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Abstract
Theoretical predictions for particle production cross sections and decays at
colliders rely heavily on perturbative Quantum Chromodynamics (QCD)
calculations, expressed as an expansion in powers of the strong coupling
constant αS. The current ( ) 1% uncertainty of the QCD coupling evaluated at
the reference Z boson mass, a = ( )m 0.1179 0.0009S Z

2 , is one of the lim-
iting factors to more precisely describe multiple processes at current and future
colliders. A reduction of this uncertainty is thus a prerequisite to perform
precision tests of the Standard Model as well as searches for new physics. This
report provides a comprehensive summary of the state-of-the-art, challenges,
and prospects in the experimental and theoretical study of the strong coupling.
The current a ( )mS Z

2 world average is derived from a combination of seven
categories of observables: (i) lattice QCD, (ii) hadronic τ decays, (iii) deep-
inelastic scattering and parton distribution functions fits, (iv) electroweak
boson decays, hadronic final-states in (v) e+e−, (vi) e–p, and (vii) p–p colli-
sions, and (viii) quarkonia decays and masses. We review the current status of
each of these seven a ( )mS Z

2 extraction methods, discuss novel αS determina-
tions, and examine the averaging method used to obtain the world-average
value. Each of the methods discussed provides a ‘wish list’ of experimental
and theoretical developments required in order to achieve the goal of a per-
mille precision on a ( )mS Z

2 within the next decade.

Keywords: QCD, strong coupling, colliders

1. Introduction

The strong coupling αS sets the scale of the strength of the strong interaction, theoretically
described by Quantum Chromodynamics (QCD), and is one of the fundamental parameters of
the Standard Model (SM) of particle physics. In the chiral limit of zero quark masses and for
fixed number of colours Nc= 3, the αS coupling is the only free parameter of QCD. Starting
at an energy scale of order ΛQCD≈ 0.2 GeV in the vicinity of the infrared Landau pole of the
theory, αS(Q) approximately decreases as L( )Q1 log 2

QCD
2 , where Q is the energy scale of

the underlying QCD process. Its value at the reference Z pole mass amounts today to
a = ( )m 0.1179 0.0009S Z

2 [1], with a δαS/αS≈ 0.8% uncertainty that is orders of mag-
nitude larger than that of the other three interaction (QED, weak, and gravitational) couplings.

Our knowledge of the QCD coupling has improved throughout the years (figure 1), from a
( ) 100% uncertainty when it was first constrained from data-versus-theory comparisons at

next-to-leading order accuracy in the mid 1980s—exploiting, already then, a variety of
observables (deep-inelastic scattering cross sections, total hadronic cross section in e+e−

annihilation, the distribution of 3-jet events in e+e− collisions, the energy flow of energy in
e+e− annihilation, ϒ branching fractions, the behavior of baryon form factors at large
momentum transfer, measurements of the photon structure functions, and the hyperfine
splittings in the J/ψ state) [2] – to the present ( ) 1% precision [1]. Further improving our
knowledge of αS is fundamental, among other things, to reduce the theoretical ‘parametric’
uncertainties in the calculations of all perturbative QCD (pQCD) processes whose cross
sections or decay rates depend on powers of αS, as is the case for virtually all those measured
in proton and nuclear collisions at the Large Hadron Collider (LHC), as well as in e+e−
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annihilation at future high-precision colliders. In the Higgs sector, our imperfect knowledge
of αS propagates today into total final uncertainties for key processes such as the Higgs
gg-fusion and tt -associated production cross sections of ∼2%–3% [3, 4], or of ∼4% for the
H→ gg partial decay width [5, 6]. In the electroweak (EW) sector of the SM, the input
a ( )mS Z

2 value is the leading source of uncertainty in the computation of crucial precision
pseudo-observables such as the total and partial hadronic Z boson widths [6, 7]. The QCD
coupling plays also a fundamental role in the calculation of key quantities in top-quark
physics, such as the top mass, width, and its Yukawa coupling [8]. Last but not least, the
value of a ( )mS Z

2 and its energy evolution have also far-reaching implications including the
stability of the electroweak vacuum [9], the existence of new coloured sectors at high energies
[10], and in our understanding of physics approaching the Planck scale, such as e.g. in the
precise energy at which the interaction couplings may unify.

This report, co-authored by experimental and theoretical experts from all relevant subfields
who participated at the αS(2022) workshop in February 2022 (ECT*, Trento, https://indico.
cern.ch/e/alphas2022), explores in depth the latest developments in the determination of αS

from the key categories where high-precision measurements and calculations are currently
available. The following main questions are addressed in detail for each of the αS extraction
methods: what is the current state-of-the-art? What is the expected theoretical and exper-
imental precision in about ten years from now (indicated by the interrogation symbol in
figure 1), and what needs to be achieved in order to reach a ( ) 0.1% precision? In particular,
this report examines, for the different calculations of αS-sensitive observables involved, what
the current state-of-the-art is with regards to higher-order (pQCD, mixed QCD-EW) cor-
rections, and what the impact of nonperturbative corrections/uncertainties is. Whenever there
are new ideas or techniques to reduce them, these are illustrated. From an experimental point
of view, the report discusses what the current leading systematic and statistical uncertainties
of the αS-sensitive observables are, and what future reductions of them are expected with
current (p–p) and future (e+e−, e–p) machines. New observables are also suggested.

The review is organized as follows. Sections 2–9 discuss αS determinations based on,
consecutively, lattice-QCD methods; hadronic tau-lepton decays; deep-inelastic scattering

Figure 1. Evolution of the average value of the QCD coupling at the Z boson mass
scale (with the red bands indicating its associated uncertainty) in the MS
renormalization scheme, quoted in the Particle Data Group (PDG) review covering
the last four and the current decades [1].
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and parton densities fits; electroweak fits; hadronic final states in e+e−, and in e±−p and p−p
collisions; and quarkonium bound states. Section 10 discusses the averaging method used to
currently obtain the world-average a ( )mS Z

2 value. The last section 10 ends with a summary of
the discussions of the αS(2022) workshop, and with a ‘wish-list’ assessment in data/theory
developments needed to reach a precision of αS at the per-mille level in the upcoming years.

2. αS ðm2
ZÞ from lattice QCD

2.1. Prospects of lattice determinations of αS from the FLAG perspective47

2.1.1. Overview of the current situation. FLAG stands for ‘Flavour Lattice Averaging
Group’ and constitutes an effort by the lattice QCD community to supply qualified
information on lattice results for selected physical quantities to the wider particle physics
community. These include the QCD parameters, i.e. αS and the quark masses. An extensive
report aimed at a general particle physics audience is published every 2–3 years [11, 12] and
in the meantime occasional updates are made to the online version maintained at the
University of Bern48. We strongly encourage readers to explore this report, in particular, the
αS chapter. For a complementary pedagogical introduction see the review [13].

In the FLAG αS working group we have recently provided the updated lattice QCD
average

a =( ) ( ) ( )m 0.1184 8 , 2.1S Z
2

based on results published49 in [14–21]. This represents a minimal change from FLAG 2019
[12], and no reduction in the error. The FLAG criteria for αS have remained unchanged since
FLAG 2019 and there are now some indications that the criteria may need to be revised in the
future [11].

Lattice determinations of αS use up, down, and strange quarks (and sometimes the charm
quark) in the sea, and perturbatively evolve across the charm and bottom thresholds to obtain
αS in the 5-flavour theory. The perturbative matching across quark thresholds has been put to
a nonperturbative test in [22] which demonstrates that the perturbative description of
decoupling (known to 4-loop order [23–28]) provides an excellent quantitative description
even for the charm quark. Hence, one may avoid the potentially large cutoff effects associated
with the charm quark mass, which is usually not so small compared to the lattice cutoff scale
1/a (a denotes the lattice spacing).

A lattice determination of αS starts with the choice of an observable O(μ) depending on a
single scale μ with a perturbative expansion of the form

m a m a m= + + + ¼( ) ( ) ( ) ( )O c c c 2.20 1 MS 2 MS
2

It is convenient to normalize the observable as an effective coupling

a m a a= - = + + ¼( ( ) ) ( )O c c d 2.3eff 0 1 MS 1 MS
2

We then refer to d1= c2/c1 as the 1-loop matching coefficient, even though some choices of
O(μ) may require a 1-loop-diagram to obtain c0 and thus 2 more loops to obtain d1. It should
be clear that each choice of O(μ) leads to a different lattice determination of αS, in close
analogy to phenomenological determinations. The main difference therefore is whether the

47 Authors: S Sint (Trinity College Dublin).
48 http://flag.unibe.ch
49 It is FLAG policy to require that the original works entering any FLAG averages to be always cited alongside the
FLAG report!
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original data are produced by a lattice simulation or taken from experiment. A bonus of the
lattice setup is the access to observables which are not experimentally measurable, for
instance, one may study QCD in a finite Euclidean space-time volume L4 and define the
observable O through a finite volume effect [29]. However, many renormalization schemes
for the coupling assume large volume, i.e. in practice one needs to show that the necessarily
finite L is causing negligible effects on the chosen observable. Note also that quark masses
can be varied, and one may naturally define mass-independent couplings (such as the MS
coupling) by imposing renormalization conditions in the chiral limit [30].

A common problem of most lattice determinations of αS has been dubbed the ‘window
problem’: in order to match to hadronic physics, the spatial volume L3 must be large enough
to avoid significant finite volume effects due to pion polarization ‘around the world’. On the
other hand, the matching to the coupling requires perturbative expansions to be reliable, so
one needs to reach as high a scale μ as possible, but still significantly below the cutoff scale
1/a such as to avoid large lattice distortions. If taken together this means

  m  =p ( ) ( )
L

m
a

L

a

1 1
10 , 2.43

(where the hadronic scale mπ is the pion mass) which is just a reflection of the fact that very
different energy scales cannot be resolved simultaneously on a single lattice of reasonable
size50. In addition, the continuum limit a→ 0 requires a range of lattice sizes satisfying the
above constraint, and one would like to have a range of scales μ such as to verify that the
perturbative regime has been reached. This window problem enforces various compromises;
in most cases the energy scales reached for perturbative matching to the MS-coupling is
therefore rather low. As a consequence, even in the best cases (with 3-loop matching to the
MS-coupling) systematic errors due to truncation of the perturbative series and/or
contributions from nonperturbative effects are dominant [11, 13].

A solution to the window problem is however known since the 1990s, in the form of the
step-scaling method [31]. The method is based on a finite volume renormalization scheme
with μ= 1/L. It is then possible to recursively step up the energy scale by a fixed scale factor
s= 2, and a scale difference of ( ) 102 is thus covered in 5 to 6 steps. The window problem is
by-passed, as the approach uses multiple (pairs of) lattices with size L/a and 2L/a, covering a
wide range of physical scales μ= 1/L without the need to represent simultaneously any
hadronic scale, except at the lowest scale reached, m = L1had max. Once the scale μhad is
matched to a hadronic quantity such as the proton mass, all the higher scales are known too,
as the scale ratios are powers of two. At the high energy end, now orders of magnitude above
the hadronic scales, perturbation theory can be safely applied to match to the MS-coupling,
or, equivalently to extract the 3-flavour Λ-parameter. The method has been applied in [18],
with the result L = ( )( ) 341 12MS

3 MeV, which translates to a =( ) ( )m 0.1185 8S Z
2 . It is important

to realize that this is the only lattice determination of αS where the error is still statistics
dominated. For this reason, we quote this error for the FLAG average (2.1) as a conservative
estimate of the uncertainty, instead of combining the (mostly systematic) errors in quadrature.

2.1.2. Future prospects and conclusions. Most lattice determinations of αS are now limited
by systematic errors, due to the relatively low energy scales where perturbation theory is
applied, and the limited range of available energy scales. The one exception is the step-scaling
method which enables the nonperturbative scale evolution up to very high energies.
Perturbation theory can be tested and then safely applied.

50 L/a = 100 would be considered a large lattice by today’s standards.
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Is it possible to incorporate at least some elements of the step-scaling method into some
of the other lattice determinations? In its original form, the step-scaling method uses a finite
volume renormalization scheme, i.e. μ= 1/L, which means that finite volume effects are part
of the scheme definition, rather than systematic effects to worry about. In fact, all lattice
determinations of αS could incorporate the step scaling approach by simply working at fixed
μL. Unfortunately, this means that perturbation theory needs to be set up in a finite volume
too, which can be rather complicated, depending on the choice of boundary conditions. In
particular, the perturbative results computed for infinite volume could not be used anymore,
and adapting these to finite volume is no minor change. As a side remark, it would be highly
desirable that experts in perturbation theory cooperate with lattice QCD practitioners to adapt
and develop perturbative techniques for some selected finite volume schemes.

In the short to medium term future some progress may still be possible by taking a few
steps with the step-scaling methods in large volume, perhaps with smaller scale factors, e.g.
s= 3/2. This would require that finite volume effects in the chosen observable are controlled
and eliminated at each step. In fact, it is quite plausible that finite volume effects are smaller in
the chosen observables for the coupling than in some of the other hadronic observables. An
example of this strategy was presented in [32] for the force between static quarks (there for
Nf= 0 quark flavours). It is worth emphasizing that such progress requires a dedicated effort,
including computational resources for the production of additional gauge configurations,
which may have spatial volumes too small to serve other goals of a lattice collaboration. In
the past this need for dedicated simulations has been a practical obstacle in some cases, but it
seems now evident that it cannot be avoided if real progress is to be achieved.

The required computational resources for the full step-scaling method are substantial,
too. In particular the bulk of the statistical error in the step-scaling result of [18] is
accumulated by the scale evolution at high energy scales. While a further reduction of the
error would be feasible by brute force, the ALPHA collaboration has instead proposed the
decoupling strategy ([33], for an introduction see [34]). The scale evolution is traced in the
Nf= 0 pure gauge theory, with less resources and to better precision than in Nf= 3 QCD
[35, 36]. When combined with a nonperturbative computation for the simultaneous
decoupling of Nf= 3 dynamical quarks, the resulting error is currently comparable to the
direct Nf= 3 result of [18] and still statistics dominated [37]. I refer to section 2.2 for details.
One aspect of this strategy is the importance acquired by results in the Nf= 0 theory. Rather
than being a mere test bed for the development of new methods, the pure gauge theory now
indirectly contributes to αS. The FLAG αS working group will therefore keep monitoring
Nf= 0 results for the Λ-parameter.

In conclusion, significant progress in lattice determinations of a ( )mS Z
2 will require at least

some elements of the step-scaling method in order to reach larger energy scales and at least
partially evade the window problem. A total error clearly below half a percent for a ( )mS Z

2

seems achievable within the next few years by pushing the step-scaling method further,
possibly in combination with the decoupling strategy. In order to corroborate such results it is
very desirable to apply the step-scaling method to further observables in a finite space-time
volume. Developing the necessary perturbative techniques then constitutes a challenge where
cooperation with experts in perturbation theory might have a significant impact.

Acknowledgments—I thank my colleagues in the FLAG αS-WG, Peter Petreczky and
Roger Horsley for the pleasant collaboration and feedback on a draft of this contribution.
Partial support by the EU unter grant agreement H2020-MSCA-ITN-2018-813942
(EuroPLEx) is gratefully acknowledged.
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2.2. A precise determination of αS from lattice QCD using decoupling of heavy quarks51

The determination of the strong coupling using lattice QCD uses a nonperturbatively defined
quantity O(q) that depends on a single short distance scale 1/q. Using the perturbative
expression for this quantity52

⎜ ⎟
⎛
⎝

⎞
⎠

åa a a~ + + +
L

+
¥

=

+( ) ( ) ( ) ( ( )) ( ) O q q c q q
q

..., 2.5
q

S
n

N

n S
n

S
N

p

2

1

where N is the number of known coefficients of the perturbative series, one can estimate the
value of αS(q). On the lattice, apart from the value of O(q), one needs to determine the value
of the scale q in units of some well-measured hadronic quantity (e.g. the ratio q/mp with mp

being the proton mass).
There are two types of corrections in equation (2.5). First, we have the nonperturbative

(‘power’) corrections. They are of the form (Λ/q)p. Second, we have the perturbative cor-
rections. Their origin is the truncation of the perturbative series to a finite order N, and
parametrically these corrections are of the form a + ( )qS

N 1 .
In principle, both kind of uncertainties decrease by taking q→∞ . Unfortunately, though,

a single lattice simulation can only cover a limited range of energy scales (figure 2). Thus, if
one insists on determining the hadronic scale (e.g.mp) and the value of the observable O(q)
using the same lattice simulation, the volume has to be large, L 1/mπ, and therefore the
energy scales q that can be reached are at most a few GeV. Power corrections decrease
quickly with the energy scale q, but due to the logarithmic dependence of the strong coupling
with the energy scale,

a ~
L

¥( )
( )

( )q
q

1

log
, 2.6S

q

QCD

perturbative uncertainties decrease very slowly. In fact, most lattice QCD extractions of the
strong coupling are dominated by the truncation uncertainties of the perturbative series.

What can be said about such perturbative uncertainties? First, it has to be noted that due to
the asymptotic nature of perturbative expansions, it is in general very difficult to estimate the
difference between the truncated series for O(q) and its nonperturbative value (see the original
works [38, 39] and the review [13]). Second, an idea of the size of such uncertainties can be

Figure 2. Lattice QCD simulations come with an IR cutoff ΛIR = L−1 (where L is the
size of the finite space-time volume of the simulation), and an ultraviolet cutoff
ΛUV = a−1 (where a is the lattice spacing). All relevant physical scales must lie far
away from both these cutoffs in order to be free from finite-volume and discretization
effects. As a result, given the current computational and algorithmic capabilities, if one
wants to compute some hadronic quantities, the range of high-energy scales that can
simultaneously be probed is limited.

51 Authors: M Dalla Brida (CERN), A Ramos (IFIC, València).
52 It is convenient to normalize the observable O(q) so that the perturbative expansion starts with αS(q).
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obtained by using the scale-variation method. If one assumes that at scales q power correc-
tions are negligible, one can use an arbitrary renormalization scale in the perturbative
expansion equation (2.5),

åa m m a m a m~ + + +
¥

=

+( ) ( ) ( ) ( ) ( ( )) ( )O q c q .... 2.7
q

S
n

N

n S
n

S
N

2

1

The dependence on μ on the r.h.s. is spurious, and due to the truncation of the perturbative
series. This dependence can be exploited to estimate the truncation effects: the value of αS can
be extracted for different choices of μ, and the differences among these extractions will give
us an estimate of the effects due to missing higher-order pQCD corrections. Moreover,
following [13], the estimate of the truncation uncertainties can be obtained from the known
perturbative coefficients alone. No nonperturbative data for O(q) is needed to estimate these
uncertainties.

In [13] a detailed analysis of several lattice methods to extract the strong coupling is
performed along these lines. What are their conclusions? Most ‘large volume’ approaches
(those that aim at computing the scale q in physical units and the observable O(q) using the
same lattices) have perturbative uncertainties between about 1% and 3% in a ( )mS Z

2 .
It is important to emphasize that this generic approach cannot say what the errors of a

specific determination are. However, given the fact that scale uncertainties can underestimate
the true truncation errors (see [38] for a concrete example), this exercise draws a clear
picture: a substantial reduction in the uncertainty of the strong coupling will only come from
dedicated approaches, where the multiscale problem discussed above is solved. In this
contribution, we will summarize the efforts of the ALPHA collaboration in solving this
challenging problem (see [34, 40] for a review).

2.2.1. Finite-volume schemes. A first step towards solving the difficult multiscale problem
of extracting αS using lattice QCD comes from the following simple realization. The
computation of the hadronic quantities mhad, needed for fixing the bare parameters of the
lattice QCD action, and the determination of the nonperturbative coupling αO(q)≡O(q) at
large q, from which we extract αS, are two distinct problems.53 Hence, in order to best keep
all relevant uncertainties under control, we need dedicated lattice simulations for the
calculation of αO(q). In fact, as mentioned above, despite being convenient in practice,
determinations of αO(q) based on simulations originally intended for the computation of low-
energy quantities come with severe limitations on the energy scales q at which αS can be
extracted. As a concrete example, consider a typical state-of-the-art hadronic lattice
simulation, with e.g. L/a= 128 points in each of the four space-time dimensions, and a
spatial size L large enough to comfortably fit all the relevant low-energy physics, say,
mπL≈ 4 with mπ≈ 135MeV. This results in a lattice spacing a≈ 0.045 fm, which sets the
constraint, q= a−1≈ 4 GeV. With such a low upper-limit on q, reaching high precision on
αS is very likely impeded by the systematic uncertainties related to perturbative truncation
errors and nonperturbative corrections.

The most effective way to determine nonperturbatively the coupling αO(q) at high-energy
is to consider a finite-volume renormalization scheme [31]. These schemes are built in terms
of observables O defined in a finite space-time volume. The renormalization scale of the
coupling q is then identified with the inverse spatial size of the finite volume, i.e. q= L−1. In
order words, a running coupling is defined through the response of some correlation function

53 In this and the following sections, we find convenient to use the notation αO(q) ≡ O(q), and interpret the
extraction of αS as the matching between the nonperturbative scheme for the QCD coupling αO and the MS-scheme.
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(s) as the volume of the system is varied. As a result, finite volume effects are part of the
definition of the coupling, rather than a systematic uncertainty in its determination. This is
clearly an advantage, since for these schemes lattice systematics are under control once a
single condition, L−1= q= a−1 ⇒ L/a? 1, is met. This is a much simpler situation than
having to simultaneously satisfy: L−1= q= a−1. In principle, there is lots of freedom in
choosing a finite-volume scheme. However, in practical applications several technical aspects
need to be taken intro consideration. We refer the reader to [40] for a detailed discussion
about these points and for concrete examples of schemes.

2.2.2. Step-scaling strategy. The way we exploit finite-volume schemes for the
determination of αS can be summarized in a few key steps,which we typically refer to as
step-scaling strategy [31, 40, 41]. (1) We begin at low-energy by implicitly defining a
hadronic scale μhad through a specific value of a chosen finite-volume coupling. Taking
a m = ~-( )L 1O had had

1 , we expect μhad≈ΛQCD. (2) Using results from hadronic, large volume
simulations, we can accurately establish the value of μhad in physical units. This is done by
computing the ratio m ~ ( )m 1had had ,where mhad is an experimentally measurable low-
energy quantity, e.g. a hadronic mass or decay constant. (3) We simulate pairs of lattices with
physical sizes L and L/2,and determine the nonperturbative running of the finite-volume
coupling αO(1/L) with the energy scale.54 This is encoded in the (inverse) step-scaling
function: s a= a

-
=( ) ( )∣ ( )u L2O O u L

1
1O , which measures the variation of the coupling as the

energy scale is increased by a factor of two. (4) Starting from m = ~- ( )L 100 MeVhad had
1 ,

after ~ ( )n 10 steps as in 3), we reach nonperturbatively high-energy scales,
m = ~ ( )L2 100 GeVn

PT had . (5) Using the perturbative expansion of αO(μPT) in terms of
a m( )MS PT we extract the latter (see equation (2.5)). (6) Given a m( )MS PT , through the
perturbative running in the MS-scheme, we obtain a value for mLMS PT, from which
L mMS had can be readily inferred.

2.2.3. αS from a nonperturbative determination of ΛðN f¼3Þ
MS

. Following a step-scaling strategy,

the ALPHA collaboration has obtained a subpercent precision determination of a ( )mS Z
2 from

a nonperturbative determination of L( )
MS
3 [18, 38, 39, 42]. We refer the reader to these

references for the details on our previous calculation. Here we simply want to recall a few
points which are relevant for the following discussion. In [38, 42] the nonperturbative running
of some convenient finite-volume couplings in Nf= 3 QCD was obtained, from
μhad= 197(3)MeV, up to ∼140 GeV.55 Using NNLO perturbation theory, a m( )( )

MS
3

PT was

then extracted at μPT≈ 70 GeV, and from it the result: L = ( )( ) 341 12 MeVMS
3 . Thanks to the

fact that we covered nonperturbatively a wide range of high-energy scales, a careful
assessment of the accuracy of perturbation theory in matching the finite-volume and MS
schemes was possible. The result is that the error on L( )

MS
3 is entirely dominated by the

statistical uncertainties associated with the determination of the nonperturbative running from
low to high energy [18]. In particular, perturbative truncation errors and nonperturbative
corrections are completely negligible within the statistical uncertainties [38]. Finally, from the
result for L( )

MS
3 , using perturbative decoupling relations, we included the effect of the charm

and bottom quarks in the running to arrive at: a =( ) ( )( ) m 0.1185 8MS
5

Z [18]. From these
observations, it is clear that an improved determination of αS may be obtained by reducing the

54 In practice, several pairs of lattices with fixed spatial sizes L and L/2 but different lattice spacing a are simulated
in order to extrapolate the lattice results to the continuum limit, a→ 0. Within this approach the simulated lattices
cover at most a factor of two in energy. This allows for having control on discretization errors at any energy scale.
55 The physical units of μhad were accurately established from a combination of pion and kaon decay constants [18].
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statistical uncertainties on L( )
MS
3 due to the nonperturbative running of the finite-volume

couplings. On the other hand, to which extent this is possible very much depends on how
accurate it is to rely on perturbative decoupling for including charm effects.

2.2.4. How accurate is Nf = 3 QCD? Including the charm is particularly challenging in
hadronic, large volume simulations. The charm has a mass mc≈ 1.3 GeV. In units of the
typical cutoffs set in hadronic simulations this means amc 0.3. It is thus difficult to
comfortably resolve the characteristic energy scales associated with the charm in current large
volume simulations: it requires very fine lattice spacings, which are computationally very
demanding.56 In addition, simulations become more expensive as the number of quarks
increases, and the tuning of the parameters in the lattice QCD action is more involved. It is
therefore important to assess whether the computational effort required to include the charm is
actually needed to significantly improve our current precision on αS. If that is not the case, the
resources are better invested in improving the results from Nf= 3 QCD.

In order to answer this question, we must study the systematics that enter in the L  L( ) ( )
MS
3

MS
4

step. The first class is related to the use of perturbative decoupling relations for estimating the ratio
L L( ) ( )

MS
3

MS
4 . As we shall recall below, the ratio of Λ-parameters with different flavour content is

given by a function /L = L L( )( ) ( ) ( )P Mℓ
N N N

,f MS MS MS
ℓf f , which depends on the renormalization group

invariant (RGI) mass M of the decoupling quark(s) and the theories considered. The function Pℓ,f
can in principle be nonperturbatively defined (section 2.2.6). In phenomenological applications,
however, we approximate it with its asymptotic, perturbative expansion at some finite loop-order,
i.e. / / aL ~ L + +- - -( ) ( ) ( ( )) ( )( ) ( ) ( )  P M P M M Mℓ

N
ℓ

n N n
,f MS ,f

loop
MS

1 2f f . Whether this is appro-
priate, it all depends on the size of the perturbative and nonperturbative corrections to this
approximation for values of the quark masses M∼Mc, with Mc the RGI charm mass.

