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1 Introduction

The axion was first introduced as the angular degree of freedom of an approximate global
U(1) symmetry to address the strong CP problem in QCD [1–4]. In modern cosmology,
this concept has been generalized to axion-like particles which have been postulated to play
a key role in string theory [5–7], inflation [8, 9], baryogenesis [10, 11], dark matter [12–14]
and in cosmological approaches to the hierarchy problem [15]. At the level of quantum
field theory, these axion-like particles (axions for short in following) are pseudoscalars
which couple to fermions and gauge fields only through derivative couplings. Of particular
phenomenological interest are couplings to the fermions and gauge groups of the Standard
Model (SM), in particular the electromagnetic sector.1 In this case, the gauge fields,
charged fermions and the axion form a coupled system linked by non-linear interactions.

1At energies above the electroweak phase transition, the relevant Abelian gauge group is hypercharge.
For simplicity, we will use the notation familiar from electromagnetism throughout this paper, though of
course the discussion applies to any Abelian gauge group with charged fermions. For non-Abelian gauge
groups, see e.g. [16, 17].
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For example, a non-vanishing axion velocity can trigger a tachyonic instability in one of
the gauge field helicity modes [18, 19], Schwinger pair production of charged fermions in
background gauge fields [20, 21] leads to an induced current which dampens this tachyonic
instability [22–24], and the gauge fields in turn back-react as an effective friction to the
axion motion [25]. Moreover, it was recently pointed out that a non-vanishing axion velocity
has the intriguing property of boosting the Schwinger pair production of charged fermions
in an electric field [26]. In the axion-assisted Schwinger effect [26] a sufficiently large
constant axion velocity can exponentially enhance the Schwinger production rate for finite
fermion momentum in the final state whereas the axion-driven pair production [27] relies
a non-vanishing acceleration of the axion field.

In the literature, particle production is usually discussed in terms of the asymptotic
initial and final states, where the particles and antiparticles are well defined. Starting
in a ground state in the asymptotic past, the electromagnetic and/or axion background
fields are switched on for some finite time, and the final state in the asymptotic future, after
switching off the background fields, is determined by solving the equations of motion for the
Bogoliubov coefficients. The time-dependence of the background fields, i.e. the mismatch of
the ground state in the asymptotic past and future, is the origin of the fermion production.
On the other hand, transient effects occurring when the external fields are active are
more subtle. At this intermediate stage, the definition of particles and antiparticles is
ambiguous and the divergences associated with the external fields call for an appropriate
regularization scheme. In a practical computation, one may select a particular basis of
creation/annihilation operators, which however results in seemingly very different transient
effects for different choices of basis, as is well known in the case of Schwinger production
in time-dependent electric fields [28–30]. However, physical quantities such as the fermion
current and energy density should not depend on such unphysical reparametrizations of
the theory.

In this paper, we extend the existing results in a three-fold way. Firstly, we point out
that in order to compute backreaction effects in the coupled axion, gauge field and fermion
system, it is insufficient to focus on results for the asymptotic future, it becomes instead
crucial to correctly capture transient phenomena. We demonstrate explicitly that including
vacuum contributions and an appropriate regularization scheme, the apparent differences
caused by the choice of basis are merely differences in interpretation, i.e. labeling terms
as vacuum contribution, time-dependent Bogoliubov coefficients or higher-dimensional op-
erators, while the physical observables are unaffected by these different basis choices —
as they should. We secondly use this opportunity to compare different approaches in the
existing literature, in particular [26, 27] and [31]. In this context, we highlight the im-
portance of choosing a regularization scheme which respects the symmetries of the theory
and the benefits of making use of the Adler-Bell-Jackiw anomaly equation [32, 33] as a
necessary verification of this. Thirdly, we numerically and analytically compute the tran-
sient contributions to fermion production in the presence of a background axion field. We
show that e.g. the fermion energy in the limit of large axion velocities can be exponen-
tially enhanced, even in the absence of electromagnetic background fields. However, we
note that the dominant contribution can be interpreted as dimension-eight operator in the
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axion effective theory. This proves that the transient effects in the axion-fermion system
cannot be reliably computed without knowledge of the UV properties of the theory, i.e. a
particular realization of the Peccei Quinn theory.

The remainder of this paper is organized as follows. After reviewing the key ingredients
of the axion assisted Schwinger effect in section 2, we discuss in some detail different basis
choices and regularization schemes in section 3. The computation of transient phenomena
in observable quantities is presented in section 4, including a discussion on the UV sensi-
tivity. We conclude in section 5. Various technical details are relegated to the appendices.
Appendix A specifies our notation and conventions, while appendix B gives the necessary
details on the solutions of the Dirac equation.

2 Fermion production in a gauge field and axion background

In this section we review the axion assisted Schwinger effect [26]. We consider the following
action:

S =
∫

d4x

[1
2 (∂φ)2 − V (φ)− 1

4FµνF
µν + ψ̄

(
i /D −me2icmφ/faγ5

)
ψ

+cA
α

4πfa
φFµνF̃

µν + c5
∂µφ

fa
ψ̄γµγ5ψ

]
, (2.1)

where φ is the axion field with its potential V (φ) and its decay constant fa, Aµ is the U(1)
gauge field with its field strength Fµν , and ψ is a fermion with the massm whose production
we will discuss in detail. The covariant derivative is defined by Dµ = ∂µ + igQAµ, where
g is the gauge coupling with α = g2/4π2 and Q is the charge of the fermion. The dual
field strength tensor is defined as F̃µν = εµνρσF

ρσ/2 with ε0123 = +1. Finally, cm, cA and
c5 are the coupling constants between the axion and the gauge fields/fermions. The Dirac
equation reads [

i /D −me2iθmγ5 + ∂µθ5γ
µγ5

]
ψ = 0, (2.2)

where we denote θi = ciφ/fa. We solve this equation in the presence of background
electromagnetic fields and a homogeneous axion field with φ̇ 6= 0.

It is well known that a strong electric field creates pairs of fermions and anti-fermions
through the Schwinger effect [20, 21]. The production rate Γ is proportional to

Γ ∝ exp
[
− πm2

T

g |Q|E

]
, m2

T = m2 + p2
T , (2.3)

where pT is the transverse momentum, e.g. p2
T = p2

x + p2
y if the electric field is in ẑ-

direction. Note that beyond the fermion mass suppression, the production of the modes
with large transverse momentum is exponentially further suppressed. As however recently
demonstrated in [26] this suppression from the transverse momentum disappears once the
axion velocity is large enough, and the rate eventually becomes

Γ ∝ exp
[
− πm2

g |Q|E

]
for θ̇2

5+m &
πm2p2

T

g |Q|E
, (2.4)
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where θ5+m = (c5 + cm)φ/fa. This enhances the Schwinger effect for non-zero transverse
momentum and was hence dubbed the axion assisted Schwinger effect. The purpose of this
section is to summarize the key ingredients of this effect (see [26] and appendix B for more
details).

In anticipation of our later discussion, we note that eq. (2.2) has a redundancy. Indeed,
the couplings shift under the chiral rotation ψ → eicφ/faγ5ψ as

c5 → c5 − c, cm → cm + c. (2.5)

This indicates that only the combination c5 + cm is physical, and one can eliminate either
c5 or cm by a chiral rotation. In this section we focus on the c5 = 0 basis following [26],
and comment on the cm = 0 basis at the end of section 2.2. A particular basis choice
implies a natural definition of particles and antiparticles by the corresponding positive
and negative frequency modes. Hence, throughout this paper, we identify the basis choice
with respect to the redundancy under a chiral rotation with a particular choice of cre-
ation/annihilation operators, although these two concepts are not equal, strictly speaking.
This basis transformation is a key topic of section 3.

2.1 Dirac equation with electric field and axion

In this section, we focus on the case with a background electric field and axion velocity, with-
out any magnetic field. We consider background gauge and axion fields parameterized by

Aµ = (0, 0, 0, Az(t)) , φ = φ(t), (2.6)

where the electric field is given by E = −Ȧz. Without loss of generality we take E ≥ 0.
We will take this background to be constant at some initial and final time, φ̇ = 0, Ȧ = 0,
with a time-dependence at intermediate times. The Dirac equation is then given by

0 =


i∂0 + Πz − θ̇5 px − ipy −me2iθm 0
px + ipy i∂0 −Πz − θ̇5 0 −me2iθm

−me−2iθm 0 i∂0 −Πz + θ̇5 −(px − ipy)
0 −me−2iθm −(px + ipy) i∂0 + Πz + θ̇5

ψ. (2.7)

We solve this equation with the Bogoliubov coefficient method, which describes the mixing
of the positive and negative frequency modes. The Bogoliubov coefficients αλ and βλ evolve
as (see appendix B for derivation)

α̇1
α̇2
β̇1
β̇2

 =

iθ̇5+m


− m
mT

Πz
Ω

pT
mT

m
Ω e

2iΘ 0
pT
mT

m
mT

Πz
Ω 0 −m

Ω e
2iΘ

m
Ω e
−2iΘ 0 m

mT
Πz
Ω

pT
mT

0 −m
Ω e
−2iΘ pT

mT
− m
mT

Πz
Ω



+mT Π̇z

2Ω2


0 0 −e2iΘ 0
0 0 0 −e2iΘ

e−2iΘ 0 0 0
0 e−2iΘ 0 0




α1
α2
β1
β2

 , (2.8)
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where Πz = pz − gQAz, p2
T = p2

x + p2
y, m2

T = p2
T + m2, Ω =

√
Π2
z +m2

T , and Θ =
∫ t dtΩ.

We solve these equations with two different initial conditions,

α
(1)
1 = 1, α

(1)
2 = β

(1)
1 = β

(1)
2 = 0, and α

(2)
2 = 1, α

(2)
1 = β

(2)
1 = β

(2)
2 = 0. (2.9)

Using the Bogoliubov coefficients, we quantize the fermion as

ψ =
∫ d3p

(2π)3 e
i~p·~xeiθ5γ5

∑
λ=1,2

[
Bλuλe

−iΘ +D†λvλe
+iΘ

]
, (2.10)

where uλ and vλ are the solutions of the Dirac equation for the constant background fields.
Note that we have extracted the factor eiθ5γ5 to eliminate the derivative coupling between
the axion and the fermion current, i.e. c5 = 0 in this basis. The creation and annihilation
operators at the intermediate times, Bλ and Dλ, are expressed as

Bλ =
∑
λ′=1,2

[
α

(λ′)
λ bλ′ − (−)λ+λ′β

(λ′)
λ

∗
d†λ′
]
, D†λ =

∑
λ′=1,2

[
β

(λ′)
λ bλ′ + (−)λ+λ′α

(λ′)
λ

∗
d†λ′
]
,

(2.11)
where bλ and dλ are the creation and annihilation operators in the infinite past. We impose
the anti-commutation relation as{

bλ1(~p), b†λ2
(~p′)

}
=
{
dλ1(~p), d†λ2

(~p′)
}

= (2π)3δλ1λ2δ
(3)(~p− ~p′), (2.12){

bλ1(~p), d†λ2
(~p′)

}
=
{
bλ1(~p), dλ2(~p′)

}
= 0. (2.13)

It then follows from eq. (2.8) that Bλ and Dλ satisfy the same equal time anti-commutation
relations, i.e.,{

Bλ1(t, ~p), B†λ2
(t, ~p′)

}
=
{
Dλ1(t, ~p), D†λ2

(t, ~p′)
}

= (2π)3δλ1λ2δ
(3)(~p− ~p′), (2.14){

Bλ1(t, ~p), D†λ2
(t, ~p′)

}
=
{
Bλ1(t, ~p), Dλ2(t, ~p′)

}
= 0. (2.15)

