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We compute non-perturbatively the renormalization constant of the flavour-singlet local vector current 
Z V in lattice QCD with 3 massless flavours. Gluons are discretized by the Wilson plaquette action 
while quarks by the O(a)-improved Wilson–Dirac operator. The constant Z V is fixed by comparing the 
expectation values (1-point functions) of the conserved and local vector currents at finite temperature in 
the presence of shifted boundary conditions and at non-zero imaginary chemical potential. Monte Carlo 
simulations with a moderate computational cost allow us to obtain Z V with an accuracy of about 8‰ for 
values of the inverse bare coupling constant β = 6/g2

0 in the range 5.3 ≤ β ≤ 11.5.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Lattice Quantum Chromodynamics (QCD) allows us to compute 
non-perturbatively physically relevant matrix elements of compos-
ite operators from first principles. If not related to a conserved 
lattice symmetry, composite fields need to be renormalized non-
perturbatively before taking the continuum limit of lattice results. 
The Schrödinger Functional [1], the RI-MOM [2], and the Wilson 
flow [3] schemes and their variants have been proposed in the 
past to accomplish that task.

Computing renormalization constants can be a numerically de-
manding problem since one often has to measure correlation func-
tions of two or more operators at a physical distance. The calcula-
tion becomes even more challenging when there are contributions 
from disconnected Wick contractions of fermion propagators: in 
fact, in these cases, the signal decreases with the distance between 
the fields while the statistical fluctuations stay constant. This is the 
main reason for which there is a paucity of results in the literature 
on the renormalization constants of flavour-singlet operators.

Recently a non-perturbative renormalization framework has 
been proposed based on considering the field theory at finite tem-
perature in the presence of non-trivial boundary conditions in the 
compact direction [4–6]. In this scheme the renormalization con-
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stants of what becomes a conserved charge1 in the continuum 
limit can be computed by considering 1-point functions in the 
presence of non-trivial boundary conditions allowed by the resid-
ual lattice symmetry associated to that charge, a fact that reduces 
very significantly the numerical effort to attain a given accuracy on 
the renormalization constants. For flavour-singlet operators this is 
even more so because the 1-point functions do not suffer from the 
degradation of the signal to noise ratio with the distance of the 
inserted fields.

The use of thermal QCD in the presence of shifted bound-
ary conditions [7,8,4] solved the problem of renormalizing non-
perturbatively the energy-momentum tensor in the SU(3) Yang-
Mills theory by leading to a determination of its renormalization 
constants with a sub-percent precision [5]. Our long-term goal is 
to generalize these findings to QCD. In this case the renormaliza-
tion of the energy-momentum tensor is complicated by the mixing 
between two operators, the gluonic and the fermion components, 
a problem which can be solved by introducing a twist phase for 
fermions at the boundaries (or equivalently an imaginary chemical 
potential) in addition to the shift [6].

Before addressing our main task, maybe the simplest applica-
tion to explore the effectiveness of using an imaginary chemical 
potential for renormalizing composite operators is the computation 
of the renormalization constant of the flavour-singlet local vector 

1 Extensions to other operators deserve dedicated investigations which go beyond 
the scope of this letter.
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current. This problem on the one hand is simpler because the op-
erator is multiplicatively renormalizable and it can be matched to 
the corresponding non-local conserved current, but on the other 
hand the difficulty of computing the disconnected Wick contrac-
tions remains intact. Some results have been obtained with stag-
gered fermions [9] and with Wilson fermions for one lattice en-
semble [10] using the approach proposed in [2].

The aim of this letter is to compute non-perturbatively the 
renormalization constant of the flavour-singlet local vector current 
Z V (g2

0) in lattice QCD with 3 massless flavours in a wide range of 
values of the gauge coupling. Apart for its intrinsic theoretical in-
terest, this allows us to test several main ingredients of the renor-
malization strategy based on shifted and twisted boundary condi-
tions for fermions [6]. It must be said that the non-perturbative 
renormalization of local vector currents on the lattice has been a 
topic of interest for quite some time [11,12] until recent investiga-
tions [13–15]. Indeed, the vector currents are crucial operators in 
many open physics problems, e.g. the calculation of the Hadronic 
Vacuum Polarization contribution to the anomalous magnetic mo-
ment of the muon [16].

