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Abstract

Particle production induced by a time-dependent background is well understood as the projection of the

time-evolved initial state onto a set of final states. While the asymptotic initial and final states are well

defined in the usual way, the definition of particles and antiparticles at intermediate times in the pres-

ence of external fields is ambiguous. These external fields moreover induce divergences which require

regularization. In this paper we clarify some subtleties in the computation of transient effects in physical

quantities for fermions in a homogeneous axion background, including Schwinger production in back-

ground electromagnetic fields. The presence of the axion requires particular care as well as knowledge of

the UV theory when regulating the theory and computing the vacuum contribution to the fermion energy.
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1 Introduction

The axion was first introduced as the angular degree of freedom of an approximate global U (1) symmetry

to address the strong CP problem in QCD [1–4]. In modern cosmology, this concept has been generalized

to axion-like particles which have been postulated to play a key role in string theory [5–7], inflation [8, 9],

baryogenesis [10, 11], dark matter [12–14] and in cosmological approaches to the hierarchy problem [15]. At

the level of quantum field theory, these axion-like particles (axions for short in following) are pseudoscalars

which couple to fermions and gauge fields only through derivative couplings. Of particular phenomeno-

logical interest are couplings to the fermions and gauge groups of the Standard Model (SM), in particular

the electromagnetic sector.\1 In this case, the gauge fields, charged fermions and the axion form a cou-

pled system linked by non-linear interactions. For example, a non-vanishing axion velocity can trigger a

tachyonic instability in one of the gauge field helicity modes [18, 19], Schwinger pair production of charged

fermions in background gauge fields [20,21] leads to an induced current which dampens this tachyonic insta-

bility [22–24], and the gauge fields in turn back-react as an effective friction to the axion motion [25]. More-

over, it was recently pointed out that a non-vanishing axion velocity has the intriguing property of boosting

the Schwinger pair production of charged fermions in an electric field [26]. In the axion-assisted Schwinger

effect [26] a sufficiently large constant axion velocity can exponentially enhance the Schwinger production

rate for finite fermion momentum in the final state whereas the axion-driven pair production [27] relies a

non-vanishing acceleration of the axion field.

In the literature, particle production is usually discussed in terms of the asymptotic initial and final states,

where the particles and antiparticles are well defined. Starting in a ground state in the asymptotic past, the

electromagnetic and/or axion background fields are switched on for some finite time, and the final state in

the asymptotic future, after switching off the background fields, is determined by solving the equations of

motion for the Bogoliubov coefficients. The time-dependence of the background fields, i.e. the mismatch

of the ground state in the asymptotic past and future, is the origin of the fermion production. On the other

hand, transient effects occurring when the external fields are active are more subtle. At this intermediate

stage, the definition of particles and antiparticles is ambiguous and the divergences associated with the ex-

ternal fields call for an appropriate regularization scheme. In a practical computation, one may select a par-

ticular basis of creation/annihilation operators, which however results in seemingly very different transient

effects for different choices of basis, as is well known in the case of Schwinger production in time-dependent

electric fields [28, 29]. However, physical quantities such as the fermion current and energy density should

not depend on such unphysical reparametrizations of the theory.

In this paper, we extend the existing results in a three-fold way. Firstly, we point out that in order to

compute backreaction effects in the coupled axion, gauge field and fermion system, it is insufficient to focus

on results for the asymptotic future, it becomes instead crucial to correctly capture transient phenomena. We

demonstrate explicitly that including vacuum contributions and an appropriate regularization scheme, the

\1At energies above the electroweak phase transition, the relevant Abelian gauge group is hypercharge. For simplicity, we will use

the notation familiar from electromagnetism throughout this paper, though of course the discussion applies to any Abelian gauge

group with charged fermions. For non-Abelian gauge groups, see e.g. [16, 17].
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apparent differences caused by the choice of basis are merely differences in interpretation, i.e. labeling terms

as vacuum contribution, time-dependent Bogoliubov coefficients or higher-dimensional operators, while

the physical observables are unaffected by these different basis choices – as they should. We secondly use

this opportunity to compare different approaches in the existing literature, in particular [26], [27] and [30]. In

this context, we highlight the importance of choosing a regularization scheme which respects the symmetries

of the theory and the benefits of making use of the Adler-Bell-Jackiw anomaly equation [31,32] as a necessary

verification of this. Thirdly, we numerically and analytically compute the transient contributions to fermion

production in the presence of a background axion field. We show that e.g. the fermion energy in the limit

of large axion velocities can be exponentially enhanced, even in the absence of electromagnetic background

fields. However, we note that the dominant contribution can be interpreted as dimension-eight operator

in the axion effective theory. This proves that the transient effects in the axion-fermion system cannot be

reliably computed without knowledge of the UV properties of the theory, i.e. a particular realization of the

Peccei Quinn theory.

The remainder of this paper is organized as follows. After reviewing the key ingredients of the axion

assisted Schwinger effect in Section 2, we discuss in some detail different basis choices and regularization

schemes in Section 3. The computation of transient phenomena in observable quantities is presented in

Section 4, including a discussion on the UV sensitivity. We conclude in Sec. 5. Various technical details are

relegated to the appendices. App. A specifies our notation and conventions, while App. B gives the necessary

details on the solutions of the Dirac equation.

2 Fermion production in a gauge field and axion background

In this section we review the axion assisted Schwinger effect [26]. We consider the following action:

S =
∫

d4x

[
1

2

(
∂φ

)2 −V (φ)− 1

4
FµνFµν+ ψ̄

(
i /D −me2i cmφ/ faγ5

)
ψ+ cA

α

4π fa
φFµνF̃µν+ c5

∂µφ

fa
ψ̄γµγ5ψ

]
, (2.1)

where φ is the axion field with its potential V (φ) and its decay constant fa , Aµ is the U(1) gauge field with

its field strength Fµν, and ψ is a fermion with the mass m whose production we will discuss in detail. The

covariant derivative is defined by Dµ = ∂µ+ i gQ Aµ, where g is the gauge coupling with α = g 2/4π2 and Q

is the charge of the fermion. The dual field strength tensor is defined as F̃µν = εµνρσFρσ/2 with ε0123 = +1.

Finally, cm , cA and c5 are the coupling constants between the axion and the gauge fields/fermions. The Dirac

equation reads [
i /D −me2iθmγ5 +∂µθ5γ

µγ5

]
ψ= 0, (2.2)

where we denote θi = ciφ/ fa . We solve this equation in the presence of background electromagnetic fields

and a homogeneous axion field with φ̇ 6= 0.

It is well known that a strong electric field creates pairs of fermions and anti-fermions through the Schwinger

effect [20, 21]. The production rate Γ is proportional to

Γ∝ exp

[
− πm2

T

g |Q|E

]
, m2

T = m2 +p2
T , (2.3)
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where pT is the transverse momentum, e.g. p2
T = p2

x +p2
y if the electric field is in ẑ-direction. Note that be-

yond the fermion mass suppression, the production of the modes with large transverse momentum is expo-

nentially further suppressed. As however recently demonstrated in [26] this suppression from the transverse

momentum disappears once the axion velocity is large enough, and the rate eventually becomes

Γ∝ exp

[
− πm2

g |Q|E
]

for θ̇2
5+m &

πm2p2
T

g |Q|E , (2.4)

where θ5+m = (c5 + cm)φ/ fa . This enhances the Schwinger effect for non-zero transverse momentum and

was hence dubbed the axion assisted Schwinger effect. The purpose of this section is to summarize the key

ingredients of this effect (see [26] and App. B for more details).

In anticipation of our later discussion, we note that Eq. (2.2) has a redundancy. Indeed, the couplings

shift under the chiral rotation ψ→ e i cφ/ faγ5ψ as

c5 → c5 − c, cm → cm + c. (2.5)

This indicates that only the combination c5 + cm is physical, and one can eliminate either c5 or cm by a

chiral rotation. In this section we focus on the c5 = 0 basis following [26], and comment on the cm = 0

basis at the end of Sec. 2.2. A particular basis choice implies a natural definition of particles and antiparti-

cles by the corresponding positive and negative frequency modes. Hence, throughout this paper, we iden-

tify the basis choice with respect to the redundancy under a chiral rotation with a particular choice of cre-

ation/annihilation operators, although these two concepts are not equal, strictly speaking. This basis trans-

formation is a key topic of Sec. 3.

2.1 Dirac equation with electric field and axion

In this section, we focus on the case with a background electric field and axion velocity, without any magnetic

field. We consider background gauge and axion fields parameterized by

Aµ = (0,0,0, Az (t )) , φ=φ(t ), (2.6)

where the electric field is given by E =−Ȧz . Without loss of generality we take E ≥ 0. We will take this back-

ground to be constant at some initial and final time, φ̇ = 0, Ȧ = 0, with a time-dependence at intermediate

times. The Dirac equation is then given by

0 =


i∂0 +Πz − θ̇5 px − i py −me2iθm 0

px + i py i∂0 −Πz − θ̇5 0 −me2iθm

−me−2iθm 0 i∂0 −Πz + θ̇5 −(px − i py )

0 −me−2iθm −(px + i py ) i∂0 +Πz + θ̇5

ψ. (2.7)
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We solve this equation with the Bogoliubov coefficient method, which describes the mixing of the positive

and negative frequency modes. The Bogoliubov coefficients αλ and βλ evolve as (see App. B for derivation)
α̇1

α̇2

β̇1

β̇2

=

i θ̇5+m


− m

mT

Πz
Ω

pT

mT

m
Ω e2iΘ 0

pT

mT

m
mT

Πz
Ω 0 −m

Ω e2iΘ

m
Ω e−2iΘ 0 m

mT

Πz
Ω

pT

mT

0 −m
Ω e−2iΘ pT

mT
− m

mT

Πz
Ω

+ mT Π̇z

2Ω2


0 0 −e2iΘ 0

0 0 0 −e2iΘ

e−2iΘ 0 0 0

0 e−2iΘ 0 0





α1

α2

β1

β2

 ,

(2.8)

whereΠz = pz−gQ Az , p2
T = p2

x+p2
y , m2

T = p2
T +m2,Ω=

√
Π2

z +m2
T , andΘ= ∫ t dtΩ. We solve these equations

with two different initial conditions,

α(1)
1 = 1, α(1)

2 =β(1)
1 =β(1)

2 = 0, and α(2)
2 = 1, α(2)

1 =β(2)
1 =β(2)

2 = 0. (2.9)

Using the Bogoliubov coefficients, we quantize the fermion as

ψ=
∫

d3p

(2π)3 e i~p·~x e iθ5γ5
∑
λ=1,2

[
Bλuλe−iΘ+D†

λ
vλe+iΘ

]
, (2.10)

where uλ and vλ are the solutions of the Dirac equation for the constant background fields. Note that we have

extracted the factor e iθ5γ5 to eliminate the derivative coupling between the axion and the fermion current,

i.e. c5 = 0 in this basis. The creation and annihilation operators at the intermediate times, Bλ and Dλ, are

expressed as

Bλ =
∑

λ′=1,2

[
α(λ′)
λ

bλ′ − (−)λ+λ
′
β(λ′)
λ

∗
d †
λ′

]
, D†

λ
= ∑
λ′=1,2

[
β(λ′)
λ

bλ′ + (−)λ+λ
′
α(λ′)
λ

∗
d †
λ′

]
, (2.11)

where bλ and dλ are the creation and annihilation operators in the infinite past. We impose the anti-commutation

relation as {
bλ1 (~p),b†

λ2
(~p ′)

}
=

{
dλ1 (~p),d †

λ2
(~p ′)

}
= (2π)3δλ1λ2δ

(3)(~p −~p ′), (2.12){
bλ1 (~p),d †

λ2
(~p ′)

}
= {

bλ1 (~p),dλ2 (~p ′)
}= 0. (2.13)

It then follows from Eq. (2.8) that Bλ and Dλ satisfy the same equal time anti-commutation relations, i.e.,{
Bλ1 (t ,~p),B †

λ2
(t ,~p ′)

}
=

{
Dλ1 (t ,~p),D†

λ2
(t ,~p ′)

}
= (2π)3δλ1λ2δ

(3)(~p −~p ′), (2.14){
Bλ1 (t ,~p),D†

λ2
(t ,~p ′)

}
= {

Bλ1 (t ,~p),Dλ2 (t ,~p ′)
}= 0. (2.15)

2.2 Axion assisted Schwinger effect

We now turn to the fermion pair production in the presence of a background electric field and axion velocity.