2.2 Axion assisted Schwinger effect

We now turn to the fermion pair production in the presence of a background electric field
and axion velocity. We focus on the axion assisted Schwinger effect, and thus take the axion
velocity to be constant.2 It is well known that the notion of particles is ill-defined in the
time-dependent background, and thus we turn on and off the external electric and axion
fields adiabatically at tmin and tmax, respectively. To be specific, we take the background
fields as

θ̇5+m = θ̇0
4

[
1 + tanh

(
t− tmin
T

)] [
1− tanh

(
t− tmax

T

)]
,

Ȧz = −E0
4

[
1 + tanh

(
t− tmin
T

)] [
1− tanh

(
t− tmax

T

)]
, (2.16)

2If the axion velocity is exactly constant, the axion field by itself cannot produce fermions, it can only
enhance the production driven by the electric field. In other words, the production rate vanishes for E = 0
for constant φ̇. If φ̈ 6= 0, the axion can produce fermions independently of the background gauge field, which
includes the standard particle production by an oscillating axion background field decaying into fermions
as well as axion-driven pair production.
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θ̇2
0

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

n
ψ

2 exp (−πm2
T/g |Q|E0)

4 exp (−πm2/g |Q|E0)

m = 1.5, pT = 2

numerical

analytic

Figure 1. Numerical solutions for the total number of produced particles after turning off the
background fields. Left: spectrum of produced particles for different values of the background
axion velocity θ̇0 as a function of the fermion momentum pz. The gray dashed line corresponds to
the standard Schwinger effect formula, nψ = 2 exp(−πm2

T /g |Q|E0), where the factor 2 accounts
for the chirality. Right: the height of the spectrum (at pz = −50

√
g |Q|E0) as a function of θ̇2

0. The
blue line corresponds to the numerical solution of the time evolution equation of the Bogoliubov
coefficients, while the gray dashed line shows the analytical expression (2.17). In both figures, we
take m = 1.5 and pT = 2 in units of g |Q|E0 = 1.

and start to solve the system well before tmin. Here we restrict ourselves to evaluate the
particle number nψ =

∑
λ,λ′ |β

(λ′)
λ |2 only well after tmax. We will study physical observables

at the intermediate times in the subsequent sections.
In figure 1 we show a numerical solution of the equation of motion. We take tmin = 0,

tmax = 100
√
g |Q|E0, T =

√
50/g |Q|E0, and evaluated the spectrum at t = 1.5tmax. In the

left panel, we show the spectrum for Q = +1, m = 1.5 and pT = 2 in the unit g |Q|E0 = 1
for different values of θ̇0 (see [26] for several other values of pT and m). The enhanced part
of the spectrum corresponds to the modes that cross Πz = 0. Since the gap size between
the positive and negative frequency modes is smallest at Πz = 0 (for θ̇0 < pT ), the modes
are most easily excited at this point. The height of the plateau is enhanced for non-zero θ̇0
compared to the standard Schwinger effect formula, nψ = 2 exp(−πm2

T /g |Q|E0) (which we
show as the dashed line), corresponding to the axion assisted Schwinger effect. In order to
take a closer look at this enhancement, in the right panel, we plot the height of the plateau
versus θ̇2

0. As one can see, the envelope eventually approaches to exp(−πm2/g |Q|E0) for
large enough θ̇0. In other words, the suppression from the transverse momentum is absent
for a sufficiently large axion velocity. On top of this enhancement, the height of the plateau
strongly oscillates as a function of θ̇0. As demonstrated in [26] this result is well reproduced
by the analytical expression3

nψ =
∣∣∣∣∣exp

[
2i
∫ Π++

0

dΠz

g |Q|E0
Ω−

]∣∣∣∣∣
2

+
∣∣∣∣∣exp

[
2i
∫ Π−−

0

dΠz

g |Q|E0
Ω−

]∣∣∣∣∣
2

− 2Re
[
exp

[
2i
∫ Π++

Π−+

dΠz

g |Q|E0
Ω−

]]
, (2.17)

3Here we assume that θ̇0 is positive. If θ̇0 is negative, we should replace Ω− by Ω+.
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which we show as the gray line in the right panel. Here we have defined

Ω± =

√(√
Π2
z + p2

T ± θ̇0

)2
+m2, Πλλ′ = λ

√
(θ̇0 + iλ′m)2 − p2

T . (2.18)

The latter corresponds to the solution of Ω−(Πz) = 0 in the complex Πz-plane. This
suggests that the dispersion relation Ω− is crucial for the axion assisted Schwinger effect.
Indeed, as shown in [26], this dispersion relation arises due to spin-momentum interaction
induced by the axion in the non-relativistic limit of the fermion.

Ref. [27] confirms this result in the cm = 0 basis. Indeed, one can eliminate cm by the
chiral rotation ψ → e−iθmγ5ψ. The Bogoliubov coefficients in this basis satisfy

˙̃α+
˙̃α−
˙̃β+
˙̃β−

 =


0 Aei(Θ+−Θ−) −B+e

2iΘ+ −Cei(Θ++Θ−)

−Ae−i(Θ+−Θ−) 0 −Cei(Θ++Θ−) −B−e2iΘ−

B+e
−2iΘ+ Ce−i(Θ++Θ−) 0 Ae−i(Θ+−Θ−)

Ce−i(Θ++Θ−) B−e
−2iΘ− −Aei(Θ+−Θ−) 0



α̃+
α̃−
β̃+
β̃−

 , (2.19)

where
Θ± =

∫ t

Ω±dt. (2.20)

See appendix B for the explicit forms of A,B and C, which are irrelevant for our purpose
here. The key point is that the above equation explicitly involves Ω±, and thus it is more
straightforward to see the importance of Ω± on particle production with, e.g. the WKB
method [27]. However, this basis has its own subtlety, related to the regularization and
renormalization, and demonstrating this point is our main goal in section 3. There we
will see that each basis has its own advantages and pitfalls; the WKB analysis of particle
production is more straightforward in the cm = 0 basis, while the c5 = 0 basis is more
suitable for regularizing and renormalizing the theory.

3 Basis choice and regularization

As shown above, the axion assisted Schwinger effect may be more transparent in the basis
cm = 0 (which we will refer to as the fermion current basis) than in the basis c5 = 0 (which
we will call the Hamiltonian basis). However, there is a subtlety in the fermion current basis
related to regularization. Physical observables are independent of the choice of basis and in
principle one can of course work in any basis. In reality, however, physical observables are
often divergent and require regularization and renormalization. A regularization scheme
should preserve the symmetries of the theory as much as possible, which is straightforward
in the Hamiltonian basis while can be more subtle in the fermion current basis. The key
point is that the Hamiltonian basis diagonalizes the fermion energy density operator (as
the name suggests), while the fermion current basis does not. The purpose of this section
is to demonstrate this point in detail, by taking the anomaly equation as an example.

We emphasize that the regularization and renormalization are not only of academic
interest. If we focus only on physical quantities in the asymptotic future, after turning off
the external fields (as we did in section 2), there are no complications. However, if we follow
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the time evolution of the physical quantities at intermediate times, we necessarily have to
deal with divergences, regularization and renormalization. Since physical quantities such
as the induced current and the axial charge at intermediate times are crucial to study, e.g.
the backreaction of the fermion production to the axion and gauge field dynamics, a proper
treatment of the renormalization and regularization is phenomenologically relevant.

3.1 Basis choice and Hamiltonian

A fermion chiral rotation ψ → eicγ5ψ shifts the couplings as c5 → c5 − c and cm → cm + c.
This redundancy corresponds to the basis choice of the fermion that one works with. In
ref. [26] we take the Hamiltonian basis (c5 = 0), while ref. [27] takes the fermion current
basis (cm = 0).4 Our goal here is to see that the fermion energy density operator is
diagonalized only in the Hamiltonian basis, and not in the fermion current basis, which
is crucial for our study of the anomaly equation in section 3.2. Since we will discuss the
anomaly equation, we now include the magnetic field (anti-)parallel to the electric field.5

We take the background fields as

Aµ = (0, 0, Bx,Az) , φ = φ(t), (3.1)

which corresponds to ~E = Eẑ = −Ȧz ẑ and ~B = Bẑ, where the magnetic field B is taken
constant. This configuration has

FµνF̃
µν = −4 ~E · ~B 6= 0, (3.2)

which makes the anomaly equation non-trivial at the intermediate times.
In the presence of the magnetic field, a charged particle follows a circular trajectory in

the plane orthogonal to the magnetic field. This transverse motion is quantized in quantum
mechanics, resulting in discrete Landau levels. The mode without transverse motion is
called the lowest Landau level, while those with transverse motion are called higher Landau
levels. Therefore, in the presence of a magnetic field, the fermion is quantized as

ψ =
∫ dpydpz

(2π)2 ei(pyy+pzz)eiγ5θ5

×

B0u0e
−iΘ0 +D†0v0e

iΘ0 +
∑

n,λ=1,2

[
Bn,λun,λe

−iΘn +D†n,λvn,λe
iΘn
] , (3.3)

where

B0 = α0b0 − β∗0d
†
0, Bn,λ =

∑
λ′=1,2

[
α

(λ′)
n,λ bn,λ′ − (−1)λ+λ′ β

(λ′)
n,λ

∗
d†n,λ′

]
, (3.4)

D†0 = β0b0 + α∗0d
†
0, D†n,λ =

∑
λ′=1,2

[
β

(λ′)
n,λ bn,λ′ + (−1)λ+λ′ α

(λ′)
n,λ

∗
d†n,λ′

]
, (3.5)

4More generally, we can take a basis with both non-zero c5 and cm. This choice simply makes the
equations more involved and we do not see any benefit, and thus we focus only on the Hamiltonian and
fermion current basis in this paper.

5Gauge field production towards the end of axion inflation provides this configuration [9], so the inclusion
of the magnetic field also has a phenomenological motivation.
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in the Hamiltonian basis, and

ψ =
∫ dpydpz

(2π)2 ei(pyy+pzz)e−iγ5θm

×

B̃0ũ0e
−iΘ0,s + D̃†0ṽ0e

iΘ0,s +
∑

n,λ=±

[
B̃n,λũn,λe

−iΘn,λ + D̃†n,λṽn,λe
iΘn,λ

] , (3.6)

where

B̃0 = α̃0b0 − β̃∗0d
†
0, B̃n,λ =

∑
λ′=±

[
α̃

(λ′)
n,λ bn,λ′ − β̃

(λ′)∗
n,λ d †n,λ′

]
, (3.7)

D̃†0 = β̃0b0 + α̃∗0d
†
0, D̃†n,λ =

∑
λ′=±

[
β̃

(λ′)
n,λ bn,λ′ + α̃

(λ′)∗
n,λ d †n,λ′

]
, (3.8)

in the fermion current basis, respectively (see appendix B for definitions and the derivation).
The integer n labels the discrete Landau levels, n = 0 corresponding to the lowest Landau
level while n = 1, 2, · · · refers to the higher Landau levels. Notice that the higher Landau
levels are analogous to the situation without a magnetic field; the only difference is whether
the transverse momentum is quantized or not. The frequencies in the decomposition are
different in the two bases. They are obtained as

Ω0 =
√

Π2
z +m2, Ωn =

√
Π2
z +m2

T , (3.9)

with mT =
√
m2 +m2

B, mB =
√

2ng|QB|, Θ0 =
∫ t dtΩ0 and Θn =

∫ t dtΩn in the
Hamiltonian basis, and

Ω0,s =
√

(Πz − sθ̇5+m)2 +m2, Ωn,λ =
√

(Π + λθ̇5+m)2 +m2, (3.10)

with Π =
√

Π2
z +m2

B, s = sign(QB), Θ0,s =
∫ t dtΩ0,s and Θn,λ =

∫ t dtΩn,λ in the fermion
current basis, respectively. Finally the creation and annihilation operators satisfy{

bn1,λ1(~p), b†n2,λ2
(~p′)

}
=
{
dn1,λ1(~p), d†n2,λ2

(~p′)
}

= (2π)2δλ1λ2δn1n2δ
(2)(~p− ~p′), (3.11){

bn1,λ1(~p), d†n2,λ2
(~p′)

}
=
{
bn1,λ1(~p), dn2,λ2(~p′)

}
= 0, (3.12)

and B, D, B̃ and D̃ satisfy the same equal-time anti-commutators. As usual, we assume
that there is no external field in the infinite past. This allows us to uniquely define the
vacuum as b0|0〉 = bn,λ|0〉 = d0|0〉 = dn,λ|0〉 = 0. The physical quantities are then evaluated
as the expectation value of the corresponding operators with respect to this vacuum.

