ value
into ranges of 30–55 GeV (red circles, low pT, Γ), 55–70 GeV (gray triangles, mid pT, Γ), 70–100
GeV (blue squares, high pT, Γ), and >100 GeV (green inverted triangles, ultra pT, Γ). The verti-
cal bars on the points give the statistical uncertainties. All the mass spectra are normalized to
unity, including samples outside mA-ROI. The vertical dotted line shows the input mA value.
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For mA = 1.0 GeV, the photon NN (Fig. 5, upper middle) has difficulty reconstructing the mass
peak, except at the higher-pT, Γ categories. This can be understood in terms of the information
content of the input variables on which the algorithm was trained. At higher pT, Γ, the two pho-
tons are more likely to be moderately merged so that their showers are contained within the
5×5 crystal block where the shower-shape variables are defined. At lower pT, Γ, the two photons
are more often resolved so that the lower-energy photon shower falls outside the 5×5 crystal
block. The photon NN must then rely on the isolation variables, which are defined much more
coarsely over a cone of

√
(∆η)2 + (∆φ)2 < 0.3 about the seed crystal. Since these variables

have much less discriminating power, this results in a steep fall-off in reconstruction perfor-
mance. To improve the performance, the photon NN could be augmented with the momentum
components of the lower-energy photon, in instances where the PF is able to reconstruct it.

Lastly, for mA = 1.0 GeV, the 3×3 algorithm (Fig. 5, upper right) is the only one competitive
with the end-to-end method for lower pT, Γ. As the photon clusters become resolved, the 3×3
method thus becomes an effective tool for mass reconstruction. However, as soon as the clus-
ters begin to merge at higher pT, Γ, a sudden drop-off in reconstruction efficiency occurs since
the 3×3 algorithm is unable to compute a mass for a single cluster. A spurious peak develops
at mΓ ≈ 0.5 GeV for decays with sufficient showering prior to the ECAL. The 3×3 method is
thus only useful for a limited range of low boosts. The comparatively weaker performance of
the end-to-end method to the 3×3 one at low pT, Γ is attributable to the underrepresentation of
relevant boosts in the training sample. The optimization of the end-to-end technique for these
lower boosts is beyond the scope of this paper.

For boosts 〈γL〉 ≈ 150 and mA = 0.4 GeV, the end-to-end method (Fig. 5, second row, left) is
able to reconstruct the mass peak with full sensitivity across most of the pT, Γ ranges. Only at the
highest pT, Γ range does the mass peak significantly degrade, although it is still reasonably well
behaved. Training with higher pT, Γ could potentially improve this behavior. The photon NN
performs its best in this regime (Fig. 5, second row, middle) because a majority of the photon
showers fall within the 5×5 crystal block. However, the mass resolution is still significantly
worse compared with the end-to-end method. The 3×3 algorithm (Fig. 5, second row, right)
is barely able to reconstruct a mass peak for these boosts. We recall that, if the 3×3 algorithm
is unable to find a pair of clusters, an invariant mass cannot be calculated, and a default mass
value outside mA-ROI is instead passed.

For boosts 〈γL〉 ≈ 600 and mA = 0.1 GeV, the end-to-end method (Fig. 5, third row, left)
reaches the limits of its sensitivity, although it is still usable. We attribute the performance of
the end-to-end method to its ability to discern subtle differences in the energy distribution of
the fully merged particle shower, which we expect to have more smearing along the principal
axis connecting the A → γγ diphotons. Notably, even at these boosts, the position of the
mass peak measured with the end-to-end method remains stable with pT, Γ. This is not the case
for the photon NN (Fig. 5, third row, middle) whose peak becomes erratic and displaced with
increasing pT, Γ. The 3×3 method is not able to calculate a mass at this level of merging for the
same reasons stated earlier.

For reference, the regressed mass spectrum for single, isolated photons from H → γγ decays is
shown in Fig. 5 (lower row). Both the end-to-end (left) and photon NN (middle) methods are
able to regress to the mΓ ≈ 0 GeV boundary, with a smoothly falling distribution since they were
trained with domain continuation (c.f. Fig. 2, right). The remaining photons within mA-ROI
come from photon conversions that acquire an effective mass because of nuclear interactions.

Summarizing the validation performance on simulated data, the end-to-end ML technique is
the only one that is able to robustly and consistently probe boost regimes ranging from resolved
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to instrumentally merged showers.