We focus on the axion assisted Schwinger effect, and thus take the axion velocity to be constant.\2 It is well

\2If the axion velocity is exactly constant, the axion field by itself cannot produce fermions, it can only enhance the production

driven by the electric field. In other words, the production rate vanishes for E = 0 for constant φ̇. If φ̈ 6= 0, the axion can produce

fermions independently of the background gauge field, which includes the standard particle production by an oscillating axion

background field decaying into fermions as well as axion-driven pair production.

5
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Figure 1: Numerical solutions for the total number of produced particles after turning off the background fields. Left:

spectrum of produced particles for different values of the background axion velocity θ̇0 as a function of the fermion mo-

mentum pz . The gray dashed line corresponds to the standard Schwinger effect formula, nψ = 2exp(−πm2
T /g |Q|E0),

where the factor 2 accounts for the chirality. Right: the height of the spectrum (at pz =−50
√

g |Q|E0) as a function of

θ̇2
0 . The blue line corresponds to the numerical solution of the time evolution equation of the Bogoliubov coefficients,

while the gray dashed line shows the analytical expression (2.17). In both figures, we take m = 1.5 and pT = 2 in units

of g |Q|E0 = 1.

known that the notion of particles is ill-defined in the time-dependent background, and thus we turn on and

off the external electric and axion fields adiabatically at tmin and tmax, respectively. To be specific, we take

the background fields as

θ̇5+m = θ̇0

4

[
1+ tanh

(
t − tmin

T

)][
1− tanh

(
t − tmax

T

)]
, Ȧz =−E0

4

[
1+ tanh

(
t − tmin

T

)][
1− tanh

(
t − tmax

T

)]
,

(2.16)

and start to solve the system well before tmin. Here we restrict ourselves to evaluate the particle number

nψ = ∑
λ,λ′ |β(λ′)

λ
|2 only well after tmax. We will study physical observables at the intermediate times in the

subsequent sections.

In Fig. 1 we show a numerical solution of the equation of motion. We take tmin = 0, tmax = 100
√

g |Q|E0,

T = √
50/g |Q|E0, and evaluated the spectrum at t = 1.5tmax. In the left panel, we show the spectrum for

Q =+1, m = 1.5 and pT = 2 in the unit g |Q|E0 = 1 for different values of θ̇0 (see [26] for several other values

of pT and m). The enhanced part of the spectrum corresponds to the modes that cross Πz = 0. Since the

gap size between the positive and negative frequency modes is smallest at Πz = 0 (for θ̇0 < pT ), the modes

are most easily excited at this point. The height of the plateau is enhanced for non-zero θ̇0 compared to the

standard Schwinger effect formula, nψ = 2exp(−πm2
T /g |Q|E0) (which we show as the dashed line), corre-

sponding to the axion assisted Schwinger effect. In order to take a closer look at this enhancement, in the

right panel, we plot the height of the plateau versus θ̇2
0 . As one can see, the envelope eventually approaches

to exp(−πm2/g |Q|E0) for large enough θ̇0. In other words, the suppression from the transverse momen-

tum is absent for a sufficiently large axion velocity. On top of this enhancement, the height of the plateau

6



strongly oscillates as a function of θ̇0. As demonstrated in [26] this result is well reproduced by the analytical

expression\3

nψ =
∣∣∣∣exp

[
2i

∫ Π++

0

dΠz

g |Q|E0
Ω−

]∣∣∣∣2

+
∣∣∣∣exp

[
2i

∫ Π−−

0

dΠz

g |Q|E0
Ω−

]∣∣∣∣2

−2Re

[
exp

[
2i

∫ Π++

Π−+

dΠz

g |Q|E0
Ω−

]]
, (2.17)

which we show as the gray line in the right panel. Here we have defined

Ω± =
√(√

Π2
z +p2

T ± θ̇0

)2
+m2, Πλλ′ =λ

√
(θ̇0 + iλ′m)2 −p2

T . (2.18)

The latter corresponds to the solution of Ω−(Πz ) = 0 in the complex Πz -plane. This suggests that the disper-

sion relation Ω− is crucial for the axion assisted Schwinger effect. Indeed, as shown in [26], this dispersion

relation arises due to spin-momentum interaction induced by the axion in the non-relativistic limit of the

fermion.

Ref. [27] confirms this result in the cm = 0 basis. Indeed, one can eliminate cm by the chiral rotation

ψ→ e−iθmγ5ψ. The Bogoliubov coefficients in this basis satisfy
˙̃α+
˙̃α−
˙̃β+
˙̃β−

=


0 Ae i (Θ+−Θ−) −B+e2iΘ+ −Ce i (Θ++Θ−)

−Ae−i (Θ+−Θ−) 0 −Ce i (Θ++Θ−) −B−e2iΘ−

B+e−2iΘ+ Ce−i (Θ++Θ−) 0 Ae−i (Θ+−Θ−)

Ce−i (Θ++Θ−) B−e−2iΘ− −Ae i (Θ+−Θ−) 0



α̃+
α̃−
β̃+
β̃−

 , (2.19)

where

Θ± =
∫ t

Ω±dt . (2.20)

See App. B for the explicit forms of A,B and C , which are irrelevant for our purpose here. The key point is

that the above equation explicitly involves Ω±, and thus it is more straightforward to see the importance of

Ω± on particle production with, e.g. the WKB method [27]. However, this basis has its own subtlety, related

to the regularization and renormalization, and demonstrating this point is our main goal in Sec. 3. There we

will see that each basis has its own advantages and pitfalls; the WKB analysis of particle production is more

straightforward in the cm = 0 basis, while the c5 = 0 basis is more suitable for regularizing and renormalizing

the theory.

3 Basis choice and Regularization

As shown above, the axion assisted Schwinger effect may be more transparent in the basis cm = 0 (which we

will refer to as the fermion current basis) than in the basis c5 = 0 (which we will call the Hamiltonian basis).

However, there is a subtlety in the fermion current basis related to regularization. Physical observables are

independent of the choice of basis and in principle one can of course work in any basis. In reality, however,

physical observables are often divergent and require regularization and renormalization. A regularization

\3Here we assume that θ̇0 is positive. If θ̇0 is negative, we should replaceΩ− byΩ+.

7



scheme should preserve the symmetries of the theory as much as possible, which is straightforward in the

Hamiltonian basis while can be more subtle in the fermion current basis. The key point is that the Hamil-

tonian basis diagonalizes the Hamiltonian (as the name suggests), while the fermion current basis does not.

The purpose of this section is to demonstrate this point in detail, by taking the anomaly equation as an ex-

ample.

We emphasize that the regularization and renormalization are not only of academic interest. If we focus

only on physical quantities in the asymptotic future, after turning off the external fields (as we did in Sec. 2),

there are no complications. However, if we follow the time evolution of the physical quantities at intermedi-

ate times, we necessarily have to deal with divergences, regularization and renormalization. Since physical

quantities such as the induced current and the axial charge at intermediate times are crucial to study, e.g.

the backreaction of the fermion production to the axion and gauge field dynamics, a proper treatment of the

renormalization and regularization is phenomenologically relevant.

3.1 Basis choice and Hamiltonian

A fermion chiral rotation ψ→ e i cγ5ψ shifts the couplings as c5 → c5 − c and cm → cm + c. This redundancy

corresponds to the basis choice of the fermion that one works with. In Ref. [26] we take the Hamiltonian basis

(c5 = 0), while Ref. [27] takes the fermion current basis (cm = 0).\4 Our goal here is to see that the Hamiltonian

is diagonalized only in the Hamiltonian basis, and not in the fermion current basis, which is crucial for our

study of the anomaly equation in Sec. 3.2. Since we will discuss the anomaly equation, we now include the

magnetic field (anti-)parallel to the electric field.\5 We take the background fields as

Aµ = (0,0,B x, Az ) , φ=φ(t ), (3.1)

which corresponds to ~E = E ẑ =−Ȧz ẑ and ~B = B ẑ, where the magnetic field B is taken constant. This config-

uration has

FµνF̃µν =−4~E ·~B 6= 0, (3.2)

which makes the anomaly equation non-trivial at the intermediate times.

In the presence of the magnetic field, a charged particle follows a circular trajectory in the plane orthog-

onal to the magnetic field. This transverse motion is quantized in quantum mechanics, resulting in discrete

Landau levels. The mode without transverse motion is called the lowest Landau level, while those with trans-

verse motion are called higher Landau levels. Therefore, in the presence of a magnetic field, the fermion is

quantized as

ψ=
∫ dpy dpz

(2π)2 e i (py y+pz z)e iγ5θ5

[
B0u0e−iΘ0 +D†

0v0e iΘ0 + ∑
n,λ=1,2

[
Bn,λun,λe−iΘn +D†

n,λvn,λe iΘn

]]
, (3.3)

\4More generally, we can take a basis with both non-zero c5 and cm . This choice simply makes the equations more involved and

we do not see any benefit, and thus we focus only on the Hamiltonian and fermion current basis in this paper.
\5Gauge field production towards the end of axion inflation provides this configuration [9], so the inclusion of the magnetic field

also has a phenomenological motivation.
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where

B0 =α0b0 −β∗
0 d †

0 , Bn,λ =
∑

λ′=1,2

[
α(λ′)

n,λbn,λ′ − (−1)λ+λ
′
β(λ′)

n,λ

∗
d †

n,λ′

]
, (3.4)

D†
0 =β0b0 +α∗

0 d †
0 , D†

n,λ =
∑

λ′=1,2

[
β(λ′)

n,λbn,λ′ + (−1)λ+λ
′
α(λ′)

n,λ

∗
d †

n,λ′

]
, (3.5)

in the Hamiltonian basis, and

ψ=
∫ dpy dpz

(2π)2 e i (py y+pz z)e−iγ5θm

[
B̃0ũ0e−iΘ0,s + D̃†

0ṽ0e iΘ0,s + ∑
n,λ=±

[
B̃n,λũn,λe−iΘn,λ + D̃†

n,λṽn,λe iΘn,λ

]]
, (3.6)

where

B̃0 = α̃0b0 − β̃∗
0 d †

0 , B̃n,λ =
∑
λ′=±

[
α̃(λ′)

n,λbn,λ′ − β̃(λ′)∗
n,λ d †

n,λ′

]
, (3.7)