Let us now study the Hamiltonian. The conjugate momentum follows from eq. (2.1)
as

πφ = φ̇+ c5
fa
ψ̄γ0γ5ψ, πψ = iψ̄γ0, πAi = −F 0i + cA

α

πfa
φ ε0ijkFjk, (3.13)

and thus the Hamiltonian density operator is given by6

H = 1
2 φ̇

2 + V (φ) + ψ†
(
i∂0 + θ̇5γ5

)
ψ + 1

2
(
~E2 + ~B2

)
, (3.14)

6One can check that this follows also from taking the variation with respect to the vierbein.
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where we have assumed that the fermion satisfies the Dirac equation, and substituted our
configuration of the axion and gauge field. Thus we define the fermion energy density
operator as

Hψ ≡
1
2

∫
d3x

[
ψ†,

(
i∂0 + θ̇5γ5

)
ψ
]
, (3.15)

where we have anti-symmetrized the operator. Note that Hψ contains not only the time
derivative of the fermion but also θ̇5 explicitly.7 In the Hamiltonian basis, by substituting
eq. (3.3), we obtain

Hψ = 1
2

∫ dpydpz
(2π)2

Ω0
([
B†0, B0

]
+
[
D†0, D0

])
+
∑
n,λ

Ωn

([
B†n,λ, Bn,λ

]
+
[
D†n,λ, Dn,λ

]) .
(3.16)

This shows that the Hamiltonian basis diagonalizes the fermion energy density operator
even at the intermediate times for a time-dependent background, as the name already
indicated. In particular, Ω0 and Ωn are the energy eigenvalues, which we can then use for
regularization without spoiling any symmetry. On the other hand, in the fermion current
basis , the fermion energy density operator is expressed by substituting eq. (3.6) as

Hψ = 1
2

∫ dpydpz
(2π)2

{
Π2
z +m2 − sθ̇5+mΠz

Ω0,s

([
B̃†0, B̃0

]
+
[
D̃†0, D̃0

])
−mθ̇5+m

Ω0,s

(
e2iΘ0,s

[
B̃†0, D̃

†
0

]
+ (h.c.)

)
+
∑
n,λ

[
Π2
B +m2 + λθ̇5+mΠB

Ωn,λ

([
B̃†n,λ, B̃n,λ

]
+
[
D̃†n,λ, D̃n,λ

])

+mθ̇5+m
Ωn,λ

(
e2iΘn,λ

[
B̃†n,λ, D̃

†
n,λ

]
+ (h.c.)

)]}
. (3.17)

This shows that the fermion current basis does not diagonalize the fermion energy density
operator. The off-diagonal parts (the second and fourth terms) originate from the second
term in eq. (3.15). This in particular means that Ω0,s and Ωn,± are not energy eigenvalues.
We may then anticipate that the use of regulator functions based on these frequencies will
fail to produce the correct regularized theory. We will investigate this point in section 3.2,
using the anomaly equation as an explicit example.

7While we derived the Hamltonian by treating the axion as a dynamical field in eq. (3.14), here we
have anticipated that in the following, we will consider the axion field as a classical background field, and
thus included the θ̇5-dependent term in the fermion energy density operator. As we will see below, the
eigenvalues of this fermion energy density operator can be used to regulate the UV divergences of theory
to correctly obtain the chiral anomaly equation. This is no longer the case if the term proportional to θ̇5

is dropped in Hψ. A more rigorous derivation of eq. (3.15), with special care about subtleties regarding
background field versus dynamical fields, is beyond the scope of the present paper.
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3.2 Regularization and anomaly equation

It is well-known that the chiral rotation is anomalous in the presence of an gauge field. As
a result, the divergence of the axial current Jµ5 satisfies the anomaly equation:

∂µJ
µ
5 = −g

2Q2

8π2 FµνF̃
µν + 2mψ̄e2iθmγ5iγ5ψ, (3.18)

where Jµ5 = ψ̄γµγ5ψ. The anomaly equation is an operator relation and thus must hold
in any background field configuration. This relation provides a non-trivial check of the
computation, in particular of the regularization procedure, since an improper regularization
easily destroys the anomaly equation.

As demonstrated in ref. [26] the regularization based on the Hamiltonian basis correctly
reproduces the anomaly equation, as we briefly review here. We consider the spatially-
averaged version of the anomaly equation. With our gauge field configuration (3.1) this is
given by

q̇5 = g2Q2EB

2π2 + 2m
〈
ψ̄e2iθmγ5iγ5ψ

〉
, (3.19)

where we have replaced Fµν by the electric and magnetic fields, and

q5≡
1

2Vol(R3)

∫
d3x

〈[
ψ†,γ5ψ

]〉
,
〈
ψ̄e2iθmγ5iγ5ψ

〉
≡ 1

2Vol(R3)

∫
d3x

〈[
ψ̄, iγ5e

2iθmγ5ψ
]〉
.

(3.20)
The lowest Landau level contribution to the chiral charge is given by

q5|LLL = g |QB|
4π2

∫
dpz

[
sΠz

Ω0

(
2 |β0|2 −R

)
+ m

Ω0

(
α0β

∗
0e
−2iΘ0 + α∗0β0e

2iΘ0
)]
, (3.21)

where we have introduced the regulator function R = R(Ω0). In particular, normal ordering
corresponds to R = 0. The time derivative is given by

q̇5|LLL = g |QB|
4π2

∫
dpz

[
s
m2Π̇z

Ω3
0

(1−R)− sΠz

Ω0
Ṙ− 2im

(
α0β

∗
0e
−2iΘ0 − α∗0β0e

2iΘ0
)]
,

(3.22)
where we have used the time evolution equation of the Bogoliubov coefficients. We thus
obtain

q̇5|LLL = gQB

4π2

∫
dpz

[
m2Π̇z

Ω3
0

(1−R)− Πz

Ω0
Ṙ

]
+ 2m

〈
ψ̄e2iθmγ5iγ5ψ

〉∣∣∣
LLL

. (3.23)

The integral does not depend on the explicit form of R = R(Ω0) as long as it is a function
of Ω0. Indeed, we can show that∫

dpz

[
m2Π̇z

Ω3
0
R+ Πz

Ω0
Ṙ

]
= gQE

∫
dΠz

[
m2

Ω3
0
R+ Πz

Ω
dR

dΠz

]
= gQE

∫
dΠz

d

dΠz

[Πz

Ω0
R

]
= 0,

(3.24)
where we changed the integration variable from pz to Πz and used the chain rule for the
time derivative acting on R in the first equality, and used that R vanishes in the limit
Πz → ±∞ as this function regulates the UV behavior in the last equality. Thus we obtain

q̇5|LLL = g2Q2EB

2π2 + 2m
〈
ψ̄e2iθmγ5iγ5ψ

〉∣∣∣
LLL

. (3.25)
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This shows that the anomalous term is supplied solely by the lowest Landau level. Indeed
one can see that the higher Landau level satisfies

q̇5|HLL = 2m
〈
ψ̄ne

2iγ5θmiγ5ψn
〉∣∣∣

HLL
. (3.26)

We have thus proven that the anomaly equation (3.19) indeed holds.
We now study the anomaly equation in the fermion current basis. We saw that the

fermion current basis does not diagonalize the fermion energy density operator. It is then
naturally expected that the frequencies in this basis, Ω0,s and Ωn,λ, are not suitable for
regularization as they are not related to the energy eigenvalues. Indeed, in the following, we
will see that the anomaly equation does not hold if one uses Ω0,s and Ωn,λ as the argument
of the regulator function. This highlights the main point of this section; the regularization
is straightforward in the Hamiltonian basis, but is more tricky in the fermion current basis.

If we use Ω0,s and Ωn,λ for regularization, the lowest Landau level contribution may
be written as

q5|LLL = g |QB|
4π2

∫
dpz

[
sΠz − θ̇5+m

Ω0,s

(
2
∣∣∣β̃0
∣∣∣2 − R̃(Ω0,s)

)
+ 2m

Ω0,s
Re
[
α̃∗0β̃0e

2iΘ0,s
]]
,

(3.27)
with a regulator function R̃. Notice that this includes the normal ordering in the fermion
current basis as a special case for R̃ = 0. By taking the time derivative and using the time
evolution equation of the Bogoliubov coefficients, we obtain

q̇5|LLL = gQB

4π2

∫
dpz

[
m2(Π̇z−sθ̈5+m)

Ω3
0,s

(
1−R̃

)
−Πz−sθ̇5+m

Ω0,s

˙̃R
]

+2m
〈
ψ̄e2iθmγ5iγ5ψ

〉∣∣∣
LLL

.

(3.28)
The integral again does not depend on the explicit form of R̃ as long as R̃ = R̃(Ω0,s), and
we obtain

q̇5|LLL = gQB

2π2

(
gQE − sθ̈5+m

)
+ 2m

〈
ψ̄e2iθmγ5iγ5ψ

〉∣∣∣
LLL

. (3.29)

Note the additional term proportional to θ̈5+m. One can check (after a somewhat tedious
computation) that the contributions from the higher Landau levels do not cancel this addi-
tional term. Therefore, the regularization based on the frequencies in the fermion current
basis, Ω0,s and Ωn,λ, does not reproduce the anomaly equation. This is understandable
because the fermion current basis does not diagonalize the fermion energy density opera-
tor, and thus the regularization with Ω0,s and Ωn,λ does not necessarily preserve all the
symmetries that one wants to preserve. This is in contrast to the Hamiltonian basis; the
Hamiltonian is invariant under all the (internal) symmetries by definition, and thus the
regularization with the energy eigenvalues, i.e., the frequencies in the Hamiltonian basis,
automatically preserves all the symmetries. Needless to say, if we use the same regulariza-
tion as the Hamiltonian basis,8 we correctly reproduce the anomaly equation in the fermion
current basis as well, as the physics is independent of the basis choice. The point here is
that the regularization is straightforward in the Hamiltonian basis, but requires special

8This corresponds to subtracting exactly the same contribution as obtained using, e.g., normal ordering
in the Hamiltonian basis.
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care in the fermion current basis. One may prefer to work in the fermion current basis
to study particle production (see the end of section 2.2), but may prefer to work in the
Hamiltonian basis to regularize and renormalize the theory.

Before closing this section, we would like to comment on ref. [31], which computed
the fermion contribution to the divergence of the axial current in the fermion current basis
with dimensional regularization. The authors obtained a term with derivatives acting on
the axion that does not vanish even in the massless fermion limit, on top of the standard
Chern-Simons contribution. From the point of view presented here, this is simply because
the regularization scheme employed in [31] does not respect all the symmetries. Indeed, as
the authors noted in the paper, the terms that they got can be canceled by adding local
counter terms to the action, called an irrelevant anomaly, indicating that there is a better
regularization scheme. This cancellation is not a coincidence or fine tuning, but a reflection
of the fact that the contribution from c5 + cm vanishes in the massless limit due to the
chiral rotation invariance of the theory. Therefore, there is a special reason to choose,
among others, the regularization that preserves this property. Nevertheless, we agree that
there exists a subtlety on higher dimensional operators related to the UV completion, and
we discuss this point in the next section.