8.2 Data

To validate the findings described above from simulated events, we perform a cross-check us-
ing γ + jet events from CMS data, where the jet is reconstructed as a photon candidate. The
CMS data set was acquired in 2017 at the LHC with proton-proton collisions at

√
s = 13 TeV.

In Section 9.2, we also compare the results from this data set with a similar one acquired in
the 2018 LHC running. These two data sets correspond to integrated luminosities of 41.5
and 56.9 fb−1, respectively. If the jet contains an energetic, collimated neutral-meson decay
(pT, Γ & 20 GeV), typically a π0 → γγ or η → γγ, it will be misreconstructed as a single pho-
ton Γ and the event will pass a diphoton trigger. Since the energy of the jet will, in general,
be shared among several constituent particles, the π0 is more likely to be reconstructed as the
lower-energy photon in the event. Thus, a data sample enriched in merged photons is obtained
by selecting events passing a diphoton trigger and selecting the lower-energy reconstructed
photon, which we additionally require to pass our photon selection criteria. The selected sam-
ple is then given to the mΓ regressor, whose output we study below. Further details about the
trigger and photon selection criteria can be found in the H → γγ analysis [13]. We emphasize
that the mass regressor is being used to regress the mΓ of individual reconstructed photon can-
didates, which we assume to be merged photons, not the invariant mass of the reconstructed
diphoton event itself. As before, only reconstructed candidates in the range |ηΓ| < 1.44 are
used.

An important caveat in regressing the mΓ of energetic photons (pT, Γ & 20 GeV) within jets is the
presence of other hadrons within the jet. At these energies, we emphasize that it is no longer the
case that neutral-meson decays are well-isolated in jets, a main point of distinction compared
with the isolated A → γγ decays used to train the mass regressor. In general, the neutral-
meson decay will be collimated with other hadrons, including, potentially, several merged
π0 decays. The effect of these additional hadrons is to smear and distort the resulting mΓ
spectrum and introduce an energy dependence in the mΓ value. We therefore restrict our study
to 20 < pT, Γ < 35 GeV and require tighter shower-shape criteria, to increase the contribution
from well-isolated π0 → γγ decays that more closely resemble the A → γγ decay. The low-pT
threshold is dictated by the chosen diphoton trigger. Although these tighter criteria mitigate
the stated effects, the impact of these effects remains visible.

Within the above restricted pT, Γ range, the π0 is boosted to the approximate range γL = 150–
250, putting its invariant mass reconstruction out of reach of all but the end-to-end mass re-
gressor. Also present is the higher-mass η , which, though produced with a much lower cross
section, is boosted to only about the range γL = 30–60, just within reach of the 3×3 algorithm.

As clearly seen in Fig. 6, the end-to-end method is able to reconstruct a prominent π0 peak.
Indeed, it is the only algorithm able to do so. The π0 peak appears more prominent than the
corresponding A peak at mA = 0.1 GeV (c.f. Fig 5, third row, left) because of the higher mass
and lower boost of the π0 in this case. The photon NN exhibits an erratic response, suggesting
it does not have the data granularity needed to probe this regime. Likewise, the 3×3 method
is unable to reconstruct the π0 peak at all. It is, however, able to reconstruct the η peak, as
expected. We attribute the weaker η peak in the end-to-end method to the aforementioned
smearing effect of additional hadrons in the jet, as discussed further in Appendix A.2. The 3×3
method is less sensitive to this effect because of the restriction on the ECAL energy clusters
being in the smaller 3×3 window.

Whether the sensitivity of the end-to-end method to the effects of jet hadronization represents



17

an advantage or disadvantage depends on the application. For an analysis searching for iso-
lated A → γγ decays [45], background processes from neutral mesons in jets will be smeared
in mass, providing a distinct advantage for separating their mass spectra from that of true
A → γγ decays peaking at similar masses. The optimization of the end-to-end technique for
the mass regression of neutral mesons in jets is beyond the scope of this paper.

The unique capability of the end-to-end technique to reconstruct highly boosted particle decays
thus opens the door to physics searches in boost regimes previously inaccessible to existing
reconstruction algorithms. Additionally, because of the difficulty of obtaining low-energy π0

decays (E ≈ 1 GeV) with increasing luminosity, the ability to reconstruct the more abundantly
available high-energy (E ≈ 10 GeV) π0 decays instead offers the possibility of improving the
reach of existing CMS ECAL intercrystal calibration methods, which rely on such decays [8].
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Figure 6: Reconstructed mass mΓ for end-to-end (red circles), photon NN (blue squares), and
3×3 (gray triangles) algorithms for hadronic jets from data enriched with π0 → γγ decays. All
distributions are normalized to the same number of events, including those outside mA-ROI.
The statistical uncertainties in the distributions are negligible.