This letter is organized as follows. In Section 2 we introduce 
the renormalization scheme we are interested in, the notation, and 
the definition of the renormalization constant of the flavour-singlet 
local vector current. In Section 3 we present the results of our 
numerical study, and in particular our best parameterization for 
Z V (g2

0). Finally, in the last Section, we conclude the paper with 
our view on possible future applications of this renormalization 
scheme. In a couple of appendices we collect the details of the lat-
tice action that we have used in the Monte Carlo simulations, and 
the 1-loop perturbative results that we have derived in order to 
improve the definition of Z V (g2

0) and consequently our numerical 
results.

2. Thermal Lattice QCD and renormalization

Lattice QCD at finite temperature is usually studied with the 
purpose of computing thermodynamical quantities like, for in-
stance, the pressure, the entropy density, the energy density as 
well as screening masses, transport coefficients or other physically 
interesting observables. In this letter, instead, we consider thermal 
QCD for defining and computing the renormalization constant of 
the flavour-singlet local vector current on the lattice. Being con-
served in the continuum, its renormalization constant depends on 
the specific definitions of the operator and of the action on the 
lattice while, up to discretization effects, is independent on the 
particular renormalization condition adopted.

We focus on lattice QCD with 3 flavours of O(a)-improved 
clover massless quarks [17], and we consider the Wilson plaquette 
action for the gauge sector. We refer readers to Appendix A for the 
conventions adopted, for a detailed definition of the action, and 
for the tuning of the improvement coefficient of the Dirac operator 
and of the quark mass to its critical value. The theory is formu-
lated in a moving reference frame [7,8,4], which corresponds to 
impose on the fields periodic boundary conditions in the compact 
direction up to a spatial shift ξ . Hence, the gauge field Uμ and the 
quark and the anti-quark triplets ψ and ψ satisfy the following 
boundary conditions

Uμ(x′
0, x) = Uμ(x0, x′) ,

ψ(x′
0, x) = −eiθ0 ψ(x0, x′) , ψ(x′

0, x) = −e−iθ0 ψ(x0, x′) ,
(1)

respectively, where x′
0 = x0 + L0, x′ = x − L0ξ and L0 is the lattice 

size in the temporal direction. In the spatial directions all fields are 
periodic. In Eq. (1) we have considered for the fermion fields also 
a non trivial twist phase θ0 in addition to the usual antiperiodic-
ity [6]. It can be shown that, by a change of variables, the twist 
2

phase can be rewritten as an imaginary chemical potential [18], in 
the presence of which it is known that there is an effective 2π/3
periodicity of the free energy due to the interplay of θ0 with the 
ZZ3 centre symmetry of the SU(3) pure gauge sector [19].

The vector subgroup of the chiral symmetry of QCD is not bro-
ken by the Wilson discretization of fermions, and therefore it holds 
also at finite lattice spacing with degenerate quarks. As a conse-
quence, there is a conserved flavour-singlet vector current which 
is defined as

V c
μ(x) = 1

2

[
ψ(x + aμ̂)U †

μ(x)(γμ + 1)ψ(x)

+ ψ(x)Uμ(x)(γμ − 1)ψ(x + aμ̂)
]

,

(2)

where γμ are the Dirac matrices and μ̂ indicates the unit vector 
oriented along the direction μ. The current V c

μ has a unit renor-
malization constant, and it approaches the continuum one in the 
limit of vanishing lattice spacing a → 0. However, other discretiza-
tions of the flavour-singlet vector current on the lattice can also be 
studied like, for instance, the one that more closely resembles the 
continuum definition

V l
μ(x) = ψ(x)γμψ(x) . (3)

Although the use of V l
μ requires the computation of its renormal-

ization constant Z V (g2
0), it has the appealing numerical feature 

of involving fields on a single lattice point which often implies 
smaller statistical fluctuations of correlators and smaller lattice ar-
tifacts. Moreover, having two definitions of the current turns out 
to be useful in many cases, e.g. for constraining the extrapolation 
of lattice results with different discretization effects to the same 
continuum limit [20].