4 Transient phenomena and UV sensitivity

In section 3 we demonstrated that the regularization is straightforward in the Hamiltonian
basis but requires a special care in the fermion current basis, giving the anomaly equation
as an example. Armed with the proper understanding of the regularization, we now study
another interesting property of the physical quantities at the intermediate times: exponen-
tially enhanced transient fermion energy density production for finite fermion masses.

As eq. (2.4) suggests, although the axion assisted Schwinger effect lifts the suppression
from the transverse momentum, the production rate is still suppressed exponentially by
the fermion mass m for m2 � g |Q|E. However, eq. (2.4) describes the spectrum only at
the infinite future, after turning off the external fields, and the physical quantities at the
intermediate times do not necessarily feature this suppression factor. Indeed, as we will see,
if the axion velocity is large enough, the fermion energy density develops a component that
is not exponentially suppressed even for m2 � g |Q|E. With the proper regularization,
we will check that the same result is obtained in both the Hamiltonian and the fermion
current bases (as it should), although their appearance is very different; the transient
feature originates from the Bogoliubov coefficients in the Hamiltonian basis while it comes
from the vacuum contribution in the fermion current basis.

This phenomena is related to higher dimensional operators in the axion effective the-
ory after integrating out fermions. At the intermediate times, the physical quantities
often contain components that are suppressed only by a power, not an exponential, of
the fermion mass in the heavy fermion limit. These components are in general identified
with higher dimensional operators that arise after integrating out the fermion, such as the
Euler-Heisenberg Lagrangian, as described in detail in refs. [23, 34]. We will see that the
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transient effect that we study here also corresponds to higher dimensional operators in the
axion effective theory.

Identified with higher dimensional operators, this transient effect is actually degenerate
with a choice of the UV theory. The effective theory with the axion is non-renormalizable,
and thus there is in general no reason to prohibit adding higher dimensional operators by
hand. These higher dimensional operators contribute in the same way as the transient
effect that we discuss here, and thus giving any physical meaning to the transient effect
requires specifying the UV theory. We believe that it is worth clarifying these points,
also to avoid any possible future confusion in literature (see, e.g. refs. [35–41] for a similar
confusion on the induced current from the Schwinger effect, which turns out to originate
merely from the Euler-Heisenberg Lagrangian [23, 34]). Therefore, we explain all the above
points in detail in this section.

4.1 Transient effects and basis choice independence

We now study the fermion production for a large axion velocity. For our purpose in
this section, we do not actually need any external electric nor magnetic fields, and thus
we set E = B = 0 for simplicity. In this case there is no particle production at the
infinite future, nevertheless the physical quantities show non-trivial transient behaviors
at the intermediate times as we will see. One can verify that these transient effects also
occur if the electromagnetic fields are present. Without external electromagnetic fields, the
equations of the Bogoliubov coefficients are simplified as

α̇1
α̇2
β̇1
β̇2

 = iθ̇5+m


− m
mT

pz
Ω

pT
mT

m
Ω e

2iΘ 0
pT
mT

m
mT

pz
Ω 0 −m

Ω e
2iΘ

m
Ω e
−2iΘ 0 m

mT

pz
Ω

pT
mT

0 −m
Ω e
−2iΘ pT

mT
− m
mT

pz
Ω



α1
α2
β1
β2

 , (4.1)

in the Hamiltonian basis, and

˙̃αλ = −mθ̈5+m
2Ω2

λ

exp [2iΘλ] β̃λ, ˙̃βλ = mθ̈5+m
2Ω2

λ

exp [−2iΘλ] α̃λ, (4.2)

in the fermion current basis, respectively, where we replace Πz → pz and Π→ p. We first
study the system in the Hamiltonian basis, and then in the fermion current basis.

Hamiltonian basis. We show our numerical results for nψ =
∑
λ,λ′ |β

(λ′)
λ |2 as a function

of time in the left panel of figure 2. We fix pz = 0, tmin = 0, tmax = 100 and T =
√

50, and
take several different values of m and θ̇0 in the unit pT = 1. As one can see, even though
the fermion mass is large and there is no external electric field, nψ becomes of O(1) in the
intermediate times. This is the transient effect that we study in this section. Although nψ
itself is not a physical quantity, the same feature appears in the physical quantities such as
the energy density. The fermion energy density in the Hamiltonian basis is expressed as

ρψ ≡
1

Vol(R3)〈Hψ〉 = ρ
(reg)
ψ + ρ

(vac)
ψ , (4.3)
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Figure 2. Left: time evolution of the occupation number nψ in the Hamiltonian basis for a
large axion velocity θ̇0 and vanishing electromagnetic fields. Although approaching to zero at the
asymptotic future, nψ is O(1) at the intermediate time for large θ̇0. We fix pz = 0, and show
the results for several different values of m and θ̇0 in the unit pT = 1. Right: time evolution of
the regularized (differential) energy density d2ρ

(reg)
ψ /dpxdpy in the Hamiltonian basis with a large

axion velocity, where we integrate over pz in the range of −150 to 150. This clearly shows that the
transient effect in nψ is reflected in the physical energy density.

where the regularized part ρ(reg)
ψ and the vacuum part ρ(vac)

ψ are respectively given by

ρ
(reg)
ψ =

∫ d3p

(2π)3 2Ω
∑
λ,λ′

∣∣∣β(λ′)
λ

∣∣∣2 , ρ(vac) = −2
∫ d3p

(2π)3 Ω. (4.4)

We may employ normal ordering to renormalize the energy density, corresponding to drop-
ping ρ(vac)

ψ (or taking R = 0). Recall that the normal ordering in the Hamiltonian basis
indeed correctly reproduces the anomaly equation (see section 3.2). In the right panel of
figure 2, we plot the time evolution of the differential energy density d2ρ

(reg)
ψ /dpxdpy (inte-

grated from pz = −150 to 150). We see that the energy density shows the same transient
effect as nψ.

Fermion current basis. We now study the same phenomena in the fermion current
basis. In the left panel of figure 3, we plot the time evolution of ñψ =

∑
λ,λ′ |β̃

(λ′)
λ |2, with

the parameters as in figure 2. It is clear that ñψ is well suppressed and does not show
this transient effect.9 Since ñψ is not a physical quantity, this by itself does not imply any
contradiction in our computation. In order to investigate the origin of the transient effect in
the fermion current basis, we take a closer look at the renormalization of the energy density.
In the fermion current basis, we may decompose the fermion energy density (before the
renormalization) as

ρψ = ρ̃
(reg)
ψ + ρ

(diff)
ψ + ρ

(vac)
ψ , (4.5)

9The peaks at t ∼ tmin and tmax are induced by non-zero θ̈5+m, which depends on the details of turning
on and off the axion velocity and is not in the focus of our interest here. Note that the spectrum is well
below O(1) even at the peaks.
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Figure 3. Left: time evolution of the occupation number ñψ in the fermion current basis with
a large axion velocity. Even for a large axion velocity, ñψ is well suppressed and does not show
the transient effect that shows up in nψ in the Hamiltonian basis. Right: time evolution of the
vacuum contribution to the energy density d2ρ

(diff)
ψ /dpxdpy, again integrated over pz = −150 to

150 in the unit pT = 1, in the fermion current basis with a large axion velocity. This component
features the transient effect, making the total energy density basis-independent (where ρ(diff)

ψ gives
the dominant contribution and ρ̃

(reg)
ψ is negligible in the fermion current basis). The parameters

are the same as figure 2.

where

ρ̃
(reg)
ψ =

∑
λ,λ′

∫ d3p

(2π)3

[
p2 +m2 + λpθ̇5+m

Ωλ

(∣∣∣β̃(λ′)
λ

∣∣∣2 − ∣∣∣α̃(λ′)
λ

∣∣∣2 + δλλ′

)

− 2θ̇5+m
m

Ωλ
Re
[
e2iΘλα̃

(λ′)∗
λ β̃

(λ′)
λ

]]
, (4.6)

ρ
(diff)
ψ = −

∑
λ

∫ d3p

(2π)3

(
p2 +m2 + λpθ̇5+m

Ωλ
− Ω

)
. (4.7)

and ρ(vac)
ψ is as in eq. (4.4). Here ρ̃(reg)

ψ corresponds to the normal ordering contribution in
the fermion current basis (corresponding to taking R̃ = 0), while ρ(diff)

ψ corresponds to the
difference of the normal orderings in the Hamiltonian and the fermion current basis. After
renormalizing the energy density by dropping ρ(vac)

ψ , this difference ρ(diff)
ψ still contributes

to the energy density. In fact it is this term that gives the transient effect in the fermion
current basis, as one can see in the right panel of figure 3. Note that, as we saw in section 3.2,
the normal ordering in the fermion current basis does not correctly reproduce the anomaly
equation, and thus one needs to take ρ(diff)

ψ into account. We stress that once ρ(diff)
ψ is

included, we obtain the same results with both basis choices, providing further indication
that our regularization and renormalization procedure is consistent. This includes the
results for the anomaly equations as well as the transient behaviour of the fermion energy
density, see right panels in figures 2 and 3.
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The momentum integral of ρ(diff)
ψ can be done exactly, and we obtain

ρ
(diff)
ψ =

m2θ̇2
5+m

4π2 log
(

Λ2

m2

)
+
θ̇4

5+m
4π2 , (4.8)

where we have used a hard UV cut-off Λ for the momentum integral. The first term cor-
responds to the fermion contribution of the axion wavefunction renormalization: including
the axion contribution to the energy density, we have

ρφ + ρ
(diff)
ψ = 1

2Zφφ̇
2 + V (φ) +

m2θ̇2
5+m

4π2 log
(

Λ2

m2

)
+
θ̇4

5+m
4π2 , (4.9)

where we include the axion wavefunction renormalization Zφ. By expanding Zφ = 1 + δφ,
we obtain the divergent part of the counter term as

δφ|div. = −(c5 + cm)2

2π2
m2

f2
a

log
(

Λ2

m2

)
. (4.10)

This agrees with the standard Feynman diagrammatic computation (see, e.g. ref. [31]). The
second term in (4.8) is an axion dimension-eight effective operator. It is trivial to check
that the second term reproduces the transient effects that we observed numerically.10 Thus,
we conclude that the transient effect can be interpreted as an axion higher dimensional
operator. Armed with this understanding, in the next subsection, we discuss the resulting
UV sensitivity of this transient effect.

Massless limit. As an aside, it is probably appropriate here to comment on the massless
limitm→ 0, before discussing the UV sensitivity. In this limit, all the effects of θ̇5+m should
disappear as the axion-fermion coupling is unphysical in this limit.