9 Robustness of the algorithm
To further assess the robustness and generalizability of the end-to-end ML-based mass regres-
sor, we study how the regressed mass varies with respect to a number of key quantities of
interest. Such studies are useful in revealing potential biases of the mass regressor technique
to kinematic regions and detector conditions for which it was not trained. These mass depen-
dence studies are performed on data using both π0 → γγ events and electrons from events
enriched with Z → e+e− decays.

9.1 Mass dependence on kinematic quantities

We first measure the dependence of the regressed mass on reconstructed kinematic quantities
such as pT, Γ and ηΓ. These studies have the caveat outlined in Section 8.2 concerning the distor-
tions in the regressed π0 invariant mass distribution coming from jet hadronization. Figure 7
(left) shows a two-dimensional plot of the regressed mass versus pT, Γ for 20 < pT, Γ < 35 GeV.
A clear band is observed that is independent of pT, Γ. We attribute this band to well-isolated
π0 → γγ decays, which are more prominent in this relatively low-pT, Γ range. This is consistent
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with our earlier results from simulated A → γγ decays, shown in Fig. 5, albeit for a narrower
pT, Γ range. A broadening of the mass distribution for pT, Γ & 30 GeV is also visible in Fig. 7
(left). However, this is likely an artifact of the discontinuous increase in the photon population
of the selected sample, due to the turn-on of the leading-pT threshold for the diphoton trigger.

Next, we study the dependence of the regressed mass on the reconstructed ηΓ. As discussed
earlier, the number of radiation lengths traversed by an electromagnetic particle entering the
ECAL barrel at η ≈ 1.4 is nearly five-fold that at η ≈ 0 because of differences in the under-
lying tracker material structure (described in Section 2). Thus, this study is a useful check on
the sensitivity of the regressed mass to the level of electromagnetic shower development in the
A → γγ energy deposits. As seen in Fig. 7 (right), the regressed mass has noticeably better res-
olution in the central region (|ηΓ| . 0.5) than in the forward regions (|ηΓ| & 1), as expected. The
regressed mass distribution also shows good continuity with respect to ηΓ. The dependence of
the regressed mass on the same kinematic quantities for simulated H → AA → 4γ events is
presented in Appendix A.3, with similar conclusions.
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Figure 7: Regressed mass from π0 → γγ data events vs. pT, Γ (left) and ηΓ (right). For both
plots, the regressed mass distributions are normalized in vertical slices of the accompanying
kinematic quantity to highlight the intrinsic dependence on the quantity. The relative contri-
bution over each vertical slice is given by the color scale to the right of each plot.

9.2 Mass dependence on detector conditions

A critical question surrounding the end-to-end ML technique is how well it accommodates
mismodeled detector conditions, or even conditions unseen in the training set. In particular,
whether exposure to the full granularity of the detector data results in an algorithm that is
overly dependent on detector conditions or the amount of pileup.

To address these questions using the same π0 → γγ data, we study the regressed mass ver-
sus the mean number of interactions per bunch crossing. Importantly, because of challenges
with the LHC during the data-taking period used in this study, the proton bunch scheme was
significantly altered in the latter half of the year. This resulted in the pileup distribution being
significantly skewed toward higher number of interactions per bunch crossing. This effect was
not fully modeled in the simulated data used to train the mass regressor. In spite of this, as
shown in Fig. 8 (upper), we observe that both the peak and width of the regressed masses are
stable versus the amount of pileup.

We next investigate the stability of the regressed mass with respect to changing detector condi-
tions by comparing the regressed π0 → γγ mass spectrum at different times. In Fig. 8 (lower
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left), the mass spectrum is plotted for the start, middle, and end of the 2017 data-taking pe-
riod. During these time segments, the electronic noise in the ECAL barrel increased by 25%.
Fitting the regressed mass distribution to a Gaussian plus quadratic function in the vicinity of
the peaks, the positions and widths of the peak in the latter two time segments are within 1
(middle) and 4% (end). These differences are similar to those measured in these data sets using
established calibration techniques. As an additional check, in Fig. 8 (lower right), we show the
invariant mass spectrum separately for the entire 2017 and 2018 data-taking periods. Between
the ends of these two data-taking periods, the electronic noise in the ECAL barrel increased by
about 10%. The positions and widths of the π0 peak are consistent within uncertainties using
a similar fitting procedure.