Using the change of variables that we mentioned above to trade 
off the twist phase at the boundary of the compact direction for 
an imaginary chemical potential in the bulk, in [6] we show that 
the expectation value of the temporal component of the conserved 
current is related to the derivative with respect to θ0 of the free-
energy density f (L0, ξ , θ0) of a system at temperature T = γ /L0

with γ = 1/

√
1 + ξ2

〈V c
0〉 = −iL0

∂

∂θ0
f (L0, ξ , θ0) . (4)

There is no dependence on the position of the current thanks to 
the translational invariance of the theory. For Eq. (4) not to be 
trivial, i.e. for having a non vanishing expectation value of the 
temporal component of the current, the twist phase θ0 has to be 
different from zero. This is the reason for considering a non null 
twist phase in Eq. (1).

Since the lattice action is O(a)-improved, discretization effects 
in the free-energy start at O(a2). Eq. (4) then implies that the 
expectation value of the conserved current on the l.h.s. is O(a)-
improved. This is consistent with the Symanzik effective field the-
ory analysis. Indeed in the chiral limit and when inserted in corre-
lators at a physical distance from other fields, either the conserved 
or the local vector currents in Eqs. (2) and (3) can be improved 
by adding a single dimension-4 operator related to the tensor cur-
rent [21]. The resulting O(a)-improved operators read

V̂ c,l
μ (x) = V c,l

μ (x) − a

4
cc,l

V (∂ν + ∂∗
ν )

(
ψ(x) [γμ,γν ]ψ(x)

)
, (5)

where ∂ν and ∂∗
ν are the forward and the backward lattice deriva-

tives. The numerical coefficients cc,l
V need to be properly tuned in 

order to accomplish the non-perturbative improvement. However, 
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Fig. 1. The lattice artifacts of the renormalization constant of the flavour-singlet local 
vector current at tree-level in perturbation theory as a function of θ0. Values for 
various sizes L0/a of the lattice in the temporal direction are shown: the top panel 
refers to the case of periodic boundary conditions (no shift) and the bottom one to 
shifted boundary conditions with shift ξ = (1, 0, 0).

since we are interested in their 1-point functions only, the con-
tribution coming from the improvement terms vanish due to the 
translation invariance, and the expectation values of both the lo-
cal (once properly renormalized) and the conserved vector currents 
are O(a)-improved as they stand.

The above analysis suggests to define the renormalization con-
stant of the flavour-singlet local vector current as

Z V (g2
0) = lim

a/L0→0

〈V c
0〉

〈V l
0〉

, (6)

where the limit is taken at fixed spacing a (i.e. fixed bare coupling 
g2

0) and the expectation values are computed in the thermody-
namic limit. Since the vector current does not need renormaliza-
tion in the continuum, the ratio on the r.h.s. in Eq. (6) depends on 
the twist phase θ0 and on the shift ξ only because of discretization 
effects, a dependence which goes away when the a/L0 → 0 limit is 
taken. The residual (small) O(a2) discretization effects are part of 
the definition of the renormalization constant, and we omit to in-
dicate them explicitly throughout the letter. As usual, they will be 
removed when taking the continuum limit of correlators with the 
renormalized flavour-singlet local vector current inserted.

We indicate the ratio 〈V c
0〉/〈V l

0〉 at fixed a/L0 by Z V (g2
0, a/L0). 

Its value at tree-level in perturbation theory, Z (0)
V (a/L0), is shown 

in Fig. 1 as a function of θ0, for several values of a/L0 and for 
the two shifts (0, 0, 0) (top panel) and (1, 0, 0) (bottom panel). 
When a/L0 becomes smaller and smaller, Z (0)

V (a/L0) approaches 
the asymptotic value of 1 quadratically in a/L0. Discretization ef-
fects turn out to be one order of magnitude smaller for the shift 
(1, 0, 0) with respect to the case of periodic boundary conditions, 
a fact which is confirmed also at the next order in the perturba-
3

Table 1
Values of (〈V c

0〉 + 〈V c
1〉)/ (〈V l

0〉 + 〈V l
1〉) obtained from Monte Carlo simulations at 

θ0 = π/6 and shift ξ = (1, 0, 0) on lattices with size (L0/a) × 963.