In the Hamiltonian basis, this is trivial to check. The Bogoliubov coefficient β simply
vanishes in the limit m → 0 which we have checked numerically. The situation is more
non-trivial in the fermion current basis, as eq. (4.8) in the massless limit reads

lim
m→0

[
ρ

(diff)
ψ

]
=
θ̇4

5+m
4π2 , (4.11)

which does not vanish. In the massless limit, there is however another contribution from
ρ̃

(reg)
ψ , and we will see in the following that this contribution cancels the contribution of

eq. (4.11). By noting that
lim
m→0

m

Ω2
λ

= π δ(p+ λθ̇5+m), (4.12)

we see that eq. (4.2) is non-trivial only for |p+ λθ̇5+m| . m as m→ 0. In this region, the
phase factors in eq. (4.2) are approximately constant and hence irrelevant for11

m2 . |θ̈5+m|. (4.13)
10There are other higher dimensional operators that arise from ρ̃

(reg)
ψ , but they are subdominant in the

present case.
11To see this, let us take θ̇5+m as a time variable, i.e.,

∫
dtΩλ =

∫
dθ̇5+m Ωλ/θ̈5+m. For |p+ λθ̇5+m| . m,

we have Ωλ ∼ m and θ̇5+m varies by ∆θ̇5+m ∼ m. Thus the change in the phase factor during |p+ λθ̇5+m| .
m is roughly ∆θ̇5+m × Ωλ/θ̈5+m ∼ m2/θ̈5+m.
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Therefore in the limit m2 � |θ̈5+m|, we can separate the time domain into two parts,
|p+ λθ̇5+m| & m and |p+ λθ̇5+m| . m. In the former case α̃λ and β̃λ do not evolve in time.
A nontrivial evolution happens only for the latter case, where the equations are given by

˙̃αλ = − θ̈5+m
2

m

(p+ λθ̇5+m)2 +m2 β̃λ,
˙̃βλ = θ̈5+m

2
m

(p+ λθ̇5+m)2 +m2 α̃λ, (4.14)

where we have dropped the phase factors. It is convenient to first assume that θ̇5+m is
a monotonic function. Later we will see that we can drop this assumption. If θ̇5+m is
monotonic, we can change the time variable from t to θ̇5+m. The equations can be then
solved analytically. With the initial condition that α̃λ = 1, β̃λ = 0, and θ̇5+m = 0, the
solutions in the massless limit are

α̃λ = Θ(p+ λθ̇5+m), β̃λ = Θ(−λθ̇5+m − p). (4.15)

We now come back to the assumption that θ̇5+m is monotonic. Even if θ̇5+m is not mono-
tonic, we can consider the time domains between θ̈5+m = 0 separately. In each domain
θ̇5+m is a good time variable and thus we can repeat the same computation as above. It
is then clear that, for a given mode with fixed p, the interchange of α̃λ = 1, β̃λ = 0 and
α̃λ = 0, β̃λ = 1 happens every time p + λθ̇5+m crosses zero. If p + λθ̇5+m crosses zero an
even number of times, then α̃λ = 1 and β̃λ = 0 in the end, while for an odd number of
times we have α̃λ = 0 and β̃λ = 1. We assume that θ̇5+m = 0 at the beginning, then the
mode with p + λθ̇5+m > 0 at a given time should cross the point p + λθ̇5+m = 0 an even
number of times before the given time, while the one with p+ λθ̇5+m < 0 should cross the
point odd times, independently of the detailed time evolution of θ̇5+m. Thus we conclude
that eq. (4.15) is correct independent of the time dependence of θ̇5+m in the massless limit.
We have also checked that the numerical solution agrees well with eq. (4.15) in the massless
limit. Assuming θ̇5+m > 0 for definiteness, we obtain

lim
m→0

[
ρ̃

(reg)
ψ

]
= 2

∫ d3p

(2π)3
p− θ̇5+m

|p− θ̇5+m|
pΘ(θ̇5+m − p) = −

θ̇4
5+m
4π2 . (4.16)

We thus see that
lim
m→0

[
ρ̃

(reg)
ψ + ρ

(diff)
ψ

]
= 0, (4.17)

so that the total energy density vanishes in the massless limit in the fermion current basis
as well, providing further evidence for the consistency of our regularization and renormal-
ization. As soon as the fermion mass becomes finite, the contribution from ρ̃

(reg)
ψ is well

suppressed and ρ(diff)
ψ dominates, as we saw in figure 3. Thus, contrary to ref. [31], we find

the expected decoupling of the fermions in the massless limit without the need to introduce
any counter terms (see also discussion below).

4.2 Higher dimensional operator and UV sensitivity

In the previous subsection, we have seen that the transient effect in the fermion energy
density can be identified with a higher dimensional operator. In the fermion current basis,
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this arises due to the difference of the vacuum contribution with respect to the normal
ordering prescription in the Hamiltonian basis and takes the form

ρ
(diff)
ψ =

m2θ̇2
5+m

4π2 log
(

Λ2

m2

)
+
θ̇4

5+m
4π2 . (4.18)

Identifying the second term with a higher dimensional operator, this is actually degenerate
with the choice of the UV theory. The low energy effective field theory describing the axion
is non-renormalizable, and thus there is a priori no constraint to adding higher dimensional
operators by hand, on top of the transient effect discussed here. Note that the situation
is different for the Euler-Heisenberg Lagrangian. In the case of the Euler-Heisenberg La-
grangian, the theory is renormalizable before integrating out a heavy particle,12 and it
makes sense to set all the higher dimensional operators to vanish before integrating out the
heavy particle. One can then uniquely determine the coefficients of the higher dimensional
operators after integrating out the heavy particle.

Thus, our conclusion is that a computation of transient effects in the axion effective
theory requires the specification of the UV theory. In the limit θ̇5+m � fa, our computation
of the transient effects within the axion effective field theory is valid. In the opposite case,
the axion effective field theory expansion is invalid. One then must go back to the original
UV theory and study the dynamics within the UV theory.

Before concluding, let us briefly comment on other regularization schemes. In partic-
ular, in the fermion current basis, we can evaluate the axion effective action

Γ[φ] = −iTr log
[
i/∂ −m+ ∂µθ5+mγ

µγ5
]
, (4.19)

by expanding in powers of θ̇5+m/m and evaluating the resulting terms using dimensional
regularization. Treating the γ5 matrices using the t’Hooft-Veltman prescription [42], we
reproduce the first term in eq. (4.8) but obtain a vanishing coefficient for the term pro-
portional to θ̇4

5+m, in contrast to the second term in eq. (4.8). This may also be related
to somewhat surprising results in the literature, such as the non-restoration of the axial
symmetry in the massless fermion limit found in [31] using dimensional regularization. In
fact, the latter result demonstrates that this regularization scheme does not respect the
chiral symmetry of the theory in the massless limit (adding to the list of difficulties of
dimensional regularization for chiral theories [42]), thus violating a key requirement of a
‘good’ regularization scheme.

5 Conclusions

In this paper, we have studied fermion production in the presence of a background axion
field with non-vanishing velocity and/or electromagnetic fields. We have included general
dimension-five axion-fermion couplings and thus considered the Dirac equation of the form[

i /D −me2iθmγ5 + ∂µθ5γ
µγ5

]
ψ = 0, (5.1)

12Strictly speaking there exists the Landau pole which suggests a new scale, but we ignore this subtlety
here.
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where θi = ciφ/fa with φ being the axion. While the spectrum of the produced fermion at
the infinite future, after turning off the external fields, is studied in detail in [26], here we
have put more focus on physical quantities at intermediate times, obtained before turning
off the external fields. These physical quantities at the intermediate times are of great
phenomenological interest. For instance, in the context of axion inflation, the fermion
production backreacts to the axion-gauge field system in the form of physical quantities
such as the induced current, which in turn determines the production of gauge fields,
gravitational waves and primordial density fluctuations.

In general, physical quantities are divergent in the presence of the external fields, and
thus a proper understanding of regularization and renormalization is necessary to evaluate
the physical quantities at the intermediate times. In particular, a proper regularization
scheme must preserve the symmetries of the theory as much as possible, such as the chiral
rotation invariance as reflected in the Adler-Bell-Jackiw anomaly equation, and it can be
highly non-trivial to find such a proper regularization scheme (see e.g. [31] for a related
discussion). The main observation of this paper is that the theory is most straightforwardly
regularized and renormalized in the c5 = 0 basis (or the Hamiltonian basis). A chiral
rotation ψ → eicφ/faγ5ψ shifts the couplings as c5 → c5−c and cm → cm+c, and a different
choice of c corresponds to a different choice of the fermion basis that one works with. This
rotation is merely a redundancy of the theory and the final result are not be affected by
this choice. Nevertheless the Hamiltonian basis is more convenient for regularizing and
renormalizing the theory, as the fermion energy density operator is diagonalized only in
the Hamiltonian basis and not in other bases including the cm = 0 basis (or the fermion
current basis) employed in [27]. We have supported our observation by showing that the
regularization using a regulator function depending on the frequencies in the Hamiltonian
basis (corresponding to the energy eigenvalues) correctly reproduces the anomaly equation,
while the regularization using the frequencies appearing in the fermion current basis does
not. We also demonstrate that with an appropriate regularization function (using the
expressions for the frequencies found in the Hamiltonian basis) all results obtained in the
Hamiltonian basis can be reproduced in the fermion current basis.

With the proper understanding of the regularization and the renormalization, we have
studied transient effects in the fermion energy density with a large axion velocity. We
have seen that, in the presence of a large axion velocity, the fermion energy density ρψ
at intermediate times is no longer exponentially suppressed by the fermion mass, but is
significantly enhanced even in the absence of external electromagnetic fields and even for
constant axion velocity. This should be compared with the usual formula for the Schwinger
effect, ρψ ∝ exp(−πm2/g |Q|E), which indicates an exponential suppression of the energy
density at the infinite future. We have confirmed that the same result follows in both
the Hamiltonian and fermion current bases although its appearance is very different; the
transient effect originates from the Bogoliubov coefficients in the Hamiltonian basis, while
it stems from a vacuum contribution in the fermion current basis. The latter expression
allows us to identify the transient effect with an axion higher dimensional operator. We
stress that although this operator is degenerate with the choice of UV completion, one
can study the transient effect using our prescription for regularization and renormalization
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once one specifies the UV completion of the theory. We did not discuss in any detail
phenomenological applications of these transient effects. One obvious obstacle is that a
significant enhancement of the fermion energy density, as observed in figure 2, requires a
very large axion velocity. This is not only difficult to achieve in realistic models, but also
per se indicates a breakdown of the axion effective theory. A phenomenological analysis
of this transient effect should thus be conducted in the framework of the original Peccei-
Quinn theory, whenever it is relevant. On the other hand, our results also show that in
the limit of small axion velocities, θ̇5+m � fa, transient effects can be reliably computed
in the axion effective field theory.
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A Notation and conventions

Here we summarize our notation and conventions in this paper. We take the mostly minus
convention and define the anti-commutator of the gamma matrices as

{γµ, γν} = ηµν , ηµν = diag(1,−1,−1,−1). (A.1)

It then follows that γ0 is hermitian while γi is anti-hermitian. Unless specified otherwise,
we work with the Weyl representation, given by

γ0 =
(

0 1
1 0

)
, γi =

(
0 σi
−σi 0

)
, (A.2)

where σi denotes the Pauli matrices, given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.3)

We define γ5 as
γ5 = − i

4!ε
µνρσγµγνγργσ = iγ0γ1γ2γ3, (A.4)

where εµνρσ is the totally anti-symmetric tensor with ε0123 = −ε0123 = 1. In the Weyl
representation γ5 is given by

γ5 =
(
−1 0
0 1

)
. (A.5)

The covariant derivative is given by

iDµ = i∂µ − gQAµ. (A.6)

The field strength is defined as Fµν = ∂µAν − ∂νAµ, and its dual as

F̃µν = εµνρσ
2 F ρσ. (A.7)
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B Technical details on solutions of Dirac equation

In this appendix we summarize the technical details omitted in the main text. In particular,
we explain in detail the solutions of the Dirac equation in the Hamiltonian and the fermion
current bases.

B.1 Dirac equation with electric field

We first consider the case with only the electric field and the axion. The Dirac equation is
given by [

i /D −me2iθmγ5 + ∂µθ5γ
µγ5

]
ψ = 0, (B.1)

and we take the background fields as

Aµ = (0, 0, 0, Az(t)) , φ = φ(t). (B.2)

Since the background fields do not depend on the space coordinate, we can move to Fourier
space as

ψ(x, t) =
∫ d3p

(2π)3 e
i~p·~xψ(p, t), (B.3)

where ~p = (px, py, pz). The Dirac equation then reads

0 =


i∂0 + Πz − θ̇5 px − ipy −me2iθm 0
px + ipy i∂0 −Πz − θ̇5 0 −me2iθm

−me−2iθm 0 i∂0 −Πz + θ̇5 −(px − ipy)
0 −me−2iθm −(px + ipy) i∂0 + Πz + θ̇5

ψ. (B.4)

We solve this equation in the Hamiltonian basis c5 = 0 and the fermion current basis
cm = 0.