The second class of charm effects concerns the hadronic renormalization of the lattice
theory. Normally, the bare parameters entering the lattice QCD action are tuned by requiring
that a number of ratios of hadronic quantities RH (as many as parameters to tune), reproduce
their experimental counter-parts. Typical examples are, for instance, RH=mπ/fπ, mK/fπ,K

57

On the other hand, Nf= 3 QCD simulations do not include charm effects, while these are
obviously present in the experimental determinations. Whether this mismatch is relevant in
practice, it all depends on the actual size of charm effects in the ratios RH.

2.2.5. Effective theory of decoupling and perturbative matching. For the ease of presentation,
we define our fundamental theory as Nf-flavour QCD (QCDNf

) with Nℓ massless quarks, and
Nh= Nf−Nℓ mass-degenerate heavy quarks of mass M. In the limit where M is larger than
any other scale in the problem, this theory can be approximated by an effective theory (EFT)
with Lagrangian [43]

å w= + F + -( ) ( )  
M

M
1

. 2.8
i

i idec QCD 2
4

Nℓ

The leading order term in the 1/M expansion is the Lagrangian QCDNℓ
of massless QCDNℓ

,
while the effect of the heavy quarks is represented by nonrenormalizable interactions Φi

suppressed by higher powers of 1/M. Massless QCDNℓ has a single parameter, the gauge
coupling ¯( )g Nℓ . The EFT is hence predictive once its coupling is given as a proper function of
the coupling of the fundamental theory, ¯( )g Nf , and the quark masses M. In this situation, we

56 We recall that the computational cost of lattice simulations grows roughly ∝a−7 as a → 0.
57 The experimental numbers for the hadronic quantities of interest are usually ‘corrected’ for QED and strong
isospin breaking effects, if these are not included in the lattice simulations (see [11]).

J. Phys. G: Nucl. Part. Phys. 51 (2024) 090501 Major Report

11



say that the couplings are matched,

m m m=¯ ( ) ( ¯ ( ) ) ( )( ) ( )g F g M, . 2.9N
O

Nℓ f

The function FO depends in principle on the observable O that is used to establish the
matching. At leading order in the EFT, however, it is consistent to drop any correction of

-( ) M 2 in the relation (2.9), which thus becomes universal, i.e. it only depends on the
renormalization scheme chosen for the couplings. In the MS-scheme, the so-called decoupling
relation (2.9) is known at 4-loop order [23–28], and it is usually evaluated at the scale μ=må,
where = ( ) m m mMS with m( )mMS the mass of the heavy quarks in the MS-scheme. In
formulas,

x x= º = + + + +¯ ( ) ( ) ¯ ( ) ( ) ( )
( )

( ) ( )     g m g g g g m g c g c g c g g, , 1 .

2.10

N N
MS MS 2

4
3

6
4

8 10ℓ f

The relation between the couplings can be reexpressed in terms of the corresponding Λ-
parameters of the two theories,

j x jL = L L =( ) ( ( )) ( ) ( )( ) ( ) ( ) ( ) ( )
  P M g g g , 2.11ℓ

N N N N N
,f MS MS MS MS MS

ℓ ℓf f f

where the RGI-parameters are given by m j mL = ( ¯ ( ))( ) ( ) ( )gN N N
X X X

f f f and m e m= ( ) ( ¯ ( ))( ) ( )M m gN N
X X X

f f .
Explicit expressions for the functionsj( )N

X
f and e( )N

X
f in terms of the β- and τ-functions in a generic

scheme X can be found in e.g. [40].
In figure 3 we present the perturbative results from [22] for /L( )( )P Mℓ

N
,f MS

f , for the
phenomenological relevant cases of Nℓ= 3, Nf= 4 and Nℓ= 4, Nf= 5. More precisely, we
show the relative deviation with respect to the 1-loop approximation, ( )Pℓ,f

1 , for different orders
of the perturbative expansion of Pℓ,f. Focusing on the case of P3,4, we see how the
perturbative corrections at 4- and 5-loop order are very small already for values of M
comparable to that of the charm. Judging from the perturbative behavior alone, the series thus
appears to be well within its regime of applicability. As a result, any estimate for the
perturbative truncation errors on Pℓ,f based on the last-known contributions to the series leads

Figure 3. Relative differences from the (unsystematic) 1-loop approximation
L = Lh( )P M Mℓ,f

1 0, η0 = 2Nh/(33− 2Nℓ), for different orders of the perturbative
expansion of Pℓ,f(M/Λ) as a function of M/Λ [22]. The results for Nℓ = 3, Nf = 4
(Nℓ = 4, Nf = 5) are given in the left (right) panel. The values for the RGI charm (Mc)
and bottom (Mb) quark masses in units of the proper Λ-parameters are marked by
vertical lines.
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to very small uncertainties. When translated to the coupling we find, for instance,
a =( ) ( )( )( ) m 0.1185 8 3MS

5
Z PTdec, where the second error is estimated as the sum of the full 4-

and 5-loop contributions due to the decoupling of both charm and bottom quarks [18]. As
anticipated, the perturbative error estimate is well-below the uncertainties from other sources.

2.2.6. How perturbative are heavy quarks? Above we have shown how, within perturbation
theory, the perturbative decoupling of the charm appears to be very accurate. A natural
question to ask at this point is how reliable this picture is at the nonperturbative level. In other
words, can we quantify the accuracy of perturbative decoupling for the charm by comparing it
directly to nonperturbative results, thus getting an estimate for the size of nonperturbative
corrections? In order to answer this question, we start by formulating the matching of
Λ-parameters (2.11) in nonperturbative terms [22, 44],

L
= L

L
( )

( )
( )

( )

( )
( )

( )

( )m
P M

m M
. 2.12

N

N ℓ
N

N

N
MS

had,1
,f
had,1

MS
MS

had,1

ℓ

ℓ

f

f

f

We thus say that the EFT is matched to the fundamental theory if its Λ-parameter
L º L L( )( ) ( ) ( )M,N N N

MS MS MS
ℓ ℓ f in units of a hadronic quantity ( )m N

had,1
ℓ , is a proper function of the heavy

quark masses M, and the Λ-parameter of the fundamental theory L( )N
MS

f in units of the same

hadronic quantity ( )( )m MN
had,1

f , computed in QCDNf where Nh quarks are heavy with mass
M?ΛQCD.

58 Once the theories are matched, decoupling predicts that for any other hadronic
quantity ( )m N

had,2
ℓ computed in the EFT, we should expect: = + -( ) ( )( ) ( ) m m M MN N

had,2 had,2
2ℓ f

(see section 2.2.5). As anticipated by our notation, the function Pℓ,f
had depends on the hadronic

quantity considered for the matching. If we were to choose a different quantity, we
expect: / /L ~ L + -( ) ( ) ( )( ) ( ) P M P M Mℓ

N
ℓ

N
,f
had,1

MS ,f
had,2

MS
2f f .

The relation (2.12) leads to the interesting factorization formula [22, 44],

= ´ L =
L

L

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )

( ) ( )
m M

m
Q P M Q

m

m0
,

0
. 2.13

N

N ℓ ℓ
N

ℓ

N N

N N
had

had
,f
had

,f
had

MS ,f
had had MS

had MS

ℓ ℓf

f

f

f f

On the l.h.s. of this equation we have the hadronic quantity ( )( )m MN
had

f computed in QCDNf

where Nh quarks have mass M, over the same hadronic quantity ( )( )m 0N
had

f computed in the
chiral limit, i.e. where all Nf quarks are massless. This ratio can be expressed as the product of
a nonperturbative, M-independent factor Qℓ,f

had, and the function /L( )( )P Mℓ
N

,f
had

MS
f , which

encodes all the M-dependence. As we recalled in section 2.2.5, for M→∞ the function Pℓ,f
had

admits an asymptotic perturbative expansion. Hence, by measuring nonperturbatively on the
lattice the l.h.s. of equation (2.13), we can compare the M-dependence of several such ratios
with what is predicted by a perturbative approximation for Pℓ,f

had. In this way, we can assess the
typical size of nonperturbative effects in Pℓ,f

had as a function of M. In [22] a careful study was
carried out considering the case of the decoupling of two heavy quarks with massM∼Mc, for
the case of Nℓ= 0, Nf= 2.59 Under very reasonable assumptions, it is possible to extract from
these results quantitative information on the nonperturbative corrections in the phenomen-
ological interesting case of /L( )( )P Mc3,4 MS

4 . The conclusions of [22] are that these effects are

58 Here we use the MS-scheme as reference scheme for the Λ-parameters. As we have seen in section 2.2.2, LMS can
be indirectly expressed in terms of any nonperturbative scheme of choice.
59 The reason why the authors of [22] considered Nℓ = 0, Nf = 2 instead of Nℓ = 3, Nf = 4, has to do with the
technical difficulties of simultaneously simulating heavy and light quarks on the lattice (see section 2.2.4). The effect
of decoupling two heavy quarks rather than just one is however expected to more than compensate the effects on
decoupling induced by the presence of the light quarks (see [22] for a detailed discussion about this point).
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very much likely below the per-cent level. This means that it is safe to use a perturbative
estimate for /L( )( )P Mc3,4 MS

4 in transitioning from L  L( ) ( )
MS
3

MS
4 , as long as, say, dL ( ) 1.5%MS

3

or so.
If we now consider ratios of hadronic quantities, where the dependence on the Λ-

parameters drops out, we immediately conclude that

= + -( ) ( ) ( ) ( )( ) ( ) ( ) ( ) m m m M m M M . 2.14N N N N
had,1 had,2 had,1 had,2

2ℓ ℓ f f

In this case, one can obtain estimates for the typically size of -( ) M 2 effects in these ratios by
comparing both sides of the above equation computed through lattice simulations. In [45, 46]
careful studies have been conducted considering both the case of the decoupling of two heavy
quarks of mass M∼Mc with Nℓ= 0, Nf= 2, and more recently for the decoupling of a single
charm quark with Nℓ= 3, Nf= 3+ 1, i.e. in the presence of three mass-degenerate lighter
quarks. From these calculations, the authors conclude that the typical effects due to the charm
on dimensionless ratios of low-energy quantities are well-below the per-cent level. This
means that these effects are not relevant for a per-cent precision determinations of L( )

MS
3 .

In summary, thanks to recent dedicated studies, we are able to conclude that it is safe to
rely on perturbative decoupling for the charm quark in connecting L( )

MS
3 and L( )

MS
4 , as long as

dL ( ) 1.5%MS
3 . The 0.7% precision extraction of αS from [18] is based on a determination of

L( )
MS
3 with an uncertainty of dL »( ) 3.5%MS

3 (see section 2.2.3). Hence, there is still about a
factor of two of possible improvement within the Nf= 3 flavour theory.

2.2.7. The strong coupling from the decoupling of heavy quarks. The previous section
suggests a method to relate the Λ-parameters in theories with a different number of quark
flavours (see equation (2.12)). Taking this relation to the extreme, one should be able to
determine L( )N

MS
f from the pure-gauge one, L( )

MS
0 . Of course this requires to decouple Nf heavy

quarks with  L( )M N
MS

f . The physical world is very different from this limit, but lattice QCD
can simulate such unphysical situation.

A possible strategy for the determination of the strong coupling based on this idea is the
following:

1. Starting from a scale μdec in QCDNf
, one determines the value of a nonperturbatively

defined coupling at such scale in a massless renormalization scheme, m¯ ( )( )gO
N

dec
f .

2. By performing lattice simulations at increasing values of the quark masses, one is able to
determine the value of the coupling in a massive scheme, m¯ ( )( )g M,O

N
dec

f .
3. For M larger than any other scale in the problem (i.e. M?ΛQCD, μdec), the massive

coupling is, up to heavy-mass corrections, the same as the corresponding coupling in the
pure-gauge theory, i.e.

m m=¯ ( ) ¯ ( ) ( )( ) ( )g M g, , 2.15O
N

Odec
0

dec
f

where corrections of ( ) M1 2 have been dropped.
4. From the running of the coupling m¯ ( )( )gO

0
dec in the pure-gauge theory we can determine

the pure-gauge Λ-parameter in units of μdec,

m
j m

L
=

L

L
´ ( ¯ ( )) ( )

( ) ( )

( )
( ) ( )g . 2.16

O
O O

MS
0

dec

MS
0

0
0 0

dec

(Note that the ratio of Λ-parameters in different schemes can be exactly determined via a
perturbative, 1-loop computation (see e.g. [40]).)
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5. Since all Nf quarks are heavy, one can employ the decoupling relations to estimate the
Nf� 3 flavour Λ-parameter as (see equation (2.12)),

m j m aL = ´
L

L
´ ´

L
+ +

-
-

( )

( ¯ ( ))
( )

( ( )) ( )( )
( )

( )
( ) ( )

( ) ( )  

2.17

g
P M

m M
1

.N

O
O O

N
N SMS dec

MS
0

0
0 0

dec
0,
5 loop

MS

4 2f

f
f

Equation (2.17) is our master formula to determine L =( )N
MS

3f from precise results for the
nonperturbative running of the gauge coupling in the pure-gauge theory (i.e. for the function
j( )

O
0 ). Several comments are in order at this point:

• There are two types of corrections in equation (2.17). First, ‘perturbative’ ones of
a( ( )) mS

4 . They come from using perturbation theory for the function P N0, f
. Second, we

have nonperturbative ‘power’ corrections. Their origin is the decoupling condition,
equation (2.15), as well as the use of a perturbative approximation for the function P N0, f

.
• Both perturbative and power corrections vanish for M→∞. In fact, the following
relation is exact

m j mL = ´
L

L
´ ´

L¥ -( ¯ ( ))
( )

( )( )
( )

( )
( ) ( )

( ) ( )g
P M

lim
1

, 2.18N

M O
O O

N
n NMS dec

MS
0

0
0 0

dec
0,

loop
MS

f

f
f

with m m=¯ ( ) ¯ ( )( ) ( )g g M,O O
N0

dec dec
f .

• The situation and challenges in this approach might look similar to those present in more
‘conventional’ extractions of the strong coupling (see equation (2.5)). The subtle
difference however is that, in the present case, perturbative corrections are very small
even for scales ∼Mc (see section 2.2.5). In particular, if one is considering quarks with
masses of a few GeV, they are completely negligible in practice, and one has only to deal
with the power corrections, which decrease much faster with the relevant energy scale.

This method to extract the strong coupling was proposed in [33] (for a recent review see
[34]). Here we present first results using this strategy [37].60 We follow closely the strategy
described above, skipping the technical details. The reader interested in the details is
encouraged to look at the original references [33, 34, 37].

1. A scale μdec= 789(15) MeV is determined in a finite-volume renormalization scheme in
three-flavour QCD using results from [42]. This corresponds to a value of the
renormalized nonperturbative coupling m »¯ ( )( )g 1.98723

dec .
2. For technical reasons the massive coupling is determined in a slightly different

renormalization scheme than the massless one. The value of the massive coupling is then
determined by keeping the value of the bare coupling (and therefore the lattice spacing)
fixed and increasing the value of the quark masses. This determination is performed for
several values of the quark masses, z=M/μdec= 1.972, 4, 6, 8, 10, 12, and several
values of the lattice spacing with 1/(aμdec)= 12,K, 48. The results are extrapolated to
the continuum limit for each value of the quark masses labeled by z (see figure 4). We
refer the reader to [37] for a detailed discussion.

3. The values of the massive coupling are used as matching condition between QCDNf and
the pure-gauge theory (see equation (2.15)). The running in the pure-gauge theory is

60 At the time of the workshop only a preliminary analysis of these results was available [47].
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known very precisely from the literature [35]. The ratio mL( )
MS
0

dec can thus be accurately
determined.

4. Given this result, by applying the master formula equation (2.17), one obtains the
estimates, L( )

MS,eff
3 , for L( )

MS
3 given in table 1. These estimates should approach the correct

three-flavour Λ-parameter in the limit M→∞. Figure 5 shows that this is indeed the
case. Our data are consistent with a linear extrapolation in m Mdec

2 2, which results in

L = ( )( )( ) ( )( ) 336 10 6 3 MeV, 2.19MS
3

where the first uncertainty is statistical, the second is due to an estimate of the ( ) a
effects present in our setup, and the last is due to different parameterizations of the
M→∞ limit.

This result for the three-flavour Λ-parameter translates, after crossing the charm and
bottom thresholds, into

a =( ) ( ) ( )m 0.11823 84 . 2.20S Z
2

The result has a 0.7% uncertainty, which is in fact dominated by the statistical uncertainties in
the scale μdec= 789(15) MeV and in the running of the pure-gauge theory. These statistical
uncertainties can be reduced with a modest computational effort. The effects of the truncation
of the perturbative series are subdominant in our approach. A nonperturbative determination

Figure 4. Continuum extrapolations of the massive coupling m=¯ [ ¯ ( )]( )g g M,z
2 3

dec
2 for

different values of the quark masses labeled by z=M/μdec. Only data at fine enough
lattice spacings (i.e. for which (aM)2 < 0.16) are included in the fit. Note that the fit
error bands include an estimate for the remaining ( ) a effects (see [37] for a full
discussion).

Table 1. Values of the massive three-flavour coupling m¯ ( )( )g M,3
dec and the corresp-

onding values of L( )
MS,eff
3 obtained by applying our master formula equation (2.17) and

ignoring perturbative and power corrections.

z m[ ¯ ( )]( )g M,3
dec

2 L( )
MS,eff
3 [MeV]

1.972 5.076(56) 426(14)
4 5.316(70) 388(13)
6 5.408(69) 363(12)
8 5.530(76) 351(12)
10 5.713(90) 349(12)
12 5.80(10) 343(12)
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of the relevant improvement parameter would eliminate entirely the systematics related to
( ) a effects, and make possible a further reduction of the uncertainty by a factor of two with

this approach (see [37] for a full discussion). Going beyond this precision would require
including charm effects nonperturbatively and also some serious thinking on how to include
electromagnetic effects in the determination of both the scale and the running.

2.3. Strong coupling constant αS from moments of quarkonium correlators61

A lattice method conceptually similar to the determination of a ( )mS Z
2 or heavy-quark masses

from the R-ratio via quarkonium sum rules [48, 49] uses heavy-quark two-point correlators;
for a recent review see [50]. Renormalization group invariant pseudoscalar correlators G(t)
and their nth time moments Gn are defined as
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The symmetrization accounts for (anti)periodic boundary conditions in time. Here, amh0 is the
corresponding bare heavy-quark mass in the lattice scheme; amh0, resp. mh, can be varied
quite liberally for valence quarks in the charm- and bottom-quark regions and in between.
Since sea quark mass variation is expensive, most results have partially quenched heavy
quarks, i.e. heavy-quark masses in sea and valence sectors can be different in (2+1+1)-
flavour QCD, or heavy quarks are left out from the sea in (2+1)-flavour QCD.

The weak-coupling series of Gn, which are finite for n� 4, is known up to N3LO, resp.
a n( ( )) S h

3 , for Nf massless and one massive quark flavour [51–53],

= a n n

n- ( )( ( ) )
( )

G , 2.22n
g m

am

,n S h

h
n

m
4

where ν= xmh, proportional to the heavy-quark mass mh, is the MS renormalization scale of
the coupling; and νm= xmmh, the scale at which the MS heavy-quark mass mh(νm) is defined,
could be different from ν [48]. In published weak-coupling results, heavy-quark masses on

Figure 5. Estimates of the three-flavour Λ-parameter (table 1) and its
M→∞ extrapolation yielding our final result for L( )

MS
3 .

61 Authors: P Petreczky (BNL), J H Weber (HU, Berlin).
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internal (sea) and external (valence) quark lines must agree [51–53]. This restriction has
profound implications for αS extractions in (2+1+1)-flavour QCD.

As the bare heavy-quark mass in lattice units, amh0, is a large parameter, improved quark
actions are needed; so far most calculations have employed the highly improved staggered
quarks (HISQ) [16, 17, 54–57], while domain-wall fermions have been used as well [58].
Some data sets involved values of amh0 corresponding to different heavy-quark masses mh

[16, 17, 56, 57]; for this reason even (2+1+1)-flavour QCD lattice results still involve
partially quenched heavy quarks [17]. Enforcing an upper bound amh0 1 to limit the size of
lattice artifacts implies that fewer independent ensembles can constrain the data at larger mh

and entail larger errors of the respective continuum limit.
The so-called (tree-level) reduced moments, known perturbatively at a n( ( )) S h

3 ,
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eliminate the tree-level contribution, thus cancelling the leading lattice artifacts [54]. The
coefficients rnj are numbers of order 1 without any obvious pattern, see, e.g. table 1 of [50].
On the one hand, the lowest reduced moment R4 and ratios of higher reduced moments, i.e.
R6/R8 or R8/R10, are dimensionless; their respective continuum extrapolations turned out to
be challenging, in particular due to L( )alog QCD and ( )amlog h0 dependence [57]. Such ( )alog
dependence is manifest in slopes that decrease for larger amh0. On the other hand, higher
moments Rn/mh0, n� 6, are dimensionful and scale with 1/mh0= a/(amh0); thus, because
the scale uncertainty and the uncertainty of the tuned bare heavy-quark mass (amh0) strongly
impact the results, these are insensitive to any ( )alog effects, and continuum extrapolations
are straightforward. For the improved actions used in published results, lattice spacing
dependence could be parameterized for functions of the reduced moments, i.e.
R(mh)= {R4(mh), Rn(mh)/mh0, Rn(mh)/Rn+2(mh), }, n� 6, as

⎡
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where a p= ( )g u4S
b

0
2

0
4 is the boosted lattice coupling [59]; the tadpole factor u0 is defined in

terms of the plaquette, = mn⟨ ⟩u U NTr c0
4 , and partially accounts for the expected L( )alog QCD

dependence.
For R4 and R6/R8, separate continuum extrapolations for each heavy-quark mass proved

feasible only for mh� 1.5mc [56]. Continuum extrapolation for mh� 2mc required joint fits
including mh< 2mc [57]; similar joint fits with Bayesian priors were used in [16, 17]. The
published continuum results for R4 and R6/R8 at mh=mc or 1.5mc are consistent among each
other [50, 57]; any significant deviations can be traced back to known deficiencies in the
respective analyses [55, 58], see e.g. table 65 of [11]. For Rn/mh0, n� 6 fits with N= 1,
M1= 2 are sufficient for any mh, and published results for Rn(mc)/mc0, n� 6 are consistent.
Severe finite volume effects affect R8/R10; R8/R10 at mc is systematically low (and incon-
sistent with R4), while continuum extrapolation with joint fits proved reliable for mh� 1.5mc

[57]. With the aforementioned exceptions the continuum results in (2+1)-flavour QCD span
the region mh=mc,K, 4mc for valence quarks, see tables 1 and 4 of [57]; with increasing
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heavy-quark mass mh, R4 and the ratios decrease towards 1, while the errors of the lattice
calculations increase. Continuum results in (2+1+1)-flavour QCD have not been published.

Comparing R4(mh) to R4(αS(ν), ν/mh) permits extraction of αS(ν); truncation errors, esti-
mated via inclusion of terms a n ( )r5 n S3

4 , turn out to be too large for the ratios to provide
more than a cross-check [57]. Once αS(ν) is given, Rn/mh0 permits obtaining the MS heavy-
quark mass mh(νm); combining both yields L( )N

MS
f . Whether or not the two scales νh= xmh and

νm= xmmh, should be varied jointly (x= xm) or independently (x≠ xm) is under investigation;
the latter has yielded in a reanalysis of published lattice results at mh=mc about 50% larger
estimates of truncation errors [49]. αS(ν) or mh(νm) for different amh0= xlatamc0 are consistent
with perturbative running [57]. Nonperturbative contributions—parametrized in terms of
QCD condensates—are negligible for mh� 1.5mc due to suppression by powers of at least

m1 ;h
4 similarly, truncation errors diminish dramatically for mh� 1.5mc [57].

A recent analysis has exposed that the choice of the lattice scale ratio, i.e.
xlat=mh/mc= (amh0)/(amc0), and the perturbative scale ratio, xpert= ν/mh, both have a
significant and systematic impact on the extracted L( )N

MS
f , and consequently on a ( )mS Z

2 [57],
while the composition of the error budget is very different (table 2). Neglecting the spread due
to varying either of these two scale ratios led in most past determinations to significantly
underestimated errors [16, 17, 54–56]. Nonetheless, the central value of [16] is in good
agreement with the corresponding entry of table 2.

The current FLAG sub-average—taking the latest results [57] partially into account, and
using error estimates from independent scale variation [49]—reports

a = - - -

( )
( ) ( ) ( ) [ ]

2.26
m 0.11826 200 FLAG sub average for heavy quark two point correlators 11 .S Z

2

Table 2 suggests that a viable approach on the lattice side to reducing the errors in the next
decade may be by performing more accurate lattice calculations using masses mh� 2mc,
where the truncation errors are subleading in current results. The corresponding continuum
extrapolations could be made more robust in two ways. First, by including more intermediate
heavy-quark mass values (e.g. mh/mc= 1.75, 2.25, 2.5, 2.75, 3.25, etc) in the joint fits,
equation (2.25), one may hope to significantly reduce the lattice errors of the continuum
results for mh� 2mc. Second, by relying on one-loop instead of tree-level reduced moments at
finite lattice spacing as suggested in [60], one may simplify the approach to the continuum
limit; while cumbersome, these calculations in lattice perturbation theory are in principle
straightforward and are expected to eliminate all i= 1 terms from the series corresponding to
equation (2.25). The availability of lattice results in (2+1+1)-flavour QCD with partially
quenched heavy quarks suggests that a viable approach on the perturbative side to reducing
the errors may be to permit partially quenched heavy quarks, i.e. different heavy-quark

Table 2. L =( )N
MS

3f obtained for different values of mh and different choices of the
renormalization scale ν (using ν= νm). The first error comes from the lattice calcula-
tions, the second error is the perturbative error, and the last error is due to the gluon
condensate. From [57].

mh/mc ν/mh = 2/3 ν/mh = 1 ν/mh = 3/2 ν/mh = 2 ν/mh = 3

1.0 — 323(4)(6)(3) 323(4)(7)(3) 327(4)(13)(3) 340(4)(21)(3)
1.5 314(8)(23)(1) 326(9)(4)(1) 326(8)(5)(1) 329(8)(10)(1) 341(9)(18)(1)
2.0 — 327(13)(3)(0) 327(13)(4)(0) 330(13)(9)(0) 341(14)(16)(0)
3.0 325(20)(20)(0) 332(21)(2)(0) 332(21)(4)(0) 335(22)(22)(0) 344(22)(14)(0)
4.0 — 336(26)(2)(0) 336(26)(3)(0) 339(27)(7)(0) 347(28)(17)(0)
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masses on internal (sea) and external (valence) lines. In particular, application of this method
in (2+1+1)-flavour QCD permits no αS extraction for valence quarks at mh>mc, the only
readily available strategy to alleviate the truncation error, on the basis of the currently
available weak-coupling calculations that require mh,sea=mh,val. If this deficiency were
remedied, the constraining power could be improved in a joint analysis of partially quenched
lattice calculations with different mh in (2+1+1)-flavour QCD similar to the recent analysis in
(2+1)-flavour QCD [57], or by even combining (2+1)- and (2+1+1)-flavour QCD con-
tinuum results in a joint analysis that assumes perturbative decoupling of the heavy quark.
Last but not least, the expected accuracy would obviously benefit from N4LO, resp.

a n( ( )) S h
4 , calculations.
Acknowledgments—PP was supported by US Department of Energy under Contract No.