D̃†
0 = β̃0b0 + α̃∗

0 d †
0 , D̃†

n,λ =
∑
λ′=±

[
β̃(λ′)

n,λbn,λ′ + α̃(λ′)∗
n,λ d †

n,λ′

]
, (3.8)

in the fermion current basis, respectively (see App. B for definitions and the derivation). The integer n labels

the discrete Landau levels, n = 0 corresponding to the lowest Landau level while n = 1,2, · · · refers to the

higher Landau levels. Notice that the higher Landau levels are analogous to the situation without a magnetic

field; the only difference is whether the transverse momentum is quantized or not. The frequencies in the

decomposition are different in the two bases. They are obtained as

Ω0 =
√
Π2

z +m2, Ωn =
√
Π2

z +m2
T , (3.9)

with mT =
√

m2 +m2
B , mB =√

2ng |QB |,Θ0 =
∫ t dtΩ0 andΘn = ∫ t dtΩn in the Hamiltonian basis, and

Ω0,s =
√

(Πz − sθ̇5+m)2 +m2, Ωn,λ =
√

(Π+λθ̇5+m)2 +m2, (3.10)

with Π =
√
Π2

z +m2
B , s = sign(QB), Θ0,s =

∫ t dtΩ0,s and Θn,λ = ∫ t dtΩn,λ in the fermion current basis, re-

spectively. Finally the creation and annihilation operators satisfy{
bn1,λ1 (~p),b†

n2,λ2
(~p ′)

}
=

{
dn1,λ1 (~p),d †

n2,λ2
(~p ′)

}
= (2π)2δλ1λ2δn1n2δ

(2)(~p −~p ′), (3.11){
bn1,λ1 (~p),d †

n2,λ2
(~p ′)

}
= {

bn1,λ1 (~p),dn2,λ2 (~p ′)
}= 0, (3.12)

and B , D , B̃ and D̃ satisfy the same equal-time anti-commutators. As usual, we assume that there is no

external field in the infinite past. This allows us to uniquely define the vacuum as b0|0〉 = bn,λ|0〉 = d0|0〉 =
dn,λ|0〉 = 0. The physical quantities are then evaluated as the expectation value of the corresponding opera-

tors with respect to this vacuum.

Let us now study the Hamiltonian. The conjugate momentum follows from Eq. (2.1) as

πφ = φ̇+ c5

fa
ψ̄γ0γ5ψ, πψ = i ψ̄γ0, πAi =−F 0i + cA

α

π fa
φε0i j k F j k , (3.13)
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and thus the Hamiltonian density operator is given by

H = 1

2
φ̇2 +V (φ)+ψ† (

i∂0 + θ̇5γ5
)
ψ+ 1

2

(
~E 2 +~B 2) . (3.14)

where we have assumed that the fermion satisfies the Dirac equation, and substituted our configuration of

the axion and gauge field. Thus we define the fermionic part of the Hamiltonian as

Hψ ≡ 1

2

∫
d3x

[
ψ†,

(
i∂0 + θ̇5γ5

)
ψ

]
, (3.15)

where we have anti-symmetrized the operator. Note that Hψ contains not only the time derivative of the

fermion but also θ̇5 explicitly. In the Hamiltonian basis, by substituting Eq. (3.3), we obtain

Hψ = 1

2

∫ dpy dpz

(2π)2

[
Ω0

([
B †

0 ,B0

]
+

[
D†

0,D0

])
+∑

n,λ
Ωn

([
B †

n,λ,Bn,λ

]
+

[
D†

n,λ,Dn,λ

])]
. (3.16)

This shows that the Hamiltonian basis diagonalizes the Hamiltonian even at the intermediate times for a

time-dependent background, as the name already indicated. In particular, Ω0 and Ωn are the energy eigen-

values, which we can then use for regularization without spoiling any symmetry. On the other hand, in the

fermion current basis , the Hamiltonian is expressed by substituting Eq. (3.6) as

Hψ =1

2

∫ dpy dpz

(2π)2

{
Π2

z +m2 − sθ̇5+mΠz

Ω0,s

([
B̃ †

0 , B̃0

]
+

[
D̃†

0,D̃0

])
− mθ̇5+m

Ω0,s

(
e2iΘ0,s

[
B̃ †

0 ,D̃†
0

]
+ (h.c.)

)
+∑

n,λ

[
Π2

B +m2 +λθ̇5+mΠB

Ωn,λ

([
B̃ †

n,λ, B̃n,λ

]
+

[
D̃†

n,λ,D̃n,λ

])
+ mθ̇5+m

Ωn,λ

(
e2iΘn,λ

[
B̃ †

n,λ,D̃†
n,λ

]
+ (h.c.)

)]}
.

(3.17)

This shows that the fermion current basis does not diagonalize the Hamiltonian. The off-diagonal parts (the

second and fourth terms) originate from the second term in Eq. (3.15). This in particular means thatΩ0,s and

Ωn,± are not energy eigenvalues. We may then anticipate that the use of regulator functions based on these

frequencies will fail to produce the correct regularized theory. We will investigate this point in Sec. 3.2, using

the anomaly equation as an explicit example.

3.2 Regularization and anomaly equation

It is well-known that the chiral rotation is anomalous in the presence of an gauge field. As a result, the

divergence of the axial current Jµ5 satisfies the anomaly equation:

∂µ Jµ5 =−g 2Q2

8π2 FµνF̃µν+2m ψ̄e2iθmγ5 iγ5ψ, (3.18)

where Jµ5 = ψ̄γµγ5ψ. The anomaly equation is an operator relation and thus must hold in any background

field configuration. This relation provides a non-trivial check of the computation, in particular of the regu-

larization procedure, since an improper regularization easily destroys the anomaly equation.
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As demonstrated in Ref. [26] the regularization based on the Hamiltonian basis correctly reproduces the

anomaly equation, as we briefly review here. We consider the spatially-averaged version of the anomaly

equation. With our gauge field configuration (3.1) this is given by

q̇5 = g 2Q2EB

2π2 +2m
〈
ψ̄e2iθmγ5 iγ5ψ

〉
, (3.19)

where we have replaced Fµν by the electric and magnetic fields, and

q5 ≡ 1

2Vol(R3)

∫
d3x

〈[
ψ†,γ5ψ

]〉
,

〈
ψ̄e2iθmγ5 iγ5ψ

〉
≡ 1

2Vol(R3)

∫
d3x

〈[
ψ̄, iγ5e2iθmγ5ψ

]〉
. (3.20)

The lowest Landau level contribution to the chiral charge is given by

q5
∣∣
LLL =

g |QB |
4π2

∫
dpz

[
sΠz

Ω0

(
2
∣∣β0

∣∣2 −R
)
+ m

Ω0

(
α0β

∗
0 e−2iΘ0 +α∗

0β0e2iΘ0

)]
, (3.21)

where we have introduced the regulator function R = R(Ω0). In particular, normal ordering corresponds to

R = 0. The time derivative is given by

q̇5
∣∣
LLL =

g |QB |
4π2

∫
dpz

[
s

m2Π̇z

Ω3
0

(1−R)− s
Πz

Ω0
Ṙ −2i m

(
α0β

∗
0 e−2iΘ0 −α∗

0β0e2iΘ0

)]
, (3.22)

where we have used the time evolution equation of the Bogoliubov coefficients. We thus obtain

q̇5
∣∣
LLL =

gQB

4π2

∫
dpz

[
m2Π̇z

Ω3
0

(1−R)− Πz

Ω0
Ṙ

]
+2m

〈
ψ̄e2iθmγ5 iγ5ψ

〉∣∣∣
LLL

. (3.23)

The integral does not depend on the explicit form of R = R(Ω0), and we obtain

q̇5
∣∣
LLL =

g 2Q2EB

2π2 +2m
〈
ψ̄e2iθmγ5 iγ5ψ

〉∣∣∣
LLL

. (3.24)

This shows that the anomalous term is supplied solely by the lowest Landau level. Indeed one can see that

the higher Landau level satisfies

q̇5
∣∣
HLL = 2m

〈
ψ̄ne2iγ5θm iγ5ψn

〉∣∣∣
HLL

. (3.25)

We have thus proven that the anomaly equation (3.19) indeed holds.

We now study the anomaly equation in the fermion current basis. We saw that the fermion current basis

does not diagonalize the Hamiltonian. It is then naturally expected that the frequencies in this basis, Ω0,s

and Ωn,λ, are not suitable for regularization as they are not related to the energy eigenvalues. Indeed, in the

following, we will see that the anomaly equation does not hold if one uses Ω0,s and Ωn,λ as the argument of

the regulator function. This highlights the main point of this section; the regularization is straightforward in

the Hamiltonian basis, but is more tricky in the fermion current basis .

If we useΩ0,s andΩn,λ for regularization, the lowest Landau level contribution may be written as

q5
∣∣
LLL =

g |QB |
4π2

∫
dpz

[
sΠz − θ̇5+m

Ω0,s

(
2
∣∣β̃0

∣∣2 − R̃(Ω0,s)
)
+ 2m

Ω0,s
Re

[
α̃∗

0 β̃0e2iΘ0,s

]]
, (3.26)
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with a regulator function R̃. Notice that this includes the normal ordering in the fermion current basis as a

special case for R̃ = 0. By taking the time derivative and using the time evolution equation of the Bogoliubov

coefficients, we obtain

q̇5
∣∣
LLL =

gQB

4π2

∫
dpz

[
m2(Π̇z − sθ̈5+m)

Ω0,s

(
1− R̃

)− Πz − sθ̇5+m

Ω0,s

˙̃R

]
+2m

〈
ψ̄e2iθmγ5 iγ5ψ

〉∣∣∣
LLL

. (3.27)

The integral again does not depend on the explicit form of R̃ as long as R̃ = R̃(Ω0,s), and we obtain

q̇5
∣∣
LLL =

gQB

2π2

(
gQE − sθ̈5+m

)+2m
〈
ψ̄e2iθmγ5 iγ5ψ

〉∣∣∣
LLL

. (3.28)

Note the additional term proportional to θ̈5+m . One can check (after a somewhat tedious computation) that

the contributions from the higher Landau levels do not cancel this additional term. Therefore, the regular-

ization based on the frequencies in the fermion current basis,Ω0,s andΩn,λ, does not reproduce the anomaly

equation. This is understandable because the fermion current basis does not diagonalize the Hamiltonian,

and thus the regularization with Ω0,s and Ωn,λ does not necessarily preserve all the symmetries that one

wants to preserve. This is in contrast to the Hamiltonian basis; the Hamiltonian is invariant under all the

symmetries by definition, and thus the regularization with the energy eigenvalues, i.e., the frequencies in

the Hamiltonian basis, automatically preserves all the symmetries. Needless to say, if we use the same reg-

ularization as the Hamiltonian basis, we correctly reproduce the anomaly equation in the fermion current

basis as well, as the physics is independent of the basis choice. The point here is that the regularization is

straightforward in the Hamiltonian basis, but requires special care in the fermion current basis. One may

prefer to work in the fermion current basis to study particle production (see the end of Sec. 2.2), but may

prefer to work in the Hamiltonian basis to regularize and renormalize the theory.

Before closing this section, we would like to comment on Ref. [30], which computed the fermion contri-

bution to the divergence of the axial current in the fermion current basis with dimensional regularization.

The authors obtained a term with derivatives acting on the axion that does not vanish even in the massless

fermion limit, on top of the standard Chern-Simons contribution. From the point of view presented here,

this is simply because the regularization scheme employed in [30] does not respect all the symmetries. In-

deed, as the authors noted in the paper, the terms that they got can be canceled by adding local counter

terms to the action, called an irrelevant anomaly, indicating that there is a better regularization scheme. This

cancellation is not a coincidence or fine tuning, but a reflection of the fact that the contribution from c5+cm

vanishes in the massless limit due to the chiral rotation invariance of the theory. Therefore, there is a special

reason to choose, among others, the regularization that preserves this property. Nevertheless, we agree that

there exists a subtlety on higher dimensional operators related to the UV completion, and we discuss this

point in the next section.