β = 6/g2
0 L0/a = 4 L0/a = 6 L0/a = 8 L0/a = 10

5.3000 0.8082(20) 0.761(7) 0.762(5) 0.761(7)

5.6500 0.8389(22) 0.787(6) 0.792(6) 0.784(7)

6.0433 0.8826(21) 0.820(5) 0.820(5) 0.803(7)

6.6096 0.9126(18) 0.842(5) 0.841(6) 0.839(6)

7.6042 0.9459(22) 0.871(5) 0.869(6) 0.871(6)

8.8727 0.9774(17) 0.898(6) 0.884(5) 0.890(6)

11.500 1.0078(18) 0.934(4) 0.917(5) 0.923(6)

tive expansion. This is the reason why we have selected the shift 
ξ = (1, 0, 0) for carrying out the non-perturbative calculation. A 
similar reduction of lattice artifacts for ξ = (1, 0, 0) was observed 
in the computation of the entropy density in the SU(3) Yang-Mills 
theory [22,23] and of the QCD mesonic screening masses [24]. 
The dependence of discretization effects on θ0, instead, is very 
mild and we have chosen to perform the numerical simulations 
at θ0 = π/6: this is the middle of the range of non trivial values 
since the partition function is even in θ0.

Before carrying out the non-perturbative computation, we have 
computed 〈V c

0〉/〈V l
0〉 in lattice perturbation theory up to O(g2

0) in 
the thermodynamic limit. This serves to confirm our choices for 
the values of the shift and of the twist phase, and it allows us to 
introduce a perturbatively improved definition of the renormaliza-
tion constant which reads

Z V (g2
0,a/L0) = 〈V c

0〉
〈V l

0〉
+ 1 + c1 g2

0

− Z (0)
V

(
a

L0

)(
1 + 8

3
Z (1)

V

(
a

L0

)
g2

0

)
.

(7)

The 1-loop coefficient c1 is [25,26]

c1 = 1

12π2

[
− 20.617798655(6) + 4.745564682(3) csw

+ 0.543168028(5) c2
sw

]
,

(8)

where the Sheikholeslami-Wohlert term [17] has been also taken 
into account and whose coefficient at O(g2

0 ) in perturbation theory 
is given by csw = 1 + 0.26590(7) g2

0 [27,28]. The numerical values 
of the coefficients Z (0)

V (a/L0) and Z (1)
V (a/L0) are reported in Ap-

pendix B for several values of a/L0, together with many details 
of the perturbative calculation. Before ending the Section, we re-
mind that the renormalization constant Z V (g2

0) is known in lattice 
perturbation theory up to two loops [26]. We will compare this ap-
proximation with our non-perturbative determination in the next 
section.

3. Non-perturbative numerical computation

Monte Carlo simulations have been carried out at the 7 values 
of the inverse squared bare coupling β = 6/g2

0 reported in Table 1, 
on lattices with a spatial size of 963 and 4 values of the extent 
of the compact direction, L0/a = 4, 6, 8, 10. Details on the Hybrid 
Monte Carlo algorithm used to generate the gauge configurations, 
and its parameters can be found in Appendix E of Ref. [24]. The 
critical value of the hopping parameter has been determined from 
Ref. [29] for the two smallest and the largest values of β while for 
the other 4 values we have used the results of Ref. [30,31], see our 
Appendix A and appendices A and B of Ref. [24] for the details. 
Statistics of 100 trajectories of length 2 in Molecular Dynamics 
Unit have been collected for L0/a = 4 and 6, while for L0/a = 8
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Fig. 2. Linear (blue) and quadratic (red) extrapolations to a/L0 → 0 of the perturba-
tively improved renormalization constant Z V (g2

0) at the 7 values of the bare gauge 
coupling considered in this study. The shaded bands correspond to one standard 
deviation confidence limit.

and 10 we have generated 400 and 1000 trajectories respectively. 
For the expectation values we are interested in, the autocorrelation 
times are found to be always less than 2 trajectories, and they are 
taken into account by a proper binning of the data when needed. 
We have explicitly checked for finite volume effects by performing 
several simulations on lattices with spatial size of 2883. As ex-
pected, no finite volume effects were found within our numerical 
accuracy.