DE-SC0012704. JHW’s research was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)–Projektnummer 417 533 893/GRK2575 ‘Rethinking
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2.4. Strong coupling constant αS from the static energy, the free energy and the force62

QCD observables that have been computed with high precision in perturbative- and lattice-
QCD with 2+ 1 or 2+ 1+ 1 flavours are well suited to provide determinations of αS in the
kinematic regions where pQCD applies. The advantage of looking at observables is that
continuum analytical and lattice results may be compared without having to deal with
renormalization issues and change of scheme. Moreover, if in the kinematic regions where
pQCD is used the perturbative series converges well, and nonperturbative corrections turn out
to be small, and if lattice data can be extrapolated to continuum, then a very precise extraction
of αS is possible even by comparing few lattice data with the perturbative expression. The
comparison provides LMS times the lattice scale. By supplying a precise determination of the
lattice scale, one obtains LMS. Finally, LMS may be traded with αS conventionally expressed
at the mass of the Z, a ( )mS Z

2 .

2.4.1. The QCD static energy. The QCD static energy E0(r), i.e. the energy between a static
quark and a static antiquark separated by a distance r, is one of these golden observables for
the extraction of αS and it is also a basic object to study the strong interactions [61]. The QCD
static energy, E0(r), is defined (in Minkowski spacetime) as

= ºm
m

¥ ´ ¥
´{ }∮( ) ( )E r

i

T
ig dz A

i

T
Wlim ln Tr P exp lim ln , 2.27

T r T T
r T0

where the integral is over a rectangle of spatial length r, the distance between the static quark
and the static antiquark, and time length T; 〈...〉 stands for the path integral over the gauge
fields Aμ and the light quark fields, P is the path-ordering operator of the colour matrices and
g is the SU(3) gauge coupling (αS= g2/(4π)); Wr×T is the static Wilson loop. The above
definition of E0(r) is valid at any distance r.

On the lattice side, the Wilson loop is one of the most accurately known quantities that
has been computed since the establishment of lattice QCD. In the short distance range,
rΛQCD= 1 for which αS(1/r)= 1, E0(r) may be computed in pQCD and expressed as a
series in αS (computed at a typical scale of order 1/r):

62 Authors: N Brambilla (TUM), V Leino (TUM), P Petreczky (BNL), A Vairo (TUM) J H Weber (HU, Berlin).

J. Phys. G: Nucl. Part. Phys. 51 (2024) 090501 Major Report

20



a
= L - +( ) ( ) ( )E r

r

4

3
1 ... , 2.28s

S
0

where Λs is a constant that accounts for the normalization of the static energy and the dots
stand for higher-order terms. The expansion of E0(r) in powers of αS has been computed, in
the continuum in the MS scheme, using perturbative and effective field theory techniques, in
particular potential Nonrelativistic QCD [62]. It is currently known at next-to-next-to-next-to-
leading-logarithmic (N3LL) accuracy, i.e. including terms up to order a a+ lnS

n n
S

4 with n� 0.
At three loops, a contribution proportional to aln S appears for the first time. This three-loop
logarithm has been computed in [63]. The complete three-loop contribution has been
computed in [64, 65]. The leading logarithms have been resummed to all orders in [66],
providing, among others, also the four-loop contribution proportional to a alnS S

5 2 . The four-
loop contribution proportional to a alnS S

5 has been computed in [67]. Next-to-leading
logarithms have been resummed to all orders in [68]. However the constant coefficient of the
aS

5 term is not yet known. E0(r) is, therefore, one of the best known quantities in pQCD
lending to a perfect playground for the extraction of αS.

The aln S terms in E0(r) signal the cancellation of contributions coming from the soft
energy scale 1/r and the ultrasoft (US) energy scale αS/r. The ultrasoft scale is generated in
loop diagrams by the emission of virtual ultrasoft gluons changing the colour state of the
quark-antiquark pair [63, 69]. The resummation of these logarithms accounts for the running
from the soft to the ultrasoft scale.

The soft and ultrasoft energy scales may be effectively factorized in potential
Nonrelativistic QCD [62, 70]. The factorization of scales leads to the formula [62, 63]:

òm m= L + - +
¥

- - ( )( ) ( ) ⟨ { · ( ) · ( )}⟩( )( ) 2.29E r V r i
V

dt e g t gr E r E,
3

Tr , 0 0, 0 ...,s s
A it V V

0

2

0

o s

where μ is the US renormalization scale, Vs(r, μ)=−4αS/(3r)+ ... is the colour-singlet static
potential, Vo(r, μ)= αS/(6r)+ ... is the colour-octet static potential, a= + ( )V 1A S

2 is a
Wilson coefficient giving the chromoelectric dipole coupling, and E is the chromoelectric
field. The colour-singlet and colour-octet static potentials encode the contributions from the
soft scale 1/r, whereas the low-energy contributions are in the term proportional to the two
chromoelectric dipoles. While at short distances, rΛQCD= 1, the potentials Vs and Vo may be
computed in perturbation theory, low-energy contributions include nonperturbative
contributions.

The perturbative expansion of Vs is affected by a renormalon ambiguity of order ΛQCD.
The ambiguity reflects in the poor convergence of the perturbative series. A first method to
cure the poor convergence of the perturbative series of Vs consists in subtracting a (constant)
series in αS from Vs and reabsorb it into a redefinition of the normalization constant Λs. This is
the strategy we followed, for instance, in [71]. A second possibility consists in considering the
force

n =( ) ( ) ( )F r
d

dr
E r, . 2.300

It does not depend on Λs and is free from the renormalon of order ΛQCD [72, 73]. Once
integrated upon the distance, the force gives back the static energy

ò= ¢ ¢ ¢( ) ( ) ( )
*

E r dr F r r, 1 , 2.31
r

r

0

up to an irrelevant constant determined by the arbitrary distance r*, which can be reabsorbed
in the overall normalization when comparing with lattice data. This is the strategy followed,
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for instance, in [19]. We note that equation (2.29) provides also the explicit form of the
nonperturbative contributions encoded in the chromoelectric correlator. They are proportional
to r3 at very short distances and to r2 at somewhat larger distances.

In summary, E0(r) is one of the best known quantities in pQCD lending an ideal
observable for the extraction of αS by comparing lattice data and perturbative calculation in
the appropriate short distance window. This way of extracting of αS has been developed in a
series of papers [71, 74, 75]. Here we report about our best determination from [19]. The
method provides one of the most precise low energy determinations of αS. The strong
coupling constant extracted in this way relies typically on low energy data because the lattice
cannot explore too small distances. It therefore provides a precise check of the running of the
coupling constant and a determination of it that is complementary to high-energy
determinations.

Concerning the power counting of the perturbative series a remark is in order. Upon
inspection of the numerical size of the contributions coming from the soft and the US scale at
each order, in the analysis of [19] it was decided to count the leading US resummed terms
along with the three loop terms, since the a alogS S

4 terms appear to be of the same size as the
aS

4 terms, and, moreover, to partially cancel each other. It was also decided not to include
subleading US logarithms in the analysis, as the finite four loop contribution is unknown and
a cancellation similar to the one happening at three loops may also happen at four loops.
Nevertheless, it may be also legitimate to count leading US resummed terms as if they were
parametrically of order aS

3 and count subleading US logarithms of order a alogS S
5 as if they

were parametrically of order aS
4, including them in the analysis. This is the procedure adopted

in [20]. Most of the difference between the central value of αS obtained in the analysis of [19]
and in the one of [20] is due to this different counting of the perturbative series. The two
analyses are consistent once errors, in particular those due to the truncation of the perturbative
series, are accounted for.

The static energy can be computed on the lattice as the ground state of Wilson loops or
temporal Wilson line correlators in a suitable gauge, typically in Coulomb gauge. Polyakov
loops at sufficiently low temperatures could be employed as well. All energy levels from any
of these correlators are affected by a constant, lattice spacing dependent self-energy
contribution that diverges in the continuum limit. It can be removed by matching the static
energy at each finite lattice spacing to a finite value at some distance. In calculations with an
improved action, all these correlators, which are obtained from spatially extended operators,
are affected by nonpositive contributions at very small distance and time, which cannot be
resolved on coarse lattices or with insufficient suppression of the lowest excited states.
Although Wilson line correlators retain an advantage in terms of the excited state suppression,
the relative disadvantage of Wilson loops could be alleviated to some extent with smeared
spatial links.

The ground state energy E0(r, a) can be extracted from such correlators, e.g. via multi-
exponential fits, in the large Euclidean time region for each lattice three-vector r/a= (n1, n2,
n3), where 0� ni� Li/2a. Obviously, small lattice spacing a is indispensable in order to
access small distances |r| 0.15 fm [75]. Yet simulations with periodic boundary conditions
fail to sample the different topological sectors of the QCD vacuum properly at small a. This
topological freezing, which is known to be a quantitatively small but significant problem in
low-energy hadron physics, does not lead in high-energy quantities (such as E0(r, a) at small
distances) to statistically significant effects due to small changes of the topological charge
[76]. Although significant effects in E0(r, a) due to large changes of the topological charge
cannot be completely ruled out, they seem very unlikely, given that the topology does not
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contribute at all in the weak-coupling calculations used in the comparison. Furthermore, sea
quark mass effects due to light or strange quarks do not play a role in this range [76, 77],
while dynamical charm effects are significant [78, 79]. At distance larger than |r| 0.15 fm
light sea quark mass effects become nonnegligible [76, 77].

Continuum extrapolation is only possible for somewhat larger distances probed by
multiple lattice spacings, or if the functional form of E0(r, a) were known to sufficient
accuracy to predict the shape at small r/a on the fine lattices. Due to the breaking of the
continuous O(3)-symmetry group to the discrete W3-symmetry group the lattice gluon
propagator, and hence E0(r, a), is a non-smooth function of |r|/a; geometrically inequivalent
combinations of the ni, i.e. belonging to different representations of W3 but corresponding to
the same geometric distance = + +∣ ∣r a n n n1

2
2
2

3
2 , e.g. (3, 0, 0) or (2, 2, 1), yield

inconsistent E0(|r|, a) due to lattice artifacts. Moreover, the same |r| accessed through
different lattice spacings a is generally affected by different types of non-smooth lattice
artifacts corresponding to the different underlying r/a. For this reason, a continuum
extrapolation of E0(|r|, a) at fixed |r| utilizing a parametrization of lattice artifacts in terms of
a smooth function in |r| is incapable of describing the small |r|/a region, see e.g. [50]. These
inconsistencies are much larger than the statistical errors at small |r|/a, but covered by the
statistical errors at large |r|/a. A tree-level correction (TLC) procedure defines the (tree-level)
improved distance rI/a= f (n1, n2, n3) and alleviates these inconsistencies somewhat: at
|r|/a 3 this is sufficient, while further effort is needed at smaller |r|/a. A nonperturbative
correction (NPC) procedure heuristically estimates the lattice artifacts remaining in E0(rI, a)
by comparing to a suitable smooth function, either obtained at a finer lattice spacing, or in a
continuum calculation, which, however, potentially introduces systematic errors. Both
approaches have been used yielding consistent results; for details see [19].

For Wilson line correlators, all combinations of 0� n1, n2, n3� L/2a are accessible, thus
permitting access to noninteger distances in units of the lattice spacing; this entails all of the
aforementioned complications. After the nonperturbative correction, ( )E r a,I0

NPC from Wilson
line correlators computed in (2+1)-flavour QCD on lattices with highly improved staggered
quarks (HISQ) was shown to exhibit no statistically significant lattice artifacts anymore [19]
(figure 6). With this data set the range of interest can be probed using a rather large number of
rI/a values and many lattice spacings (up to six spacings in the range a ä (0.024,K, 0.06)
fm), where the underlying high statistics ensembles had been generated for studies of the
QCD equation of state [77, 82]. The uncertainty due to the lattice scale, lattice spacing
dependence, estimates of the uncertainty due to treating residual lattice artifacts with the
nonperturbative correction, or due to changes of the fit range are within the the statistical error
and subleading in the error budget. Instead it was found that estimates of the continuum
perturbative truncation error dominate the error budget. In [19] these have been estimated by a
scale variation between 2/r and 1/2r, inclusion of a parametric estimate of a higher order
term a r4 3 S

5 , and variation between resummation or no resummation of the leading
ultrasoft logarithms a a+ rlnS

n n
S

3 . The scale dependence becomes nonmonotonic below
r1 2 at large r, which makes robust error estimates challenging unless the range is

restricted to (∣ ∣)rmax 0.1 fm. As lattice data at larger |r| are discarded, the statistical error
increases while the truncation error decreases. Eventually, for (∣ ∣)rmax 0.1 fm, the
nonperturbative correction to the lattice data becomes essential to having enough data, while
the central value hardly changes. For our joint fit using nonperturbatively corrected HISQ data
at five lattice spacings we report the best compromise between the different contributions to
the error budget as
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a = -
+( ) ( )m 0.11660 , 2.32S Z

2
0.00056
0.00110

where the total, symmetric lattice error amounts to 0.00047 for |r|� 0.073 fm.
In [20], a reanalysis of a subset of these data (a= 0.024 fm,  ∣ ∣r a8 4)

was carried out that included resummation of next-to-leading ultrasoft logarithms
a a+ rlnS

n n
S

4 , i.e. the full N3LL accuracy, and hyperasymptotic expansion, resulting in
a =( ) ( )m 0.1181 9S Z

2 . Concerning the central value, we have already commented that it
differs from (2.32) mostly because of the inclusion of the subleading ultrasoft logarithms.
Concerning the error budget, it may possibly increase by including an estimate of the lattice
spacing dependence and a variation of (∣ ∣)rmin or (∣ ∣)rmax to smaller values. Nevertheless,
even inside the quoted errors the result is consistent with (2.32).

For Wilson loops, spatial Wilson lines connecting the temporal ones entail additional,
r/a-dependent self-energy divergences. The static energy from Wilson loops is usually
computed only for few specific geometries, and spatial link smearing is applied to suppress
these divergences. The static energy has been obtained from Wilson loops for two different
geometries r/a∝ (1, 0, 0) or (1, 1, 0) [80, 81] in (2+1)-flavour QCD on lattices with Möbius
domain-wall fermions with a pion mass of mπ≈ 300MeV and three lattice spacings

Figure 6. The nonperturbative lattice and the perturbative continuum results for the
static energy multiplied by the distance, ( )rE r (E≡ E0). The HISQ data [19] are
nonperturbatively corrected (NPC, coloured bullets) or tree-level corrected (TLC, black
crosses and gray bullets). The colour indicates the lattice spacing in units of the scale
r1, a/r1. The DWF data [80, 81] are from a one-step analysis II that mixes the
continuum extrapolation with the fit to the OPE result at N3LO, using a parametrization
of discretization artifacts (green squares). The lines represent the three-loop result with
resummed leading ultrasoft logarithms, corresponding to a =( )m 0.1167S Z

2 (gray,
solid) or a =( )m 0.1179S Z

2 (green, dashed). The former uses the central value
a =( )m 0.1167S Z

2 of the analysis of the (TLC or NPC) HISQ data with ∣ ∣r a 8
(gray bullets), the latter uses the central value a =( )m 0.1179S Z

2 of the OPE-based one-
step analysis II of the DWF data [80, 81]. The NPC HISQ data with <∣ ∣r a 8 are
well-aligned with the fit excluding these data, while the TLC HISQ data with

<∣ ∣r a 8 cannot be consistently described by a continuum result for any value of
a ( )mS Z

2 . The figure is taken from [50].

J. Phys. G: Nucl. Part. Phys. 51 (2024) 090501 Major Report

24



a ä (0.04, K, 0.08)fm that had been generated by the JLQCD collaboration [83]. Two
separate analyses were performed: a two-step analysis (I) with a continuum extrapolation at
large distances sequentially followed by the αS extraction, and another one-step analysis (II)
using a single joint fit to achieve both at once. Both analyses relied on a particular form
of operator product expansion, and used data in the range 0.24 fm� |r|� 0.6 fm or
0.044 fm� |r|� 0.36 fm, respectively. The reported values from the two analyses are
a = -

+( )m 0.1166S Z
2

0.0020
0.0021 and a = -

+( )m 0.1179S Z
2

0.0014
0.0015. They are both dominated by the

estimate of the truncation errors. As both analyses extend far into ranges where E0(|r|, a) is
known to be sensitive to the pion mass [76], the authors had to include condensate terms,
while reporting no significant mass dependence when assuming only a perturbative
contribution from massive light quarks. The first analysis has no data for |r| 0.10 fm.
The second analysis does have data in that region, but has to fit LMS simultaneously with the
lattice artifacts at small r/a. As a result the continuum extrapolated static energy from this
analysis has large errors for |r| 0.10 fm and lies systematically below the HISQ result from
[19] (figure 6).

2.4.2. Static force. Another possibility consists of computing the force directly from the
lattice, i.e. not as the slope of the static energy. The force, F, between a static quark located in
r and a static antiquark located in 0 can be defined as [84]

= ¶ = -
¥

´

´

{ }
( ) ( )

ˆ · ( )

⟨ { }⟩
( )

*
F r E r i

W g t

W

r E r
lim

Tr ,

Tr
. 2.33r

T

r T

r T
0

The chromoelectric field E(r, t*) is located at the quark line of the Wilson loop.
This definition permits to obtain the force directly from the lattice instead of

reconstructing it, after interpolation, from the lattice data of the static energy. The
perturbative calculation of the force in continuum QCD is free of the leading renormalon and
it is known at N3LL. Therefore the force provides a clean way to extract αS. In [85], we have
used the multilevel algorithm to perform a preliminary quenched lattice study of the
chromoelectric insertion in a static Wilson loop given by equation (2.33) both with smeared
Wilson loops and with Polyakov loops. The result is consistent with the force obtained via
derivative of the static energy upon multiplication with a constant renormalization factor ZE
that encodes the very slow convergence of lattice operators containing gluonic operators.
Recently in [86] we have performed the same calculation with gradient flow, which eliminates
the necessity of ZE and makes the lattice calculation more efficient. We plan to go to very fine
lattice spacings and perform an extraction of L rMS 0.

2.4.3. Static singlet free energy. One reason for which it is challenging to reach the fine
lattice spacings needed for the best extraction of αS is that one has to simultaneously maintain
the control over finite volume effects from the propagation of the lightest hadronic modes,
namely, the pions. A lattice simulation at high enough temperature avoids this infrared
problem, and thus enables reaching much finer lattice spacings using smaller volumes. In
[19], we considered the extraction of the strong coupling from the singlet free energy at
nonzero temperature, as it is expected that at small distances medium effects are small. The
singlet free energy in terms of the correlation function of two thermal Wilson lines in
Coulomb gauge is given by (T is now the temperature)
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⎞
⎠

= -( ) ⟨ [ ( ) ( )]⟩ ( )†F r T T
N

W r W, ln
1

Tr 0 . 2.34S
c

At distances much smaller than the inverse temperature, rT= 1, we can write using potential
nonrelativistic QCD [87]

m d m= +( ) ( ) ( ) ( )F r T V r F r T, , , , . 2.35S s S

The form of the US correction depends on the scale hierarchy that is now featuring also the
temperature and the Debye mass mD∼ gT: if 1/r? αS/r? T?mD then μ∼ αS/r and
δFS(r, T, μ)= δEUS(μ)+ΔFS(r, T), with δEUS(μ) being the US contribution to E0 in vacuum
that we already discussed. The singlet free energy has been studied on the lattice in [88] using
a wide temperature range and several lattice spacings, i.e. several temporal extents Nτ. The
shortest distance that we can access, due to a single lattice spacing on our finest lattice at
T> 0, is 0.00814 fm. For our analysis the relevant data correspond to Nτ= 10, 12 and 16,
since rT has to be small. From the analysis of Ref. [88], we see that thermal effects are small
for rT 0.3. In particular we see that for ∣ ∣r a 6 the difference between the singlet free
energy at (T> 0) and the static energy at (T= 0) approaches a constant proportional to the
temperature. No temperature effects beyond a constant can be seen in this range within the
errors of the lattice results. Therefore we treat the finite temperature data in this range as if
they were at zero temperature and fit them with the three-loop plus leading ultrasoft
resummed result of the static energy at T= 0.

A drawback of this analysis is the restriction to very small |r|/a, which implies that the
nonperturbative correction (NPC) is indispensable. Yet the main advantage of the analysis is
that at very small distances, (∣ ∣)rmax 0.03 fm, the truncation error becomes very small.
Beyond what has been necessary at zero temperature, one must verify that T> 0 effects do
not become significant when including larger |r|/a or when varying the temperature
T= 1/aNτ at fixed lattice spacing. We confirmed the statistical irrelevance in these two
measures of T> 0 effects by comparing |r|/a� 2 with |r|/a� 3 and Nτ= 12, 16, and, where
possible, 64, and included these error estimates with the other lattice errors in the error
budget. The key ingredient to making this extraction work with substantial constraining
power is that a wide range in |r| can be covered using only narrow windows in |r|/a by
performing a joint analysis using multiple lattice spacings a that cover |r| in multiple,
overlapping segments. For our joint fit using nonperturbatively corrected T> 0 HISQ data at
eight lattice spacings and an |r| region and set of lattice spacings nonoverlapping with the zero
temperature analysis we report

a = -
+( ) ( )m 0.11638 2.36S Z

2
0.00087
0.00095

(the total, symmetric lattice error amounts to 0.000 85) for |r|� 0.03 fm [19]. This result is
marginally lower than the result from our zero temperature analysis. Remarkably, however,
the zero temperature result is still compatible with the T> 0 data over a much wider range in
|r|/a, a factor of sixteen in |r|, and over almost a factor of ten in lattice spacings (figure 7).

2.4.4. Outlook. In summary, in order to reach a few permil accuracy in the extraction of αS

with the outlined methods we need:

• Lattice calculations of the static energy at smaller distances, ideally extrapolated to the
continuum. The one-loop correction should be computed in lattice perturbation theory.
Based on the experience with the nonperturbative correction, the one-loop correction is
expected to substantially alleviate the restriction of |r|/a (from |r|/a 3 to |r|/a 2) in a
field-theoretically rigorous manner.
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• To exploit more systematically finite temperature simulations in order to go to shorter
distances. On the lattice side there is no major impediment to further increasing the
temperature and decreasing the lattice spacing.

• To have the nonlogarithmic four-loop contribution to the static potential. This would be
important to verify if large numerical cancellations between soft and US contributions
also happen beyond three loops.

• To further exploit the definition of the force in terms of a chromoelectric field insertion in
the static Wilson loop in order to generate high precision quenched and unquenched lattice
data at short distances and to compare with the perturbative expression at N3LO or N3LL.

• To use recent high quality lattice data at 2+ 1+ 1 flavours to extract αS from the static
energy with an active charm quark [78, 79]. To achieve precision competitive with 2+ 1
flavour QCD, a full three-loop calculation of the contribution to the static potential due to
the finite charm quark mass may be necessary.

Acknowledgments— PP was supported by U.S. Department of Energy under Contract
No. DE-SC0012704. JHWʼs research was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - Projektnummer 417 533 893/GRK2575 ‘Rethinking
Quantum Field Theory’.

2.5. Remarks on determining αS
63

Every method to determine the strong coupling αS starts with an observable that depends on a
short distance, 1/Q (or high energy Q). The notion of ‘short’ or ‘high’ relates to other scales

Figure 7. The nonperturbative lattice result r1E(r) (E≡ E0) using the singlet free energy
at T> 0 and the perturbative continuum results for the static energy. The HISQ data
[19] are nonperturbatively corrected (NPC, coloured bullets and gray bullets). The
colour indicates the lattice spacing in units of the r1 scale, a/r1. The dashed line
represents the three-loop result with resummed leading ultrasoft logarithms,
corresponding to the result of the optimal T= 0 analysis a =( )m 0.1166S Z

2 . Only
the NPC HISQ data at T> 0 with |r|/a� 2 (coloured) are used in the fit, but all data in
the range < ∣ ∣r a2 12 (gray) are still consistent with it. The figure is taken
from [19].

63 Authors: A S Kronfeld (Fermilab).
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in the problem. The observable can be multiplied by the appropriate power of Q to obtain a
dimensionless quantity, ( ) Q , which can be written

= + -( ) ( ) ( ) ( ) Q R Q Q S M Q, , 2.37p

where M is another (energy) scale, M=Q, the first term R does not depend on M, and the
power p> 0 is something like 2, 4, or 1. The separation can be justified with tools such as the
operator product expansion (OPE) [89] or an effective field theory (EFT) [90, 91].
(Sometimes equation (2.37) is posited on the basis of arguments or assumptions.) With the
OPE or an EFT, the power p corresponds to the dimension of an operator. For example, R
might be the short-distance (or ‘Wilson’) coefficient of the unit operator, and S the product of
another coefficient and the matrix element of a dimension-4 operator, in which case p= 4.

In an asymptotically free quantum field theory, such as QCD, the short-distance part can be
well approximated with perturbation theory:

å åm a m a= =
=

¥

=

¥

( ) ( ) ( ) ( ) ( )R Q R Q R Q , 2.38
l

l S
l

l
l S

l

0 0

where μ is a separation scale introduced by the OPE, EFT, or other consideration; in the last
expression, Rl= Rl(1). Because μ is unphysical, it can be chosen, at least after thorough
analysis of the scale-separation details, equal or proportional to Q. At this stage, it is useful to
introduce (with μ=Q)

a =
-( ) ( ) ( )

 Q
Q R

R
, 2.390

1

which is known as the effective charge (or effective coupling) for the observable. It may be
more apt to note that a is simply a physical, regularization-independent choice of
renormalization scheme.

It is tempting to identify ‘short distance’ with ‘perturbative’ and ‘long distance’ with
‘nonperturbative’. In the OPE or an EFT, however, the home for small instantons (for
example) of diameter 1/Q is in short-distance coefficients. Fortunately, small-instanton
contributions scale with a large power, 11− 2Nf/3� 7 (where Nf is the number of active
quark flavours), so they are small enough that neglecting them is safer than other compro-
mises that must be made. Further complications in separating scales arise, such as renor-
malons. In the end, the point of equation (2.37) is that short-distance quantities depend on Q
logarithmically with power-law corrections.

A practical version, then, of equation (2.37) is

å å åa a a= + + =
= = +

( )( ) ( ) ( ) ( ) 2.40Q r Q r Q d M Q r, 1,
l

n

l S
l

l n
l S

l

p
p

p

1 1
1

loop

loop

presupposing a preferred renormalization scheme (such as MS), truncating the perturbative
series at nloop terms (those available from explicit perturbative calculation), acknowledging
that the remaining terms do not vanish, and allowing for several power corrections. The
renormalization group provides more information, in particular showing how to relate a ( ) Q
at one scale to a ( ) Q0 at a fiducial scaleQ0. Instead of using the rl to relate a to aMS, they
can be used to convert the coefficients of the β function in the MS scheme to the  scheme.
Thus, perturbation theory predicts the logarithmic Q dependence of a ( ) Q without explicit
reference to the ultraviolet regularization.