4 Transient phenomena and UV sensitivity

In Sec. 3 we demonstrated that the regularization is straightforward in the Hamiltonian basis but requires a

special care in the fermion current basis, giving the anomaly equation as an example. Armed with the proper

12



understanding of the regularization, we now study another interesting property of the physical quantities

at the intermediate times: exponentially enhanced transient fermion energy density production for finite

fermion masses.

As Eq. (2.4) suggests, although the axion assisted Schwinger effect lifts the suppression from the trans-

verse momentum, the production rate is still suppressed exponentially by the fermion mass m for m2 À
g |Q|E . However, Eq. (2.4) describes the spectrum only at the infinite future, after turning off the external

fields, and the physical quantities at the intermediate times do not necessarily feature this suppression fac-

tor. Indeed, as we will see, if the axion velocity is large enough, the fermion energy density develops a com-

ponent that is not exponentially suppressed even for m2 À g |Q|E . With the proper regularization, we will

check that the same result is obtained in both the Hamiltonian and the fermion current bases (as it should),

although their appearance is very different; the transient feature originates from the Bogoliubov coefficients

in the Hamiltonian basis while it comes from the vacuum contribution in the fermion current basis.

This phenomena is related to higher dimensional operators in the axion effective theory after integrating

out fermions. At the intermediate times, the physical quantities often contain components that are sup-

pressed only by a power, not an exponential, of the fermion mass in the heavy fermion limit. These compo-

nents are in general identified with higher dimensional operators that arise after integrating out the fermion,

such as the Euler-Heisenberg Lagrangian, as described in detail in Refs. [23,33]. We will see that the transient

effect that we study here also corresponds to higher dimensional operators in the axion effective theory.

Identified with higher dimensional operators, this transient effect is actually degenerate with a choice

of the UV theory. The effective theory with the axion is non-renormalizable, and thus there is in general

no reason to prohibit adding higher dimensional operators by hand. These higher dimensional operators

contribute in the same way as the transient effect that we discuss here, and thus giving any physical meaning

to the transient effect requires specifying the UV theory. We believe that it is worth clarifying these points,

also to avoid any possible future confusion in literature (see, e.g. Refs. [34–40] for a similar confusion on the

induced current from the Schwinger effect, which turns out to originate merely from the Euler-Heisenberg

Lagrangian [23, 33]). Therefore, we explain all the above points in detail in this section.

4.1 Transient effects and basis choice independence

We now study the fermion production for a large axion velocity. For our purpose in this section, we do not

actually need any external electric nor magnetic fields, and thus we set E = B = 0 for simplicity. In this case

there is no particle production at the infinite future, nevertheless the physical quantities show non-trivial

transient behaviors at the intermediate times as we will see. One can verify that these transient effects also

occur if the electromagnetic fields are present. Without external electromagnetic fields, the equations of the

Bogoliubov coefficients are simplified as
α̇1

α̇2

β̇1

β̇2

=i θ̇5+m


− m

mT

pz

Ω
pT

mT

m
Ω e2iΘ 0

pT

mT

m
mT

pz

Ω 0 −m
Ω e2iΘ

m
Ω e−2iΘ 0 m

mT

pz

Ω
pT

mT

0 −m
Ω e−2iΘ pT

mT
− m

mT

pz

Ω



α1

α2

β1

β2

 , (4.1)
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Figure 2: Left: Time evolution of the occupation number nψ in the Hamiltonian basis for a large axion velocity θ̇0 and

vanishing electromagnetic fields. Although approaching to zero at the asymptotic future, nψ is O (1) at the intermediate

time for large θ̇0. We fix pz = 0, and show the results for several different values of m and θ̇0 in the unit pT = 1. Right:

Time evolution of the regularized (differential) energy density d2ρ
(reg)
ψ /dpx dpy in the Hamiltonian basis with a large

axion velocity, where we integrate over pz in the range of −150 to 150. This clearly shows that the transient effect in nψ
is reflected in the physical energy density.

in the Hamiltonian basis, and

˙̃αλ =−mθ̈5+m

2Ω2
λ

exp[2iΘλ] β̃λ, ˙̃βλ =
mθ̈5+m

2Ω2
λ

exp[−2iΘλ] α̃λ, (4.2)

in the fermion current basis, respectively, where we replaceΠz → pz andΠ→ p. We first study the system in

the Hamiltonian basis, and then in the fermion current basis.

Hamiltonian basis. We show our numerical results for nψ = ∑
λ,λ′ |β(λ′)

λ
|2 as a function of time in the left

panel of Fig. 2. We fix pz = 0, tmin = 0, tmax = 100 and T = p
50, and take several different values of m and

θ̇0 in the unit pT = 1. As one can see, even though the fermion mass is large and there is no external electric

field, nψ becomes of O (1) in the intermediate times. This is the transient effect that we study in this section.

Although nψ itself is not a physical quantity, the same feature appears in the physical quantities such as the

energy density. The fermion energy density in the Hamiltonian basis is expressed as

ρψ ≡ 1

Vol(R3)
〈Hψ〉 = ρ(reg)

ψ +ρ(vac)
ψ , (4.3)

where the regularized part ρ(reg)
ψ and the vacuum part ρ(vac)

ψ are respectively given by

ρ
(reg)
ψ =

∫
d3p

(2π)3 2Ω
∑
λ,λ′

∣∣∣β(λ′)
λ

∣∣∣2
, ρ(vac) =−2

∫
d3p

(2π)3 Ω. (4.4)

We may employ normal ordering to renormalize the energy density, corresponding to dropping ρ(vac)
ψ . Re-

call that the normal ordering in the Hamiltonian basis indeed correctly reproduces the anomaly equation
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Figure 3: Left: Time evolution of the occupation number ñψ in the fermion current basis with a large axion velocity.

Even for a large axion velocity, ñψ is well suppressed and does not show the transient effect that shows up in nψ in the

Hamiltonian basis. Right: Time evolution of the vacuum contribution to the energy density d2ρ(diff)
ψ /dpx dpy , again

integrated over pz = −150 to 150 in the unit pT = 1, in the fermion current basis with a large axion velocity. This

component features the transient effect, making the total energy density basis-independent. The parameters are the

same as Fig. 2.

(see Sec. 3.2). In the right panel of Fig. 2, we plot the time evolution of the differential energy density

d2ρ
(reg)
ψ /dpx dpy (integrated from pz = −150 to 150). We see that the energy density shows the same tran-

sient effect as nψ.

Fermion current basis. We now study the same phenomena in the fermion current basis. In the left panel

of Fig. 3, we plot the time evolution of ñψ = ∑
λ,λ′ |β̃(λ′)

λ
|2, with the parameters as in Fig. 2. It is clear that

ñψ is well suppressed and does not show this transient effect.\6 Since ñψ is not a physical quantity, this by

itself does not imply any contradiction in our computation. In order to investigate the origin of the transient

effect in the fermion current basis, we take a closer look at the renormalization of the energy density. In the

fermion current basis, we may decompose the fermion energy density (before the renormalization) as

ρψ = ρ̃(reg)
ψ +ρ(diff)

ψ +ρ(vac)
ψ , (4.5)

where

ρ̃
(reg)
ψ = ∑

λ,λ′

∫
d3p

(2π)3

[
p2 +m2 +λpθ̇5+m

Ωλ

(∣∣∣β̃(λ′)
λ

∣∣∣2 −
∣∣∣α̃(λ′)

λ

∣∣∣2 +δλλ′

)
−2θ̇5+m

m

Ωλ
Re

[
e2iΘλα̃(λ′)∗

λ
β̃(λ′)
λ

]]
, (4.6)

ρ(diff)
ψ =−∑

λ

∫
d3p

(2π)3

(
p2 +m2 +λpθ̇5+m

Ωλ
−Ω

)
. (4.7)

andρ(vac)
ψ is as in Eq. (4.4). Here ρ̃(reg)

ψ corresponds to the normal ordering contribution in the fermion current

basis, while ρ(diff)
ψ corresponds to the difference of the normal orderings in the Hamiltonian and the fermion

\6The peaks at t ∼ tmin and tmax are induced by non-zero θ̈5+m , which depends on the details of turning on and off the axion

velocity and is not in the focus of our interest here. Note that the spectrum is well below O (1) even at the peaks.
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current basis. After renormalizing the energy density by dropping ρ(vac)
ψ , this difference ρ(diff)

ψ still contributes

to the energy density. In fact it is this term that gives the transient effect in the fermion current basis, as one

can see in the right panel of Fig. 3. Note that, as we saw in Sec. 3.2, the normal ordering in the fermion

current basis does not correctly reproduce the anomaly equation, and thus one needs to take ρ(diff)
ψ into

account. Therefore, the transient effect arises independent of the basis choice, providing further indication

that our regularization and renormalization procedure is consistent.

The momentum integral of ρ(diff)
ψ can be done exactly, and we obtain

ρ(diff)
ψ = m2θ̇2

5+m

4π2 log

(
Λ2

m2

)
+ θ̇4

5+m

4π2 , (4.8)

where we have used a hard UV cut-off Λ for the momentum integral. The first term corresponds to the

fermion contribution of the axion wavefunction renormalization: Including the axion contribution to the

energy density, we have

ρφ+ρ(diff)
ψ = 1

2
Zφφ̇

2 +V (φ)+ m2θ̇2
5+m

4π2 log

(
Λ2

m2

)
+ θ̇4

5+m

4π2 , (4.9)

where we include the axion wavefunction renormalization Zφ. By expanding Zφ = 1+ δφ, we obtain the

divergent part of the counter term as

δφ
∣∣
div. =− (c5 + cm)2

2π2

m2

f 2
a

log

(
Λ2

m2

)
. (4.10)

This agrees with the standard Feynman diagrammatic computation (see, e.g. Ref. [30]). The second term

in (4.8) is an axion dimension-eight effective operator. It is trivial to check that the second term reproduces

the transient effects that we observed numerically.\7 Thus, we conclude that the transient effect can be in-

terpreted as an axion higher dimensional operator. Armed with this understanding, in the next subsection,

we discuss the resulting UV sensitivity of this transient effect.

Massless limit. As an aside, it is probably appropriate here to comment on the massless limit m → 0, before

discussing the UV sensitivity. In this limit, all the effects of θ̇5+m should disappear as the axion-fermion

coupling is unphysical in this limit.

In the Hamiltonian basis, this is trivial to check. The Bogoliubov coefficientβ simply vanishes in the limit

m → 0 which we have checked numerically. The situation is more non-trivial in the fermion current basis, as

Eq. (4.8) in the massless limit reads

lim
m→0

[
ρ(diff)
ψ

]
= θ̇4

5+m

4π2 , (4.11)

which does not vanish. In the massless limit, there is however another contribution from ρ̃
(reg)
ψ , and we will

see in the following that this contribution cancels the contribution of Eq. (4.11). By noting that

lim
m→0

m

Ω2
λ

=πδ(p +λθ̇5+m), (4.12)

\7There are other higher dimensional operators that arise from ρ̃
(reg)
ψ , but they are subdominant in the present case.
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we see that Eq. (4.2) is non-trivial only for |p +λθ̇5+m | . m as m → 0. In this region, the phase factors in

Eq. (4.2) are approximately constant and hence irrelevant for\8

m2 . |θ̈5+m |. (4.13)

Therefore in the limit m2 ¿ |θ̈5+m |, we can separate the time domain into two parts, |p +λθ̇5+m |& m and

|p +λθ̇5+m |. m. In the former case α̃λ and β̃λ do not evolve in time. A nontrivial evolution happens only

for the latter case, where the equations are given by

˙̃αλ =− θ̈5+m

2

m

(p +λθ̇5+m)2 +m2
β̃λ, ˙̃βλ =

θ̈5+m

2

m

(p +λθ̇5+m)2 +m2
α̃λ, (4.14)

where we have dropped the phase factors. It is convenient to first assume that θ̇5+m is a monotonic function.