By performing a Lorentz transformation from the moving to the 
rest frame [7], we notice that, for the value of the shift that we 
have considered, in the continuum it holds that

〈V 0〉 = γ (〈V 0〉0 − 〈V 1〉0) , 〈V 1〉 = γ (〈V 1〉0 + 〈V 0〉0) , (9)

where 〈·〉0 stands for the expectation value computed with no 
shift (rest frame). Thanks to the previous equations, we re-

place 〈V c,l
0 〉 with 

(
〈V c,l

0 〉 + 〈V c,l
1 〉

)
in the definition (7) in order 

to reduce the statistical error. Consequently, in Table 1 we re-
port the results obtained from the Monte Carlo simulations for (〈V c

0〉 + 〈V c
1〉)/ 

(〈V l
0〉 + 〈V l

1〉
)

directly.
Once inserted in Eq. (7), these results lead to the values of the 

perturbatively improved definition of Z V (g2
0, a/L0) shown in Fig. 2

for the 7 values of g2
0 considered. Due to the O(a)-improvement of 

the expectation values of the flavour-singlet vector current, we ex-
pect that the leading lattice artifacts of Z V (g2

0, a/L0) are quadratic 
with terms of the form (a/L0)

2, a2	Q C D/L0 and (a	Q C D)2. The 
last ones are part of the definition of Z V (g2

0) which, as usual, de-
pends on the correlators used to fix it. Their contribution vanishes 
proportionally to a2 when renormalized matrix elements are ex-
trapolated to the continuum limit. The first two terms are, instead, 
relevant when taking the limit a/L0 → 0 at fixed lattice spacing. In 
particular, there can be linear terms in a/L0 but, due to the mul-
tiplicative factor a	Q C D , their relevance decreases with respect to 
the quadratic ones as the lattice spacing becomes smaller. Our nu-
merical data for Z V (g2

0, a/L0) show a very weak dependence on 
a/L0 and both the linear and the quadratic fits provide practically 
equivalent extrapolations in a/L0 within error bars with χ2/d.o.f. 
close to 1 or smaller: they are displyed in Fig. 2 by shaded bands. 
Taking a conservative approach, we consider the average of the two 
extrapolations as our best estimate for Z V (g2

0) and the largest er-
ror bar as an estimate of the uncertainty. Their values are listed in 
Table 2. Notice that the difference between the extrapolated values 
and those at L0/a = 10 is of the order of the statistical error, and 
always smaller than twice it. As expected from the perturbative 
results, the feature of having small corrections because of shifted 
boundary conditions is confirmed also non-perturbatively.
4

Table 2
Values of Z V (g2

0) obtained by extrap-
olating to a/L0 → 0 the perturbatively 
improved definition in Eq. (7) for the 
data in Table 1.

β = 6/g2
0 Z V (g2

0)

5.3000 0.768(7)

5.6500 0.794(7)

6.0433 0.809(7)

6.6096 0.833(7)

7.6042 0.864(7)

8.8727 0.878(7)

11.500 0.918(6)

Fig. 3. Comparison between the non-perturbative calculation of Z V (g2
0) (black sym-

bols) and the 1-loop (orange line) and the 2-loop (green line) perturbative results. 
The red line is a fit of the numerical data where we enforce the 2-loop result and 
determine the coefficient of the g6

0 term.

In Fig. 3 we plot our final non-perturbative results for Z V (g2
0) at 

the 7 values of the bare gauge coupling that we have considered, 
and we compare them with the 1-loop and the 2-loop perturbative 
expressions [25,26]: the latter works well up to g2

0 � 0.9 or so 
within an accuracy of about 1%. The continuous red band in the 
Figure is our best fit of the numerical data to the function

Z fit
V (g2

0) = 1 + c1 g2
0 + c2 g4

0 + c3 g6
0 , (10)

where we enforce the value of the coefficients c1 and c2 to be 
the 1-loop and 2-loop results [25,26], while the coefficient of 
the additional g6

0 term is fitted to describe the mild bending 
of the data at larger values of the gauge coupling. As a result 
c1 = −0.1294299254732376 from Eq. (8) by inserting csw = 1, 
c2 = −0.04683170849543621 from Ref. [26], and c3 = −0.016(3)

from the fit (χ2/d.o.f.=0.31).