Equation (2.40) provides a guide to controlling a determination of αS. The quantity 
should be something that can be measured (in a laboratory experiment) or computed (with
numerical lattice QCD) precisely. The higher the order in αS, nloop, the better. One wants Q to
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be as large as possible, both to reduce the power corrections and to reduce the truncation
error. Even better is a wide range of Q, both to verify the running of a and to separate the
logarithmic dependence on Q from the power-law behavior of the remainder. An observable
is better suited when p can be proven, argued, or demonstrated to be large. Another desirable
feature is to have several similar quantities, especially if the power corrections are related.

The quantity  can be computed in lattice QCD or measured in high-energy scattering or
heavy-particle decays. Many reviews separate the two as if they are completely different
objects. Table 3 compares the ingredients in the two approaches.

The scaling violations of moments of deep-inelastic structure functions are taken as a
textbook example of high-energy scattering (further columns could be added without much
work). Table 3 shows two classes of methods based on lattice gauge theory: small Wilson
loops and every observable for which the continuum limit is taken (including everything else
discussed in the subsections below). Even if one starts with a spacetime lattice as an ultra-
violet regularization, the continuum limit is the same QCD as probed by high-energy
experiments. In particular, the same methods for perturbation theory—based on dimensional
regularization—apply and, thus, the issues related to truncating the series, the size of and
range in Q, etc, are the same. Indeed, moments of quarkonium correlation functions can be
calculated with lattice QCD or measured in e+e−→ hadrons: the perturbative series are
exactly the same. We have here an example of a lattice-QCD method that has more in
common with a high-energy-scattering method than it has with other lattice-QCD methods
(see sections 2.3 and 9.1 for details).

Because of the similarities, criteria for assessing issues such as truncation of perturbation
theory and the range in Q should be the same for both. Ideally, the a ( )mS Z

2 averaging
approaches used by the PDG from the world data [92] and by the FLAG collaboration from
lattice results [12] should be more closely aligned. Some remarks on the criteria are provided
below.

In table 3, small Wilson loops are listed separately because they are defined at the scale of
the lattice spacing, i.e. at the ultraviolet cutoff. There are further such quantities, including the
bare coupling. They are a different object because the lattice—including details of the chosen
lattice action—is present. The lattice is like ‘new physics’ at the highest energies, except that

Table 3. Ingredients of αS determinations, with nonperturbative ‘measurements’
directly from lattice gauge theory (LGT), from the continuum limit of lattice QCD, or
(to choose one example) scaling violations of the moments of structure functions in
deep inelastic scattering (DIS). Effects beyond the Standard Model (BSM) may be
present in experimental data (no one knows) and are omitted (as a rule) from the theory.

Ingredient Small Wilson loops LGT with a→ 0 DIS scaling violation

Obtain ( ) Q Compute from QCD Lagrangian Measure e−p scattering
Large energy scale a−1 L−1, 2mQ, ... Momentum transfer Q
Scale separation OPE Various OPE
Perturbation theory Lattice (NLO, maybe NNLO) Dimensional regularization (NNLO, N3LO)
Number of
quantities

Several one or few Several

Electroweak Omitted by construction Included in data and
theory

BSM Omitted by construction Unknown/omitted
Units in GeV Hadronic quantity, viz., Q=MPDG[(Qa)/(Ma)]lat Detector calibration
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the action of the new physics is exactly known. Determinations of αS from small Wilson
loops warrant discussion here in order to clarify discussions in [11, 13, 50].

In continuum language, a Wilson loop is a path-ordered exponential integrating dz · A
around a closed loop [61]:

=  ∮ · ( ) ( )W ig dz A zexp , 2.41P
P

where A= t aAa is the gauge potential, and  denotes path ordering. For small loops of linear
size a, this operator admits an OPE:

 a+ + +[ ¯ ( )] ( )( ) ( ¯ ) W Z C a F C a mqq a , 2.42P P P
FF

S P
qq4 2 4 6

where the equivalence B is in the weak sense of matrix elements between low-energy states.
Here, ZP,

( )Z CP P
FF , and ( ¯ )Z CP P

qq , are short distance coefficients, so they can be calculated in
perturbation theory. Note that the operators that appear do not depend on the path: when
taking matrix elements, the same quantities enter over and over again. Note also the high
power 4 in the power corrections.

Equation (2.42) applies equally well in a lattice gauge theory. Indeed, in pure gauge
theory, the OPE is on a very solid footing [93, 94]. The short-distance coefficients must be
calculated in lattice perturbation theory, which is less developed than perturbation theory with
dimensional regularization. It is instructive to show the tree-level expression for the coeffi-
cient ( )Z CP P

FF of a planar Wilson loop of size ma× na,

p
= -´ ´

( ) ( )( )Z C
mn

36
, 2.43m n m n

FF
2

where a is now the lattice spacing. The condensate contribution to the 1× 1 loop is 16 times
smaller than that of the 2× 2 loop.

Vacuum expectation values º ⟨ ⟩ WRe trP P
1

3
or ¢ º - ⟨ ⟩ Wln Re trP P

1

3
, and combina-

tions thereof, satisfy equation (2.40). They can be computed very precisely. (The bare cou-
pling, mentioned above, is known exactly.) Fits of the precise data can include several orders
beyond the nloop

th term [14, 95, 96], which is not a shortcoming but a strength of the method.
Such fitting could be applied to any quantity  with per mil uncertainties, because assuming
that the higher-order terms vanish is obviously wrong. In practice, the fits include terms that
cannot be determined by the data, but the correct interpretation of these parameters is a
marginalization over terms whose Q dependence is known, even if their strength is not. For
determining αS, one is not interested in the values (and errors) of higher-order or power-law
coefficients. One is interested is how imperfect knowledge of these terms propagates to
uncertainty ina ( )mS Z

2 .
Incorporating the next few terms via fit parameters, with suitable priors, can be seen as

more conservative and more robust than the popular method of varying the scale by a factor
of two up and down. The popular method sets μ= sQ and moves Î - +[ ]sln ln 2, ln 2 . It
picks out a one-dimensional curve in a multidimensional space, rather than allowing a data-
guided exploration of the space. Reference [13] uses the scale variation method to estimate
the truncation uncertainty in analyses such as those in [14, 95, 96], not discussing that the
additional fitted terms could absorb such a variation.

The FLAG collaboration [11] is considering making its quality criteria stricter. It is worth
scrutinizing the criteria and asking whether they are the most apt. One of the criteria requires
a to be sufficiently small. The bare coupling of lattice QCD satisfies the 2021 criterion and
probably any future one, but it has been deprecated (for well-known reasons) as a route to αS.
Another criterion demands that the truncation error, a +


m 1loop , be smaller than the statistical
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(and systematic) error. This criterion, as it stands, can exclude quantities that are precise
enough to verify higher-order perturbative behavior by fitting.

Because small Wilson loops are defined at the scale of the lattice spacing, effects of QED
and strong isospin breaking (mu≠md) are often very small. The leading effect arises not in
the effective αS but in the conversion from lattice units to GeV. The ensembles of lattice
gauge fields best suited to a future study of small Wilson loops are those being used for the
hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment,
because they have the widest range in a, highest statistics, and include QED and strong
isospin contributions in the determination of the lattice spacing. A typical target is
δa/a 0.5%, leading to a δαS/αS that is β0αS times smaller, or0.1%.

3. αS ðm2
ZÞ from hadronic tau decays

3.1. Determination of αS ðm2
τ Þ from ALEPH τ decay data64

The inclusive distribution of the final hadrons in τ decay provides the needed information to
perform a clean low-energy determination of the strong coupling [97]. The relevant dyna-
mical quantities are the two-point correlation functions for the vector g=m mV u d and axial-
vector g g=m mA u d5 colour-singlet charged currents:

ò = - + P + Pm n mn m n mn⟨ ∣ [ ( ) ( )]∣ ⟩ ( ) ( ) ( ) ( )† ( )   i d x e T x g q q q q g q q0 0 0 , 3.1iqx4 2 2 2 0 2

with = V A, . If the tiny up and down quark masses are neglected, P =( )( )
q q 02 0 2 and

only the first term needs to be considered. The correlators P ( ) s are analytic functions in the
entire complex s plane, except for a cut along the positive real axis where their imaginary
parts (spectral functions) have discontinuities. This implies the exact mathematical identity
[98]

ò w wº P = Pw

=
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s s
0

0 0th

0

0

where ω(s) is any weight function analytic in |s|� s0, sth is the hadronic mass-squared
threshold, and the complex integral in the right-hand side runs counter-clockwise around the
circle |s|= s0. The inclusive Cabibbo-allowed hadronic decay width of the τ just corresponds
to the weight w = - +t ( ) ( ) ( )x x x1 1 22 with x= s/s0 and = ts m0

2. The measured invariant-
mass distribution determines then the left-hand-side integral for ts m0

2.
For large-enough values of s0, the operator product expansion (OPE) [99],
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,
2

can be used to expand the contour integral in inverse powers of s0. The first term (D= 0)
contains the perturbative QCD contribution, which is known to a( ) S

4 [100], while
nonperturbative power corrections have D� 4. The small differences between the physical
values of the integrated moments w ( )A s0 and their OPE approximations are known as quark-
hadron duality violations. They are very efficiently minimized by taking ‘pinched’ weight
functions which vanish at s= s0, suppressing in this way the contributions from the region
near the real axis where the OPE is not valid [98, 101, 102].

The high sensitivity of the τ hadronic width to the strong coupling follows from four
important facts:

64 Authors: A Pich (IFIC València), A Rodríguez-Sánchez (IJCLab Orsay).
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1. The perturbative contribution amounts to a sizeable 20% effect because a ~t( )m 0.3S
2 is

large.
2. The OPE can be safely used at ~ ts m0

2. The weight ωτ(x) contains a double zero at
s= s0, heavily suppressing the numerical impact of duality violations.

3. Since ωτ(x)= 1− 3x2+ 2x3, the contour integral is only sensitive to OPE corrections
with D= 6 and 8, which are strongly suppressed by the corresponding powers of mτ.
Moreover, these power corrections appear with opposite signs in the vector and axial-
vector correlators [98, 103, 104], which implies an additional numerical cancellation in
the total vector+ axial (V+ A) decay width.

4. The opening of high-multiplicity hadronic thresholds dilutes very soon the prominent
ρ(2π) and a1(3π) resonances, leading to a quite flat V+ A spectral distribution that
approaches very fast the perturbative QCD predictions.

The small nonperturbative contributions can be extracted from data, analysing moments
more sensitive to power corrections [101]. The detailed analyses performed by ALEPH [105],
CLEO [106] and OPAL [107] confirmed a long time ago that these corrections are smaller
than the perturbative uncertainties. The latest and more precise experimental determination of
the strong coupling obtains a =  t

= ( )( ) m 0.332 0.005 0.011S
N 3 2

exp th
f [103]. Taking as

input their measured nonperturbative correction, the strong coupling can be directly extracted
from the total τ hadronic width (and/or lifetime), which results in a =t

= ( )( ) mS
N 3 2f

0.331 0.013 [108].
An exhaustive reanalysis with the updated ALEPH τ data [103] has been performed in

[104], in order to carefully assess any possible source of systematic uncertainties. A large
variety of methodologies, including all previously considered strategies, have been explored,
looking for potential hidden weaknesses and testing the stability of the fitted results under
slight variations of the assumed inputs. The most reliable determinations of a t( )mS

2 , obtained
with the total V+ A distribution, are summarized in table 4. The dominant uncertainties are
the perturbative errors associated with the unknown higher-order corrections. This is clearly
illustrated in the table, which shows the results obtained under two different procedures, either
performing the contour integrals with a running αS(−s), by solving numerically the five-loop
β-function equation (contour-improved perturbation theory, CIPT) [109, 110], or naively
expanding them in powers of a t( )mS

2 (fixed-order perturbation theory, FOPT). FOPT gen-
erates a somewhat larger perturbative contribution and, therefore, leads to a slightly smaller
fitted value of αS. Within each procedure, the perturbative error has been estimated taking a
very conservative range for the fifth-order coefficient of the Adler series, K5= 275± 400, and
varying the renormalization scale in the interval μ2/(−s) ä (0.5, 2). The values obtained with
the two procedures are finally combined, adding quadratically half their difference as an
additional systematic error.

The different rows in the table correspond to different choices of pinched weights:
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a
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2
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In all cases, we find a high sensitivity to the strong coupling and a very small sensitivity to
power corrections, which gets reflected in large uncertainties for the fitted condensates. The
first set of weights was adopted by ALEPH and allows for a direct use of the measured
distribution. With the five indicated moments, we have fitted a t( )mS

2 and the nonperturbative
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corrections 4,6,8. The impact on αS from neglected condensates of higher dimensions (the
highest moment involves corrections with D� 16) has been estimated including10 in the fit
and taking the difference as an additional uncertainty. Additional power corrections with
D> 10 would certainly modify the poorly determined values of the fitted condensates,
specially those with higher dimensions, but they have a negligible impact on αS, compared
with the errors already included. Our results (first line in the table) are in good agreement with
[103]. Very similar values are obtained with the modified weights ŵ ( )xkl (second line), which
eliminate the highest-D power correction from every moment, showing that these
contributions do indeed play a minor numerical role.

Moments constructed with the optimized (double-pinched) weights ω(2,m)(x) only receive
power corrections with D= 2(m+ 2) and 2(m+ 3). The third line in the table shows that they
give values of a t( )mS

2 in very good agreement with those in the first two lines. Similar results
(not shown in the table) are obtained from a fit to four moments, based on the weights
w = -( ) ( )( ) x x1n n,0 , with 0� n� 3, which have a different sensitivity to power corrections
and (for n=0,1) are less protected against duality violations and experimental uncertainties.
The values of a t( )mS

2 , +( ) m2 2 and +( ) m2 3 can also be extracted from a fit to the s0
dependence of a single A(2,m)(s0) moment, above some ŝ 2.0 GeV0

2. One finds a quite poor
sensitivity to power corrections, as expected, but a surprising stability in the extracted values
of a t( )mS

2 at different ŝ0. Combining the information from three different moments (m= 0, 1,
2), and adding as an additional theoretical error the fluctuations with the number of fitted bins,
one gets the a t( )mS

2 values given in the fourth line of table 4. This determination is much
more sensitive to violations of quark-hadron duality because the s0 dependence of consecutive
bins feels the local structure of the spectral function.65 The agreement with the determinations
in the other lines of the table confirms the small size of duality violations in the V+ A
distribution above ŝ0.

A completely different sensitivity to nonperturbative corrections is achieved with the
weights w( )

a
m1, . Their exponential suppression nullifies the high-s region, strongly reducing the

violations of quark-hadron duality, at the price of enhancing the exposition to power

Table 4. Determinations of a t
= ( )( ) mS

N 3 2f from τ decay data, in the V+ A channel [104].

Method
a t

= ( )( ) mS
N 3 2f

CIPT FOPT Average

ωkl(x) weights -
+0.339 0.017

0.019
-
+0.319 0.015

0.017
-
+0.329 0.018

0.020

ŵ ( )xkl weights -
+0.338 0.012

0.014
-
+0.319 0.010

0.013
-
+0.329 0.014

0.016

ω(2,m)(x) weights -
+0.336 0.016

0.018
-
+0.317 0.013

0.015
-
+0.326 0.016

0.018

s0 dependence 0.335± 0.014 0.323± 0.012 0.329± 0.013
w ( )( ) xa

m1, weights -
+0.328 0.013

0.014
-
+0.318 0.012

0.015
-
+0.323 0.013

0.015

Average 0.335± 0.013 0.320± 0.012 0.328± 0.013

65 [104, 111–113] have also analysed a different strategy, advocated in some recent works (see section 3.2), that
maximises duality violations: the experimental spectral function is fitted in the interval < < tŝ s m0

2 with an ad-hoc
4-parameter ansatz, and the resulting model is used to correct the perturbative prediction of w (ˆ )A s0 with ω(x) = 1 (no
weight). This is a dangerous procedure because (1) the OPE is not valid in the real axis, (2) αS is fixed at a very low
scale =ˆ ( )s 1.2 GeV0

2 where theoretical errors are large, and (3) the subtracted duality-violation contribution is large
and model dependent. Slight changes on the functional form of the assumed ansatz result in large variations of the
fitted value of a (ˆ )sS 0 [104, 113] that have not been taken into account in the quoted uncertainties. [113] provides a
very detailed anatomy of this duality-violation approach to the strong coupling, exhibiting unaccounted systematic
errors, some formal inconsistencies of the adopted assumptions and the tautological nature of some of the tests.
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corrections of any dimensionality. In a pure perturbative analysis the neglected power cor-
rections should manifest as large instabilities of αS under variations of s0 and a≠ 0; however,
stable results are found for a broad range of both s0 and a, which indicates that power
corrections are small. The last line in the table has been obtained combining the information
from seven different moments with w( )

a
m1, (0�m� 6) weights.

Fully compatible results with slightly larger uncertainties are also obtained from the
separate V and A distributions [104]. The excellent overall agreement among determinations
obtained with a broad variety of numerical approaches that have very different sensitivities to
nonperturbative corrections, and the many complementary tests successfully performed in
[104], demonstrate the robustness and reliability of the results shown in table 4. The final
average value

a = t
= ( ) ( )( ) m 0.328 0.013 3.5S

N 3 2f

is in good agreement with the results of [103] and with a recent determination (see
section 3.3) based on Borel–Laplace sum rules and a renormalon-motivated model [114].
After evolution up to the scale mZ, the strong coupling decreases to

a = = ( ) ( )( ) m 0.1197 0.0015, 3.6S
N 5

Z
2f

in excellent agreement with the direct N3LO determination at the Z peak.
A much better control of the small nonperturbative contributions could be achieved with

more precise data, specially at the highest energy bins. The high-statistics expected from
Belle-II or a future TeraZ facility should make that possible. A reduction of the dominant
perturbative error requires a better theoretical understanding of higher-order corrections
(CIPT versus FOPT, renormalons, etc). In the long term, an explicit calculation of the K5 term
in the Adler series would have a major impact.

Acknowledgments—This work has been supported by MCIN/AEI/10.13039/
501100011033, Grant No. PID2020-114473GB-I00, by the Generalitat Valenciana, Grant
No. Prometeo/2021/071, and by the Agence Nationale de la Recherche (ANR), Grant ANR-
19-CE31-0012 (project MORA).

3.2. The strong coupling from hadronic τ decays: present and future66

We review the sum-rule framework for determining the strong coupling, αS, from inclusive
spectral functions measured in hadronic τ decays. We then discuss a new inclusive vector
isovector spectral function, obtained from combining the dominant exclusive-mode spectral-
function data from ALEPH and OPAL with BaBar data for τ→ K−K0ντ and several CVC-
converted R-ratio data sets for small exclusive-mode contributions that had previously been
estimated using Monte Carlo methods. We summarize our most recent results for αS, and
discuss prospects for future improvements.

3.2.1. Review. Finite-energy sum rules (FESRs) allow for the extraction of the strong
coupling at the τ mass, a t( )mS

2 , from inclusive vector (V ) and/or axial (A) non-strange
spectral functions, which can and have been measured through hadronic τ decays
[105, 107, 115]. Such sum rules have the form

66 Authors: D Boito (U Vienna and U Sao Paulo), M Golterman (SF State Univ. and IFAE Barcelona), K Maltman
(YU Toronto and CSSM Adelaide), S Peris (IFAE Barcelona).
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where Π(z) is a vacuum polarization, r = P
p

( ) ( )s sIm1 , with s= q2, is the corresponding
spectral function, s0> 0, and w(s) is typically a polynomial in s/s0. The left-hand side of
equation (3.7) can be determined from data for ts m0

2, while, for s0 large enough, the right-
hand side can be represented in QCD perturbation theory, with nonperturbative (NP)
corrections. The latter are needed because of the relatively low value of mτ.

The perturbative expansion for Π(z) in powers of αS(μ
2) and m-( )zlog 2 is known to

order aS
4 [100], where μ is the renormalization-group scale. In most of the literature, two

scale-choice prescriptions have been considered, either FOPT, in which μ2= s0, or CIPT
[109, 110], in which μ2 is set equal to z when evaluating the perturbative contribution to the
contour integral on the right-hand side of equation (3.7).

NP corrections (away from the positive real axis, see below) are incorporated through the
operator product expansion (OPE), which schematically takes the form

åP = -
=

¥

( ) ( ) ( ) ( )z
C z

z
1 . 3.8

k

k k
kOPE

0

2

The k= 0 term represents purely perturbative contributions, the k= 1 term perturbative mass
corrections (in the non-strange channels, C2 can be set to zero because of the smallness of the
up and down quark masses); NP condensate contributions start at k= 2. The presence of a cut
in the complex z= q2 plane extending to infinity along the positive real axis, means the OPE
is not convergent; it is, at best, an asymptotic series. It is also generally believed that the
D= 2k terms (for k> 1) are related to renormalon ambiguities in the perturbative expansion
[116–118]. While the higher-dimension coefficients C2k in principle depend logarithmically
on z, they are generally taken as constants, as their z dependence is suppressed by two powers
of αS, in addition to the 1/z k suppression.

Recently, it was shown that the Borel sums of the FOPT and CIPT versions of the
perturbative expansion of the right-hand side of equation (3.7) are not the same and, related,
that the OPE (3.8) does not reflect the renormalon ambiguities for CIPT [119, 120], creating a
mismatch between the use of CIPT and the OPE in the form (3.8). Because of this, we will
always employ FOPT [121]. The recent work of [122] (see section 3.4) paves the way for a
reconciliation between the FOPT and CIPT series but, until this is realized in practice,
averaging the results obtained using FOPT and CIPT should be avoided.

The nonconvergent, at-best-asymptotic, nature of the OPE noted above has two
implications. First, it is advisable to restrict the use of the OPE to low orders in the
expansion (3.8), as little is known about where it starts to diverge (at the energies relevant in τ
decays). Second, one expects NP corrections beyond the OPE, just as the OPE represents NP
corrections beyond perturbation theory. This phenomenon, known as the violation of quark-
hadron duality [123–125], manifests itself physically in the presence of overlapping
resonance contributions in ρ(s). These duality violations (DVs) need to be modeled (as long
as a NP solution to QCD is not known). We have developed a theoretical framework, based
on generally accepted assumptions about QCD in the framework of hyperasymptotics [126],
which leads to the following large-s asympotic form for the duality-violating part of the
spectral function:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

r a b= + +d g- -( ) ( ) ( )s e s
s s N

sin 1
1

log
;

1
;

1
. 3.9s

c
DV
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With this ansatz, the sum rule (3.7) can be reformulated as [127]

ò òr
p

r= - P -
=

¥

∮( ) ( ) ( ) ( ) ( ) ( ) ( )
∣ ∣s

ds w s s
is

dz w z z
s

ds w s s
1 1

2

1
. 3.10

s

z s s0 0 0
OPE

0
DV

0

0 0

This introduces a new set of parameters into the theory representation of the right-hand side of
equation (3.7). A separate set of DV parameters is needed for each of the V and A channels.
The main assumption is that the form (3.9) can be used at values of s below tm 2—whether this
is the case can be tested by a variety of fits to data. For a more detailed version of this very
brief review, and many more references, we refer to [121].

At this point, a quick look at data is instructive. Figure 8 shows a rescaled version of the
sum of the non-strange V and A spectral functions from [103], with the αS-independent
parton-model contribution subtracted. Resonance oscillations are immediately evident, with
an amplitude comparable in size to the αS-dependent pQCD contribution, represented by the
dashed curve. The figure makes clear that DVs are important, though, because of the large
errors, it is difficult to tell whether oscillations above = ts m 2 (relevant to determining DV
contributions to the sum rules (3.10) with = ts m0

2) will be numerically relevant or not.
Clearly, DVs need to be accounted for, and their contributions quantitatively assessed, even in
the V+ A channel.

Two different strategies, which we refer to as the ‘truncated OPE’ (tOPE) [101] and the
‘DV-model’ strategies [128, 129], have been developed to deal with the NP contributions
discussed above.

In the tOPE approach, s0 is taken equal to tm 2, and, to suppress contributions to the
contour integral from the region near the positive real axis, and thus from DVs, weights with a
double or triple zero at = = ts s m0

2 are employed. The set of such multiple-zero (‘pinched’)
polynomial weights typically extends up to degree k= 7, and thus probes the OPE up to
dimension D= 2k+ 2= 16. The number of OPE parameters to be fitted (αS and the
condensates CD, D= 4, 6, L,16) necessarily exceeds the number of such independent
weights, and hence the number of independent = ts m0

2 spectral integrals available to fix
these parameters. Some subset of the CD in principle present must thus be set to zero by hand

Figure 8. Blow-up of the large-s region of the parton-model-subtracted ALEPH V+ A
non-strange spectral function [103]. The dashed curve represents QCD perturbation
theory.
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to leave a fit with fewer parameters than data points. DVs are also neglected (in terms of
equation (3.9), δ is set to ∞) under the assumption that the use of pinched moments
sufficiently suppressess these contributions.

The main problem with this strategy, employed most recently in [103, 104], is the neglect
of these higher-D OPE contributions. Several tests of the tOPE strategy were carried out in
[130, 131], exposing clear inconsistencies. Such inconsistencies can arise because integrated
dimension-D OPE contributions scale as s1 D

0
2. If contributions from omitted higher-D

condensates are, in fact, not numerically negligible, then when these are absorbed into the
values of the lower-D OPE parameters obtained in a fixed-s0 tOPE fit, the resulting theory
representation will, in general, have an s0 dependence which is incorrect. The tOPE truncation
can thus be tested for selfconsistency by comparing spectral-integral predictions obtained
using the theory parameters obtained from the single-s0 tOPE fit to the experimental values of
these same spectral integrals over a range of s0 values. Such tests, designed to take into
account the impact of the very strong correlations between (i) spectral integrals at different s0,
(ii) theory integrals at different s0, and (iii) fitted theory parameters and spectral integrals,
were carried out in [131], with related tests also carried out in [130]. The s0 dependence of the
theory predictions was found to be in clear disagreement with that of the corresponding
experimental spectral integral combinations.67

In a recent publication [113], Pich and Rodriguez-Sanchez have addressed the relative
merits of the tOPE and DV-model based approaches, commenting on [130, 131]. In this brief
overview, there is not enough space to discuss, in sufficient detail, a number of the ongoing
misconceptions and/or mis-statements concerning the tOPE and DV model approaches
contained in both this new work and in section 3.1 of this review. Neither, in fact, addresses
the points raised in [131] beyond a few vague comments, while the discussion of [130] in
[113] is based on a number of assumptions/prejudices about the OPE and misinterpretations
of the results presented in [130]. Some further discussion of these shortcomings can be found
in the Mattermost forum provided for the recent ECT* Trento αS(2022) Workshop on
Precision Measurements of the QCD Coupling Constant.68 We leave further discussion,
including of [113], to a future publication.