Later we will see that we can drop this assumption. If θ̇5+m is monotonic, we can change the time variable

from t to θ̇5+m . The equations can be then solved analytically. With the initial condition that α̃λ = 1, β̃λ = 0,

and θ̇5+m = 0, the solutions in the massless limit are

α̃λ =Θ(p +λθ̇5+m), β̃λ =Θ(−λθ̇5+m −p). (4.15)

We now come back to the assumption that θ̇5+m is monotonic. Even if θ̇5+m is not monotonic, we can con-

sider the time domains between θ̈5+m = 0 separately. In each domain θ̇5+m is a good time variable and thus

we can repeat the same computation as above. It is then clear that, for a given mode with fixed p, the inter-

change of α̃λ = 1, β̃λ = 0 and α̃λ = 0, β̃λ = 1 happens every time p +λθ̇5+m crosses zero. If p +λθ̇5+m crosses

zero an even number of times, then α̃λ = 1 and β̃λ = 0 in the end, while for an odd number of times we have

α̃λ = 0 and β̃λ = 1. We assume that θ̇5+m = 0 at the beginning, then the mode with p +λθ̇5+m > 0 at a given

time should cross the point p+λθ̇5+m = 0 an even number of times before the given time, while the one with

p +λθ̇5+m < 0 should cross the point odd times, independently of the detailed time evolution of θ̇5+m . Thus

we conclude that Eq. (4.15) is correct independent of the time dependence of θ̇5+m in the massless limit. We

have also checked that the numerical solution agrees well with Eq. (4.15) in the massless limit. Assuming

θ̇5+m > 0 for definiteness, we obtain

lim
m→0

[
ρ̃

(reg)
ψ

]
= 2

∫
d3p

(2π)3

p − θ̇5+m

|p − θ̇5+m |pΘ(θ̇5+m −p) =− θ̇
4
5+m

4π2 . (4.16)

We thus see that

lim
m→0

[
ρ̃

(reg)
ψ +ρ(diff)

ψ

]
= 0, (4.17)

so that the total energy density vanishes in the massless limit in the fermion current basis as well, providing

further evidence for the consistency of our regularization and renormalization. As soon as the fermion mass

becomes finite, the contribution from ρ̃
(reg)
ψ is well suppressed and ρ(diff)

ψ dominates, as we saw in Fig. 3. Thus,

contrary to Ref. [30], we find the expected decoupling of the fermions in the massless limit without the need

to introduce any counter terms (see also discussion below).

\8To see this, let us take θ̇5+m as a time variable, i.e.,
∫

dtΩλ = ∫
dθ̇5+mΩλ/θ̈5+m . For |p +λθ̇5+m | . m, we have Ωλ ∼ m and

θ̇5+m varies by ∆θ̇5+m ∼ m. Thus the change in the phase factor during |p +λθ̇5+m |.m is roughly ∆θ̇5+m ×Ωλ/θ̈5+m ∼ m2/θ̈5+m .
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4.2 Higher dimensional operator and UV sensitivity

In the previous subsection, we have seen that the transient effect in the fermion energy density can be iden-

tified with a higher dimensional operator. In the fermion current basis, this arises due to the difference of the

vacuum contribution with respect to the normal ordering prescription in the Hamiltonian basis and takes

the form

ρ(diff)
ψ = m2θ̇2

5+m

4π2 log

(
Λ2

m2

)
+ θ̇4

5+m

4π2 . (4.18)

Identifying the second term with a higher dimensional operator, this is actually degenerate with the choice

of the UV theory. The low energy effective field theory describing the axion is non-renormalizable, and thus

there is a priori no constraint to adding higher dimensional operators by hand, on top of the transient effect

discussed here. Note that the situation is different for the Euler-Heisenberg Lagrangian. In the case of the

Euler-Heisenberg Lagrangian, the theory is renormalizable before integrating out a heavy particle,\9 and it

makes sense to set all the higher dimensional operators to vanish before integrating out the heavy particle.

One can then uniquely determine the coefficients of the higher dimensional operators after integrating out

the heavy particle.

Thus, our conclusion is that a computation of transient effects in the axion effective theory requires the

specification of the UV theory. In the limit θ̇5+m ¿ fa , our computation of the transient effects within the

axion effective field theory is valid. In the opposite case, the axion effective field theory expansion is invalid.

One then must go back to the original UV theory and study the dynamics within the UV theory.

Before concluding, let us briefly comment on other regularization schemes. In particular, in the fermion

current basis, we can evaluate the axion effective action

Γ[φ] =−i Trlog
[
i /∂−m +∂µθ5+mγ

µγ5
]

, (4.19)

by expanding in powers of θ̇5+m/m and evaluating the resulting terms using dimensional regularization.

Treating the γ5 matrices using the t’Hooft-Veltman prescription [41], we reproduce the first term in Eq. (4.8)

but obtain a vanishing coefficient for the term proportional to θ̇4
5+m , in contrast to the second term in

Eq. (4.8). This may also be related to somewhat surprising results in the literature, such as the non-restoration

of the axial symmetry in the massless fermion limit found in [30] using dimensional regularization. In fact,

the latter result demonstrates that this regularization scheme does not respect the chiral symmetry of the

theory in the massless limit (adding to the list of difficulties of dimensional regularization for chiral theo-

ries [41]), thus violating a key requirement of a ‘good’ regularization scheme.

5 Conclusions

In this paper, we have studied fermion production in the presence of a background axion field with non-

vanishing velocity and/or electromagnetic fields. We have included general dimension-five axion-fermion

\9Strictly speaking there exists the Landau pole which suggests a new scale, but we ignore this subtlety here.
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couplings and thus considered the Dirac equation of the form[
i /D −me2iθmγ5 +∂µθ5γ

µγ5

]
ψ= 0, (5.1)

where θi = ciφ/ fa with φ being the axion. While the spectrum of the produced fermion at the infinite future,

after turning off the external fields, is studied in detail in [26], here we have put more focus on physical

quantities at intermediate times, obtained before turning off the external fields. These physical quantities at

the intermediate times are of great phenomenological interest. For instance, in the context of axion inflation,

the fermion production backreacts to the axion-gauge field system in the form of physical quantities such

as the induced current, which in turn determines the production of gauge fields, gravitational waves and

primordial density fluctuations.

In general, physical quantities are divergent in the presence of the external fields, and thus a proper

understanding of regularization and renormalization is necessary to evaluate the physical quantities at the

intermediate times. In particular, a proper regularization scheme must preserve the symmetries of the the-

ory as much as possible, such as the chiral rotation invariance as reflected in the Adler-Bell-Jackiw anomaly

equation, and it can be highly non-trivial to find such a proper regularization scheme (see e.g. [30] for a re-

lated discussion). The main observation of this paper is that the theory is most straightforwardly regularized

and renormalized in the c5 = 0 basis (or the Hamiltonian basis). A chiral rotation ψ→ e i cφ/ faγ5ψ shifts the

couplings as c5 → c5 − c and cm → cm + c, and a different choice of c corresponds to a different choice of the

fermion basis that one works with. This rotation is merely a redundancy of the theory and the final result

should not be affected by this choice. Nevertheless the Hamiltonian basis is most preferable for regularizing

and renormalizing the theory, as the fermionic part of the Hamiltonian is diagonalized only in the Hamilto-

nian basis and not in other bases including the cm = 0 basis (or the fermion current basis) employed in [27].

We have supported our observation by showing that the regularization using a regulator function depending

on the frequencies in the Hamiltonian basis (corresponding to the energy eigenvalues) correctly reproduces

the anomaly equation, while the regularization using the frequencies appearing in the fermion current basis

does not.

With the proper understanding of the regularization and the renormalization, we have studied transient

effects in the fermion energy density with a large axion velocity. We have seen that, in the presence of a large

axion velocity, the fermion energy density ρψ at intermediate times is no longer exponentially suppressed by

the fermion mass, but is significantly enhanced even in the absence of external electromagnetic fields and

even for constant axion velocity. This should be compared with the usual formula for the Schwinger effect,

ρψ ∝ exp(−πm2/g |Q|E), which indicates an exponential suppression of the energy density at the infinite

future. We have confirmed that the same result follows in both the Hamiltonian and fermion current bases

although its appearance is very different; the transient effect originates from the Bogoliubov coefficients in

the Hamiltonian basis, while it stems from a vacuum contribution in the fermion current basis. The latter

expression allows us to identify the transient effect with an axion higher dimensional operator. We stress

that although this operator is degenerate with the choice of UV completion, one can study the transient

effect using our prescription for regularization and renormalization once one specifies the UV completion

of the theory. We did not discuss in any detail phenomenological applications of these transient effects.
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One obvious obstacle is that a significant enhancement of the fermion energy density, as observed in Fig. 2,

requires a very large axion velocity. This is not only difficult to achieve in realistic models, but also per se

indicates a breakdown of the axion effective theory. A phenomenological analysis of this transient effect

should thus be conducted in the framework of the original Peccei-Quinn theory, whenever it is relevant. On

the other hand, our results also show that in the limit of small axion velocities, θ̇5+m ¿ fa , transient effects

can be reliably computed in the axion effective field theory.
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A Notation and conventions

Here we summarize our notation and conventions in this paper. We take the mostly minus convention and

define the anti-commutator of the gamma matrices as{
γµ,γν

}= ηµν, ηµν = diag(1,−1,−1,−1). (A.1)

It then follows that γ0 is hermitian while γi is anti-hermitian. Unless specified otherwise, we work with the

Weyl representation, given by

γ0 =
(

0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (A.2)

where σi denotes the Pauli matrices, given by

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.3)

We define γ5 as

γ5 =− i

4!
εµνρσγµγνγργσ = iγ0γ1γ2γ3, (A.4)

where εµνρσ is the totally anti-symmetric tensor with ε0123 =−ε0123 = 1. In the Weyl representation γ5 is given

by

γ5 =
(
−1 0

0 1

)
. (A.5)

The covariant derivative is given by

i Dµ = i∂µ− gQ Aµ. (A.6)

The field strength is defined as Fµν = ∂µAν−∂νAµ, and its dual as

F̃µν =
εµνρσ

2
Fρσ. (A.7)

B Technical details on solutions of Dirac equation

In this appendix we summarize the technical details omitted in the main text. In particular, we explain in

detail the solutions of the Dirac equation in the Hamiltonian and the fermion current bases.

B.1 Dirac equation with electric field

We first consider the case with only the electric field and the axion. The Dirac equation is given by[
i /D −me2iθmγ5 +∂µθ5γ

µγ5

]
ψ= 0, (B.1)
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and we take the background fields as

Aµ = (0,0,0, Az (t )) , φ=φ(t ). (B.2)

Since the background fields do not depend on the space coordinate, we can move to Fourier space as

ψ(x, t ) =
∫

d3p

(2π)3 e i~p·~xψ(p, t ), (B.3)

where ~p = (px , py , pz ). The Dirac equation then reads

0 =


i∂0 +Πz − θ̇5 px − i py −me2iθm 0

px + i py i∂0 −Πz − θ̇5 0 −me2iθm

−me−2iθm 0 i∂0 −Πz + θ̇5 −(px − i py )

0 −me−2iθm −(px + i py ) i∂0 +Πz + θ̇5

ψ. (B.4)

We solve this equation in the Hamiltonian basis c5 = 0 and the fermion current basis cm = 0.