4. Conclusions and outlook

Thermal QCD in the presence of non-trivial boundary conditions 
in the compact direction is the basis for a very effective renormal-
ization strategy for computing renormalization constants of what 
become conserved charges in the continuum limit. They can be 
computed by considering 1-point functions, a fact that reduces 
drastically the numerical effort needed.

Here we have explored in detail this possibility computing the 
renormalization constant of the QCD flavour-singlet local vector 
current non-perturbatively in the theory with three massless O(a)-
improved Wilson quarks. With a moderate computational cost, we 
have achieved a final accuracy on Z V (g2

0) of approximatively 8‰ 
for values of the inverse bare coupling constant β = 6/g2

0 in the 
range 5.3 ≤ β ≤ 11.5. The best parameterization of our results is 
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given in Eq. (10). The comparison with the known 2-loop perturba-
tive formula suggests that our parameterization works well, within 
the precision quoted, also for larger values of β outside the range 
explored numerically. For β � 7 or so we observe significant devi-
ations from the 2-loop result. The rather good agreement with the 
2-loop formula in the range explored is an indication that either 
higher perturbative orders or residual discretization effects in the 
non-perturbative determination are quite small. It is interesting to 
notice that, although one could consider usual periodic boundary 
conditions, shifted boundary conditions have turned out to be a 
very convenient choice for reducing the magnitude of lattice arti-
facts.

The results reported in this letter represent the first evaluation 
of a renormalization constant of a composite operator in QCD in 
this framework. Our findings open the way to a numerically effi-
cient method for the more challenging problem of computing the 
renormalization constants of the energy-momentum tensor. The 
experience we have accumulated in this work, the data generated 
and the parameter tuning can be directly used in that case.

The generalization to operators which are not discretizations 
of conserved charges in the continuum, instead, require dedicated 
theoretical investigations to avoid unnecessarily complicated per-
turbative expansions and/or matching conditions.
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Appendix A. QCD lattice action

The action of the lattice theory is written as

S = SG + S F , (A.1)

where SG and S F are the gluonic and fermionic contributions re-
spectively. In this study for the gluonic one we consider the Wilson 
action

SG = 1

g2
0

∑
x

∑
μ,ν

Re Tr
{
1 − Uμν(x)

}
, (A.2)

where g0 is the bare gauge coupling, Uμν(x) is the plaquette field 
defined by

Uμν(x) = Uμ(x)Uν(x + aμ̂)U †
μ(x + aν̂)U †

ν(x) , (A.3)

and μ̂ indicates the unit vector oriented along the direction μ. The 
fermionic part reads
5

S F = a4
∑

x

ψ(x) (D + M0)ψ(x) , (A.4)

where M0 is the bare quark mass matrix. The O(a)-improved 
Wilson-Dirac operator D = Dw + aDsw is the sum of the massless 
Wilson-Dirac operator, Dw, and the Sheikholeslami-Wohlert oper-
ator [17], Dsw, defined as

Dw = 1

2

{
γμ(∇∗

μ + ∇μ) − a∇∗
μ ∇μ

}
,

Dswψ(x) = csw(g0)
1

4
σμν F̂μν(x)ψ(x) ,

(A.5)

where σμν = i
2 [γμ, γν ]. The covariant lattice derivatives ∇∗

μ and 
∇μ are defined by

a∇μψ(x) = Uμ(x)ψ(x + aμ̂) − ψ(x) ,

a∇∗
μ ψ(x) = ψ(x) − U †

μ(x − aμ̂)ψ(x − aμ̂) , (A.6)

while the clover discretization of the field strength tensor F̂μν(x)
is given by

F̂μν(x) = i

8a2

{
Q μν(x) − Q νμ(x)

}
, (A.7)

with

Q μν(x) = Uμ(x)Uν(x + aμ̂)U †
μ(x + aν̂)U †

ν(x)

+ Uν(x)U †
μ(x − aμ̂ + aν̂)U †

ν(x − aμ̂)Uμ(x − aμ̂)

+ U †
μ(x − aμ̂)U †

ν(x − aμ̂ − aν̂)Uμ(x − aμ̂ − aν̂)Uν(x − aν̂)

+ U †
ν(x − aν̂)Uμ(x − aν̂)Uν(x + aμ̂ − aν̂)U †

μ(x) .