In the alternate DV-model strategy, recent implementations employ weights sensitive to
terms in the OPE only up to D= 8, avoiding potential problems with higher-D OPE
contributions.69 DVs cannot, in general, be ignored, and are instead modeled by
equation (3.9), with fits performed to spectral integrals for a range of s0 between a minimum
value s0

min and tm 2, where s0
min is determined by the quality of the fits and turns out to be

∼1.5 GeV2. Results are found to be very stable against variations of s0
min.

To determine both DV parameters and αS, the analysis should include at least one weight
with good sensitivity to DVs. The choice w= 1, which produces no DV suppression, is ideal
for this purpose. Stability of the DV-model approach has been tested using various
combinations of weight functions in analyses of purely V-channel τ data, both V- and A-
channel τ data [132], and the KNT [133, 134] compilation of R-ratio (inclusive
e+e−→ hadrons) data [135]. [121] contains our most recent application of this strategy.
Earlier applications, laying out the framework in more detail, can be found in [128]. The DV-
model strategy uses a range of s0 as it is important to check the s0 dependence of the match
between experiment and theory (left-hand and right-hand sides of equation (3.10),

67 See, for example, figure 8 of [131].
68 See https://mattermost.web.cern.ch/alphas-2022/channels/town-square.
69 Some tests were also performed with a degree-4 weight, sensitive to C10. We avoid weights that project onto C4

[118, 128, 129].
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respectively), to test the validity of the theory representation employed for Π(z). One also
needs to check that oscillations in the V and A (hence also V+ A) spectral functions are well
represented by the ansatz (3.9), for at least some range of s below tm 2.

3.2.2. Data. Traditionally, in most papers since the appearance of the perturbative result to
order aS

4 in [100], the τ-based αS has been obtained from the ALEPH data [103, 104, 114, 132,
136]. However, the value obtained from OPAL data [128, 129] is consistent with the ALEPH-
based result [132], and it thus makes sense to combine the ALEPH and OPAL data sets prior to
integration, following the approach now routinely employed for electroproduction data when
obtaining dispersive estimates for the leading hadronic contribution to the muon anomalous
magnetic moment. Moreover, while the bulk of the inclusive spectral functions comes from the
2-pion and the 4-pion modes (in the V channel), and the 3-pion and 5-pion modes (in the A
channel), most of the residual exclusive channels (including some of the 5-pion channels) were
obtained from Monte Carlo simulations rather than from experimental data in [105, 107, 115]. In
the V channel, this can now be remedied by using, in addition to BaBar results for τ→K−K0ντ
[137], recent high-precision results for higher-multiplicity, G-parity positive (hence I= 1)
exclusive-mode electroproduction cross sections. CVC allows these to be converted to the
equivalent higher-multiplicity contributions to the I= 1, V τ-based spectral function.70 The
detailed construction of the combined inclusive I= 1, V spectral function along these lines is
described in [121]. With 98% of the inclusive total by branching fraction (BF) coming from
the combined ALEPH and OPAL 2-pion and 4-pion modes, and the support for the residual
modes lying well above the ρ/ω meson interference region, isospin-breaking corrections,
which should in principle be applied to the CVC relations, will be safely negligible.

The new V spectral function is shown in figure 9. The increased precision in the large-s
region, coming from the replacement of Monte Carlo data with electroproduction data (which
are not kinematically limited by the τ mass) is immediately evident. A more quantitative
measure of the improved precision is provided in table 5, which shows a dramatically reduced
statistical error on the w= 1 spectral moment I(w=1)(s0) resulting from the improved precision
of the combined spectral function, compared to the ALEPH or OPAL spectral functions, in
the larger s region.

3.2.3. Results. The increased precision of the new non-strange I= 1 V spectral function
constructed in [121] produces an improved determination of a t( )mS

2 , with the CVC-based
improvement of residual-mode contributions playing a particularly important role. Since
electroproduction data are purely vector, a similar improvement is not possible for the axial
channel. Higher precision is thus now obtainable from V-channel than from V+ A-channel
analyses.71

Our result for αS at the τ-mass is [121]

a =   =  =t ( )( ) ( ) 3.11m N0.3077 0.0065 0.0038 0.3077 0.0075 3, FOPT ,S
2

exp theory f

where the first error is the fit error, and the second an estimate of the systematic uncertainty
associated with the truncation of perturbation theory and the use of equation (3.9) to model
DVs. For comparison, analyses of ALEPH or OPAL data alone produce combined errors of
± 0.010 and ± 0.018, respectively.

70 The existence of a Dalitz-plot-based I = 0/1 separation of the p+ - ¯e e KK cross sections means CVC can also
be used to determine the p¯KK contribution to the τ V spectral function [138].
71 Note, however, that combined V- and A-channel analyses of both OPAL data [128, 129] and ALEPH data [132]
produced results in very good agreement with those of the corresponding V-channel analyses.
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Converting equation (3.11) to the Nf= 5, Z-mass scale using five-loop running and four-
loop matching at the charm and bottom thresholds, one finds

a t=  =( ) ( ) ( )m N0.1171 0.0010 , 5, FOPT . 3.12S Z
2

f

This is in good agreement with an independent determination from electroproduction data
using the same theoretical framework [135]:

a =  =( ) ( ) ( )m N0.1158 0.0022 EM, 5, FOPT . 3.13S Z
2

f

The latter determination was obtained from FESRs with 3.25 GeV  s 4min2
0 GeV2,

significantly higher than the interval ∼1.5 GeV t s mmin2
0

2 available from τ decays. The
wider range of accessible s0 allowed tests of our model for DVs, equation (3.9), to be
performed by comparing values of a t( )mS

2 obtained from the w= 1 FESR (which is
maximally sensitive to DV effects, and hence provides a good probe of their effect) with and
without DV contributions included. The effect found was small (of order 0.005)72 for
3.25 GeV  s 4min2

0 GeV2 but increased rapidly as s0
min was lowered below tm 2.73

3.2.4. Future improvements. The value of αS obtained from hadronic τ decays, in addition
to being competitive, provides a particularly strong test of the running predicted by QCD

Figure 9. New non-strange V spectral function [121], compared with the ALEPH and
OPAL spectral functions.

Table 5. Comparison of the left-hand side of equation (3.7) for w= 1, at two values of
s0, for the combined, ALEPH, and OPAL versions of the V spectral function. s0

* is a
value close to 1.5 GeV2 for each case, and s0

** is close to 2.9 GeV2 for each case. Note
that, because the values of s0

* and s0
** are slightly different for the three cases, the

central values cannot be directly compared. The errors can, however, be compared, as
they vary slowly with s0. For details, see [121].

Combined ALEPH OPAL

s0
* ≈ 1.5 GeV2 0.03137(14) 0.03145(17) 0.03140(46)

s0
**≈ 2.9 GeV2 0.02952(29) 0.03133(65) 0.03030(170)

72 This systematic effect is included in the error shown in equation (3.13).
73 Recall that the dependence of equation (3.9) on s is exponential.
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since the τ mass is much lower than the energies at which other determinations have been
carried out. Important questions are, of course, what future data or theory improvements
might produce a reduction in the error on the current best result, equation (3.11), and how to
test the assumed NP behavior of the spectral function around and below the τ mass. As we
will now discuss, the best prospect for improvement appears to be from future, more precise
data for hadronic τ decays.

Improved τ data will allow for a reduction in the experimental part of the error on
a t( )mS

2 , currently± 0.0065. The theory error in equation (3.11) has two (to some extent
related) sources: the truncation of perturbation theory, and the unavoidable need to estimate
NP effects. A calculation of the order-aS

5 term in QCD perturbation theory would be
interesting, given the sometimes slow convergence of I(w)(s0) for typical weights w. On the
nonperturbative side, increased data precision would allow more stringent tests, in particular
of the DV contribution from equation (3.9). Subleading effects predicted by [126] might
become accessible, and either further confirmation, or a breakdown of this representation of
DVs would increase our ability to probe the limits on the potential precision of the strong-
coupling determination from hadronic τ decays.

A further point, of relevance to improving tests of the reliability of the theoretical
assumptions underlying the two FESR approaches, concerns how such tests should be carried
out. In the past, overlapping experimental spectral integral and theory integral error bands
were often taken as evidence of the compatibility of the underlying theory representation with
data. Such a conclusion is, however, statistically unjustified since the theory errors, which
result from a fit to the experimental spectral integrals, are necessarily very strongly correlated
with their experimental counterparts. Plotting both, and interpreting their overlap as if the two
were independent runs the risk of serious double counting. To properly test underlying theory
assumptions, it is crucial to make comparisons that account for not just correlations between
the spectral integrals at different s0 and theory integrals at different s0, but also those between
fitted theory and experimental integrals.

While FCC-ee would produce τ-leptons copiously [139, 140], the best near-future
prospect is Belle-II [141], which has access to many more τ-leptons than were produced at
LEP. Our construction of the new inclusive V spectral function, moreover, suggests a clear
path forward: no fully-inclusive spectral function needs to be obtained from Belle-II data.
Residual-mode contributions (which, though representing only 2% of the inclusive total by
BF, are important in the upper part of the τ kinematic range) have already been brought under
good control using CVC and electroproduction data [121]. More precise 2-pion and 4-pion
exclusive-mode τ data would thus suffice to produce a new I= 1 V spectral function with
even smaller errors than those of [121], and hence to reduce the experimental error in
equation (3.11). Details will need to be carefully considered. For instance, while the existing
Belle unit-normalized 2-pion distribution is more precise than that of ALEPH or OPAL, the
τ→ π−π0ντ BF has been measured less well by Belle, with the HFLAV [142] value still
dominated by ALEPH. An improved, BF-normalized 2-pion distribution will thus require
combining input from different experiments. The situation is, presumably, similar for the two
4-pion modes.
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3.3. Extraction of αS using Borel–Laplace sum rules for tau decay data74

The application of double-pinched Borel–Laplace sum rules to ALEPH τ-decay data is
discussed. For the leading-twist (D= 0) Adler function a renormalon-motivated extension is
used, and the 5-loop coefficient is taken to be d4= 275± 63. Two D= 6 terms appear in the
truncated OPE (D� 6) to enable cancellation of the corresponding renormalon ambiguities.
Two variants of the fixed order perturbation theory, and the inverse Borel transform, are
applied to the evaluation of the D= 0 contribution. The truncation index Nt is fixed by the
requirement of local insensitivity of the momenta a(2,0) and a(2,1) under variation of Nt. The
averaged value of the coupling obtained is a =t -

+( )m 0.3235S
2

0.0126
0.0138 (corresponding to

a = ( )m 0.1191 0.0016S Z
2 ). The theoretical uncertainties are significantly larger than the

experimental ones.
The sum rule corresponding to the application of the Cauchy theorem to a contour integral

containing the (u-d) quark V+ A correlator Π(Q2) (Q2≡− q2) and a weight function g(Q2),
P =

+
∮ ( ) ( )dQ g Q Q 0

C C
2 2 2

1 2
, gives the sum rule

ò òs s w s
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m

where s sºm max is the maximal used energy in the data, and w s( )exp is the ALEPH-
measured discontinuity (spectral) function of the (V+ A)-channel polarization function

w s p sº P = - -( ) ( ) ( )Q i2 Im . 3.152

The function g(Q2) is the double-pinched Borel–Laplace weight function
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G(Q2) is the integral of g
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and ( ) Qth
2 is the full Adler function pº - P( ) ( ) Q d Q d Q2 ln2 2 2 2, whose OPE truncated

at dimension D= 6 terms has the form
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Here, a(Q2)≡ αS(Q
2)/π. The two terms of D= 6 in the above OPE are needed to enable the

cancellation of the corresponding u= 3 IR renormalon ambiguities originating from the
D= 0 contribution =( )d Q D

2
0. The latter contribution has the perturbation expansion

k k k k k= + +¼+ +¼=
+( ) ( ) ( ) ( ) ( ) ( ) ( )d Q d a Q d a Q d a Q , 3.19D n

n2
0,pt 0

2
1

2 2 2 1

where κ≡ μ2/Q2 is the renormalization scale parameter (0< κ 1; usually κ= 1), the first
four terms (d0= 1; d1, d2, d3) are exactly known [100], and for the coefficient d4 [≡d4(κ)
with κ= 1 and Nf= 3] we take the following values based on various specific estimates in the

74 Authors: C Ayala (U Tarapacá), G Cvetič (UTFSM, Valparaiso), D Teca (UTFSM, Valparaiso).
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literature [100, 117, 143–145]:

=  ( )d 275 63. 3.204

The expansion of the Borel transform of =( )d Q D
2

0 is k k b= å [ ]( ) ( ) ! d u d u n; n n
n n

ser. 0 0.
The extension of =( )d Q D

2
0 beyond ∼a5 is performed with a renormalon-motivated model

[145] in which the Borel transform is constructed first for an auxiliary quantity  ( )d Q2 of the
Adler function [145], resulting in the Borel transform [ ]( ) d u having terms ~ - g( )u1 2 2,

- g +( )u1 3 13 , - g( )u1 3 3 and + g+( )u1 1 1 1, and similar terms with lesser powers, where
g b b= + p1p 1 0

2 (g b b= - )p1p 1 0
2 , and β0= (11− 2Nf/3)/4 and β1= (1/16)(102−

38Nf/3) are the first two β-function coefficients (Nf= 3).75 This extension gives, for the
choice d4= 275. , the coefficients of the expansion (3.19): d5= 3159.5; d6= 16136.;
d7= 3.4079× 105; d8= 3.7816× 105; d9= 6.9944× 107; d10=− 5.8309× 108; etc.

The cancellation of the IR renormalon ambiguity requires: (i) for u= 2 IR renormalon term
~ - g[ ]( ) ( ) d u u1 2 2, the D= 4 OPE term of the Adler function to be of the form ( )Q1 ;2 2

(ii) for the u= 3 IR renormalon term ~ - g[ ]( ) ( ) d u u1 3 3 to be of the form ( )Q1 ;2 3 (iii)
and for the u= 3 IR renormalon term ~ - g +[ ]( ) ( ) d u u1 3 13 to be of the form

( ) ( )Q a Q1 2 3 2 . These three terms (D= 4, 6) are taken into account in the OPE (3.18).
The D= 0 contribution =( )d Q D

2
0 to the Adler function in the sum rule contour integral

(3.14) is evaluated in three different ways. We apply two variants of fixed order perturbation
theory (FOPT). In the first variant, the powers of ks f( )a ei n

m are expressed as truncated
Taylor series in powers of a(κσm) (FO). In the second variant, =( )d Q D

2
0 is expressed as the

sum of the logarithmic derivatives  ( )a Qn
2 µ -[ ( ) ( )d d Q a Qln n2 1 2 ], and then  ks f( )a en

i
m are

expressed as truncated Taylor series of  ks( )ak m (
~
FO). The third way of evaluation is the use

of the inverse Borel transformation of =( )d Q D
2

0, where the Borel integral is evaluated with
the Principal Value (PV) prescription; in the integrand, the Borel transform [ ]( ) d u is taken
as as a series consisting of the mentioned (renormalon-related) inverse powers
∼(p− u)k/(p− u)γ (k= 0, 1, K), where the series is truncated; this truncation requires for
s f

=( )d ei
Dm 0 introduction of an additional correction polynomial d s f

=( )[ ]d ei
D
N

m 0
t in powers

of a(Q2). In all the three methods, a truncation index Nt is involved, i.e. only the terms up to
the power aNt (or aNt

in
~
FO) are taken into account.

We apply the Laplace−Borel sum rules, with the weight function (3.16), to the
ALEPH V+ A data with s sº( )max m =2.8 GeV2 (i.e. the last two bins are excluded due to
large uncertainties). In the sum rule (3.14), this gives on both sides the Borel–Laplace sum
rule quantity B(M2; σm). In practice, the rule is applied to the real parts only,

s s=( ) ( )B M B MRe ; Re ;exp
2

m th
2

m , and for the scale parameters M2 along rays in the first
quadrant: = Y∣ ∣ ( )M M iexp2 2 with 0�Ψ< π/2. We minimise (with respect to αS, 〈O4〉,
⟨ ⟩( )O6

1 and ⟨ ⟩( )O6
2 ) the following sum of squares:
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where a{ }M2 was taken as a dense set of points along the chosen rays with Ψ= 0, π/6, π/4
and 0.9 GeV2� |Mα|

2� 1.5 GeV2. We chose 11 equidistant points along each of the three
rays, and the series (3.21) thus contains 33 terms (the fit results remain practically unchanged

75 In our ansatz [145] and notation, the effective one-loop D = 6 anomalous dimensions g b- ( )
O
1

06
(appearing beside

g3 in the mentioned powers g g b- ( )
O3
1

06
) were taken to be large-β0, i.e. g b- =( ) 1, 0O

1
06

. The work [146] implies
that these quantities can be evaluated beyond large-β0, resulting in a decreasing sequence of nine numbers
g b- » - - ¼( ) 0.197; 0.247;O

1
06

. It remains an open question how to extend the renormalon-motivated [145] model
to include these results.
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when the number of points is increased). In the sum (3.21), the quantities d a( )MB
2 are the

experimental standard deviations of sa( )B MRe ;exp
2

m , with the ALEPH covariance matrix for
the (V+ A)-channel taken into account (see appendix C of [147] for more explanation). For
each evaluation method (FO,

~
FO, PV) and for each chosen truncation index Nt, the fit

procedure gives us results, and the fit is usually of good quality, χ2 10−3 (figure 10).
The truncation index Nt is then fixed by considering the first two double-pinched momenta

a(2,0)(σm) and a
(2.1)(σm)

76 and requiring local stability of their values under the variation of Nt.
The resulting extracted values of the coupling are
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The uncertainties are presented as separate terms. The variation of the renormalization scale
parameter κ≡ μ2/Q2 was taken in the range 2/3� κ� 2 (κ= 1 for the central values). The
truncation index is Nt= 8, 5, 8 for the central cases of FO,

~
FO and PV.

Figure 10. The values of s( )B MRe ;2
m along the ray = Y∣ ∣ ( )M M iexp2 2 with

Ψ= π/6. The narrow grey band are the experimental predictions. The red dashed line
inside the band is the result of the FOPT global fit with truncation index Nt = 8. Similar
fitting curves are obtained for the rays with Ψ= 0 and Ψ= π/4.

76 The weight functions for double-pinched momenta a(2, n) are: = + +( ) (( ) ( ))( )g Q n n3 1n2, 2

s s s+ å + -=( )( ) ( )( ) ( )Q k Q1 1 1 1k
n k k

m
2

m
2

0
2

m . The obtained values of a(2,0)(σm) and a(2.1)(σm) are well within
the experimental band.
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The (truncated) Contour Improved perturbation theory (CIPT) results are also included in
the above results, for comparison. However, the truncated CIPT approach for =( )d Q D

2
0

evaluation appears to require a different type of OPE in the D> 0 part of the contributions,
because the renormalon structure and the related renormalon ambiguities are not reflected in
the truncated CIPT series [120]. We thus include only FO,

~
FO and PV results in the average

a

a

= + +

 = 

~
t -

+( ) ( )
( ) ( )
m

m

0.3235 FO FO PV

0.1191 0.0016. 3.26

S

S

2
0.0126
0.0138

Z
2

In table 6 we compare these results with some other in the literature.
The results (3.26) can be significantly affected when the assumptions or methods are

changed. For example, if we chose, instead of the central value d4 = 275. , the upper upper
bound d4 = 338. of equation (3.20) as the central value, the results would decrease some-
what, to a » t( )m 0.320 0.015S

2 (corresponding to a » -
+( )m 0.1187S Z

2
0.0019
0.0016), i.e.

da » -t( )m 0.0004S
2 . If we took, instead of the two mentioned D = 6 terms in the OPE, the

simple D = 6 and D = 8 OPE terms ~[ ( )Q1 2 3 and ~ ( )Q1 2 4], the central value would
decrease by about da » -t( )m 0.008S

2 . In our previous work [136] we used the OPE with
simple D = 6,8 terms, and took for d4 higher values d4 = 338± 63 than here
equation (3.20). If we took Nt = 5 in all three methods (i.e. no extension of Adler function
beyond d4a

5), then the central value of a t( )mS
2 in FO changes from 0.3288 to 0.3171, and in

PV from 0.3269 to 0.3277 ⇒ for the average of the three methods the central value changes
from 0.3235 to 0.3219 (correspondingly, a ( )mS Z

2 goes from 0.1191 to 0.1189), i.e.
da = - » -t( )m 0.0016 0.002S

2 , smaller.
According to the results (3.22)–(3.24), Borel–Laplace sum rules indicate that the theor-

etical uncertainties dominate over the experimental ones. Even if maximally strong correla-
tions were assumed among the experimental Borel–Laplace sum rule values at different aM2,
the presented experimental uncertainty of αS would increase by a factor of less than five. Part
of these theoretical uncertainties would be reduced by: (1) the calculation of the five-loop
Adler function coefficient d4; (2) the use of the more complicated structure of the D = 6 OPE
terms [146] and the corresponding terms in the D = 0 u = 3 IR renormalon structure; (3)
the use of a variant of the QCD coupling a(Q2) without the Landau singularities in the D = 0
contribution, because this would allow for the resummation to all orders (no truncation) of the
renormalon-motivated contribution D = 0 and would eliminate the renormalization scale
ambiguity (κ). The high precision ALEPH determination of the τ spectral function represents
an important source of data for better understanding the behaviour of QCD at the limit
between the perturbative and nonperturbative regimes.

3.4. Reconciling the fixed order and contour improved perturbative series in hadronic τ

decays77

In [122, 149] an approach was proposed to reconcile the long-standing discrepancy between
the fixed order (FOPT) and contour improved (CIPT) pQCD expansions of hadronic spectral
function moments relevant for the precise determination of αS from τ decays. This is achieved
by a simple change of scheme of the gluon condensate matrix element so that it becomes
renormalon-free. The technical aspects of the scheme change are similar to the well-known
implementation of short-distance mass schemes for massive-quark-sensitive observables. The
scheme relies on external knowledge about the gluon condensate renormalon norm and is

77 Authors: M A Benitez-Rathgeb (U Vienna), D Boito (U Vienna and U Sao Paulo), A H Hoang (U Vienna and
E Schrödinger Inst. for Math Phys.), M Jamin (U Vienna and Heidelberg Univ.).
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Table 6. a t( )mS
2 values extracted by various groups from ALEPH τ-decay data applying sum rules and other methods.

Group Sum rule FO CI PV Average

Baikov et al. 2008 [100] a(2,1) = rτ 0.322± 0.020 0.342± 0.011 — 0.332± 0.016
Beneke and Jamin, 2008 [117] a(2,1) = rτ -

+0.320 0.007
0.012 — 0.316± 0.006 0.318± 0.006

Caprini, 2020 [148] a(2,1) = rτ — — 0.314± 0.006 0.314± 0.006
Davier et al. 2013 [103] a( i, j) 0.324 0.341± 0.008 — 0.332± 0.012
Pich and Sánchez, 2016 [104] a( i, j) 0.320± 0.012 0.335± 0.013 — 0.328± 0.013
Boito et al. 2014 [132] DV in a( i, j) 0.296± 0.010 0.310± 0.014 — 0.303± 0.012
Our prev. work, 2021 [136] BL (O6, O8) 0.308± 0.007 — -

+0.316 0.006
0.008 0.312± 0.007

This work, 2022 (also [114]) BL ( ( ) ( )O O,6
1

6
2 ) -

+0.323 0.012
0.013(FO) — -

+0.327 0.009
0.027 0.324± 0.013

-
+0.321 0.030

0.021(
~
FO)
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capable of resolving the long-standing discrepancy between FOPT and CIPT predictions,
under the assumption that the gluon condensate renormalon gives a sizeable contribution to
QCD perturbative coefficients at the accessible intermediate orders. The approach is briefly
outlined in the following. For details we refer to [122, 149].

As outlined in section 3.2, strong coupling determinations from hadronic τ decay data are
based on weighted integrals of the experimental spectral functions with an upper bound

ts m0
2 and to integrals of the QCD Adler function over a closed contour in the complex

momentum plane. For the latter one must set the renormalization scale in αS when performing
the contour integrals. The two widely used prescriptions are based on FOPT and CIPT. In
FOPT, the renormalization scale is fixed at μ2 = s0, which leads to a power series in αS(s0).
In CIPT, the scale is tied to the contourʼs momentum variable such that logarithms related to
the QCD β-function are summed, so that the resulting series is not any more a power series in
αS. These two expansion methods exhibit a sizeable discrepancy at orders a( ) S

4 and a( ) S
5

that is larger than the individual renormalization scale variations. As a consequence, αS

determinations based on CIPT tend to yield higher values than those based on FOPT. This
discrepancy has been one of the main sources of theory uncertainty in αS from τ decays.

In [119, 120], Hoang and Regner suggested that the discrepancy is of infrared (IR) origin
and largely dominated by the leading IR renormalon of the massless-quark QCD Adler
function, which is associated with the gluon condensate (GC). This entails that, once this
renormalon is subtracted from the Adler functionʼs perturbation series, the truncated series of
the two expansion methods should yield more consistent values already at intermediate
orders, reducing the theoretical uncertainty in the extractions of αS. In [122, 149] a concrete
subtraction method of the gluon condensate renormalon was devised and its practical value
was demonstrated.

The subtraction method is based on two premises. First, it is assumed that the GC
renormalon gives a sizeable contribution to the Adler functionʼs perturbative coefficients at
intermediate orders ( a( ) S

3 to a( ) S
5 ). This assumption can be considered as natural, since the

GC represents the leading IR sensitivity. It is also supported by all-order results in the
large-β0 limit and by renormalon models [117, 118] built for the Adler function in QCD.
Second, our framework relies on the fact that the OPE condensate corrections not only
provide nonperturbative corrections but also compensate for the associated factorial renor-
malon growth of the perturbative series coefficients, thus leading to an unambiguous theor-
etical description. The first premise is important. If it were not true, the CIPT-FOPT
discrepancy problem would be unrelated to IR renormalons and no information on the norm
of the GC renormalon could be gained from the known QCD corrections for the Adler
function. The second premise is an established characteristics of multiloop QCD calculations
in the limit of vanishing IR cutoff, where sensitivities to IR momenta are a cause of QCD
perturbation series to be asymptotic. Since this is the common approach for the loop cor-
rections for inclusive quantities based on dimensional regularization and the MS scheme for
the strong coupling, we call this approach to regularize IR momenta ‘MS scheme’ as well.
This should not be confused with the MS scheme for αS, which refers to the regularization of
UV momenta. The concrete analytic expressions shown in this subsection below actually use
the strong coupling in the C scheme (for the concrete value C = 0) [150], referred to as āS

below. (See the appendix of [122] for concrete formulae to obtain the results for the strong
coupling in the MS scheme.)