In the Hamiltonian basis, we eliminate c5 by ψ→ e iθ5γ5ψ. The solutions of the Dirac equation for con-

stant φ and Az are then given by

u1 = e−iγ5θ5+m

N


−(px − i py )mT

(Ω+Πz ) (m +mT )

(px − i py ) (Ω+Πz )

mT (m +mT )

 , u2 = e−iγ5θ5+m e−iϕp

N


mT (m +mT )

−(px + i py ) (Ω+Πz )

(Ω+Πz ) (m +mT )

(px + i py )mT

 , (B.5)

v1 = e−iγ5θ5+m

N


−(px − i py ) (Ω+Πz )

−mT (m +mT )

−(px − i py )mT

(Ω+Πz ) (m +mT )

 , v2 = e−iγ5θ5+m e−iϕp

N


(Ω+Πz ) (m +mT )

(px + i py )mT

−mT (m +mT )

(px + i py ) (Ω+Πz )

 , (B.6)

with

N = 2
√
Ω (Ω+Πz ) (m +mT )mT , px − i py = pT e−iϕp , mT =

√
p2

T +m2. (B.7)

Once we turn on the time dependence of Az and φ, the Bogoliubov coefficients evolve as
α̇1

α̇2

β̇1

β̇2

=

i θ̇5+m


− m

mT

Πz
Ω

pT

mT

m
Ω e2iΘ 0

pT

mT

m
mT

Πz
Ω 0 −m

Ω e2iΘ

m
Ω e−2iΘ 0 m

mT

Πz
Ω

pT

mT

0 −m
Ω e−2iΘ pT

mT
− m

mT

Πz
Ω

+ mT Π̇z

2Ω2


0 0 −e2iΘ 0

0 0 0 −e2iΘ

e−2iΘ 0 0 0

0 e−2iΘ 0 0





α1

α2

β1

β2

 ,

(B.8)

whereΘ= ∫ t dtΩ. We solve these equations with two different initial conditions,

α(1)
1 = 1, α(1)

2 =β(1)
1 =β(1)

2 = 0, and α(2)
2 = 1, α(2)

1 =β(2)
1 =β(2)

2 = 0. (B.9)
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The former corresponds to the mode which is initially u1, while the latter is the one which is initially u2. The

Bogoliubov coefficients then describe the mixing of these two positive frequency modes with the others at a

later time. In terms of the original field in the coordinate space, the fermion is thus quantized as

ψ=
∫

d3p

(2π)3 e i~p·~x e iθ5γ5
∑

λ,λ′=1,2

[
uλe−iΘ

(
α(λ′)
λ

bλ′ − (−)λ+λ
′
β(λ′)
λ

∗
d †
λ′

)
+ vλe+iΘ

(
β(λ′)
λ

bλ′ + (−)λ+λ
′
α(λ′)
λ

∗
d †
λ′

)]
.

(B.10)

In the fermion current basis, we instead eliminate cm by ψ→ e−iθmγ5ψ. In this case we may define the

solutions of the Dirac equation for constant Az and φ̇ as

ũ+ = 1

N+


−(px − i py )(Ω++Π+ θ̇5+m)

(Π+Πz )(Ω++Π+ θ̇5+m)

−(px − i py )m

(Π+Πz )m

 , ũ− = 1

N−


(px − i py )m

(Π−Πz )m

(px − i py )(Ω−+Π− θ̇5+m)

(Π−Πz )(Ω−+Π− θ̇5+m)

 , (B.11)

ṽ+ = 1

N+


(px − i py )m

−(Π+Πz )m

−(px − i py )(Ω++Π+ θ̇5+m)

(Π+Πz )(Ω++Π+ θ̇5+m)

 , ṽ− = 1

N−


−(px − i py )(Ω−+Π− θ̇5+m)

−(Π−Πz )(Ω−+Π− θ̇5+m)

(px − i py )m

(Π−Πz )m

 , (B.12)

with

Π=
√
Π2

z +p2
x +p2

y , Ω± =
√

(Π± θ̇5+m)2 +m2, N± = 2
√
Π(Π±Πz )Ω±(Ω±+Π± θ̇5+m), (B.13)

and Θ± = ∫ t
Ω±dt . Once we turn on the time dependence of the background fields, the Bogoliubov coeffi-

cients satisfy 
˙̃α+
˙̃α−
˙̃β+
˙̃β−

=


0 Ae i (Θ+−Θ−) −B+e2iΘ+ −Ce i (Θ++Θ−)

−Ae−i (Θ+−Θ−) 0 −Ce i (Θ++Θ−) −B−e2iΘ−

B+e−2iΘ+ Ce−i (Θ++Θ−) 0 Ae−i (Θ+−Θ−)

Ce−i (Θ++Θ−) B−e−2iΘ− −Ae i (Θ+−Θ−) 0



α̃+
α̃−
β̃+
β̃−

 , (B.14)

where

A = gQE pT m

4Π2
p
Ω+Ω−

 Ω++Ω−+2Π√(
Ω++Π+ θ̇5+m

)(
Ω−+Π− θ̇5+m

)
 , (B.15)

B± =± m

2Ω2
±

(
Πz

Π
gQE ± θ̈5+m

)
, C = gQE pT

[(
Ω++Π+ θ̇5+m

)(
Ω−+Π− θ̇5+m

)−m2
]

4Π2
√
Ω+Ω−

(
Ω++Π+ θ̇5+m

)(
Ω−+Π− θ̇5+m

) . (B.16)

We solve these equations with two different initial conditions,

α̃(+)
+ = 1, α̃(+)

− = β̃(+)
+ = β̃(+)

− = 0, and α̃(−)
− = 1, α̃(−)

+ = β̃(−)
+ = β̃(−)

− = 0. (B.17)
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In this basis the Dirac field is quantized as

ψ=
∫

d3p

(2π)3 e i~p·~x e−iθmγ5
∑

λλ′=±

[
ũλe−iΘλ

(
α̃(λ′)
λ

bλ′ − β̃(λ′)∗
λ

d †
λ′

)
+ ṽλe iΘλ

(
β̃(λ′)
λ

bλ′ + α̃(λ′)∗
λ

d †
λ′

)]
, (B.18)

where we use that (α̃+, α̃−, β̃+, β̃−)T and (−β̃+,−β̃−, α̃+, α̃−)† satisfy the same equation. We do not put tildes

on the creation and annihilation operators here. Since these are the operators at the infinite past where

we assume there is no external field, these are equivalent to those in the Hamiltonian basis (up to linear

transformation in the case of degenerate eigenvalues).

The creation and annihilation operators at the infinite past are quantized as{
bλ1 (~p),b†

λ2
(~p ′)

}
=

{
dλ1 (~p),d †

λ2
(~p ′)

}
= (2π)3δλ1λ2δ

(3)(~p −~p ′), (B.19){
bλ1 (~p),d †

λ2
(~p ′)

}
= {

bλ1 (~p),dλ2 (~p ′)
}= 0, (B.20)

It then follows from the time evolution of the Bogoliubov coefficients that Bλ, Dλ, B̃λ and D̃λ satisfy the same

equal time anti-commutation relations. The proof is rather lengthy, and we refer interested readers to App. D

of [26], where it is shown explicitly that the creation and annihillation operators in the Hamiltonian basis, Bλ

and Dλ, satisfy the same equal-time anti-commutators as bλ and dλ. One can then show that B̃λ and D̃λ

satisfy the same equal-time anti-commutators by expressing them in terms of Bλ and Dλ, with the help of

the completeness condition ∑
λ

[
uλu†

λ
+ vλv†

λ

]
=14. (B.21)

B.2 Dirac equation with electric and magnetic field

We now include the magnetic field. We take the background fields as

Aµ = (0,0,B x, Az ) , φ=φ(t ). (B.22)

The background fields do not explicitly depend on y and z, and thus we perform the Fourier transformation

as

ψ=
∫ dpy dpz

(2π)2 e i (py y+pz z)ψ(x, py , pz , t ). (B.23)

By using the explicit forms of the gamma matrices, we obtain

0 =
[

i14∂0 + i
√

2g |QB |
(
−S−s â +Ss â† 0

0 S−s â −Ss â†

)
+Πz

(
σ3 0

0 −σ3

)
−m

(
0 e2iθm

e−2iθm 0

)
+ θ̇5

(
−1 0

0 1

)]
ψ,

(B.24)

where

x̄s =
√

g |QB |
(

x − s
py

g |QB |
)

, S± = 1

2
(σ1 ± iσ2) , â = 1p

2

(
∂x̄s + x̄s

)
, â† = 1p

2

(−∂x̄s + x̄s
)

, (B.25)
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and s = sgn(QB). We expand the modes as

ψ= ∑
n,s′,λ

ψ(λ)
n,s′hn(x̄s)χ(λ)

s′ , (B.26)

where hn is related to the Hermite polynomial Hn as

hn(x̄s) =
(

g |QB |
π

)1/4 (
1

2nn!

)1/2

e−x̄2
s /2Hn(x̄s), (B.27)

and satisfies

âhn =p
n hn−1, â†hn =p

n +1hn+1,
∫

dxhn(x̄s)hn′(x̄s) = δnn′ . (B.28)

The spinor χ is given by

χ(L)
+ = (1 0 0 0)T , χ(L)

− = (0 1 0 0)T , χ(R)
+ = (0 0 1 0)T , χ(R)

− = (0 0 0 1)T . (B.29)

The operator Ss â† changes s′ = −s → s and n → n +1, while S−s â changes s′ = s →−s and n → n −1, and

the combination 2n +1− ss′ is invariant under both operations. It then follows that only the modes with the

same value of 2n+1−ss′ mix with each other. The mode with 2n+1−ss′ = 0, i.e., n = 0 and s′ = s corresponds

to the lowest Landau level, while the others are the higher Landau levels.