(A.8)

The coefficient csw(g0) is tuned in order to remove O(a) lat-
tice artifacts generated by the action in on-shell correlation func-
tions [29]. The mass matrix has been fixed to M0 = mcr(g0) 1, 
where mcr(g0) is the critical mass as determined in Ref. [29,31]. 
More details on the tuning of the parameters can be found in Ap-
pendix A and B of Ref. [24].

Appendix B. Perturbative computation

In this Appendix we discuss the computation of 〈V l
μ〉 and 〈V c

μ〉
at O(g2

0) in lattice perturbation theory. We present here only the 
relevant expressions, while for the details of our conventions and 
notation we refer readers to Ref. [6]: in particular, the results of the 
calculation for the conserved flavour-singlet vector current can be 
found in Appendix G of that reference. The computation is carried 
out in the presence of shifted boundary conditions and of a twist 
fermion phase for a generic number of colours, Nc , and of quark 
flavours, N f . We write the expectation value of the local current 
as follows

〈V l
μ〉 = V l,(0)

μ + g2
0 V

l,(1)
μ , (B.1)

where the tree-level value is given by

V l,(0)
μ = 4iNc N f

aF (5)
μ + ∑

σ F (4)
μσ

(am0 + 4)
. (B.2)

The definitions of the integrals F (5)
μ , F (4)

μν and of similar ones that 
appear below can be found at the end of this Appendix. The O(g2

0 ) 
contribution can be written as the sum of three terms,

V l,(1)
μ = i(N2

c − 1)N f

{
V l,1

μ + V l,2
μ + V l,3

μ

}
, (B.3)
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whose expressions are

V l,1
μ = aB(0)

{
a2 F (5)

μ + ∑
σ aF (4)

μσ

(am0 + 4)
− 2

(
aF (7)

μ +
∑
σ

F (6)
μσ

)}
,

(B.4)

V l,2
μ = −4

∫
q
ξ
;p

ξ ,θ
;k

ξ ,θ

δ̄(p − q − k)

DG(q)D2
F (k)D F (p)

× (B.5)

k̄μ

{
m0(p)m0(k)

∑
σ

cσ (r) − a
∑
σ

{
r̄σ

[
m0(k)p̄σ + m0(p)k̄σ

]}

+
∑
σ

{
p̄σ k̄σ

[
3 − cσ (r)

]}}
,

V l,3
μ = −2

∫
q
ξ
;p

ξ ,θ
;k

ξ ,θ

[
p̄μ

(
cμ(r) − 3

) + am0(p)r̄μ
]

DG(q)D F (p)D F (k)
δ̄(p − q − k) ,

(B.6)

and we have defined r = p + k.
The Sheikholeslami-Wohlert term for the O(a)-improvement of 

the action adds two contributions to the O(g2
0 ) coefficient,

V l,(1)
μ −→ V l,(1)

μ + i(N2
c − 1)N f

{
V l,4

μ + V l,5
μ

}
, (B.7)

which are given by

V l,4
μ = acsw

∫
q
ξ
;p

ξ ,θ
;k

ξ ,θ

δ̄(p − q − k)

DG(q)D2
F (k)D F (p)

× (B.8)

{
2k̄μ

{
a
∑
σρ

{
q̄σ (k̄σ p̄ρ − p̄σ k̄ρ)

(
p̄ρ + k̄ρ

)}

+
∑
σ

{
q̄σ

[
m0(k)p̄σ − m0(p)k̄σ

] ∑
ρ 
=σ

[
cρ(p) + cρ(k)

]}}

+ D F (k)

{
a
(

p̄μ + k̄μ

)∑
σ

q̄σ p̄σ

+ q̄μ

[
m0(p)

∑
σ 
=μ

(
cσ (p) + cσ (k)

)

− a
∑
σ

p̄σ

(
p̄σ + k̄σ

)]}}
,

V l,5
μ = a2c2

sw

4

∫
q
ξ
;p

ξ ,θ
;k

ξ ,θ

δ̄(p − q − k)