In heavy-quark physics, it is well established that the leading (linear) IR sensitivity that
arises in the pole mass renormalization scheme can be eliminated by switching to short-
distance mass schemes [8, 151]. In [122, 149] a similar approach is proposed for the GC
matrix element. One starts from the operator product expansion (OPE) for the massless quark
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Adler function. Using the MS scheme (to regularize IR momenta), it can be cast in the form
(using μ2 = − s as renormalization scale for the strong coupling)

⎛
⎝

⎞
⎠

å å åa
p

a
a=

-
+

-
+

-
- g

=

¥

=

¥

( )( ) ¯ ¯ ( ) ( ¯ ( ))
⟨ ¯ ⟩

( )
( ¯ ( ))⟨ ¯ ⟩  3.27D s c

s C s

s s
C s

1
,

n
n

S
n

S

d
d

i
d i S d

1
,1

4,0
2 4,0

6
2 , , i

where the first term is the perturbative contribution, and the 1/s OPE power corrections,
starting from the term with d = 4, are the nonperturbative corrections. The perturbative
coefficients c̄n,1 are exactly known up a( ) S

4 [100, 152]. It is customary to also include an
estimate for the a( ) S

5 coefficient c̄5,1 in phenomenological analyses [104, 121, 132, 136]. The
terms g⟨ ¯ ⟩d, i

are nonperturbative vacuum matrix elements (condensates) and the Cd,i are the
respective Wilson coefficients which are a power series in αS(−s). The bar over the operator
indicates that the condensates are defined in the MS scheme (to regularize IR momenta).

The leading d = 4 OPE power correction arises from the GC and is central to this work. It
can be cast in terms of the renormalization scale invariant GC matrix element ⟨ ¯ ⟩G2 as
( b a p- º -¯ ( ) ¯ ( ) ( )a s s 4S0 , β0 = 11− 2Nf/3)

⎡
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Associated with the GC OPE correction is a renormalon singularity in the Borel function of
the Adler function that has the form

⎡
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where N4,0 is the Adler functionʼs GC renormalon norm and b b=b̂ 21 1 0
2, with β1 being the

two-loop QCD β-function coefficient. This GC renormalon singularity contributes to the
Adler functionʼs perturbative series coefficients c̄n,1 in the form

⎡
⎣

⎤
⎦
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where the terms = G + G +- + ( ˆ ) ( ˆ )( ) ( ˆ )r n b b2 4 1 4n
n b4,0 4

1 11 diverge factorially. The use of the
C-scheme [150] is convenient because the term - +( ) ˆu1 2 b1 4 1 in B4,0(u) and the
coefficients ( )rn

4,0 in d ˆ ( )D s4,0 are exact, i.e. they do not receive any further higher-order
corrections. The first premise entails that N4,0 is sufficiently sizeable, such that the series in
d ˆ ( )D s4,0 makes up for a sizeable contribution in the coefficients c̄n,1 at the intermediate orders
relevant for phenomenological analyses. In the context of this assumption it has already been
shown in [119, 120], that the FOPT-CIPT discrepancy can be caused by the diverging Adler
function series contributions given in d ˆ ( )D s4,0 .

Let us now turn to the construction of the renormalon-free (RF) gluon condensate scheme.
The RF scheme only deals with the GC renormalon; all other renormalons are strictly
unaltered. The starting point is by imposing that the order-dependence of ⟨ ¯ ⟩G2 that com-
pensates the factorial growth of the coefficients in equation (3.30) is made explicit, while
maintaining the generic form of the GC OPE correction in equation (3.28). The relation
between the original, order dependent, MS GC matrix element and a new renormalon-free GC
matrix element, 〈G2〉(R2), is then

åº -
=

⟨ ¯ ⟩ ⟨ ⟩( ) ¯ ( )( ) ( )G G R R N r a , 3.31n

ℓ

n

g ℓ R
ℓ2 2 2 4
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where b a pº¯ ¯ ( ) ( )a R 4R S0
2 and the order dependence on the left-hand side has been made

explicit. The term Ng is the universal GC renormalon norm, related to N4,0 by Ng =
3N4,0/(2π

2). The condensate 〈G2〉(R2) depends explicitly on the scale R, which sets its
parametric size to be ( ) R4 (instead of L( ) QCD

4 for the MS GC ⟨ ¯ ⟩( )G n2 ). The scale R plays
the role of an IR factorization scale which can in principle be chosen arbitrarily. In practice,
its value should be chosen smaller, but still of the order of, the typical dynamical scale of the
observable of interest to avoid the appearance of (or, equivalently, to sum potentially) large
logarithms. The dependence of 〈G2〉(R2) on R is controlled by an R-evolution equation [153]
(see [122] for its precise form).

From a practical perspective, the R dependence of 〈G2〉(R2) is somewhat inconvenient.
Therefore, in a second constructive step, a scale-invariant renormalon-free GC matrix element
is defined. This is achieved by the addition of a function which obeys the same R-evolution
equation as 〈G2〉(R2). This is possible because the R-derivative of the subtraction series on the
r.h.s. of equation (3.31) is convergent for n→∞ . Such a function is obtained from the Borel
sum of the subtraction series, defined through the principal value (PV) prescription:
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The result for ¯ ( )c R0
2 can be given in closed analytic form [122]. Thus one can define a scale

invariant renormalon-free GC matrix element, denoted as 〈G2〉RF, by

º +⟨ ⟩( ) ⟨ ⟩ ¯ ( ) ( )G R G N c R . 3.33g
2 2 2 RF

0
2

We denote as 〈G2〉RF the GC in the ‘RF scheme’. The particular forms of the subtraction
series in equation (3.31) and the function c0(R

2) are particular choices to define the RF
scheme, but may in principle be chosen differently. In general, the subtraction must have the
correct large order behavior to eliminate the factorial growth of the coefficients ( )rn

4,0 , but
could have additional convergent contributions. This would then imply a different form for
¯ ( )c R0

2 . Moreover, one could also add an additional constant to ¯ ( )c R0
2 . The RF scheme entails

that the difference between the original MS GC and the new scale-independent RF GC,
〈G2〉RF, is formally +( ¯ ) aR

n 1 . In this sense, the modifications to the GC in our new RF scheme
are minimal.

Using equations (3.33) and (3.28), it is straightforward to write down the resulting per-
turbation series for the Adler function in the RF GC scheme. Treating the term proportional to
¯ ( )c R0

2 , which is part of the definition of 〈G2〉RF, like a tree-level contribution, the perturbation
series has the form: ( bº¯ ¯c c4n n,1 0 for n = 1, 2, K)

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

å

å

= - - + -

- - -

=

¥

=

¥

ˆ ( ) ¯ ( ) ¯ ( ) ¯ ¯ ( )

¯ ( ) ¯ ( )( )

D s R a s N c R c a s

a s N
R

s
r a

, 1
22

81

1
22

81
. 3.34

s
n

n
n

n
n R

ℓ

RF 2 1
4,0 0

2

1

4,0

4

2
1

4,0

2

It is essential to reexpand and truncate the perturbative series terms (excluding the c̄0 term)
coherently, using the strong coupling at a common renormalization scale. Only then the
cancellation of the GC renormalon is realized is a consistent way. The treatment of the ‘tree-
level’ term proportional to ¯ ( )c R0

2 entails that the GC OPE correction retains its form of
equation (3.28) with ⟨ ¯ ⟩G2 replaced by 〈G2〉RF. Furthermore, it is possible to show that the
Borel sum of the perturbation series for the RF scheme Adler function ˆ ( )D s R,RF 2 based on
the PV prescription (as shown in equation (3.32)) remains the same as that of the original MS
scheme Adler function = å -=

¥ˆ ( ) ¯ ¯ ( )D s c a sn n
n

1 independently of the value of Ng (or N4,0)
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and the choice for R. Variations of R therefore vanish in the limit of larger-order truncations.
The value of norm Ng is an input to the RF scheme that must be supplemented independently.

In [122], the effectiveness of the RF scheme for the perturbation series of the hadronic τ

decay width has been demonstrated. In the following we quote some results given in [122],
where the known QCD corrections up to a( ) S

4 have been included and an estimate for the
6-loop coefficient c̄5,1, consistent with the values used in the recent analyses
[104, 121, 132, 136] has been employed. In addition, corrections from beyond a( ) S

5 were
considered from a renormalon Borel model for the Adler function, based on the works of
[117, 118], which has been shown there to be realistic within the first premise mentioned
above. The model provides the concrete value Ng = 0.64, so that the decay width series in
the RF scheme can be studied in a concrete way. In the left panel of figure 11, the results for
FOPT (red) and CIPT (blue) are shown in the MS scheme for the GC. The vertical dashed line
indicates the order up to which current state-of-the phenomenological analyses are carried out
(including the concrete perturbative coefficients up to 6-loop), and for orders beyond the
series relies on the renormalon model. The FOPT and CIPT series exhibit the well-known
discrepancy at intermediate orders, which does not diminish with the successive inclusion of
higher-order terms predicted by the model. In the context of the first premise, the results show
that the discrepancy is systematic and not related to missing higher orders. The two series
eventually run into the divergent behavior expected for asymptotic series. The right panel
displays the results in the RF GC scheme for R = 0.8mτ. The FOPT series in the RF scheme
is almost unaltered. This can be understood, since the decay width receives only a tiny
contribution from the GC through the s-dependence of the Wilson coefficientʼs 1-loop cor-
rection and because the dominant part of the subtraction series in FOPT remains real-valued
and factors out of the contour integral. The CIPT series, however, changes dramatically. This
modification is by far larger than the tiny size of the GC OPE corrections itself. This is
because the subtraction series needs to be expanded according to the CIPT prescription such
that the contour integration modifies the contributions from the subtraction series in a non-
trivial way. The fact that the resulting numerical effect is so large, corroborates the finding of
[119, 120] that the CIPT series (in the MS GC scheme) is not compatible with the standard
analytic form of OPE corrections shown in equation (3.27). Remarkably, in the RF GC
scheme the discrepancy between the two series diminishes order by order and at a( ) S

5 it is

Figure 11. Left: series for the perturbative FOPT and CIPT expansions of the τ
hadronic decay width order by order in full QCD in the MS GC scheme. The orders
beyond 5 are obtained from a Borel model. Renormalization scale variations are
indicated by the coloured bands. Right: corresponding series for FOPT and CIPT
expansions for d t( )( ) m R,W

0 2 2 in the RF GC scheme for R = 0.8 mτ. The results are
shown for a =t( )m 0.315S

2 (in the MS scheme) and Nf = 3. The figures are taken
from [122].
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already significantly reduced. For even higher orders (in the context of the Borel model), the
two series become fully compatible and approach essentially the same value. The same
observations are made for any other spectral function moment with a suppressed GC. At the
same time, the convergence of the perturbation series for moments with an enhanced GC is
substantially improved.

In [149] the practical value of the RF GC scheme in phenomenological analyses using the
perturbative coefficients up to c̄5,1 was analyzed in detail. Is was shown that Ng can be deter-
mined with a relative uncertainty of 40%. Following the two recent state-of-the-art strong
coupling determination analyses at a( ) S

5 of [104] (in the tOPE approach) and [121] (in the DV-
model approach) it was demonstrated that the RF GC scheme can successfully reconcile the
extractions of a t( )mS

2 based on CIPT and FOPT for both approaches to treat the non-
perturbative corrections. The additional uncertainties that arise in the RF GC scheme due to
variations of R and the uncertainty of Ng only lead to a small or moderate increase of the final
uncertainty of a t( )mS

2 , and affect mainly the CIPT expansion results. The RF GC scheme thus
constitutes a powerful new ingredient for future analyses of τ hadronic spectral function
moments. Delicate issues such as the adequate treatment of nonperturbative corrections can now
be studied without having to also deal with the CIPT-FOPT discrepancy problem.
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4. αS ðm2
ZÞ from DIS and parton densities

4.1. αS ðm2
ZÞ through scheme-invariant evolution of N3LO non-singlet structure functions78

We describe the measurement of the strong coupling constant a ( )mS Z
2 based on the scheme-

invariant evolution of unpolarized and polarized flavour non-singlet structure functions at
N3LO accuracy with a precision at the subpercent level. Measurements of this kind can be
performed at future facilities such as the EIC and LHeC, provided both proton and deuteron
targets are used. The theory framework for this is already available. The measurement
requires excellent control of the experimental systematics.

Currently, the values of the strong coupling constant a ( )mS Z
2 as determined in different

classes of measurement, and even inside these classes, is obtained at different values differing
by several standard deviations [154–156], reaching an individual accuracy of ∼1%. One
reason for this lies in the experimental systematics but also in different theoretical approaches
being applied. We will consider the measurement of a ( )mS Z

2 using deep-inelastic scattering
(DIS) data. To minimize theoretical uncertainties, the measurement method has to be as
simple as possible and widely free of effects that are difficult to control or are even widely
unknown. Usually one performs mixed twist-2 flavour non-singlet/singlet analyses on a wide
host of DIS and other hard scattering data, which are required because, besides the flavour
non-singlet parton distribution functions, those of the different sea quark and gluon dis-
tributions are needed as well. Furthermore, the range of Q2 usually includes also the region in
which higher-twist contributions have to be fitted in addition. Also, the treatment of heavy-
quark effects varies in the different approaches, although there is no such freedom in general.

78 Authors: J Blümlein, M Saragnese (DESY).
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Some of the cross sections used in the fits may not have the same higher-order correction as
the massless DIS cross sections. The presence of all these different distribution functions will
cost a large part of the statistics power to be determined and various parameter correlations,
and potentially introduces theoretical biases [157, 158]. All this complicates the measurement
of the strong coupling constant in using approaches of this kind.

The situation is completely different in the case of scheme-invariant flavour non-singlet
evolution of the structure functions ( )F x Q,2

NS 2 or ( )g x Q,1
NS 2 . The latter structure function

usually needs a much higher luminosity, since in addition the longitudinal polarization differ-
ence has to be carried out. To form the corresponding data sets, DIS off proton and deuteron
targets has to be measured and a reliable description of the deuteron wave function effects is
needed. In both cases the input distribution is a measured structure function: ( )F x Q,2

NS
0
2 or

( )g x Q,1
NS

0
2 , with experimental error bands. Both the shape of these quantities and their

experimental uncertainties can be parameterized at sufficient precision, forming the input for the
one-dimensional evolution equation [159]. What remains to be determined in the fit of the data
for >Q Q2

0
2 is the strong coupling constant a ( )mS Z

2 , the precision of which receives also
contributions from the experimental uncertainty of the measured input distribution.

In the following we describe the theoretical basis of the scheme-invariant measurement of
a ( )mS Z

2 and illustrate a few relevant aspects numerically, following [160], which may be
performed in future experiments at EIC [161] or the LHeC [162]. We consider the combi-
nation of structure functions

= - = Ä( ) ( ) ( ) ( )F x Q F F xC x Q v x Q,
1

2

1

6
, , , 4.1p d

2
NS 2

2 2 2
NS 2

3
2

where ⊗ denotes the Mellin convolution, ( )C x Q,2
NS 2 is the corresponding unpolarized

flavour non-singlet Wilson coefficient and

= -( ) ( ) ( ) ( )v x Q u x Q d x Q, , , , 4.2v v3
2 2 2

the difference of valence u- minus d-quark distributions. Nor the flavour singlet, gluon, or
special sea-quark distributions enter the partonic input distribution. However, the different
flavours contribute through virtual QCD corrections, including charm and bottom quarks.

The scale evolution of ( )F x Q,2
NS 2 can be described by an evolution operator ENS(x, Q

2)
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Here a = a(Q2) denotes the strong coupling constant and = ( )a a Q0 0
2 , Pi are the non-singlet

splitting functions and Ci = ci+ hi the expansion coefficients of the Wilson coefficient,
where ci is the massless contribution and hi the massive contribution, where

= = +h h h h0, c b
1 2 2 2 and = + +h h h hc b cb

3 3 3 3 , i.e. there are mixed charm and bottom
contributions from three-loops onward [160] for details. The dependence on the heavy-quark
mass is logarithmic, with highest logarithmic powers ( )Q mlnk

h
2 2 for hk. While the non-

singlet splitting functions to three-loop order are known [163, 164], the four-loop non-singlet
splitting function P3 is not yet known, but it can be very well described by a Padé
approximation. Eight Mellin moments are known, with the earliest calculation [165], and the
presently available set [166]. The massless three-loop Wilson coefficients were calculated in
[167] and the single and double mass three-loop heavy flavour corrections in [168]. At two-
loop order the corrections are even available for the whole kinematic region [169, 170].
Different proposals to perform scheme-invariant evolution both in the non-singlet and singlet
case have been made since 1979, see [92–100] of [160].

To illustrate the potential of the a ( )mS Z
2 measurement using the present method, we show

in figure 12 (left) the ratio of ( )F x Q,2
NS 2 to ( )F x Q,2

NS
0
2 for =Q 100

2 GeV2 up to scales Q2 =
104 GeV2. In the lower x region positive corrections up to a factor of 1.5 are reached, while at
large x the corrections are negative. In figure 12 (right) we illustrate the impact of the heavy
flavour corrections due to charm and bottom quark effects. In the region below x = 0.6 they
are bound to ±1.5% and grow for larger values of x. This shows their importance, because the
future measurements will be performed at subpercent experimental accuracy. In [160] we also
performed related studies for the case of the polarized structure function g1(x, Q

2).
A precision determination of the strong coupling constant a ( )mS Z

2 requires a high
luminosity measurement of a sufficiently simple inclusive observable. The measurement must
be carried out under stringent systematic control. Such a measurement would have been
possible in the past, if the proposal [171] would have been carried out. It has not been
possible at HERA, since deuterons have not been probed [172] and the reconstruction of a
non-singlet structure function from charged current data has not been precise enough. Given a
sufficient preparation, the measurement can be carried out at the EIC using proton and
deuteron targets. LHeC may also perform such a measurement, provided also deuteron data
will be available and the statistics for the non-singlet measurement is high enough. The
theoretical analysis method is then scheme-invariant evolution in the flavour non-singlet case
for the structure function ( )F x Q,2

NS 2 . Both the light and heavy flavour corrections for this

Figure 12. Left: evolution ratio of the structure function ( )F x Q,2
NS 2 . Right: relative

contribution of the heavy flavour corrections in ( )F x Q,2
NS 2 . Dashed lines: Q2 = 102

GeV2, dash-dotted lines: Q2 = 103 GeV2, dotted lines: Q2 = 104 GeV2; from [160].
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quantity are known at the level of the twist-2 approximation for Q2� 10 GeV2, W2� 15
GeV2 [173], to measure a ( )mS Z

2 at an accuracy well below the 1% level. This is one way to
decide what is the correct value of a ( )mS Z

2 .
To summarize, a high luminosity measurement of F2

p and F2
d at the EIC would allow to

perform the N3LO measurement of a ( )mS Z
2 using the scheme-invariant method dis-

cussed here.
Acknowledgments—Support from the European Unionʼs Horizon 2020 research and

innovation programme under the Marie Skłodowska-Curie grant agreement No. 764 850,
SAGEX, is gratefully acknowledged.

4.2. αS ðm2
ZÞ from DIS large-x structure function resummation79

We scrutinize the DIS F2(x, Q
2) structure functions (SFs) measured by the SLAC, NMC, and

BCDMS experiments [174–179] at NNLO accuracy in massless perturbative QCD in order to
extract a ( )mS Z

2 . The so-called deep-inelastic scattering (DIS) scheme of the SFs [180] is
considered, which leads to effective resummation of large-x logarithms into the Wilson
coefficient function. The study presented here is a continuation of investigations carried out in
closely related papers [181–185].

The function F2(x, Q
2) is represented as a sum of the leading twist (LT) ( )F x Q,2

pQCD 2 and
the twist-four terms (hereinafter, the superscripts pQCD and LT denote the twist-two
approximation with and without target-mass corrections):

⎜ ⎟
⎛
⎝

⎞
⎠

= +( ) ( )
˜ ( ) ( )F x Q F x Q
h x

Q
, , 1 . 4.52

2
2
pQCD 2 4

2

For large x values, gluons do not nearly contribute and the Q2 evolution of the twist-two
DIS F2(x, Q

2) SF is well determined by the so-called nonsinglet (NS) part. In this approx-
imation, there is a direct relation between the moments of the DIS F2(x, Q

2) SF and the
moments of the NS parton distribution function f(x, Q2)

ò ò= =- -( ) ( ) ( ) ( ) ( )M Q dxx F x Q n Q dxx x Qf f, , , , 4.6n
n n2

0

1
2

2
LT 2 2

0

1
1 2

which can be expressed as follows

= ´ ´( ) ( ) ( ( )) ( ) ( )M Q R f C n a Q n Qf, , , 4.7n s
2 2 2

where the strong coupling constant

a
p

=( ) ( ) ( )a Q
Q

4
4.8s

S2
2

and the Wilson coefficient function is denoted as C(n, as(Q
2)). The constant R( f ) = 1/6 for

f = 4 [186].

4.2.1. Strong coupling constant derivation. The strong coupling constant is found from the
corresponding renormalization group equation. At the NLO level, º( ) ( )a Q a Qs

NLO 2
1

2 , the
latter looks like

79 Authors: A V Kotikov, V G Krivokhizhin, B G Shaikhatdenov (JINR, Dubna).
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At NNLO level, º( ) ( )a Q a Qs
NNLO 2

2
2 , the strong coupling constant is derived from the

following equation:
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The expression for I is
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where D = -b b4 2 1
2 and bi = βi/β0 are read off from the QCD β-function:
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The coefficient function C(n, as(Q
2)) is then expressed in terms of the coefficients Bj(n),

which are exactly known (for the odd n values, Bj(n) and Zj(n) can be obtained by using the
analytic continuation [187–189])
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The Q2-evolution of the PDF moments can be calculated within the framework of
perturbative QCD:
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are combinations of the NLO and NNLO anomalous dimensions γ1(n) and γ2(n).
For large n (this corresponds to large x values), the coefficients ~( )Z n nlnj and
~( )B n nlnj

j2 . So, the terms ∼Bj(n) can lead to potentially large contributions and, therefore,
should be resummed.
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4.2.2. Scale dependence. We are going to consider the dependence of the results on the
factorization μF scale caused by the truncation of a perturbative series [181]. This way,
equation (4.7) takes the form:

= ´ ´( ) ( ) ˆ ( ( )) ( )M Q R f C n a k Q n k Qf, , .n s F F
2 2 2

The function Ĉ is to be obtained from C by modifying the r.h.s. of equation (4.11) as
follows:
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Taking a special form for the coefficient kF, we can decrease contributions coming from
the terms ∼Bj(n). To accomplish this task, we consider the DIS-scheme [180], where the NLO
corrections to the Wilson coefficients are completely cancelled by changes in the factorization
scale.

In the NLO case
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The NLO coupling ( )a Qn
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In the NNLO case, in addition to equations (4.16) and (4.17), there is also the following
modification
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that leads to the cancellation of the large terms ~ ( )nln4 in ( )B n1
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4.2.3. Fit results. Our analysis is carried out for the moments of the F2(x, Q
2) SF defined in

equation (4.6). Then, for each Q2, the F2(x, Q
2) SF is recovered using the Jacobi polynomial

decomposition method [190–192]:

å å a b= - Q
= =

+( ) ( ) ( ) ( ) ( ) ( )( )F x Q x x x c M Q, 1 , , 4.21a b

n

N

n
a b

j

n

j
n

j2
2

0

,

0
2

2
max

whereQn
a b, are the Jacobi polynomials, a, b are the parameters to be fit. The program MINUIT

[193] is used to minimize the difference between experimental data and theoretical
predictions for the F2(x, Q

2) SF.
We use free data normalizations for various experiments. As a reference set, the most

stable data of hydrogen BCDMS are used at the value of the initial beam energy
E0 = 200 GeV. Contrary to previous analyses [181, 182], the cut Q2� 2 GeV2 is used
throughout, since for smaller Q2 values equations (4.18) and (4.20) have no real solutions.

The starting point of Q2-evolution is taken at Q0
2 = 90 GeV2. This value of Q0

2 is close
to the average values of Q2 covering the corresponding data. Based on studies done in
[184, 185], it is sufficient to take the maximum number of moments =N 8max , and the cut
0.25� x� 0.8 is applied on the data.

We work within the variable-flavour-number scheme (VFNS) [181]. To strengthen the
effect of changing the sign of twist-four corrections, we also present results obtained in the
fixed-flavour-number scheme with Nf = 4.

As one can see from table 7, the central values of a ( )mS Z
2 are mostly close to each other

upon taking into account total experimental and theoretical errors [181, 182]:

 +
-{( ) ( ) ( )0.0022 total exp. error , 0.0028

0.0016
theor. error . 4.22

We plan to study these errors in more detail and present them in an upcoming publication.
From the table, it can also be seen that after resumming at large x values (i.e. in the DIS

scheme), the twist-four corrections change sign at large values of x. Thus, unlike the standard
analyses performed in [194], in this case, when twist-four corrections change the sign, (part
of) the powerlike terms can be said to be swallowed up into a QCD analytic constant [195]
just much like as it was observed at low-x values [196] in the framework of the so-called
double asymptotic scaling approach [197, 198].

Table 7. Parameter values of the twist-four term in different cases obtained in the
analysis of data (314 points: Q2 � 2 GeV2) carried out within VFNS (FFNS).

NLO NLO NNLO NNLO

x MS scheme DIS scheme MS scheme DIS scheme
χ2 = 246 (259) χ2 = 238 (251) χ2 = 241 (254) χ2 = 242(249)
a =( )m 0.1195S Z

2 a =( )m 0.1177S Z
2 a =( )m 0.1177S Z

2 a =( )m 0.1178S Z
2

(0.1192) (0.1179) (0.1170) (0.1171)
0.275 −0.245 (− 0.264) −0.187 (− 0.174) −0.188 (− 0.204) −0.141 (− 0.170)
0.35 −0.243 (− 0.252) −0.111 (− 0.134) −0.188 (− 0.193) −0.133 (− 0.149)
0.45 −0.191 (− 0.187) −0.040 (− 0.094) −0.172 (− 0.158) −0.110 (− 0.104)
0.55 −0.116 (0.096) −0.106 (− 0.088) −0.174 (− 0.137) −0.121 (− 0.084)
0.65 0.054 (0.118) −0.167 (− 0.094) −0.145 (− 0.051) −0.223 (− 0.100)
0.75 0.337 (0.477) −0.568 (− 0.442) 0.115 (0.648) −0.587 (− 0.314)

J. Phys. G: Nucl. Part. Phys. 51 (2024) 090501 Major Report

56



In previous papers [199, 200], where resummation at large values of x was performed
within the framework of the Grunberg approach [201, 202], we saw only a decrease in the
twist-four contribution, since the terms were not studied in detail. That is why we plan to
include Grunberg’s approach in an analysis similar to the present one and study in some detail
the values of the twist-four corrections.