In the Hamiltonian basis, we eliminate c5 by ψ → eiθ5γ5ψ. The solutions of the Dirac
equation for constant φ and Az are then given by

u1 = e−iγ5θ5+m

N


−(px − ipy)mT

(Ω + Πz) (m+mT )
(px − ipy) (Ω + Πz)
mT (m+mT )

 , u2 = e−iγ5θ5+me−iϕp

N


mT (m+mT )

−(px + ipy) (Ω + Πz)
(Ω + Πz) (m+mT )

(px + ipy)mT

 ,
(B.5)

v1 = e−iγ5θ5+m

N


−(px − ipy) (Ω + Πz)
−mT (m+mT )
−(px − ipy)mT

(Ω + Πz) (m+mT )

 , v2 = e−iγ5θ5+me−iϕp

N


(Ω + Πz) (m+mT )

(px + ipy)mT

−mT (m+mT )
(px + ipy) (Ω + Πz)

 ,
(B.6)

with

N = 2
√

Ω (Ω + Πz) (m+mT )mT , px − ipy = pT e
−iϕp , mT =

√
p2
T +m2. (B.7)
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Once we turn on the time dependence of Az and φ, the Bogoliubov coefficients evolve as
α̇1
α̇2
β̇1
β̇2

 =

iθ̇5+m


− m
mT

Πz
Ω

pT
mT

m
Ω e

2iΘ 0
pT
mT

m
mT

Πz
Ω 0 −m

Ω e
2iΘ

m
Ω e
−2iΘ 0 m

mT
Πz
Ω

pT
mT

0 −m
Ω e
−2iΘ pT

mT
− m
mT

Πz
Ω



+mT Π̇z

2Ω2


0 0 −e2iΘ 0
0 0 0 −e2iΘ

e−2iΘ 0 0 0
0 e−2iΘ 0 0




α1
α2
β1
β2

 , (B.8)

where Θ =
∫ t dtΩ. We solve these equations with two different initial conditions,

α
(1)
1 = 1, α

(1)
2 = β

(1)
1 = β

(1)
2 = 0, and α

(2)
2 = 1, α

(2)
1 = β

(2)
1 = β

(2)
2 = 0. (B.9)

The former corresponds to the mode which is initially u1, while the latter is the one which
is initially u2. The Bogoliubov coefficients then describe the mixing of these two positive
frequency modes with the others at a later time. In terms of the original field in the
coordinate space, the fermion is thus quantized as13

ψ=
∫ d3p

(2π)3 e
i~p·~xeiθ5γ5 (B.10)

×
∑

λ,λ′=1,2

[
uλe
−iΘ

(
α

(λ′)
λ bλ′−(−)λ+λ′β

(λ′)
λ

∗
d†λ′
)

+vλe
+iΘ

(
β

(λ′)
λ bλ′+(−)λ+λ′α

(λ′)
λ

∗
d†λ′
)]
.

In the fermion current basis, we instead eliminate cm by ψ → e−iθmγ5ψ. In this case
we may define the solutions of the Dirac equation for constant Az and φ̇ as14

ũ+ = 1
N+


−(px − ipy)(Ω+ + Π + θ̇5+m)

(Π + Πz)(Ω+ + Π + θ̇5+m)
−(px − ipy)m

(Π + Πz)m

 , ũ− = 1
N−


(px − ipy)m
(Π−Πz)m

(px − ipy)(Ω− + Π− θ̇5+m)
(Π−Πz)(Ω− + Π− θ̇5+m)

 ,
(B.11)

ṽ+ = 1
N+


(px − ipy)m
−(Π + Πz)m

−(px − ipy)(Ω+ + Π + θ̇5+m)
(Π + Πz)(Ω+ + Π + θ̇5+m)

 , ṽ− = 1
N−


−(px − ipy)(Ω− + Π− θ̇5+m)
−(Π−Πz)(Ω− + Π− θ̇5+m)

(px − ipy)m
(Π−Πz)m

 ,
(B.12)

13Note that the phase factor reduces to (−1)λ+λ′
= 1 in the case θ5+m = 0, as the Bogoliubov coefficients

are decoupled into two pairs, i.e. αλ
′
λ ∝ δλ

′
λ and βλ

′
λ ∝ δλ

′
λ , in this case.

14Eqs. (B.5) and (B.6) are solutions to the Dirac equation for constant φ, whereas eqs. (B.11) and (B.11)
are solutions to the Dirac equation for constant φ̇. This is not inconsistent, but simply selects two possible
basis choices which can be used to express the exact solution of the time dependent Dirac equation. In
general, we have a choice in decomposing the full solution of the Dirac equation into the mode functions
and the Bogoliubov coefficients. For any choice of a complete set of mode functions, the time evolution of
the Bogoliubov coefficients is defined so that the mode expansion satisfies the full Dirac equation without
any assumptions on the time dependence of φ (and Az), as we do here.
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with

Π =
√

Π2
z+p2

x+p2
y, Ω±=

√
(Π± θ̇5+m)2 +m2, N±= 2

√
Π(Π±Πz)Ω±(Ω±+Π± θ̇5+m),

(B.13)
and Θ± =

∫ t Ω±dt. Once we turn on the time dependence of the background fields, the
Bogoliubov coefficients satisfy

˙̃α+
˙̃α−
˙̃β+
˙̃β−

 =


0 Aei(Θ+−Θ−) −B+e

2iΘ+ −Cei(Θ++Θ−)

−Ae−i(Θ+−Θ−) 0 −Cei(Θ++Θ−) −B−e2iΘ−

B+e
−2iΘ+ Ce−i(Θ++Θ−) 0 Ae−i(Θ+−Θ−)

Ce−i(Θ++Θ−) B−e
−2iΘ− −Aei(Θ+−Θ−) 0



α̃+
α̃−
β̃+
β̃−

 , (B.14)

where

A = gQE pTm

4Π2√Ω+Ω−

 Ω+ + Ω− + 2Π√(
Ω+ + Π + θ̇5+m

) (
Ω− + Π− θ̇5+m

)
 , (B.15)

B± = ± m

2Ω2
±

(Πz

Π gQE ± θ̈5+m

)
,

C =
gQE pT

[(
Ω+ + Π + θ̇5+m

) (
Ω− + Π− θ̇5+m

)
−m2

]
4Π2

√
Ω+Ω−

(
Ω+ + Π + θ̇5+m

) (
Ω− + Π− θ̇5+m

) . (B.16)

We solve these equations with two different initial conditions,

α̃
(+)
+ = 1, α̃

(+)
− = β̃

(+)
+ = β̃

(+)
− = 0, and α̃

(−)
− = 1, α̃

(−)
+ = β̃

(−)
+ = β̃

(−)
− = 0.

(B.17)
In this basis the Dirac field is quantized as

ψ=
∫ d3p

(2π)3 e
i~p·~xe−iθmγ5

∑
λλ′=±

[
ũλe
−iΘλ

(
α̃

(λ′)
λ bλ′−β̃

(λ′)∗
λ d†λ′

)
+ṽλeiΘλ

(
β̃

(λ′)
λ bλ′+α̃

(λ′)∗
λ d†λ′

)]
,

(B.18)
where we use that (α̃+, α̃−, β̃+, β̃−)T and (−β̃+,−β̃−, α̃+, α̃−)† satisfy the same equation.
We do not put tildes on the creation and annihilation operators here. Since these are
the operators at the infinite past where we assume there is no external field, these are
equivalent to those in the Hamiltonian basis (up to linear transformation in the case of
degenerate eigenvalues).

The creation and annihilation operators at the infinite past are quantized as{
bλ1(~p), b†λ2

(~p′)
}

=
{
dλ1(~p), d†λ2

(~p′)
}

= (2π)3δλ1λ2δ
(3)(~p− ~p′), (B.19){

bλ1(~p), d†λ2
(~p′)

}
=
{
bλ1(~p), dλ2(~p′)

}
= 0, (B.20)

It then follows from the time evolution of the Bogoliubov coefficients that Bλ, Dλ, B̃λ and
D̃λ satisfy the same equal time anti-commutation relations. The proof is rather lengthy,
and we refer interested readers to appendix D of [26], where it is shown explicitly that the
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creation and annihillation operators in the Hamiltonian basis, Bλ and Dλ, satisfy the same
equal-time anti-commutators as bλ and dλ. One can then show that B̃λ and D̃λ satisfy the
same equal-time anti-commutators by expressing them in terms of Bλ and Dλ, with the
help of the completeness condition∑

λ

[
uλu

†
λ + vλv

†
λ

]
= 14. (B.21)

B.2 Dirac equation with electric and magnetic field

We now include the magnetic field. We take the background fields as

Aµ = (0, 0, Bx,Az) , φ = φ(t). (B.22)

The background fields do not explicitly depend on y and z, and thus we perform the Fourier
transformation as

ψ =
∫ dpydpz

(2π)2 ei(pyy+pzz)ψ(x, py, pz, t). (B.23)

By using the explicit forms of the gamma matrices, we obtain

0 =
[
i14∂0 + i

√
2g |QB|

(
−S−sâ+ Ssâ

† 0
0 S−sâ− Ssâ†

)

+ Πz

(
σ3 0
0 −σ3

)
−m

(
0 e2iθm

e−2iθm 0

)
+ θ̇5

(
−1 0
0 1

)]
ψ, (B.24)

where

x̄s =
√
g |QB|

(
x− s py

g |QB|

)
, S± = 1

2 (σ1 ± iσ2) , (B.25)

â = 1√
2

(∂x̄s + x̄s) , â† = 1√
2

(−∂x̄s + x̄s) , (B.26)

and s = sgn(QB). We expand the modes as

ψ =
∑
n,s′,λ

ψ
(λ)
n,s′hn(x̄s)χ(λ)

s′ , (B.27)

where hn is related to the Hermite polynomial Hn as

hn(x̄s) =
(
g |QB|
π

)1/4 ( 1
2nn!

)1/2
e−x̄

2
s/2Hn(x̄s), (B.28)

and satisfies

âhn =
√
nhn−1, â†hn =

√
n+ 1hn+1,

∫
dxhn(x̄s)hn′(x̄s) = δnn′ . (B.29)

The spinor χ is given by

χ
(L)
+ = (1 0 0 0)T , χ

(L)
− = (0 1 0 0)T , χ

(R)
+ = (0 0 1 0)T , χ

(R)
− = (0 0 0 1)T .