Robustness to changes in detector conditions is thus a principal strength of the end-to-end ML
technique when using minimally processed detector data. However, such robustness is notably
degraded when training on clustered data, as discussed in Appendix A.1.

9.3 Mass dependence on data versus simulation

Finally, we compare the dependence of the mass regressor for events from data versus simu-
lation. If the relative mass resolution in data is worse than it is in simulation, the significance
of an observed mass peak in data would be adversely affected. If there is a bias in the position
of the mass peak in data versus simulation, an inaccurate mass measurement would be made
unless the bias is corrected.

First, it is important to decouple data-versus-simulation mismodeling caused by detector-related
effects from that attributable to the collimation of jets described in Section 8.2. An unbiased as-
sessment of the mass regressor requires a measurement of the detector-related mismodeling
alone. Because of the computational and logistical challenge of obtaining minimally processed
simulated QCD events with energetic π0 → γγ, we analyze instead the agreement between
data and simulation using electrons from Z → e+e− events. Electrons from Z → e+e− decays
are produced in abundance, and are reconstructed with good isolation and high purity. The
tag-and-probe method is used to select the electrons for both data and simulation within the
range |ηe | < 1.44.

Although the electron is effectively massless in this energy regime, radiation is produced from
its bending in the CMS magnetic field. This causes the energy in the seed crystal of the electron
shower to be slightly smeared toward neighboring crystals in the shower [39], similar to the
pattern seen in instrumentally merged A → γγ decays. As a result, the regressed electron
mass spectrum displays a peak at mΓ ≈ 0.1 GeV that can be used to measure differences in the
mass spectrum.

We parametrize the differences between data and simulation in terms of a Gaussian relative
mass scale sscale and smearing difference ssmear. A scan is performed over different (sscale, ssmear)
hypotheses, in steps of (∆sscale = 4× 10−3, ∆ssmear = 0.4 MeV). At each hypothesis, the value
of mΓ, i for each electron candidate in the simulated sample is then smeared using the probabil-
ity distribution N (sscale ×mΓ, i, ssmear), where N (µ, σ) is a Gaussian function parametrized by
mean µ and standard deviation σ. The best fit mass scale and smearing between data and sim-
ulation is then defined as the (sscale, ssmear) hypothesis for which the chi-square (χ2) test statistic
between the mass distribution in data and the transformed simulated sample is at a minimum.
The definition χ2 = ∑i(hdata,i − hMC,i)

2/hMC,i is used, where hdata,i and hMC,i denote the nor-
malized data and transformed simulation counts, respectively, at bin i of mΓ. We determine the
best fit value for the relative mass scale to be 1.040 and the best fit value for the mass difference
is less than ∆ssmear. The contours of the χ2 scan over the scale and smearing hypotheses are
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Figure 8: Upper: Two-dimensional plot of the regressed mass for π0 → γγ data events vs. the
amount of pileup (PU). The mass distribution is normalized in vertical slices of the amount of
pileup. The relative contribution over each vertical slice is given by the color scale to the right of
the plot. Lower left: The regressed mass distributions for the start (gray circles), middle (blue
squares), and end (red triangles) of the 2017 data-taking period. Lower right: The regressed
mass distributions for the 2017 (gray circles) and 2018 (blue squares) data-taking periods. The
lower two plots are normalized to unity and the vertical bars on the points show the statistical
uncertainties. The lower panel for the lower left plot gives the ratio of distributions for the
middle to the start (blue squares) and the end to the start (red triangles) of the 2017 data-taking
period. The lower panel for the lower right plot gives the ratio (blue squares) for the 2018 and
2017 data-taking periods. The vertical bars on the points in both lower panels show the statis-
tical uncertainties in the numerator quantity, and the gray bands give the similar uncertainty
in the denominator quantity.
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Figure 9: The agreement in the regressed mΓ spectrum between electrons in data versus sim-
ulation. Left: Contours of 68% (solid line) and 95% (dotted line) confidence level (CL) in the
χ2 test statistic as a function of the (sscale, ssmear) hypothesis. The best fit point (sscale = 1.040,
ssmear = 0 MeV) is indicated by the red diamond. Right: The regressed mass distributions in
data (points) and the best fit Monte Carlo (MC) simulation (blue region) for electrons from
Z → e+e− events. The difference between the simulated distribution under the null scale and
smearing hypothesis versus the best fit hypothesis (Syst) is plotted as a green band. Each of
the distributions are normalized to unity, including samples outside mA-ROI. Statistical uncer-
tainties in the data distribution are negligible. The lower panel shows the ratio of the data to
the simulation under the best fit hypothesis (points). The statistical uncertainties in the latter
are plotted as a blue band. The ratio of the simulated distribution for the null to the best fit
hypothesis is displayed as a green band.

displayed in Fig. 9 (left). The resulting regressed mass distributions for electrons in data versus
simulation under the best fit hypothesis are shown in Fig. 9 (right).