4.3. Strong coupling αS in fits of parton distributions80

Data from deep-inelastic scattering (DIS) experiments collected during the last few decades
contributes significantly to the knowledge about the structure of the proton and the extraction
of parton distributions (PDFs). The theory description builds on QCD factorization, which
allows to express the structure functions in the charged-lepton- (or neutrino-) proton hard
scattering with large momentum transfer Q schematically as

= Ä = ( )F f c a L, 2, 3, , 4.23a i a i,

where the process-dependent coefficient functions are denoted by ca,i and the PDFs for a
given fraction of the proton momentum x by fi(x, μ2). Their dependence on the
(renormalization and factorization) scale μ is governed by the well-known evolution
equations

m
m a m m

¶
¶

= Ä( ) [ ( ( )) ( )]( ) ( )f x P f x
ln

, , 4.24i ik S k2
2 2 2

where the standard convolution is abbreviated by ⊗. Both, the splitting functions Pik and the
coefficient functions by ca,i are calculable in QCD perturbation theory in an expansion in
powers of the strong coupling constant as≡ αS(μ

2)/(4π),

= + + + + ¼ ( )( ) ( ) ( ) ( )P a P a P a P a P , 4.25s s s s
0 2 1 3 2 4 3

= + + + + ¼ ( )( ) ( ) ( ) ( )c c a c a c a c . 4.26a i a i s a i s a i s a i, ,
0

,
1 2

,
2 3

,
3

Here, the first three terms define the NNLO predictions for DIS, which is currently the
standard approximation [163, 203] for the splitting functions and [204–207] for the DIS
coefficient functions at this accuracy. Form the perturbative expansion in equations (4.25) and
(4.26) as well as from the PDF evolution in equation (4.24) it is obvious that there is, in
general, significant correlation between the PDFs and the value of strong coupling constant
a ( )mS Z

2 [158]. In the ABM PDF fits, this information can be obtained from the (positive-
definite) covariance matrix [208].

Equation (4.23) holds up to power corrections suppressed by 1/Q2, and the accessible
range of kinematics in the momentum transfer Q and Bjorken x requires careful considera-
tions of the respective kinematic regions. Typical cuts in the application to DIS data restrict
the invariant mass of the hadronic system = + -( )W m Q x x1p

2 2 2 (with the proton mass
mp) to W2� 12.5 GeV2 and Q2� 2.5–10 GeV2 [208]. Depending on these cuts, an improved
theoretical description of F x Q,a

2 to account for higher-twist and target-mass corrections
becomes necessary. Higher-twist corrections arise from the infinite tower of power correc-
tions ( )Q1 n2 , in the operator product expansion (with n = 1, 2, 3, ...). Higher-twist terms
have a physical interpretation as multiparton correlations and modify the structure functions
in equation (4.23) as

80 Authors: S Moch (Hamburg Univ.).
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= + =
t=

( ) ( )
( )

( )F x Q F x Q
H x

Q
a T, , , 2, , 4.27a a

aht 2 TMC 2
4

2

where the additive terms t= ( )H xa
4 models the twist-four contribution and Fa

TMC denotes the
leading-twist structure function with target mass corrections, which account for the finite
nucleon mass [208].

Another important aspect in the theoretical description of the leading-twist structure
functions from equation (4.23) entering in equation (4.27) concerns the active number of
flavours and the treatment of DIS heavy quark production [209] A fixed-flavour number
scheme and the use the standard decoupling relations for heavy quarks in QCD in the
transition from Nf = 3 to Nf = 5 is justified given the currently available kinematics in x and
Q for DIS charm quark data [158]. Variable-flavour-number schemes attempting the
resummation of large logarithms in the ratio Q mh

2 2 with the heavy-quark mass squared m2
h

introduce additional theoretical uncertainties from the matching, which manifest themselves
predominantly at small Q2 [210].

The impact of higher-twist terms and target-mass corrections in equation (4.27) on the
extracted value of a ( )mS Z

2 to NNLO accuracy from world DIS data has been illustrated in

Figure 13. Value of a ( )mS Z
2 in the MS scheme for Nf = 5 flavours at NNLO in QCD

preferred by individual data sets as a function of the year of their publication. Data from
SLAC [211–213] (proton), BCDMS [177], NMC [176] (proton), the HERA run I [214]
as well as the HERA run I+II combination [215] are considered in three variants for the
treatment of the higher twist terms defined in equation (4.27): (i) the higher twist terms
are set to zero (circles); (ii) they are fixed to the values obtained in the ABMP16 fit
from considering all data sets (squares); (iii) they are fitted to the individual data set
under study (triangles). The bands for a ( )mS Z

2 obtained by using the combination of the
SLAC, BCDMS and NMC samples together with those from the HERA run I (left-
tilted hatches) and the run I+II combination (right-tilted hatches). The 2016 PDG
average [216] (shaded area) is shown for comparison. Plot from [208].
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figure 13, where it is shown that variants of the fits with no higher twist lead to systematically
larger values of a ( )mS Z

2 . The combined fit of PDFs and a ( )mS Z
2 to the world data shown in

figure 13 delivers in the ABMP16 analysis at NNLO in QCD the value of [208]

a =  =( ) ( )m N0.1145 0.0009 for 5, 4.28S Z
2

f

while the full ABMP16 analysis (also including LHC data on top-quark hadroproduction)
finds the value

a =  =( ) ( )m N0.1147 0.0008 for 5. 4.29S Z
2

f

Higher-order QCD corrections beyond NNLO become important whenever high precision
is needed for benchmark processes at the LHC and for the novel accurate DIS measurements
expected at the future Electron Ion Collider (EIC). Then, determinations of PDFs and αS at
N3LO accuracy requires the calculation of the N3LO corrections in equations (4.25) and
(4.26). Those for the DIS coefficient functions are already available [167, 218–220],
including effects of massive quarks [168]. Work on the four-loop splitting functions in
equation (4.25) to ensure QCD evolution equations at N3LO accuracy is ongoing
[166, 217, 221] and the gain in the theoretical accuracy in the solution of equation (4.24) for
the evolution of the PDFs is illustrated in figure 14 for a number of Mellin moments (N = 2
to N = 6) available from [217]. With the full N3LO contributions to DIS the residual
theoretical uncertainty due the scale variation and the truncation of the perturbative series will
be limited to 1% in the range of parton kinematics relevant for the current world DIS data and

Figure 14. The dependence of the logarithmic factorization scale derivatives of the
singlet PDFs on the renormalization scale μr at N = 2 (where the very small scaling
violations of qs and g are related by the momentum sum rule), N = 4 and N = 6
for a m =( ) 0.2S 0

2 and Nf = 4 and initial distributions of the form =xqs

- +- ( ) ( )x x x0.6 1 1 5.00.3 3.5 0.8 and = - -- ( ) ( )xg x x x1.6 1 1 0.60.3 4.5 0.3 at the
standard scale μr = μf. Plot from [217].
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the EIC. With respect to the theory error, inclusive DIS data offer the most precise method to
measure a ( )mS Z

2 .

4.4. Strong coupling determination in the CT18 global analyses81

The CT18 global QCD analysis [222] updates the previous CTEQ-TEA PDFs, CT14 [223]
and CT14HERA2 [224], adding a variety of high-precision data from the Large Hadron
Collider (LHC). New measurements of single-inclusive jet production, Drell–Yan lepton
pairs, top-quark pairs, as well as high transverse momentum (pT) Z bosons from ATLAS,
CMS and LHCb, at the center-of-mass energies of 7 and 8 TeV, provide significant additional
sensitivity to the PDF determination. A new family of PDF sets, CT18, CT18A, CT18X, and
CT18Z, are released at both NLO and NNLO. The nominal PDF set, CT18, is recommended
for general collider phenomenology studies, while CT18A includes an additional ATLAS 7
TeV W/Z precision data set [225], which is found to be in tension with other data sets in the
global fit. An alternative PDF set, CT18X, has adopted an x-dependent DIS scale, which
captures the small-x behavior at low Q2 and improves the QCD description of HERA DIS
data. The CT18Z PDF set includes the features of CT18A and CT18X, in addition to having a
slightly larger charm pole mass, mc = 1.4 GeV versus mc = 1.3 GeV. CT18Z maximizes the
difference from CT18 PDFs, but preserves a similar goodness-of-fit. More details can be
found in [222].

The final product—the published error PDF sets such as CT18—takes the strong coupling
at a scale mZ as the world average value a =( )m 0.118S Z

2 [226]. Alternative error PDF sets
are produced with a series of fixed a ( )mS Z

2 values for the use in the estimation of combined
PDF+αS uncertainties. As shown in CT10 [227], a change in αS is partially compensated by
changes in the PDF parameters. An αS uncertainty can be defined, which quantifies the
allowed variation of αS when allowed to be freely varied in the PDF fit. In general, the
a ( )mS Z

2 sensitivity to a specific data set is introduced either through radiative corrections,
such as in the Drell–Yan pair production, or through scaling violations, such as in DIS.

Simultaneous fits of the αS and PDFs were also performed during the CT18 study. An
optimal way to explore experimental constraints on a ( )mS Z

2 is to examine the corresponding
χ2 variations with the Lagrangian multiplier (LM) technique [228]. In figures 15, 16 and 17,
we adapt this technique to plot a a series of curves for Δχ2 = χ2(αS)− χ2(αS,0) for CT18
NNLO, CT18NLO, and CT18Z NNLO, respectively, where αS,0 corresponds to the global χ2

minimum in the PDF+αS fit. The black solid curves are for the total Δχ2, and the other
curves are for Δχ2 from the individual experiments with the highest sensitivities to αS. From
the figures, it is clear that the data sets and even groups of data sets have different preferences
to a ( )mS Z

2 in terms of both the central values and uncertainties. The spread of the pulls on αS

by the data sets is broader than it would be normally expected from random fluctuations of
data around theory, suggesting that a more conservative prescription for the estimation of the
αS uncertainty is necessary than the straightforward averaging over the data sets [229].

From the figures, we see that the HERA I and II combined DIS data [215] provide the
strongest constraints on a ( )mS Z

2 in CT18 at both NLO and NNLO. The BCDMS proton data
[177] play a slightly stronger role in the CT18Z PDF fit. These two DIS data sets prefer a
lower value of a ( )mS Z

2 than the world average, with a value about 0.114−0.116, but with
larger uncertainties. On the other hand, we see that the hadron collider data, such as inclusive
jet, top-quark pairs, and Drell–Yan production, pull the a ( )mS Z

2 value higher, with a preferred

81 Authors: J Huston (MSU, East Lansing), P Nadolsky (Southern Methodist Univ., Dallas), K. Xie (Univ. of
Pittsburgh), on behalf of the CTEQ-TEA Collaboration.
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value of 0.117−0.119 for the CT18 NNLO case. The strongest pull comes ATLAS 8 TeV Z
pT data [230], followed by the LHCb 8 TeV W/Z measurement [231]. We also see significant
pulls from inclusive jet production at ATLAS 7 TeV [232] and D0 Run II [233], as well as the
measurements of the p t

T and ¯mtt distributions in top-quark pair production at ATLAS 8 TeV
[234]. In contrast to the ATLAS case, the CMS measurements of inclusive jet production at
both 7 TeV [235] and 8 TeV [236] prefer a smaller a ( )mS Z

2 , reflecting a tension between these
measurements from the two experiments.

Within the 68% probability level, the global average values are

a a=  =  ( )( ) ( ) 4.30m m0.1164 0.0026, 0.1187 0.0026,S SZ
2

NNLO Z
2

NLO

Figure 15. The log-likelihood χ2 in the CT18 NNLO global PDF analysis as a function
the strong coupling at scale mZ, plotted for the total fitted data set and the most sensitive
experiments. Adapted from [222].

Figure 16. Same as figure 15, but now for the a ( )mS Z
2 dependence of χ2 in the CT18

NLO fit. Adapted from [222].
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while CT18Z NNLO gives 0.1169± 0.0027, all consistent with the world average [226]. In
comparison with the CT14 global fit [223], the CT18 data sets prefer a larger central a ( )mS Z

2

with a marginally smaller uncertainty. Note that the uncertainties quoted here are larger than
those in the contemporary analyses done by other two groups, MSHT and NNPDF. This is
primarily a result of a more conservative prescription for the uncertainty adopted in CT18,
despite similar constraining power of the experiments included by the three groups. The CT18
prescription reflects in part some inconsistency between the fitted data sets, as discussed
above. In the presence of such inconsistencies due to unidentified systematic effects, which
would lead to enlarged variations in αS when the selection of experimental data sets is varied,
the final uncertainty should be generally increased [237]. In addition, the CT18 uncertainty
incorporates outcomes from the fits with comparable χ2 that are obtained with more than 250
alternative functional forms of the PDFs and with alternative QCD scale choices in inclusive
jet and high-pT production. To achieve this, the αS and PDF uncertainties are estimated using
the tolerance chosen so as to cover a large number of candidate fits that are made with such
alternative choices and pass the goodness-of-fit criteria accepted for the final fit [229, 238].

Acknowledgments—The work of KX is supported by the US Department of Energy, under
Grant No. DE-SC0007914, U.S. National Science Foundation under Grant No. PHY-
2112829, and in part by the PITT PACC. The work of PN is supported by U.S. Department of
Energy under Grant No. DE-SC0010129.

4.5. NNLO αS ðm2
ZÞ determination from HERA inclusive and jet data82

Deep inelastic scattering (DIS) of electrons on protons, e–p, at centre-of-mass energies of up
to »s 320 GeV at HERA has been central to the exploration of proton structure and
quark–gluon dynamics as described by perturbative Quantum Chromodynamics (pQCD). The
combination of H1 and ZEUS data on inclusive e–p scattering and the subsequent pQCD
analysis, introducing the family of parton density functions (PDFs) known as HERAPDF2.0
[215], was a milestone for the exploitation of the HERA data. The work presented here
represents a completion of the HERAPDF2.0 family with a fit at NNLO to HERA combined
inclusive data and jet production data published separately by the ZEUS and H1

Figure 17. Same as figure 15, but for the CT18Z NNLO fit. Adapted from [222].

82 Authors: A M Cooper-Sarkar (Univ. of Oxford), on behalf of H1 and ZEUS collaborations.

J. Phys. G: Nucl. Part. Phys. 51 (2024) 090501 Major Report

62



collaborations. This was not possible at the time of the original introduction of HERAPDF2.0
because a treatment at NNLO of jet production in e−p scattering was not available then.

The name HERAPDF stands for a pQCD analysis within the DGLAP formalism
[239–241], where predictions from pQCD are fitted to data. These predictions are obtained by
solving the DGLAP evolution equations at NNLO in the MS scheme. The inclusive and dijet
production data which were already used for HERAPDF2.0Jets NLO were again used for the
analysis presented here. A new data set [242] published by the H1 collaboration on jet
production in lowQ2 events, where Q2 is the four-momentum-transfer squared, was added as
input to the fits.

The fits presented here were done in the same way as for all other members of the
HERAPDF2.0 family, for full details see [243] and references therein. All parameter settings
were the same as for the HERAPDF2.0Jets NLO fit, with the exception of the heavy quark
masses mc and mb and their uncertainty ranges, which were reevaluated using the recently
published HERA combined charm and beauty data [244]. The default minimum Q2 of data
entering the fit is Q2 = 3.5 GeV2 and the starting scale for DGLAP evolution is =Q0

2

1.9 GeV2. Note that all HERA data are at very large W so that higher twist effects at small Q2

and large x are not relevant.
As for previous HERAPDF analyses, model and parametrization uncertainties were

evaluated. For the present analysis the uncertainties on the hadronization corrections for the
jet data were included as systematic uncertainties, 50% correlated and 50% uncorrelated,
together with the experimental systematic uncertainties.

The jet data were included in the fits at NNLO by calculating predictions for the jet cross
sections using the NNLOJet [245] extension of NLOjet++ interfaced to the Applfast fra-
mework in order to achieve the speed necessary for iterative PDF fits. The predictions were
supplied with uncertainties which were also input to the fit as 50% correlated and 50%
uncorrelated systematic uncertainties.

The NNLO analysis of the jet data was applied to a slightly reduced phase space compared
to HERAPDF2.0NLOJets. All data points with + ⟨ ⟩p Q 10 GeVT

2 2 were excluded to
keep the level of scale uncertainties in the predictions for the data points to 10%. Six data
points, the lowest 〈pT〉 bin for each Q2 region, were excluded from the ZEUS dijet data set
because predictions for these points were not fully NNLO. The trijet data which were used as
input to HERAPDF2.0NLOJets had to be excluded as their treatment at NNLO is not
available. In addition six extra data points for H1 inclusive jet data at high Q2 but low pT,
which were published more recently [242], were included.

The choice of scales was also adjusted for the NNLO analysis. At NLO, the factorization
scale was chosen as m = Qf

2 2, while the renormalization scale was linked to the transverse
momenta, pT, of the jets by m = +( )Q p 2r

2 2
T
2 . For the NNLO analysis, m =f

2

m = +Q pr
2 2

T
2, was chosen for both factorization and renormalization scales.

Jet production data are essential for the determination of the strong coupling constant,
a ( )mS Z

2 . In pQCD fits to inclusive DIS data alone the value of a ( )mS Z
2 is strongly correlated to

the shape of the gluon PDF. Data on jet production cross sections provide an independent
constraint on the gluon distribution since inclusive jet and dijet production are directly
sensitive to a ( )mS Z

2 . Thus such data allow for an accurate simultaneous determination of
a ( )mS Z

2 and the PDFs.
The HERAPDF2.0Jets NNLO fit with free a ( )mS Z

2 and =Q 3.5min
2 GeV2 gives a value of

a =  -
+( ) ( ) ( ) ( )m 0.1156 0.0011 exp model parameterization 0.0029 scale .S Z

2
0.0002
0.0001
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Note that the the label experimental uncertainty covers the full experimental uncertainties of
the simultaneous PDF and free a ( )mS Z

2
fit, which thus includes contributions from the PDF

parametrization, the uncertainty on the hadronization corrections and the small uncertainties
on the theoretical predictions. Additional model uncertainties come from variation of the
input assumptions such as the the value of Q0

2, the starting scale for QCD evolution, the value
of the minimum Q2 of data entering the fit and the values of heavy quark masses. Additional
parametrization uncertainties come from the consideration of fits which have additional
parameters that do not change the χ2 of the fit significantly, but which can sometimes alter
PDF shape. A further cross-check on the parametrization comes from modifying the gluon
parametrization such that it must remain positive definite even at very low-x, x< 10−4, and
Q2 below 2 GeV2. The largest uncertainty comes from the scale uncertainty, as discussed
later.

The HERAPDF2.0Jets NNLO fit with free a ( )mS Z
2 uses 1363 data points and has a

goodness-of-fit per degree of freedom of χ2/ndof = 1614/1348 = 1.197. This can be
compared to the χ2/ndof = 1363/1131 = 1.205 for HERAPDF2.0 NNLO based on
inclusive data only. The similarity of the χ2/ndof values indicates that the data on jet pro-
duction do not introduce any tension. Data/fit comparisons are shown in [243].

A scan of the fit χ2 for fits with varying a ( )mS Z
2 shown in figure 18 and confirms the value

of a ( )mS Z
2 and its experimental uncertainty found in the simultaneous a ( )mS Z

2 and PDF fit.
The model, parameterization and scale uncertainties are also shown in the figure. The PDFs
associated with this NNLO analysis are described in [243], the input of the jet data reduces
the gluon PDF uncertainties.

The question whether data with relatively low Q2 bias the determination of a ( )mS Z
2 arises

in the context of the HERA data analysis for which low Q2 is also low x. A treatment beyond
DGLAP may be necessary because of low-x higher-twist terms, ( )xln 1 terms or even parton
saturation. To check for such bias the minimum Q2 entering the fit was varied to =Q 10min

2

and 20 GeV2. Thus the HERAPDF analysis considers the possible impact of nonperturbative
and beyond DGLAP effects on the result for a ( )mS Z

2 . These variations do not alter the value
of a ( )mS Z

2 obtained significantly, the value of a ( )mS Z
2 obtained for =Q 10min

2 GeV2 is

Figure 18. Distribution of c c cD = -2 2
min
2 versus a ( )mS Z

2 for HERAPDF2.0NN-

LOJets fits with fixed a ( )mS Z
2 values. Experimental, model/parametrization, and scale

uncertainties are illustrated (figure from [243]).
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a =   ( ) ( ) ( ) ( )m 0.1156 0.0011 exp 0.0002 model parameterization 0.0021 scale .S Z
2

The scale uncertainty is reduced with this harder cut on Q2 but the largest uncertainty still
comes from the scale uncertainty.

The scale uncertainty was evaluated by varying the renormalization and factorization
scales by a factor of two, both separately and simultaneously (7-point variation), and taking
the maximal positive and negative deviations. Scale uncertainties were assumed to be 100%
correlated between bins and data sets.

A strong motivation to determine a ( )mS Z
2 at NNLO was the hope to substantially reduce

scale uncertainties from those determined at NLO. However, for our previous NLO result we
had treated scale uncertainties as 50 % correlated and 50 % uncorrelated. If we repeat this
treatment then the scale uncertainty for the present NNLO analysis (with =Q 3.5min

2 GeV2,
comparable to the NLO analysis) would be ±0.0022, very significantly lower than the
+0.0037, − 0.0030 previously observed for the HERAPDF2.0NLOJets analysis. The abso-
lute value of a ( )mS Z

2 at NNLO a =( )m 0.1156S Z
2 is also lower than that observed at NLO

a =( )m 0.1183S Z
2 . However, the analyses were done at different scales and with somewhat

different data sets. In fact, if these choices were harmonized, the difference in the values of
a ( )mS Z

2 would be even greater: at NLO a = ( )m 0.1186 0.0014S Z
2 (exp) and at NNLO

a = ( )m 0.1144 0.0013S Z
2 (exp), where the scale choices are both +Q p2

T
2, the cuts on the

data sets for both orders are the harder cuts introduced for the present analysis and the H1 low
Q2 jet data set [242] is excluded (this choice is made because these data cannot be well fitted
at NNLO). The main reason for the decrease in the central value at NNLO is exclusion of
these low-Q2 H1 inclusive and dijet data.

It is clear that the main limiting factor today is the theoretical uncertainty, which we
estimate from the scale uncertainty. The decrease in scale uncertainty between NLO and
NNLO gives some hope for an increase in precision at N3LO. Once theoretical uncertainties
are reduced, the experimental uncertainty will need to be reduced. One may hope for progress
from analyses at future e−p colliders such as the EIC/LHeC/FCC-eh. Experimental accuracy
on a ~( )m 0.0001S Z

2 is projected at the LHeC [246].
Acknowledgments—AMC-S would like to thank the Leverhulme Trust.

4.6. Determination of the strong coupling αS ðm2
ZÞ in the MSHT20 NNLO PDF fit 83

MSHT20 [247] represented a significant step forward in the global determination of PDFs
within the MSHT collaboration (previously MRST/MSTW/MMHT), with more data of
greater precision across more channels and more differential in nature now incorporated
alongside the inclusion of full NNLO QCD theoretical predictions (and NLO EW corrections
where relevant [248]). This has been further complemented by progress on the methodolo-
gical side, including in particular the extension of the PDF parameterization. The overall
result was a significant improvement in our knowledge of the PDFs, including the central
values and a general reduction of the PDF uncertainties. Within this context we undertook a
follow-up study [249] examining the effects of varying the strong coupling and heavy quark
masses within the global fit. This updated previous work with MMHT14 [250]. As a result of
this new analysis we determined the preferred value of a ( )mS Z

2 and its associated uncertainty
and we report on this in this brief review.

The default PDFs within MSHT are provided at a =( )m 0.118S Z
2 at NNLO in order to

provide a common value between different PDF fitting groups which is also consistent with
the world average value of a = ( )m 0.1179 0.0009S Z

2 [251]. However, a ( )mS Z
2 can also be

83 Authors: T Cridge (UCL, London) on behalf of the MSHT Collaboration.
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left as a free parameter and fit alongside the PDFs, we are then able to utilize the global nature
of the PDF fits to extract a ( )mS Z

2 . Performing the fit with a ( )mS Z
2 free within MSHT20 at

NLO and NNLO obtains the best fit values of 0.1203 and 0.1174 respectively, with the
excellent quadratic χ2 profiles shown in figure 19, demonstrating the clear sensitivity at the
global fit level.

Nonetheless, performing such a fit simply extracts the best fit value of the strong coupling,
in reality we wish to determine a value of the uncertainty arising on this value from the PDF
fit. In order to do this, we utilize the dynamical tolerance method [247, 252, 253] which
enables the determination of the 68% confidence level interval for the uncertainties on a ( )mS Z

2

by obtaining a ‘tolerance’ Δχ2 increase from the best fit value for a particular dataset. Once
this is exceeded, it sets the upper and lower bound on a dataset-by-dataset level for the strong
coupling. It should be noted this is the same method applied to the determination of the PDF
uncertainties. Performing this across the vast array of datasets in MSHT20 one obtains
bounds from each dataset on a ( )mS Z

2 , the most relevant of which are presented in figure 20 for
the MSHT20 NNLO fit, further details can be found in [249].

As can be observed, different datasets may prefer significantly different values of a ( )mS Z
2

within the context of the global PDF fit and correspondingly offer different bounds. None-
theless, several general comments can be made. The fixed target and DIS data, and in
particular the BCDMS and SLAC proton data, have a preference for lower values of the
strong coupling (albeit not universally) in order to slow the fall of the structure function with
Q2. These represent relatively clean means of determining a ( )mS Z

2 through their high x nature
meaning they are dominantly non-singlet. On the other hand, the HERA deep inelastic
scattering data has relatively limited sensitivity compared to its large number of points in the
fit, this is a reflection of its significant pull on the central values of the PDFs, meaning it
naturally sits near the minimum of the profiles. The inclusive jets and Z pT data from the LHC
have direct sensitivity to a ( )mS Z

2 and are seen to generally prefer lower values of the strong
coupling within the fit. This is also observed for the top data, certainly at NNLO, however the
differential data are dropped from the determination of the global a ( )mS Z

2 bounds due to the
fixed top mass available in the theoretical prediction grids utilized, which restricts their utility
for the uncertainty determination. Finally, whilst the high precision W, Z data from the LHC
have only indirect sensitivity to the strong coupling, these datasets are often still able to
provide bounds on a ( )mS Z

2 , and are generally seen to favour higher values of a ( )mS Z
2 , albeit

again not universally.
Examining these bounds on a ( )mS Z

2 across the whole fit, we can then extract the global
upper and lower bounds on our strong coupling determinations. At NNLO the BCDMS

Figure 19. The plots show the total χ2 as a function of a ( )mS Z
2 for NLO (left) and

NNLO (right) MSHT20 fits respectively. Figure originally from [249].
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proton data provides the tightest upper bound, reflecting its preference for a lower a ( )mS Z
2 , its

Δχ2 rises rapidly as the strong coupling is increased and therefore bounds the upward
variation of a ( )mS Z

2 . On the other hand, the CMS 8 TeV W data provides the most stringent
lower bound, fitting with the general trend of the W, Z data favouring larger a ( )mS Z

2 values.
Nonetheless, several other datasets would provide only slightly weaker bounds including the
SLAC proton data in the upwards direction and the ATLAS 8 TeV Z and high mass Drell–
Yan data in the downwards direction. Overall, a symmetrized uncertainty on the strong
coupling is obtained of 0.0013, corresponding to a change of cD = 17global

2 , a similar change
in fit quality to that observed for changing the PDFs by their uncertainty in an eigenvector
direction. A similar analysis can be performed at NLO, for which the BCDMS proton data
again provides the tightest upper bound (followed by the ATLAS 8 TeV Z pT and ATLAS
7 TeV inclusive jets data, demonstrating their preference for lower a ( )mS Z

2 ) whilst the LHCb
7 and 8 TeV W, Z data provides the lower bound (closely followed by the SLAC deuterium
data). Overall the best fit values and uncertainties on a ( )mS Z

2 within MSHT at NLO and
NNLO respectively are determined to be as follows and the NNLO result is consistent with
the PDG world average84:

a a=  = ( ) ( )m m0.1174 0.0013, 0.1203 0.0015.S SZ
2

NNLO Z
2

NLO

One of the benefits of performing such analyses within the context of global PDF fits, is
the incorporation of correlations between the PDFs and the strong coupling, this is investi-
gated in [249] and the standard method of treating the a ( )mS Z

2 uncertainty as an additional
eigenvector in the fit and combining it in quadrature with the PDF uncertainty to obtain the
total PDF + a ( )mS Z

2 uncertainty is demonstrated. Given these correlations, there are both

Figure 20. The plot shows the value of a ( )mS Z
2 corresponding to the best fit, together

with the upper and lower 1σ constraints on a ( )mS Z
2 from the more constraining data

sets at NNLO. The overall upper and lower bounds taken are given by the horizontal
dashed red lines. Figure originally from [249].