(B.30)
The operator Ssâ† changes s′ = −s → s and n → n + 1, while S−sâ changes s′ = s → −s
and n → n − 1, and the combination 2n + 1 − ss′ is invariant under both operations. It
then follows that only the modes with the same value of 2n+ 1− ss′ mix with each other.
The mode with 2n + 1 − ss′ = 0, i.e., n = 0 and s′ = s corresponds to the lowest Landau
level, while the others are the higher Landau levels.
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Lowest Landau level. The equation of motion of the lowest Landau level is given by

0 =
(
i∂0 + sΠz − θ̇5 −me2iθm

−me−2iθm i∂0 − sΠz + θ̇5

)(
ψ

(L)
0,s

ψ
(R)
0,s

)
. (B.31)

In the Hamiltonian basis, we eliminate c5 by a chiral rotation. The solutions of the Dirac
equation for constant φ and Az are then given by

u0 = e−iγ5θ5+m√
2Ω0 (Ω0 + sΠz)

[
mχ(L)

s + (Ω0 + sΠz)χ(R)
s

]
h0,

v0 = e−iγ5θ5+m√
2Ω0 (Ω0 + sΠz)

[
(Ω0 + sΠz)χ(L)

s −mχ(R)
s

]
h0, (B.32)

where Ω0 =
√

Π2
z +m2. After turning on the background fields, the Bogoliubov coefficients

evolve as

α̇0 = iθ̇5+m
sΠz

Ω0
α0 −

(
s
mΠ̇z

2Ω2
0

+ iθ̇5+m
m

Ω0

)
e2iΘ0β0, (B.33)

β̇0 = −iθ̇5+m
sΠz

Ω0
β0 +

(
s
mΠ̇z

2Ω2
0
− iθ̇5+m

m

Ω0

)
e−2iΘ0α0, (B.34)

where Θ0 =
∫ t dtΩ0. We solve this equation with α0 = 1 and β0 = 0 as the initial

condition. The lowest Landau level is then quantized in the Hamiltonian basis as

ψ0 =
∑
λ

ψ
(λ)
0,s h0χ

(λ)
s = eiγ5θ5

[(
α0b0 − β∗0d

†
0

)
u0e
−iΘ0 +

(
β0b0 + α∗0d

†
0

)
v0e

iΘ0
]
. (B.35)

In the fermion current basis, the solution of the Dirac equation for constant φ̇ and Az
is given by

ũ0 =
mχ

(L)
s +

(
Ω0,s + sΠz − θ̇5+m

)
χ

(R)
s√

2Ω0,s
(
Ω0,s + sΠz − θ̇5+m

) h0, ṽ0 =

(
Ω0 + sΠz − θ̇5+m

)
χ

(L)
s −mχ(R)

s√
2Ω0,s

(
Ω0,s + sΠz − θ̇5+m

) h0,

(B.36)
where Ω0,s =

√
(Πz − sθ̇5+m)2 +m2. The Bogoliubov coefficients evolve as

˙̃α0 = −
m
(
sΠ̇z − θ̈5+m

)
2Ω2

0,s
e2iΘ0,s β̃0,

˙̃β0 = +
m
(
sΠ̇z − θ̈5+m

)
2Ω2

0,s
e−2iΘ0,sα̃0, (B.37)

where Θ0,s =
∫ t dtΩ0,s. The fermion is then quantized as

ψ0 = e−iγ5θm
[(
α̃0b0 − β̃∗0d

†
0

)
ũ0e
−iΘ0,s +

(
β̃0b0 + α̃∗0d

†
0

)
ṽ0e

iΘ0,s
]
. (B.38)

The creation and annihilation operators satisfy{
b0(~p), b†0(~p′)

}
=
{
d0(~p), d†0(~p′)

}
= (2π)2δ(2)(~p− ~p′), (B.39){

b0(~p), d†0(~p′)
}

=
{
b0(~p), d0(~p′)

}
= 0, (B.40)

and B0, D0, B̃0 and D̃0 satisfy the same equal-time anti-commutators, which one can show
by noting that

|α0|2 + |β0|2 = |α̃0|2 +
∣∣∣β̃0
∣∣∣2 = 1. (B.41)
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Higher Landau levels. The equation of motion of the higher Landau levels is given by

0 =


i∂0 + sΠz − θ̇5 imB −me2iθm 0
−imB i∂0 − sΠz − θ̇5 0 −me2iθm

−me−2iθm 0 i∂0 − sΠz + θ̇5 −imB

0 −me−2iθm imB i∂0 + sΠz + θ̇5




ψ
(L)
n,s

ψ
(L)
n−1,−s
ψ

(R)
n,s

ψ
(R)
n−1,−s

 , (B.42)

for n = 1, 2, . . . and mB =
√

2ng |QB|. In the Hamiltonian basis, the solutions of the Dirac
equation for constant φ and Az are given by

un,1 = e−iγ5θ5+m

N

[
imB

(
−mTχ

(L)
s + (Ωn + sΠz)χ(R)

s

)
hn

+ (m+mT )
(
(Ωn + sΠz)χ(L)

−s +mTχ
(R)
−s

)
hn−1

]
, (B.43)

un,2 = ie−iγ5θ5+m

N

[
(m+mT )

(
mTχ

(L)
s + (Ωn + sΠz)χ(R)

s

)
hn

+imB

(
(Ωn + sΠz)χ(L)

−s −mTχ
(R)
−s

)
hn−1

]
, (B.44)

vn,1 = ie−iγ5θ5+m

N

[
−imB

(
(Ωn + sΠz)χ(L)

s +mTχ
(R)
s

)
hn

+ (m+mT )
(
−mTχ

(L)
−s + (Ωn + sΠz)χ(R)

−s

)
hn−1

]
, (B.45)

vn,2 = ie−iγ5θ5+m

N

[
(m+mT )

(
(Ωn + sΠz)χ(L)

s −mTχ
(R)
s

)
hn

−imB

(
mTχ

(L)
−s + (Ωn + sΠz)χ(R)

−s

)
hn−1

]
, (B.46)

where m2
T = m2 +m2

B and Ωn =
√

Π2
z +m2

T . The normalization factor is given by

N = 2
√

Ωn (Ωn + sΠz)mT (m+mT ). (B.47)

After turning on the time dependence of the background fields, the time evolution of the
Bogoliubov coefficients is given by


α̇n,1
α̇n,2
β̇n,1
β̇n,2

 =

iθ̇5+m


− m
mT

sΠz
Ωn

mB
mT

m
Ωn e

2iΘn 0
mB
mT

m
mT

sΠz
Ωn 0 − m

Ωn e
2iΘn

m
Ωn e

−2iΘn 0 m
mT

sΠz
Ωn

mB
mT

0 − m
Ωn e

−2iΘn mB
mT

− m
mT

sΠz
Ωn



+smT Π̇z

2Ω2
n


0 0 −e2iΘn 0
0 0 0 −e2iΘn

e−2iΘn 0 0 0
0 e−2iΘn 0 0




αn,1
αn,2
βn,1
βn,2

 , (B.48)
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where Θn =
∫ t dtΩn. Notice that this is equivalent to the case without the magnetic field

after replacing mB → pT . Finally the fermion is quantized as

ψn =
∑
λ

[
ψ(λ)
n,shnχ

(λ)
s + ψ

(λ)
n−1,−shn−1χ

(λ)
−s

]
=

∑
λ,λ′=1,2

[
un,λe

−iΘn
(
α

(λ′)
n,λ bn,λ′ − (−1)λ+λ′ β

(λ′)
n,λ

∗
d†n,λ′

)
+vn,λeiΘn

(
β

(λ′)
n,λ bn,λ′ + (−1)λ+λ′ α

(λ′)
n,λ

∗
d†n,λ′

)]
. (B.49)

Here the superscript indicates the initial conditions for α and β, that is,

α
(1)
n,1 = 1, α

(1)
n,2 = β

(1)
n,1 = β

(1)
n,2 = 0, (B.50)

α
(2)
n,2 = 1, α

(2)
n,1 = β

(2)
n,1 = β

(2)
n,2 = 0, (B.51)

at the initial time.
In the fermion current basis, the solutions of the Dirac equation for constant φ̇ and Az

are given by

ũn,+ = 1
N+

[
−imB

((
Ωn,+ + ΠB + θ̇5+m

)
χ(L)
s +mχ(R)

s

)
hn

+ (ΠB + sΠz)
((

Ωn,+ + ΠB + θ̇5+m
)
χ

(L)
−s +mχ

(R)
−s

)
hn−1

]
, (B.52)

ũn,− = 1
N−

[
imB

(
mχ(L)

s +
(
Ωn,− + ΠB − θ̇5+m

)
χ(R)
s

)
hn

+ (ΠB − sΠz)
(
mχ

(L)
−s +

(
Ωn,− + ΠB − θ̇5+m

)
χ

(R)
−s

)
hn−1

]
(B.53)

ṽn,+ = 1
N+

[
imB

(
mχ(L)

s −
(
Ωn,+ + ΠB + θ̇5+m

)
χ(R)
s

)
hn

+ (ΠB + sΠz)
(
−mχ(L)

−s +
(
Ωn,+ + ΠB + θ̇5+m

)
χ

(R)
−s

)
hn−1

]
, (B.54)

ṽn,− = 1
N−

[
imB

(
−
(
Ωn,− + ΠB − θ̇5+m

)
χ(L)
s +mχ(R)

s

)
hn

+ (ΠB − sΠz)
(
−
(
Ωn,− + ΠB − θ̇5+m

)
χ

(L)
−s +mχ

(R)
−s

)]
, (B.55)

where ΠB =
√

Π2
z +m2

B, Ωn,± =
√

(ΠB ± θ̇5+m)2 +m2, and N± =

2
√

ΠB (ΠB ± sΠz) Ωn,±
(
Ωn,± + ΠB ± θ̇5+m

)
. The time evolution equations for the

Bogoliubov coefficients are given by
˙̃αn,+
˙̃αn,−
˙̃βn,+
˙̃βn,−

 =


0 Ane

i(Θn,+−Θn,−) −Bn,+e2iΘn,+ −Cnei(Θn,++Θn,−)

−Ane−i(Θn,+−Θn,−) 0 −Cnei(Θn,++Θn,−) −Bn,−e2iΘn,−

Bn,+e
−2iΘn,+ Cne

−i(Θn,++Θn,−) 0 Ane
−i(Θn,+−Θn,−)

Cne
−i(Θn,++Θn,−) Bn,−e

−2iΘn,− −Anei(Θn,+−Θn,−) 0



×


α̃n,+
α̃n,−
β̃n,+
β̃n,−

 , (B.56)
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where

An = s
gQEmBm

4Π2
B

√
Ωn,+Ωn,−

 Ωn,+ + Ωn,− + 2ΠB√(
Ωn,+ + ΠB + θ̇5+m

) (
Ωn,− + ΠB − θ̇5+m

)
 , (B.57)

Bn,± = ± m

2Ω2
n,±

(Πz

ΠB
gQE ± θ̈5+m

)
,

Cn = s
gQEmB

[(
Ωn,+ + ΠB + θ̇5+m

) (
Ωn,− + ΠB − θ̇5+m

)
−m2

]
4Π2

B

√
Ωn,+Ωn,−

(
Ωn,+ + ΠB + θ̇5+m

) (
Ωn,− + ΠB − θ̇5+m

) . (B.58)

We solve these equations with two different initial conditions,

α̃
(+)
n,+ = 1, α̃

(+)
n,− = β̃

(+)
n,+ = β̃

(+)
n,− = 0, and α̃

(−)
n,− = 1, α̃

(−)
n,+ = β̃

(−)
n,+ = β̃

(−)
n,− = 0.

(B.59)
The Dirac field is quantized as

ψn=e−iθmγ5
∑

λλ′=±

[
ũn,λe

−iΘn,λ
(
α̃

(λ′)
n,λ bn,λ′−β̃

(λ′)∗
n,λ d†n,λ′

)
+ṽn,λeiΘn,λ

(
β̃

(λ′)
n,λ bn,λ′+α̃

(λ′)∗
n,λ d†n,λ′

)]
.

(B.60)
Finally, the creation and annihilation operators satisfy{

bn1,λ1(~p), b†n2,λ2
(~p′)

}
=
{
dn1,λ1(~p), d†n2,λ2

(~p′)
}

= (2π)2δλ1λ2δn1n2δ
(2)(~p− ~p′), (B.61){

bn1,λ1(~p), d†n2,λ2
(~p′)

}
=
{
bn1,λ1(~p), dn2,λ2(~p′)

}
= 0, (B.62)

and B, D, B̃ and D̃ satisfy the same equal-time anti-commutators, which one can show in
the same as the case without the magnetic field.