DG(q)D2
F (k)D F (p)

× (B.9)

{
2k̄μ

{
2
∑
σ

q̄2
σ

∑
ρ

p̄ρ k̄ρ

(
1 + cρ(q)

)
+ 2

∑
σ

k̄σ q̄σ

∑
ρ

q̄ρ p̄ρ

(
2 − cσ (q) +

∑
λ 
=ρ

cλ(q)
)

−
[∑

σ

p̄σ k̄σ − m0(k)m0(p)
][∑

ρ

q̄2
ρ

(
3 +

∑
λ 
=ρ

cλ(q)
)]}

+ D F (k)

{
p̄μ

∑
σ

[
q̄2
σ

(
1 − 2cμ(q) +

∑
cρ(q)

)]

ρ 
=σ

6

− 2q̄μ

∑
σ

[
p̄σ q̄σ

(
2 − cμ(q) +

∑
ρ 
=σ

cρ(q)
)]}}

.

At O(g2
0) the critical mass reads

mc = m(0)
c + m(1)

c g2
0 , (B.10)

where m(0)
c = 0 and

m(1)
c = (N2

c − 1)

Nc
m(1,Nc)

c , (B.11)

with [32]

am(1,Nc)
c = −0.16285705871085(1) (B.12)

+ csw 0.04348303388205(10) + c2
sw 0.01809576878142(1) .

The O(g2
0) term in the critical mass generates an extra contribution 

to the expectation value of the vector current which reads

V l,(0)
μ −→ V l,(0)

μ + ∂V l,(0)
μ

∂m0

∣∣∣
m0=m(0)

c =0
m(1)

c g2
0 , (B.13)

where

∂V l,(0)
μ

∂m0
= −8iNc N f

aF (7)
μ + ∑

σ F (6)
μσ

(am0 + 4)
. (B.14)

We list here the definitions of the tree-level fermionic integrals we 
have introduced above

F (4)
μν =

∫
p

ξ ,θ

p̄μcν(p)

D F (p)
, F (5)

μ =
∫

p
ξ ,θ

m0(p)p̄μ

D F (p)
, (B.15)

F (6)
μν =

∫
p

ξ ,θ

m0(p)p̄μcν(p)

D2
F (p)

, F (7)
μ =

∫
p

ξ ,θ

m2
0(p)p̄μ

D2
F (p)

, (B.16)

together with the bosonic one B(0) = ∫
p

ξ
DG(p)−1.

Based on the above results and those discussed in Ref. [6] for 
the conserved vector current, we have computed the perturbative 
expansion of Z V at O(g2

0) in infinite spatial volume. The results can 
be written as

Z V

(
g2

0,a/L0

)
= Z (0)

V (a/L0) × (B.17)(
1 + N2

c − 1

Nc
Z (1)

V (a/L0) g2
0 + O (g4

0)

)
,

where

Z (1)
V = Z (1,0)

V + Z (1,1)
V csw + Z (1,2)

V c2
sw. (B.18)

In Eqs. (B.17) and (B.18), the coefficients Z (0)
V , Z (1,0)

V , . . . , Z (1,2)
V

depend on the extension of the compact direction L0/a because 
of discretization effects. Their numerical values at θ0 = π/6 with 
shift ξ = (1, 0, 0) are collected in Table B.3 for several values of 
L0/a. These are the coefficients to be used in Eq. (7) to improve 
the non-perturbative results presented in Section 3. The values in 
the Table B.3 suggest also that, at least at this order in perturbation 
theory, discretization errors for Z V are tiny for the larger temporal 
extensions.
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Table B.3
Values of Z (0)

V , . . . , Z (1,2)
V at θ0 = π/6 and ξ = (1, 0, 0) for several values of L0/a. 

The numerical values have been rounded at the level of 10−6.

L0

a
Z (0)

V Z (1,0)
V Z (1,1)

V Z (1,2)
V

4 1.112904 -0.071406 0.012116 0.001336

6 1.021530 -0.067500 0.014571 0.001616

8 1.005285 -0.066005 0.015062 0.001689

10 1.001882 -0.065592 0.015097 0.001708
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