Lowest Landau level. The equation of motion of the lowest Landau level is given by

0 =
(

i∂0 + sΠz − θ̇5 −me2iθm

−me−2iθm i∂0 − sΠz + θ̇5

)(
ψ(L)

0,s

ψ(R)
0,s

)
. (B.30)

In the Hamiltonian basis, we eliminate c5 by a chiral rotation. The solutions of the Dirac equation for con-

stant φ and Az are then given by

u0 = e−iγ5θ5+m

p
2Ω0 (Ω0 + sΠz )

[
mχ(L)

s + (Ω0 + sΠz )χ(R)
s

]
h0, v0 = e−iγ5θ5+m

p
2Ω0 (Ω0 + sΠz )

[
(Ω0 + sΠz )χ(L)

s −mχ(R)
s

]
h0,

(B.31)

whereΩ0 =
√
Π2

z +m2. After turning on the background fields, the Bogoliubov coefficients evolve as

α̇0 = i θ̇5+m
sΠz

Ω0
α0 −

(
s

mΠ̇z

2Ω2
0

+ i θ̇5+m
m

Ω0

)
e2iΘ0β0, (B.32)

β̇0 =−i θ̇5+m
sΠz

Ω0
β0 +

(
s

mΠ̇z

2Ω2
0

− i θ̇5+m
m

Ω0

)
e−2iΘ0α0, (B.33)

where Θ0 = ∫ t dtΩ0. We solve this equation with α0 = 1 and β0 = 0 as the initial condition. The lowest

Landau level is then quantized in the Hamiltonian basis as

ψ0 =
∑
λ

ψ(λ)
0,s h0χ

(λ)
s = e iγ5θ5

[(
α0b0 −β∗

0 d †
0

)
u0e−iΘ0 +

(
β0b0 +α∗

0 d †
0

)
v0e iΘ0

]
. (B.34)
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In the fermion current basis, the solution of the Dirac equation for constant φ̇ and Az is given by

ũ0 =
mχ(L)

s + (
Ω0,s + sΠz − θ̇5+m

)
χ(R)

s√
2Ω0,s

(
Ω0,s + sΠz − θ̇5+m

) h0, ṽ0 =
(
Ω0 + sΠz − θ̇5+m

)
χ(L)

s −mχ(R)
s√

2Ω0,s
(
Ω0,s + sΠz − θ̇5+m

) h0, (B.35)

whereΩ0,s =
√

(Πz − sθ̇5+m)2 +m2. The Bogoliubov coefficients evolve as

˙̃α0 =−m
(
sΠ̇z − θ̈5+m

)
2Ω2

0,s

e2iΘ0,s β̃0, ˙̃β0 =+m
(
sΠ̇z − θ̈5+m

)
2Ω2

0,s

e−2iΘ0,s α̃0, (B.36)

whereΘ0,s =
∫ t dtΩ0,s . The fermion is then quantized as

ψ0 = e−iγ5θm

[(
α̃0b0 − β̃∗

0 d †
0

)
ũ0e−iΘ0,s +

(
β̃0b0 + α̃∗

0 d †
0

)
ṽ0e iΘ0,s

]
. (B.37)

The creation and annihilation operators satisfy{
b0(~p),b†

0(~p ′)
}
=

{
d0(~p),d †

0(~p ′)
}
= (2π)2δ(2)(~p −~p ′), (B.38){

b0(~p),d †
0(~p ′)

}
= {

b0(~p),d0(~p ′)
}= 0, (B.39)

and B0, D0, B̃0 and D̃0 satisfy the same equal-time anti-commutators, which one can show by noting that

|α0|2 +
∣∣β0

∣∣2 = |α̃0|2 +
∣∣β̃0

∣∣2 = 1. (B.40)

Higher Landau levels. The equation of motion of the higher Landau levels is given by

0 =


i∂0 + sΠz − θ̇5 i mB −me2iθm 0

−i mB i∂0 − sΠz − θ̇5 0 −me2iθm

−me−2iθm 0 i∂0 − sΠz + θ̇5 −i mB

0 −me−2iθm i mB i∂0 + sΠz + θ̇5




ψ(L)
n,s

ψ(L)
n−1,−s

ψ(R)
n,s

ψ(R)
n−1,−s

 , (B.41)

for n = 1,2, ... and mB = √
2ng |QB |. In the Hamiltonian basis, the solutions of the Dirac equation for con-

stant φ and Az are given by

un,1 = e−iγ5θ5+m

N

[
i mB

(−mTχ
(L)
s + (Ωn + sΠz )χ(R)

s

)
hn + (m +mT )

(
(Ωn + sΠz )χ(L)

−s +mTχ
(R)
−s

)
hn−1

]
, (B.42)

un,2 = i e−iγ5θ5+m

N

[
(m +mT )

(
mTχ

(L)
s + (Ωn + sΠz )χ(R)

s

)
hn + i mB

(
(Ωn + sΠz )χ(L)

−s −mTχ
(R)
−s

)
hn−1

]
, (B.43)

vn,1 = i e−iγ5θ5+m

N

[−i mB
(
(Ωn + sΠz )χ(L)

s +mTχ
(R)
s

)
hn + (m +mT )

(−mTχ
(L)
−s + (Ωn + sΠz )χ(R)

−s

)
hn−1

]
, (B.44)

vn,2 = i e−iγ5θ5+m

N

[
(m +mT )

(
(Ωn + sΠz )χ(L)

s −mTχ
(R)
s

)
hn − i mB

(
mTχ

(L)
−s + (Ωn + sΠz )χ(R)

−s

)
hn−1

]
, (B.45)

where m2
T = m2 +m2

B andΩn =
√
Π2

z +m2
T . The normalization factor is given by

N = 2
√
Ωn (Ωn + sΠz )mT (m +mT ). (B.46)
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After turning on the time dependence of the background fields, the time evolution of the Bogoliubov coeffi-

cients is given by
α̇n,1

α̇n,2

β̇n,1

β̇n,2

=

i θ̇5+m


− m

mT

sΠz
Ωn

mB
mT

m
Ωn

e2iΘn 0
mB
mT

m
mT

sΠz
Ωn

0 − m
Ωn

e2iΘn

m
Ωn

e−2iΘn 0 m
mT

sΠz
Ωn

mB
mT

0 − m
Ωn

e−2iΘn mB
mT

− m
mT

sΠz
Ωn

+ smT Π̇z

2Ω2
n


0 0 −e2iΘn 0

0 0 0 −e2iΘn

e−2iΘn 0 0 0

0 e−2iΘn 0 0





αn,1

αn,2

βn,1

βn,2

 ,

(B.47)

where Θn = ∫ t d tΩn . Notice that this is equivalent to the case without the magnetic field after replacing

mB → pT . Finally the fermion is quantized as

ψn =∑
λ

[
ψ(λ)

n,shnχ
(λ)
s +ψ(λ)

n−1,−shn−1χ
(λ)
−s

]
= ∑
λ,λ′=1,2

[
un,λe−iΘn

(
α(λ′)

n,λbn,λ′ − (−1)λ+λ
′
β(λ′)

n,λ

∗
d †

n,λ′

)
+ vn,λe iΘn

(
β(λ′)

n,λbn,λ′ + (−1)λ+λ
′
α(λ′)

n,λ

∗
d †

n,λ′

)]
. (B.48)

Here the superscript indicates the initial conditions for α and β, that is,

α(1)
n,1 = 1, α(1)

n,2 =β(1)
n,1 =β(1)

n,2 = 0, (B.49)

α(2)
n,2 = 1, α(2)

n,1 =β(2)
n,1 =β(2)

n,2 = 0, (B.50)

at the initial time.

In the fermion current basis, the solutions of the Dirac equation for constant φ̇ and Az are given by

ũn,+ = 1

N+

[−i mB
((
Ωn,++ΠB + θ̇5+m

)
χ(L)

s +mχ(R)
s

)
hn + (ΠB + sΠz )

((
Ωn,++ΠB + θ̇5+m

)
χ(L)
−s +mχ(R)

−s

)
hn−1

]
,

(B.51)

ũn,− = 1

N−

[
i mB

(
mχ(L)

s + (
Ωn,−+ΠB − θ̇5+m

)
χ(R)

s

)
hn + (ΠB − sΠz )

(
mχ(L)

−s +
(
Ωn,−+ΠB − θ̇5+m

)
χ(R)
−s

)
hn−1

]
(B.52)

ṽn,+ = 1

N+

[
i mB

(
mχ(L)

s − (
Ωn,++ΠB + θ̇5+m

)
χ(R)

s

)
hn + (ΠB + sΠz )

(−mχ(L)
−s +

(
Ωn,++ΠB + θ̇5+m

)
χ(R)
−s

)
hn−1

]
,

(B.53)

ṽn,− = 1

N−

[
i mB

(−(
Ωn,−+ΠB − θ̇5+m

)
χ(L)

s +mχ(R)
s

)
hn + (ΠB − sΠz )

(−(
Ωn,−+ΠB − θ̇5+m

)
χ(L)
−s +mχ(R)

−s

)]
,

(B.54)

where ΠB =
√
Π2

z +m2
B , Ωn,± =

√
(ΠB ± θ̇5+m)2 +m2, and N± = 2

√
ΠB (ΠB ± sΠz )Ωn,±

(
Ωn,±+ΠB ± θ̇5+m

)
.

The time evolution equations for the Bogoliubov coefficients are given by
˙̃αn,+
˙̃αn,−
˙̃βn,+
˙̃βn,−

=


0 Ane i (Θn,+−Θn,−) −Bn,+e2iΘn,+ −Cne i (Θn,++Θn,−)

−Ane−i (Θn,+−Θn,−) 0 −Cne i (Θn,++Θn,−) −Bn,−e2iΘn,−

Bn,+e−2iΘn,+ Cne−i (Θn,++Θn,−) 0 Ane−i (Θn,+−Θn,−)

Cne−i (Θn,++Θn,−) Bn,−e−2iΘn,− −Ane i (Θn,+−Θn,−) 0



α̃n,+
α̃n,−
β̃n,+
β̃n,−

 , (B.55)
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where

An = s
gQEmB m

4Π2
B

√
Ωn,+Ωn,−

 Ωn,++Ωn,−+2ΠB√(
Ωn,++ΠB + θ̇5+m

)(
Ωn,−+ΠB − θ̇5+m

)
 , (B.56)

Bn,± =± m

2Ω2
n,±

(
Πz

ΠB
gQE ± θ̈5+m

)
, Cn = s

gQEmB
[(
Ωn,++ΠB + θ̇5+m

)(
Ωn,−+ΠB − θ̇5+m

)−m2
]

4Π2
B

√
Ωn,+Ωn,−

(
Ωn,++ΠB + θ̇5+m

)(
Ωn,−+ΠB − θ̇5+m

) . (B.57)

We solve these equations with two different initial conditions,

α̃(+)
n,+ = 1, α̃(+)

n,− = β̃(+)
n,+ = β̃(+)

n,− = 0, and α̃(−)
n,− = 1, α̃(−)

n,+ = β̃(−)
n,+ = β̃(−)

n,− = 0. (B.58)

The Dirac field is quantized as

ψn = e−iθmγ5
∑

λλ′=±

[
ũn,λe−iΘn,λ

(
α̃(λ′)

n,λbn,λ′ − β̃(λ′)∗
n,λ d †

n,λ′

)
+ ṽn,λe iΘn,λ

(
β̃(λ′)

n,λbn,λ′ + α̃(λ′)∗
n,λ d †

n,λ′

)]
. (B.59)

Finally, the creation and annihilation operators satisfy{
bn1,λ1 (~p),b†

n2,λ2
(~p ′)

}
=

{
dn1,λ1 (~p),d †

n2,λ2
(~p ′)

}
= (2π)2δλ1λ2δn1n2δ

(2)(~p −~p ′), (B.60){
bn1,λ1 (~p),d †

n2,λ2
(~p ′)

}
= {

bn1,λ1 (~p),dn2,λ2 (~p ′)
}= 0, (B.61)

and B , D , B̃ and D̃ satisfy the same equal-time anti-commutators, which one can show in the same as the

case without the magnetic field.

Summary. In summary, in the presence of the magnetic field, the fermion is quantized as

ψ=
∫ dpy dpz

(2π)2 e i (py y+pz z)e iγ5θ5

[(
α0b0 −β∗

0 d †
0

)
u0e−iΘ0 +

(
β0b0 +α∗

0 d †
0

)
v0e iΘ0

+ ∑
n,λ,λ′

[
un,λe−iΘn

(
α(λ′)

n,λbn,λ′ − (−1)λ+λ
′
β(λ′)

n,λ

∗
d †

n,λ′

)
+ vn,λe iΘn

(
β(λ′)

n,λbn,λ′ + (−1)λ+λ
′
α(λ′)

n,λ

∗
d †

n,λ′

)]]
, (B.62)

in the Hamiltonian basis, and

ψ=
∫ dpy dpz

(2π)2 e i (py y+pz z)e−iγ5θm

[(
α̃0b0 − β̃∗

0 d †
0

)
ũ0e−iΘ0,s +

(
β̃0b0 + α̃∗

0 d †
0

)
ṽ0e iΘ0,s

+ ∑
n,λ,λ′

[
ũn,λe−iΘn,λ

(
α̃(λ′)

n,λbn,λ′ − β̃(λ′)∗
n,λ d †

n,λ′

)
+ ṽn,λe iΘn,λ

(
β̃(λ′)

n,λbn,λ′ + α̃(λ′)∗
n,λ d †

n,λ′

)]]
, (B.63)

in the fermion current basis, respectively.