Summary. In summary, in the presence of the magnetic field, the fermion is quantized
as

ψ=
∫ dpydpz

(2π)2 ei(pyy+pzz)eiγ5θ5

(α0b0−β∗0d
†
0

)
u0e
−iΘ0 +

(
β0b0 +α∗0d

†
0

)
v0e

iΘ0 (B.63)

+
∑
n,λ,λ′

[
un,λe

−iΘn
(
α

(λ′)
n,λ bn,λ′−(−1)λ+λ′ β

(λ′)
n,λ

∗
d†n,λ′

)

+vn,λeiΘn
(
β

(λ′)
n,λ bn,λ′+(−1)λ+λ′ α

(λ′)
n,λ

∗
d†n,λ′

)] ,
in the Hamiltonian basis, and

ψ=
∫ dpydpz

(2π)2 ei(pyy+pzz)e−iγ5θm

(α̃0b0− β̃∗0d
†
0

)
ũ0e
−iΘ0,s +

(
β̃0b0 + α̃∗0d

†
0

)
ṽ0e

iΘ0,s (B.64)

+
∑
n,λ,λ′

[
ũn,λe

−iΘn,λ
(
α̃

(λ′)
n,λ bn,λ′− β̃

(λ′)∗
n,λ d†n,λ′

)
+ ṽn,λe

iΘn,λ
(
β̃

(λ′)
n,λ bn,λ′+ α̃

(λ′)∗
n,λ d†n,λ′

)] ,
in the fermion current basis, respectively.
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B.3 Physical quantities

For convenience, we summarize the physical quantities expressed in terms of the Bogoliubov
coefficients in both the Hamiltonian and the fermion current bases in this appendix. We
focus on the energy density, the induced current, the axial charge and the chiral mass
operator, which are defined as

ρψ ≡
1

2Vol(R3)

∫
d3x

〈[
ψ†,

(
i∂0 + θ̇5γ5

)
ψ
]〉
,

〈Jz〉 ≡
1

2Vol(R3)

∫
d3x

〈[
ψ̄, γ3ψ

]〉
, (B.65)

q5 ≡
1

2Vol (R3)

∫
d3x

〈[
ψ†, γ5ψ

]〉
,〈

ψ̄e2iθmγ5iγ5ψ
〉
≡ 1

2Vol (R3)

∫
d3x

〈[
ψ̄, iγ5e

2iθmγ5ψ
]〉
. (B.66)

Below give the expressions both cases, without and with the magnetic field, separately.

Without magnetic field. The averaged energy density of the fermion is given as the
expectation value of the fermion energy density operator as ρψ ≡ 〈Hψ〉/Vol(R3). This is
given by

ρψ =
∫ d3p

(2π)3 Ω
∑
λ,λ′

[∣∣∣β(λ′)
λ

∣∣∣2− ∣∣∣α(λ′)
λ

∣∣∣2] (B.67)

=
∫ d3p

(2π)3

∑
λ,λ′

[
Π2 +m2 +λθ̇5+mΠ

Ωλ

(∣∣∣β̃(λ′)
λ

∣∣∣2− ∣∣∣α̃(λ′)
λ

∣∣∣2)+ 2mθ̇5+m
Ωλ

Re
[ ˜
α

(λ′)
λ

∗
β̃

(λ′)
λ e2iΘλ

]]
,

where here and in the following, the first line is computed in the Hamiltonian basis and
the second line is computed in the fermion current basis. The induced current is given by

〈Jz〉 =
∫ d3p

(2π)3

∑
λ,λ′

[Πz

Ω

(∣∣∣β(λ′)
λ

∣∣∣2 − ∣∣∣α(λ′)
λ

∣∣∣2)+ 2mT

Ω Re
[
α

(λ′)∗
λ β

(λ′)
λ e2iΘ

]]

=
∫ d3p

(2π)3

∑
λ′

{∑
λ

[
λΠz

Π
Π + λθ̇5+m

Ωλ

(∣∣∣β̃(λ′)
λ

∣∣∣2 − ∣∣∣α̃(λ′)
λ

∣∣∣2)+ 2Πz

Π
m

Ωλ
Re
[
α̃

(λ′)∗
λ β̃

(λ′)
λ

]]

+pT
Π
m(Ω+ − Ω− + 2θ̇5+m)

Ñ
Re
[
ei(Θ+−Θ−)

(
β̃

(λ′)∗
− β̃

(λ′)
+ − α̃(λ′)∗

+ α̃
(λ′)
−

)]
+2pT

Π
(Ω+ + Π + θ̇5+m)(Ω− + Π− θ̇5+m) +m2

Ñ

×Re
[
ei(Θ++Θ−)

(
α̃

(λ′)∗
+ β̃

(λ′)
− + α̃

(λ′)∗
− β̃

(λ′)
+

)]}
, (B.68)

where

Ñ =
√

Ω+Ω−(Ω+ + Π + θ̇5+m)(Ω− + Π− θ̇5+m). (B.69)
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The axial charge is given by

q5 =
∫ d3p

(2π)3

∑
λ

[
m

mT

Πz

Ω

(∣∣∣α(λ′)
1

∣∣∣2− ∣∣∣β(λ′)
1

∣∣∣2− ∣∣∣α(λ)
2

∣∣∣2 +
∣∣∣β(λ)

2

∣∣∣2)
−2pT
mT

Re
[
α

(λ)∗
1 α

(λ)
2 +β

(λ)∗
1 β

(λ)
2

]
− 2m

Ω Re
[(
α

(λ)∗
1 β

(λ)
1 −α

(λ)∗
2 β

(λ)
2

)
e2iΘ

]]
=
∫ d3p

(2π)3

∑
λ,λ′

[
λΠ+ θ̇5+m

Ωλ

(∣∣∣α̃(λ′)
λ

∣∣∣2− ∣∣∣β̃(λ′)
λ

∣∣∣2)− 2m
Ωλ

Re
[
α̃

(λ′)
λ β̃

(λ′)
λ e2iΘλ

]]
. (B.70)

Finally the chiral mass operator is given by

〈
ψ̄e2iθmγ5iγ5ψ

〉
= 2

∫ d3p

(2π)3

∑
λ

Im
[(
α

(λ)∗
1 β

(λ)
1 − α(λ)∗

2 β
(λ)
2

)
e2iΘ

]
= 2

∫ d3p

(2π)3

∑
λ,λ′

Im
[
α̃

(λ′)∗
λ β̃

(λ′)
λ e2iΘλ

]
. (B.71)

Notice that we do not perform the regularization and renormalization of these quantities
in this appendix.

With magnetic field. The averaged energy density of the fermion is given by15

ρψ= g |QB|
4π2

∫
dpz

Ω0
(
|β0|2−|α0|2

)
+
∑
n,λ,λ′

Ωn

(∣∣∣β(λ′)
n,λ

∣∣∣2−∣∣∣α(λ′)
n,λ

∣∣∣2)
 (B.72)

= g |QB|
4π2

∫
dpz

{
Π2
z+m2−sθ̇5+mΠz

Ω0,s

(∣∣∣β̃0
∣∣∣2−|α̃0|2

)
+ 2mθ̇5+m

Ω0,s
Re
[
α̃0
∗β̃0e

2iΘ0,s
]

+
∑
n,λ,λ′

[
Π2
B+m2+λθ̇5+mΠB

Ωn,λ

(∣∣∣β̃(λ′)
n,λ

∣∣∣2−∣∣∣α̃(λ′)
n,λ

∣∣∣2)+ 2mθ̇5+m
Ωn,λ

Re
[ ˜
α

(λ′)
n,λ

∗
β̃

(λ′)
n,λ e

2iΘn,λ
]].

The induced current is given by

〈Jz〉 = gQB

4π2

∫
dpz

sΠz

Ω0

[
|β0|2 − |α0|2

]
+ 2m

Ω0
Re
[
α∗0β0e

2iΘ0
]

+
∑
n,λ,λ′

[
sΠz

Ωn

[∣∣∣β(λ′)
n,λ

∣∣∣2 − ∣∣∣α(λ′)
n,λ

∣∣∣2]+ 2mT

Ωn
Re
[
α

(λ′)∗
n,λ β

(λ′)
n,λ e

2iΘ0
]]

= gQB

4π2

∫
dpz

{
sΠz − θ̇5+m

Ω0,s

[∣∣∣β̃0
∣∣∣2 − |α̃0|2

]
+ 2m

Ω0,s
Re
[
α̃∗0β̃0e

2iΘ0,s
]

+
∑
n,λ′

[∑
λ

[
λ
sΠz

Π
Π + λθ̇5+m

Ωλ

(∣∣∣β̃(λ′)
n,λ

∣∣∣2 − ∣∣∣α̃(λ′)
n,λ

∣∣∣2)+ 2sΠz

Π
m

Ωn,λ
Re
[
α̃

(λ′)∗
n,λ β̃

(λ′)
n,λ

]]

+mB

Π
m(Ωn,+ − Ωn,− + 2θ̇5+m)

Ñn
Re
[
ei(Θn,+−Θn,−)

(
β̃

(λ′)∗
n,− β̃

(λ′)
n,+ − α̃

(λ′)∗
n,+ α̃

(λ′)
n,−

)]
15We note that

∫∞
−∞ dxdpy |hn(x̄s)|2 =

∫∞
−∞ dpy = g |QB|

∫∞
−∞ dx.
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+2mB

Π
(Ωn,+ + Π + θ̇5+m)(Ωn,− + Π− θ̇5+m) +m2

Ñn

×Re
[
ei(Θn,++Θn,−)

(
α̃

(λ′)∗
n,+ β̃

(λ′)
n,− + α̃

(λ′)∗
n,− β̃

(λ′)
n,+

)] ]}
, (B.73)

where
Ñn =

√
Ωn,+Ωn,−(Ωn,+ + Π + θ̇5+m)(Ωn,− + Π− θ̇5+m). (B.74)

The axial charge is expressed as

q5 = q5|LLL + q5|HLL , (B.75)

where

q5|LLL = g |QB|
4π2

∫
dpz

[
sΠz

Ω0

(
|β0|2 − |α0|2

)
+ 2m

Ω0
Re
[
α∗0β0e

2iΘ0
]]

= g |QB|
4π2

∫
dpz

[
sΠz − θ̇5+m

Ω0,s

(∣∣∣β̃0
∣∣∣2 − |α̃0|2

)
+ 2m

Ω0,s
Re
[
α̃∗0β̃0e

2iΘ0,s
]]
, (B.76)

and

q5|HLL = g |QB|
4π2

∫
dpz

∑
n,λ

[
m

mT

sΠz

Ωn

(∣∣∣α(λ′)
n,1

∣∣∣2− ∣∣∣β(λ′)
n,1

∣∣∣2− ∣∣∣α(λ)
n,2

∣∣∣2 +
∣∣∣β(λ)
n,2

∣∣∣2) (B.77)

−2mB

mT
Re
[
α

(λ)∗
n,1 α

(λ)
n,2 +β

(λ)∗
n,1 β

(λ)
n,2

]
− 2m

Ωn
Re
[(
α

(λ)∗
n,1 β

(λ)
n,1−α

(λ)∗
n,2 β

(λ)
n,2

)
e2iΘn

]]
= g |QB|

4π2

∫
dpz

∑
n,λ,λ′

[
λΠB+ θ̇5+m

Ωn,λ

(∣∣∣α̃(λ′)
n,λ

∣∣∣2− ∣∣∣β̃(λ′)
n,λ

∣∣∣2)− 2m
Ωn,λ

Re
[
α̃

(λ′)
n,λ β̃

(λ′)
n,λ e

2iΘn,λ
]]
.

Finally the chiral mass operator is expressed as

〈
ψ̄e2iθmγ5iγ5ψ

〉
= g |QB|

2π2

∫
dpz Im

−α∗0β0e
2iΘ0 +

∑
n,λ

(
α

(λ)∗
n,1 β

(λ)
n,1 − α

(λ)∗
n,2 β

(λ)
n,2

)
e2iΘn


= g |QB|

2π2

∫
dpz Im

−α̃∗0β̃0e
2iΘ0,s +

∑
n,λ,λ′

α̃
(λ′)∗
n,λ β̃

(λ′)
n,λ e

2iΘn,λ

 . (B.78)

Again we do not perform the regularization and renormalization of these quantities here.
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