After the difference in mass scale is taken into account, we find the core of the mass distribution
to be well-modeled in the simulation, as seen in Fig. 9 (right). Although there are some sys-
tematic differences in the high-side tail of the mass distribution between data and simulation,
these deviations will be less relevant in an application where data are limited in the tails and
statistical uncertainties are larger. Indeed, the significance of an observed mass peak is primar-
ily driven by the core of the peak and not the tail contribution. Thus, the lack of any significant
mass smearing implies the full mass resolution of the regressor is preserved in data.

10 Summary
A novel end-to-end particle reconstruction technique is introduced that is able to serve as a
general strategy for reconstructing decays of boosted particles. The method involves the use
of deep learning algorithms that do not rely on particle-flow objects, but are trained directly
on minimally processed detector-level data to reconstruct particle properties of interest. Using
simulated A → γγ decays in the CMS electromagnetic calorimeter, where A is a hypothetical
scalar particle, the technique is used to reconstruct the diphoton invariant mass over a wide
range of photon-merging scales, corresponding to Lorentz boosts γL = 60–600. Furthermore,
when domain continuation is incorporated in the training, the most challenging parts of the
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A → γγ phase space (γL > 150) are made accessible. The resulting end-to-end mass regressor,
in addition to being a highly sensitive tool, also has a robust response. Based on studies using
simulated samples and collision data, a stable mass response is observed in various kinematic,
beam, and detector conditions.

Studies are underway to employ the end-to-end mass regressor in π0 → γγ reconstruction
and in searches for new physics, such as H/X → AA → 4γ, where H is the Higgs boson
and X is some new heavy resonance. Furthermore, although demonstrated for the specific
case of mass reconstruction of a boosted particle decaying to photons, the end-to-end deep
learning technique can be used for arbitrary decay modes by including additional subdetector
information. The technique is not restricted to mass reconstruction; other particle properties,
particularly those that are currently resolution constrained, such as the lifetime of particles in
long-lived decays, stand to benefit significantly. It can potentially be used instead of particle-
flow techniques to reconstruct the four-momenta of resolved decays. Sensitivity gains in these
cases, however, are likely to be more modest, and must be balanced against the challenges of
accessing the wider event content of the CMS data sets.

The technique of training via domain continuation can be exploited independently of the end-
to-end method. Indeed, it is applied to the training of the photon neural network used as a
benchmark. The application of this technique is not specific to high energy physics. It should
be applicable in any machine learning regression task that seeks to regress a quantity near a
boundary, physical or otherwise, that is close in scale to its resolution.

When end-to-end particle reconstruction is combined with domain continuation, diphoton
showers that are completely unresolved can now be reconstructed. This is a regime inaccessible
to existing reconstruction techniques, and it is the first time a technique has been developed to
achieve this important goal.
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A Supplementary studies
A.1 Minimally processed versus clustered data

We attribute the robustness of the end-to-end ML mass regressor (discussed in Section 9) to
the use of minimally processed (all) rather than clustered (clustered) detector data. As shown
in Fig. A.1, the PF clustering algorithm filters out low-energy deposits and, under certain situ-
ations, may completely remove all the deposits associated with the lower-energy photon from
the A → γγ decay. For example, in Fig. A.1 (left), showing the minimally processed data, the
lower-energy photon is visible on the lower left of the core photon, at a distance of approxi-
mately 7 ECAL crystals. In the clustered data on the right plot, the deposits associated with the
lower-energy photon have been dropped, along with other, isolated low-energy deposits.
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Figure A.1: A typical A → γγ decay using minimally processed (left) and clustered (right)
data. The energy distributions are plotted in relative ECAL crystal index coordinates of the
pseudorapidity η versus the azimuthal angle φ and color coded by energy.