B.3 Physical quantities

For convenience, we summarize the physical quantities expressed in terms of the Bogoliubov coefficients in

both the Hamiltonian and the fermion current bases in this appendix. We focus on the energy density, the

induced current, the axial charge and the chiral mass operator, which are defined as

ρψ ≡ 1

2Vol(R3)

∫
d3x

〈[
ψ†,

(
i∂0 + θ̇5γ5

)
ψ

]〉
, 〈Jz〉 ≡ 1

2Vol(R3)

∫
d3x

〈[
ψ̄,γ3ψ

]〉
, (B.64)

q5 ≡ 1

2Vol(R3)

∫
d3x

〈[
ψ†,γ5ψ

]〉
,

〈
ψ̄e2iθmγ5 iγ5ψ

〉
≡ 1

2Vol(R3)

∫
d3x

〈[
ψ̄, iγ5e2iθmγ5ψ

]〉
. (B.65)

Below give the expressions both cases, without and with the magnetic field, separately.
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Without magnetic field. The averaged energy density of the fermion is given as the expectation value of

the Hamiltonian as ρψ ≡ 〈
Hψ

〉
/Vol(R3). This is given by

ρψ =
∫

d3p

(2π)3Ω
∑
λ,λ′

[∣∣∣β(λ′)
λ

∣∣∣2 −
∣∣∣α(λ′)

λ

∣∣∣2
]

=
∫

d3p

(2π)3

∑
λ,λ′

[
Π2 +m2 +λθ̇5+mΠ

Ωλ

(∣∣∣β̃(λ′)
λ

∣∣∣2 −
∣∣∣α̃(λ′)

λ

∣∣∣2
)
+ 2mθ̇5+m

Ωλ
Re

[
˜

α(λ′)
λ

∗
β̃(λ′)
λ

e2iΘλ

]]
, (B.66)

where here and in the following, the first line is computed in the Hamiltonian basis and the second line is

computed in the fermion current basis. The induced current is given by

〈Jz〉 =
∫

d3p

(2π)3

∑
λ,λ′

[
Πz

Ω

(∣∣∣β(λ′)
λ

∣∣∣2 −
∣∣∣α(λ′)

λ

∣∣∣2
)
+ 2mT

Ω
Re

[
α(λ′)∗
λ

β(λ′)
λ

e2iΘ
]]

=
∫

d3p

(2π)3

∑
λ′

{∑
λ

[
λΠz

Π

Π+λθ̇5+m

Ωλ

(∣∣∣β̃(λ′)
λ

∣∣∣2 −
∣∣∣α̃(λ′)

λ

∣∣∣2
)
+ 2Πz

Π

m

Ωλ
Re

[
α̃(λ′)∗
λ

β̃(λ′)
λ

]]
+pT

Π

m(Ω+−Ω−+2θ̇5+m)

Ñ
Re

[
e i (Θ+−Θ−)

(
β̃(λ′)∗
− β̃(λ′)

+ − α̃(λ′)∗
+ α̃(λ′)

−
)]

+2pT

Π

(Ω++Π+ θ̇5+m)(Ω−+Π− θ̇5+m)+m2

Ñ
Re

[
e i (Θ++Θ−)

(
α̃(λ′)∗
+ β̃(λ′)

− + α̃(λ′)∗
− β̃(λ′)

+
)]}

,

(B.67)

where

Ñ =
√
Ω+Ω−(Ω++Π+ θ̇5+m)(Ω−+Π− θ̇5+m). (B.68)

The axial charge is given by

q5 =
∫

d3p

(2π)3

∑
λ

[
m

mT

Πz

Ω

(∣∣∣α(λ′)
1

∣∣∣2 −
∣∣∣β(λ′)

1

∣∣∣2 −
∣∣∣α(λ)

2

∣∣∣2 +
∣∣∣β(λ)

2

∣∣∣2
)

−2pT

mT
Re

[
α(λ)∗

1 α(λ)
2 +β(λ)∗

1 β(λ)
2

]
− 2m

Ω
Re

[(
α(λ)∗

1 β(λ)
1 −α(λ)∗

2 β(λ)
2

)
e2iΘ

]]
=

∫
d3p

(2π)3

∑
λ,λ′

[
λΠ+ θ̇5+m

Ωλ

(∣∣∣α̃(λ′)
λ

∣∣∣2 −
∣∣∣β̃(λ′)

λ

∣∣∣2
)
− 2m

Ωλ
Re

[
α̃(λ′)
λ
β̃(λ′)
λ

e2iΘλ

]]
. (B.69)

Finally the chiral mass operator is given by

〈
ψ̄e2iθmγ5 iγ5ψ

〉
= 2

∫
d3p

(2π)3

∑
λ

Im
[(
α(λ)∗

1 β(λ)
1 −α(λ)∗

2 β(λ)
2

)
e2iΘ

]
= 2

∫
d3p

(2π)3

∑
λ,λ′

Im
[
α̃(λ′)∗
λ

β̃(λ′)
λ

e2iΘλ

]
. (B.70)

Notice that we do not perform the regularization and renormalization of these quantities in this appendix.
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With magnetic field. The averaged energy density of the fermion is given by\10

ρψ = g |QB |
4π2

∫
dpz

[
Ω0

(∣∣β0
∣∣2 −|α0|2

)
+ ∑

n,λ,λ′
Ωn

(∣∣∣β(λ′)
n,λ

∣∣∣2 −
∣∣∣α(λ′)

n,λ

∣∣∣2
)]

= g |QB |
4π2

∫
dpz

{
Π2

z +m2 − sθ̇5+mΠz

Ω0,s

(∣∣β̃0
∣∣2 −|α̃0|2

)
+ 2mθ̇5+m

Ω0,s
Re

[
α̃0

∗β̃0e2iΘ0,s

]
+ ∑

n,λ,λ′

[
Π2

B +m2 +λθ̇5+mΠB

Ωn,λ

(∣∣∣β̃(λ′)
n,λ

∣∣∣2 −
∣∣∣α̃(λ′)

n,λ

∣∣∣2
)
+ 2mθ̇5+m

Ωn,λ
Re

[
˜

α(λ′)
n,λ

∗
β̃(λ′)

n,λe2iΘn,λ

]]}
.

(B.71)

The induced current is given by

〈Jz〉 = gQB

4π2

∫
dpz

{
sΠz

Ω0

[∣∣β0
∣∣2 −|α0|2

]
+ 2m

Ω0
Re

[
α∗

0β0e2iΘ0

]
+ ∑

n,λ,λ′

[
sΠz

Ωn

[∣∣∣β(λ′)
n,λ

∣∣∣2 −
∣∣∣α(λ′)

n,λ

∣∣∣2
]
+ 2mT

Ωn
Re

[
α(λ′)∗

n,λ β(λ′)
n,λe2iΘ0

]]}

= gQB

4π2

∫
dpz

{
sΠz − θ̇5+m

Ω0,s

[∣∣β̃0
∣∣2 −|α̃0|2

]
+ 2m

Ω0,s
Re

[
α̃∗

0 β̃0e2iΘ0,s

]
+ ∑

n,λ′

[∑
λ

[
λ

sΠz

Π

Π+λθ̇5+m

Ωλ

(∣∣∣β̃(λ′)
n,λ

∣∣∣2 −
∣∣∣α̃(λ′)

n,λ

∣∣∣2
)
+ 2sΠz

Π

m

Ωn,λ
Re

[
α̃(λ′)∗

n,λ β̃(λ′)
n,λ

]]

+mB

Π

m(Ωn,+−Ωn,−+2θ̇5+m)

Ñn
Re

[
e i (Θn,+−Θn,−)

(
β̃(λ′)∗

n,− β̃(λ′)
n,+− α̃(λ′)∗

n,+ α̃(λ′)
n,−

)]
+2mB

Π

(Ωn,++Π+ θ̇5+m)(Ωn,−+Π− θ̇5+m)+m2

Ñn
Re

[
e i (Θn,++Θn,−)

(
α̃(λ′)∗

n,+ β̃(λ′)
n,−+ α̃(λ′)∗

n,− β̃(λ′)
n,+

)]]}
,

(B.72)

where

Ñn =
√
Ωn,+Ωn,−(Ωn,++Π+ θ̇5+m)(Ωn,−+Π− θ̇5+m). (B.73)

The axial charge is expressed as

q5 = q5
∣∣
LLL + q5

∣∣
HLL , (B.74)

where

q5
∣∣
LLL =

g |QB |
4π2

∫
dpz

[
sΠz

Ω0

(∣∣β0
∣∣2 −|α0|2

)
+ 2m

Ω0
Re

[
α∗

0β0e2iΘ0

]]
= g |QB |

4π2

∫
dpz

[
sΠz − θ̇5+m

Ω0,s

(∣∣β̃0
∣∣2 −|α̃0|2

)
+ 2m

Ω0,s
Re

[
α̃∗

0 β̃0e2iΘ0,s

]]
, (B.75)

\10We note that
∫ ∞
−∞ dxdpy |hn (x̄s )|2 = ∫ ∞

−∞ dpy = g |QB |∫ ∞
−∞ dx.
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and

q5
∣∣
HLL =

g |QB |
4π2

∫
dpz

∑
n,λ

[
m

mT

sΠz

Ωn

(∣∣∣α(λ′)
n,1

∣∣∣2 −
∣∣∣β(λ′)

n,1

∣∣∣2 −
∣∣∣α(λ)

n,2

∣∣∣2 +
∣∣∣β(λ)

n,2

∣∣∣2
)

−2mB

mT
Re

[
α(λ)∗

n,1 α
(λ)
n,2 +β(λ)∗

n,1 β
(λ)
n,2

]
− 2m

Ωn
Re

[(
α(λ)∗

n,1 β
(λ)
n,1 −α(λ)∗

n,2 β
(λ)
n,2

)
e2iΘn

]]
= g |QB |

4π2

∫
dpz

∑
n,λ,λ′

[
λΠB + θ̇5+m

Ωn,λ

(∣∣∣α̃(λ′)
n,λ

∣∣∣2 −
∣∣∣β̃(λ′)

n,λ

∣∣∣2
)
− 2m

Ωn,λ
Re

[
α̃(λ′)

n,λβ̃
(λ′)
n,λe2iΘn,λ

]]
. (B.76)

Finally the chiral mass operator is expressed as

〈
ψ̄e2iθmγ5 iγ5ψ

〉
= g |QB |

2π2

∫
dpz Im

[
−α∗

0β0e2iΘ0 +∑
n,λ

(
α(λ)∗

n,1 β
(λ)
n,1 −α(λ)∗

n,2 β
(λ)
n,2

)
e2iΘn

]

= g |QB |
2π2

∫
dpz Im

[
−α̃∗

0 β̃0e2iΘ0,s + ∑
n,λ,λ′

α̃(λ′)∗
n,λ β̃(λ′)

n,λe2iΘn,λ

]
. (B.77)

Again we do not perform the regularization and renormalization of these quantities here.
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