The impact of using minimally processed versus clustered data is seen in Fig. A.2. We compare
the effect of training on all (upper row) versus clustered data (lower row) for shower-merged
boosts (left column) and barely resolved boosts (right column). For each scenario, we regress
the mass of a sample constructed from all (blue circles) versus clustered (red squares) data
to compare how well each mass regressor extrapolates to the other’s domain. For the mass
regressor trained on minimally processed data (upper row), despite the differences in input
image (c.f. Fig. A.1), we see no evidence of a shift in the mass peak in either boost regime. This
is not the case for the mass regressor trained on clustered data (lower row), which exhibits a
shift when applied outside of its domain. This suggests it is desirable not to filter the detector
data beforehand so that the mass regressor learns to suppress low-energy deposits. Without
this opportunity, the mass regressor becomes more susceptible to variations in the data.

In addition, the loss of the lower-energy photon at resolved boosts (right column) leads toA →
γγ decays being incorrectly reconstructed as photons, causing both a drop in reconstruction

https://cds.cern.ch/record/1379837
https://cds.cern.ch/record/1379837
http://www.arXiv.org/abs/2109.13439
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efficiency at the correct mass value (mΓ = 1 GeV) and a build-up of samples at the wrong mass
(mΓ ≈ 0 GeV). Even if minimally processed data are presented to the mass regressor trained on
clustered data (lower right, blue circles), the lost efficiency at the correct mass value is still not
recovered. The use of minimally processed data is thus vital to maximizing the capabilities of
the end-to-end ML-based technique.
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Figure A.2: Regressed mass spectra for the mass regressor trained on minimally processed
data (upper) versus clustered data (lower) at shower-merged boosts (left) and barely resolved
boosts (right). For each scenario, the mass regressor is run on the same set of A → γγ decays,
composed either of minimally processed (blue circles, all) or clustered (red squares, clustered)
data. The vertical bars on the points give the statistical uncertainties and the vertical dotted
line shows the input mA value.

A.2 Hadronization effects

Although the end-to-end method is able to clearly reconstruct π0 candidates in hadronic jets,
the η resonance in jets appears much less pronounced compared with that reconstructed by
the 3×3 method (c.f. Fig. 6). At the particle energies that we study, the weaker η resonance
from the end-to-end method is due to the presence of additional particles collimated in the jet.
As noted in Section 8.2, because the 3×3 method uses only a window of 3×3 crystals, it is less
exposed to these effects. To illustrate this point, in Fig. A.3, we select a representative merged
photon candidate reconstructed by the 3×3 algorithm with a mass close to the η resonance.

The ECAL energy pattern associated with the minimally processed detector data (all), as used
by the end-to-end technique, is plotted on the left. The corresponding energy pattern, after
applying the 3×3 clustering (3×3), is shown on the right. We have verified that, by applying
the end-to-end method on candidates within a mass window of the η peak built using only
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Figure A.3: A typical hadronic jet sample reconstructed by the 3×3 algorithm with a mass
near the η meson peak, using minimally processed (all, left) and 3×3 clustered (3×3, right)
data. The energy distributions are plotted in relative ECAL crystal index coordinates of the
azimuthal angle φ versus the pseudorapidity η and color coded by energy.

3×3 clusters, we are able to reconstruct an η mass peak of similar size as for the 3×3 algo-
rithm. The effects of hadronization are also relevant for π0 reconstruction in jets. However, the
higher production rate of π0 mesons permits the use of tighter photon identification criteria
(c.f. Section 8.2), in order to maximize the isolated π0-like component.

A.3 Mass dependence in simulated samples

To complement the mass dependence studies performed on data using π0 → γγ decays and
electrons, we present in Fig. A.4 similar studies for A → γγ decays from simulated H →
AA → 4γ events passing our event and photon selection criteria. Two-dimensional plots
are shown of the regressed mass versus the generated pT,A (left), ηA (center), and amount of
pileup (right) for barely resolved (upper), shower merged (middle), and instrumentally merged
(lower) decay products. There is good stability in the regressed mass response throughout the
explored phase space and the varying beam conditions.
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Figure A.4: Regressed mass spectra vs. generated pT,A (left), generated ηA (center), and amount
of pileup (right), forA → γγ decays that are barely resolved (upper), shower merged (middle),
or instrumentally merged (lower). The A → γγ decays are obtained from simulated H →
AA → 4γ events. In all plots, the regressed mass distribution is normalized in vertical slices of
the quantity of interest. The relative contribution over each vertical slice is given by the color
scale to the right of each plot.
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