84 It should be noted that the uncertainties given here are experimental in nature, propagated through the PDF fit, the
theoretical uncertainties are not included within the global PDF fit at this stage.
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direct contributions to the total uncertainty on an observable from the strong coupling change,
but also indirect contributions from the associated correlated changes in the PDFs. The latter
can partially cancel the direct a ( )mS Z

2 contribution to the uncertainty, for example by probing
the gluon below x 0.1 where it is anticorrelated with the value of the strong coupling.
Studies of the heavy quark masses and their correlation with a ( )mS Z

2 were also performed for
mcharm and demonstrated only limited correlation, with the value of a ( )mS Z

2 extracted rising
slightly with the charm quark mass utilized.

The various PDF sets determined within this work are provided for public use on the
MSHT website and the LHAPDF repository [254]. In particular, of relevance for this review
are the sets provided at NLO and NNLO at fixed a ( )mS Z

2 in steps of 0.001 for the range
a ( )m0.108 0.130S Z

2 , moreover the cD global
2 in the PDF global fit at each fixed different

value of a ( )mS Z
2 in these sets are provided [249].

Looking into the future, there are several developments which would facilitate improve-
ments in a ( )mS Z

2 extractions from global PDF fits of deep inelastic scattering and collider
data. Firstly, there are questions of the means to incorporate estimates of the theoretical
uncertainties into the a ( )mS Z

2 extractions in global PDF fits (beyond relating it to (half) the
difference of NLO and NNLO), this is being actively investigated by the various groups and
progress is to be expected on this front. Meanwhile, the current uncertainties are limited by
the experimental data available, as well as perhaps our understanding of its treatment. The
measurements from the LHC in recent years of gluon-sensitive processes, such as inclusive
jets and top processes have enabled improvements of our constraints on the PDFs and, in
some cases also of a ( )mS Z

2 . The rapid availability of grids for theoretical predictions for
inclusion in PDFs for a ( )mS Z

2 sensitive processes, such as triple differential jet data, would
enable further progress here and this could be complemented by the inclusion of deep
inelastic scattering jet data from HERA. The ability to account for the top quark mass
dependence in the top differential data would also certainly represent a step forward but is
reliant on the provision of theoretical grids at different fixed values, we hope these can be
provided in the short term. There is also the possibility of utilising ratios to provide particular
sensitivity to a ( )mS Z

2 , e.g. the ratio of the inclusive 3- and 2-jet cross-sections [255], in which
the quantities involved are highly correlated (both experimentally and theoretically), these
could further supplement the a ( )mS Z

2 sensitivity of the PDFs if included into the global fits.
However, more analysis than simply providing the experimental data and corresponding
theoretical predictions in a form suitable for inclusion in the PDFs is required. As precision
has increased and statistical uncertainties have reduced, systematic uncertainties and their
correlations have come to dominate in precision measurements. Correspondingly, increas-
ingly global PDF fits have run into issues with such correlated systematic uncertainties and an
improved understanding of such correlations would likely also benefit a ( )mS Z

2 extractions
simultaneously to PDF extractions. More broadly, this study emphasizes the array of datasets
with sensitivity to the strong coupling through the global PDF fits, with older fixed target data
providing the tightest bounds in some places and newer LHC inclusive jet and high precision
Drell–Yan data providing bounds in others. Therefore the continual evolution of the number
and breadth of datasets included, along with their individual precisions, is important for
further reducing these uncertainties, and we look forward to further data from the LHC and
elsewhere in this regard.

Acknowledgments—TC would like to thank the Science and Technology Facilities Council
(STFC) for support via grant awards ST/P000274/1 and ST/T000856/1.
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4.7. Strong coupling determinations from the NNPDF global analyses85

The model-independent approach based on machine learning that is adopted by the NNPDF
Collaboration is specially suitable for the simultaneous extraction of parton distributions
together with SM parameters, such as the strong coupling a ( )mS Z

2 , the heavy quark masses,
and the CKM matrix elements [256] as well as BSM parameters such as Wilson coefficients
in the Standard Model Effective Field Theory [257–259]. In this contribution, we briefly
review studies of a ( )mS Z

2
fits in the context of the NNPDF global analyses, and outline

ongoing studies in the framework of the NNPDF4.0 determination [260, 261].
The first determination of the strong coupling in the NNPDF framework was presented in

[262] at NLO and updated in [263] to NNLO, in both cases based on the NNPDF2.1 dataset
and fitting methodology [264, 265]. This dataset contained fixed-target DIS and Drell–Yan
data, HERA collider DIS, and gauge boson and jet production measurements from the
Tevatron, and hence was devoid of LHC data. A parabolic fit to the χ2(αS) profile constructed
from a large number of uncorrelated Monte Carlo replicas led to a value of the strong
coupling

a =  ( ) ( )m 0.1173 0.0007 0.0009 , 4.31S Z
2

pdf mhou

at NNLO, where the missing higher order uncertainties (MHOUs) were estimated using the
Cacciari–Houdeau method [266]. The stability of this determination with respect to the
number of replicas was assessed, and the distribution of pulls from individual datasets was
found consistent with statistical expectations.

The extraction of a ( )mS Z
2 within the NNPDF framework was subsequently revisited in

[267], an analysis based on the NNPDF3.1 settings [268]. In order to fully account for the
PDF- and data-induced correlations on a ( )mS Z

2 , a new methodology denoted as the ‘correlated
replica (c-replica) method’ was developed. In this approach, one also produces variants of the
global fit for different a ( )mS Z

2 values, but in a manner that one has used correlated data- and
PDF-replicas which are identical in all settings except for the value of the strong coupling
itself. The correlated replica method makes possible a more robust estimate of the metho-
dological uncertainties associated to the a ( )mS Z

2 extraction, at the price of a high computa-
tional cost since the number of replicas that need to be generated in this way is ( ) 104 .

Figure 21 (left) displays the NNPDF2.1- and NNPDF3.1-based NNLO determinations of
a ( )mS Z

2 , compared with the results from the corresponding MMHT14 and ABMP16 analyses
as well as to the 2017 PDG average. The thicker error bars correspond to the PDF uncer-
tainties, while the thinner ones indicate the addition in quadrature of PDF and MHO
uncertainties. The latter are estimated as half the difference between the NNLO and NLO
results. The NNPDF3.1-based NNLO result is found to be

a =   ( ) ( )m 0.1185 0.0005 0.0001 0.0011 . 4.32S Z
2

pdf meth mhou

One can observe the good consistency between the two NNPDF determinations as well as
among them and the MMHT14 the PDG average results. It is also clear how, specially for the
NNPDF3.1-based analysis, MHOUs are currently the limiting factor in strong coupling
determinations from global PDF fits. The methodological uncertainties, associated to e.g. the
finite number of replicas, are found to be negligible in comparison to both the data and the
MHO uncertainties. The role of the choice of figure of merit χ2 was also explored, showing
that the frequently used experimental definition leads to a downwards D’Agostini bias which
is avoided with the t0 definition [269, 270].

85 Authors: J Rojo (NIKHEF and VU Amsterdam) on behalf of the NNPDF Collaboration.
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One issue that is frequently raised in the context of PDF-based αS extractions is that of the
interplay between the various types of processes that enter the global fit, and whether or not
their relative pulls are overall consistent with the global determination. One possible strategy
to gain some insight on this is provided by repeating the a ( )mS Z

2 extraction but now using the
partial, c a( )p S

2 , rather than global, c a( )Stot
2 , profiles. Hence in this case a ( )mS Z

2 is extracted

from a c a( )p S
2 profile restricted to the contribution of specific groups of processes, i.e. top

quark or jet data. It should be emphasized, that, as discussed in detail in [271], it would not be
correct to interpret these results as the value of αS preferred by, say, top or jet data: such value
could only be determined from a PDF fit based exclusively on this specific group of pro-
cesses. With this caveat, figure 21 (right) displays the central values and 68% CL uncertainties
on a ( )mS Z

2 in the NNPDF3.1 NLO and NNLO analyses, comparing the baseline results with
those obtained from the partial c a( )p S

2 restricted to the specific subsets of processes listed.

One can observe that collider processes (jets, Z pT, Drell–Yan) tend to favour a larger a ( )mS Z
2

value as compared to the global fit result, while the opposite is found for most fixed-target
measurements. The best-fit values from c a( )p S

2 for top quark pair production and neutral-
current DIS structure functions are similar to the global fit result.

Work in progress aims to revisit these a ( )mS Z
2 extractions now based on the recent

NNPDF4.0 [260, 261] analysis. NNPDF4.0 benefits from a number of methodological
improvements as well as from the addition of several gluon-sensitive measurements, such as
dijets [272], direct photon production [273], and several new top quark production datasets,
which in turn provide novel handles on the αS value. The left panel of figure 22 compares the
gluon-gluon PDF luminosity at the LHC =s 14 TeV between the NNPDF3.1 and
NNPDF4.0 NNLO fits, highlighting the impact of the new gluon-sensitive measurements
both in terms of uncertainty reduction as well as in the shift in central values. The right panel
of figure 22 displays the percentage PDF uncertainties in the double-differential gluon-gluon
luminosity as a function of mX and the rapidity y in NNPDF4.0 NNLO, showing how
uncertainties are at the 1% level for most of the kinematic range accessible at the LHC. In
order to fully exploit the uncertainty reduction in the PDF determination observed in
NNPDF4.0, it will be crucial to assess carefully all other sources of uncertainty that impact

Figure 21. Left: NNPDF2.1- and NNPDF3.1-based NNLO determinations of a ( )mS Z
2 ,

compared with the corresponding results from the MMHT14 and ABMP16 analyses as
well as to the 2017 PDG average. The thicker error bars correspond to the PDF
uncertainties, while the thinner ones indicate the addition in quadrature of PDF and
MHO uncertainties. Right: central values and 68% CL uncertainties on a ( )mS Z

2 in the
NNPDF3.1 NLO and NNLO analyses, comparing the baseline results with those
obtained from the partial c a( )p S

2 restricted to the specific subsets of processes

indicated.
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the αS extraction of global PDF fits, in particular those associated with MHOUs, which will
be tackled using the strategy laid out in [274, 275].

Future work by the NNPDF collaboration will focus on extending the correlated replica
method to the NNPDF4.0 fits and update the determination of the strong coupling constant.
Another option that is being considered is the recently developed SIMUNET methodology
[257], based on an extension of the NNPDF4.0 neural network architecture with an extra
layer to simultaneously determine PDFs alongside an arbitrary number of SM and BSM
parameters from the direct joint minimization of the χ2

figure of merit. The main advantage of
SIMUNET would be to bypass the need of running a very large number of MC replicas, since
the simultaneous extraction of a ( )mS Z

2 together with the PDFs would only require
= ( )N 100rep replicas as in standard NNPDF fits. Results for the determination of a ( )mS Z

2

from NNPDF4.0 using both SIMUNET and the correlated replica method will be presented in
the near future.

4.8. Measurements of αS from spin structure functions86

In this section, we discuss the extraction of αS from nucleon spin structure data. The infor-
mation is obtained from the cross-section asymmetry of Deep Inelastic scattering (DIS). The
cross-section for inclusive lepton scattering is:

s
s

W
= + + +[ ( ) ( ) ( ) ( )] ( )d

d dx
aF x Q bF x Q cg x Q dg x Q, , , , , 4.33Mott 1

2
2

2
1

2
2

2

where Ω is the solid angle, and σMott, a, b, c and d are kinematic factors (see e.g. [276] for
their explicit expressions). In particular, σMott is the Mott cross-section for scattering off a
point-like target. The information on the nucleon structure is contained in the four structure
functions F1(x, Q

2), F2(x, Q
2), g1(x, Q

2) and g2(x, Q
2). The unpolarized structure functions F1

and F2 are obtained with unpolarized beam and/or target and are kinematically separated by
varying a and b. The spin structure functions g1 and g2 arise when beam and target are both
polarized. One accesses g1 and g2 by measuring beam spin asymmetries. Varying the target
polarization direction allows to separate g1 from g2. One can extract αS from g1 (g2 is harder

Figure 22. Left: comparison of the gluon-gluon PDF luminosities at the LHC =s 14
TeV as a function of the invariant mass mX between the NNPDF3.1 and NNPDF4.0
NNLO fits, highlighting the impact of the new gluon-sensitive measurements. Right:
relative PDF uncertainties in the double-differential gluon-gluon luminosity as a
function of mX and the rapidity y in NNPDF4.0.

86 Author: A Deur (JLAB).
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to measure and without simple partonic interpretation) by performing a global fit of its
Q2-evolution, see e.g. [277]. This is a thorough but complex method, and modeled
nonperturbative inputs (quark and gluon PDFs and possibly higher twists) are required.
Alternatively, the Q2-evolution of the moment òG º( ) ( )Q g x Q dx,1

2
0

1
1

2 can be used. The
method is much simpler since there is no x-dependence, and the nonperturbative inputs are the
more-or-less well-measured axial charges a0, a3 and a8 [276] (and higher-twists if low-Q2

data are used). The difficulty is that the low-x contribution to a moment cannot be measured,
as it would require infinite beam energy. Furthermore, a0, which is the quark spin contribution
to the nucleon spin, is Q2-dependent and in some renormalization schemes may receive a
contribution from the polarized gluon PDF ΔG. Extracting αS is further simplified when the
isovector component of Γ1 is used, viz, G - G º G -p n p n

1 1 1 . The relevant axial charge is
precisely measured (a3 = gA = 1.2762(5)) [251], the Q2-evolution of G -p n

1 is known to
higher order than Gp n

1
, or g1 [278–280], and there is no gluon contribution. On the other hand,

the low-x issue remains and G -p n
1 measurements are demanding since polarized proton and

neutron data are needed. We will focus here on using G -p n
1 .

The Bjorken sum rule [281, 282] generalized to finite Q2 by including QCD radiative and
power corrections is [278–280]:
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where the series coefficient values are for MS and Nf = 3. Here, M2 is nucleon mass, a2(Q
2)

and d2(Q
2) are the twist-2 and 3 target mass corrections, respectively, and f2(Q

2) is the
dynamical twist-4 correction. The higher twist coefficients are also subject to QCD radiative
corrections and thus depend on αS, i.e. Q

2. To extract αS, one can either solve equation (4.34)
for αS or fit the Q

2-dependence of equation (4.34). The latter method is more accurate because
it suppresses systematic uncertainties affecting the magnitude of G -p n

1 [283]. Such analysis
was performed on the data of the Jefferson Lab (JLab) experiment EG1dvcs [284, 285]. The
experiment took data during the 6 GeV era of JLab and used the CEBAF Large Acceptance
Spectrometer (CLAS) together with polarized NH3 (for proton) and ND3 (for neutron) targets
and the JLab polarized electron beam. Since EG1dvcs was dedicated to exclusive
measurements (DVCS process) it provides inclusive data with very high statistics. Only
EG1dvcs data were used to avoid uncorrelated systematics between different experiments
since, in contrast to point-to-point correlated systematics (e.g. from polarimetries),
uncorrelated errors are not suppressed in the extraction of αS. Furthermore, since the
EG1dvcs data largely dominate the world data in terms of statistics, including other
experiments would only increase the systematic uncertainty on the extraction without being
balanced by the gains in Q2 leverage and statistics. However, one must recognize that the
availability of polarized g1 data from higher energy experiments [286–289, 290–304] is
crucial for this analysis since it allows to control the low-x extrapolation necessary to
complement G -p n

1 . The EG1dvcs data used cover Q2> 2.32 GeV2 and are comprised of five
data points. The statistical uncertainty is negligible for this analysis. The point-to-point
correlated uncertainty was separated from the point-to-point uncorrelated one using the
unbiased estimate prescription [251, 305], and the uncertainties on the low-x extrapolation
were approximately separated into Q2-dependent and independent parts. Thus, a large
fraction of the uncertainties is suppressed in the extraction of αS. The dominant errors are the
point-to-point uncorrelated (4.4%) and correlated (3.3%) uncertainties. The others are
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negligible (power corrections: <0.1 %; equation (4.34) truncation: 1.3%; truncation of the
β-series needed to evolve αS to mZ: 0.1%). In all the analysis provided
a = ( )m 0.1123 0.0061S Z

2 [306] at N3LO with an N4LO correction estimate, see
equation (4.34).

This analysis can be repeated with better precision in the future thanks to two develop-
ments. The first is experiment EG12 using CLAS12 with the JLab 11-GeV beam and
scheduled for June 2022. The expected precision is similar to EG1dvcs, but with a Q2 reach of
up to 6 GeV and better low-x coverage. The second is the EIC [307], which will now be
summarily described.

The optimal Q2 range to extract αS from G -p n
1 at EIC is 1Q2 50 GeV2. Below, power

corrections could be an issue and above, the unmeasured low-x part of G -p n
1 becomes large

(15%. Since for EIC there will be no higher energy data to guide the low-x extrapolation, it
must be kept small). Assuming a luminosity of 2× 1033 cm−2s−1 and an electron (nucleus)
beam polarization of 50% (60%), a year of data taking yields statistical uncertainties ranging
from DG =- 0.5%p n

1 for Q2 = 3 GeV2 to 0.05% for Q2 = 15 GeV2. For systematics, we
assume 4% for deuteron’s nuclear corrections or negligible if the associated proton can be
tagged, 100% on the low-x extrapolation, 3% on beam polarimetries, 6% on radiative cor-
rections, 2.5% on the F1 structure function necessary to form g1 from the measured A1

asymmetry [276] (specifically, we assumed 2% on F2 and 10% on the R ratio). Since g2 will
be measured at the EIC, correcting for it to obtain A1 from the experimental asymmetry A||

will not add significant uncertainties. We neglected the contamination from particle mis-
identification. Detector/trigger efficiencies, acceptance, beam currents uncertainties are
negligible for asymmetry measurements. Finally, we assumed that 60% of the systematic is
point-to-point uncorrelated, as found for the EG1dvcs data. Fitting the simulated pseudodata
yields aD =  ( )m 0.0033 0.0005S Z

2 , where the first (second) uncertainty is point-to-point
uncorrelated (correlated). The fit was performed over 1.5�Q2� 15 GeV2. Adding a higher
Q2 data point only reduces marginally the point-to-point uncorrelated error while significantly
increasing the correlated one: aD =  ( )m 0.0030 0.0021S Z

2 . Increasing the statistics by a
factor of 10 and assuming that the proton of the deuteron can be tagged yields
aD =  ( )m 0.0016 0.0003S Z

2 . This simple exercise suggests that an accurate measurement
of acceptable precision is possible at EIC, warranting to investigate more seriously the
possibility. A more thorough investigation is currently being performed by the EIC structure
function working group.

Another method has been used to extract αS from G -p n
1 at low Q2. It is based on the gauge-

gravity duality, specifically LFHQCD [308], a model closely tied to QCD. The Lagrangian of
LFHQCD is that of QCD quantized on the light-front, a completely rigorous procedure. The
only unknown is the interaction part of the Lagrangian. It can be determined by imposing the
approximate chiral symmetry of QCD. Alternatively, one can require QCD’s approximate
conformal symmetry and apply de Alfaro–Fubini–Furlan procedure [309], or require that the
light-front potential transformed to the traditional instant-form produces the Cornell potential
in the heavy quark case [310]. The three methods lead to the same semiclassical potential that
effectively accounts for the action of the gluons. Imposing upon LFHQCD a nearly exact
QCD symmetry to determine the full Lagrangian is the same procedure as used for chiral
perturbation theory to determine its Lagrangian. However, contrary to the latter, no coun-
terterms determined from phenomenology are required for LFHQCD since renormalization is
unnecessary for nonperturbative frameworks. In fact, LFHQCD has in principle a single free
parameter, determined e.g. from a hadron mass or a fit to the G - ( )Qp n

1
2 data at low Q2. (One

free parameter is always needed to set units since they are arbitrary human conventions.) In
practice, LFHQCD has a few additional parameters to account for hadronic higher Fock
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states. They are however of secondary importance and do not enter the determination of αS

discussed here. LFHQCD provides a wide range of results that agree with experiments,
including hadron spectroscopy [311], form factors [312], polarized and unpolarized PDFs and
GPDs [313–315] and αS(Q

2) [316]. The latter is obtained by forming the effective charge
[201, 202, 317] characterizing G - ( )Qp n

1
2 and calculating it with LFHQCD. The obtained

effective charge, straightforwardly related to αS, is valid over the 0�Q2 2 GeV2 domain.
Thus, LFHQCD and pQCD share a domain of applicability over 1Q2 2 GeV2. Using the
analytical expressions of αS from LFHQCD and pQCD one can then deduce the relation
between Λs and the LFHQCD scale parameter [318, 319]. The procedure yields
a = ( )m 0.1190 0.0006S Z

2 (N3LO). The uncertainty, which is comparable to that of the best
lattice results, comes from uncertainties on the LFHQCD scale, on the chiral limit approx-
imation and on the truncations of the Bjorken and αS pQCD series.

To summarize, two determinations of αS using the Bjorken sum G -p n
1 were reviewed. The

first yields αS = 0.1123± 0.0061 (N3LO) [306] and is based on a fit to the JLab EG1dvcs
data. A similar analysis of the expected EIC data may reduce the uncertainty to
ΔαS;± 0.0016. The second determination, αS = 0.1190± 0.0006 (N3LO) [319], is
obtained by matching the pQCD expression of αS to that from LFHQCD in the domain of
validity common to the two approaches.

Acknowledgments—This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-
06OR23177.

4.9. αS ðm2
ZÞ from a combined NNLO analysis of normalized jet cross sections and DIS data87

The H1 and NNLOJET Collaborations have performed a simultaneous determination of PDFs
and a ( )mS Z

2 using the entire set of inclusive neutral-current and charged-current (NC and CC)
DIS data from H1 together with all of H1ʼs normalized inclusive jet and dijet cross section
data [320]. The methodology of the analysis follows closely the well-established formalism of
PDF determinations at HERA, as it was previously employed for HERAPDF-style or
H1PDF-style fits [215, 321, 322], but additionally a ( )mS Z

2 is further considered as a free
parameter in the fit.

The αS sensitivity in the analysis is obtained by exploiting H1ʼs normalized inclusive jet
and dijet cross sections that were published previously [242, 323, 324]. These jet measure-
ments were performed double-differentially as functions of Q2 and pT (where pT denotes the
transverse momenta of a single jet for inclusive jets, and the average pT of the dijet system).
The data were taken during the HERA-I [323] and HERA-II [242, 324] running periods and
for Q2 values lower than 100 GeV2 [242] or above [323, 324], and jets were measured in the
Breit frame in the range of about 4.5< pT< 50 GeV. Differently than absolute jet cross
sections, normalized jet cross are measured as the ratio of absolute jet cross sections to the
bin-integrated inclusive NC DIS cross section in the respective Q2 interval. Thus, some
experimental uncertainties are reduced or cancel (like normalization uncertainties), and since
the inclusive DIS data themselves are used in the fit, the correlations of the uncertainties
between different data sets are correctly treated in the fit. It is also hoped that the PDF-
dependence cancels out to some extent. Since jet cross sections in the Breit frame are
proportional to a( ) S

1 in leading-order pQCD, while inclusive DIS is of a( ) S
0 , the αS

dependence is preserved but smaller experimental uncertainties are achieved, when compared
to absolute jet cross sections.

87 Authors: D Britzger (MPI Munich) on behalf of the H1 Collaboration.
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The selected inclusive DIS data comprise the full set of H1ʼs inclusive NC and CC DIS
data, and makes particularly use of the combined low-Q2 data from HERA-I [325] and
high-Q2 data with polarized lepton beams from HERA-II [322]. The x-dependence of five
orthogonal PDFs (g, ū, d̄ , Ū , D̄) are parameterized at a scale of 1.9 GeV using a common
HERAPDF-style parameterization. The inclusive DIS data is restricted to Q2> 12 GeV2, to
reduce effects from heavy-quark masses and low-x effects [326]. Since the αS-sensitivity
arises from the matrix elements of the jet data, the αS results are rather insensitive to the exact
parameterization of the PDFs. The PDF evolution and structure function calculation is per-
formed using the program QCDNUM [327] in the ZM-VFNS scheme.

The jet data are confronted for the first time with NNLO predictions [328, 329] from
NNLOJET [330] with five massless flavours and interfaced to fastNLO [331], and the
denominator of the normalized jet cross sections is calculated in NNLO using QCDNUM.
Similarly as inclusive DIS data, also jet data are restricted to scales that are two times higher
than the b-quark mass in order to reduce the impact from heavy quark masses. The renor-
malization and factorization scales are identified with m = +Q p2 2

T
2. The NNLO predictions

are corrected for hadronization effects using multiplicative correction factors, which were
derived using the MC event generators Djangoh [332] and Rapgap [333].

The fit minimizes a χ2 quantity based on log-normal probability distribution functions. At
the minimum χ2/ndof = 1.0 for ndof = 1516 degrees of freedom is found, which is an
excellent data-to-theory agreement. The value of a ( )mS Z

2 is determined in the PDF+a ( )mS Z
2

fit to [320]

a =( ) ( ) ( ) ( ) ( ) ( )m 0.1147 11 2 3 23 , 4.35S Z
2

exp,had,PDF mod par scale

where the first uncertainty denotes the fit uncertainty, the second and third component is
obtained from variations of model (mod) or parameterization (par) assumptions of the PDF.
The last uncertainty denotes scale uncertainties which are obtained from repeating the fit with
scale-factors of 0.5 and 2. The αS value is found to be consistent with a determination from
non-normalized jet cross sections (section 8). The resulting PDF is denoted H1PDF2017nnlo
and is found to be somewhat compatible with NNPDF3.1 [268] and in good consistency with
NNPDF3.1sx [326].

In a PDF+a ( )mS Z
2

fit to inclusive DIS data alone, large uncertainties in a ( )mS Z
2 are

obtained, and it was shown that the inclusion of normalized jet data reduces the correlation of
a ( )mS Z

2 and the gluon density in the PDF+αS fit [320]. It can be concluded that the sensitivity
to a ( )mS Z

2 arises exclusively from the jet data, but not from the inclusive DIS data, which is
also seen from the small (mod) and (par) uncertainties in equation (4.35).

A recent reanalysis of the selected H1ʼs normalized jet cross section data from the
H1PDF2017nnlo analysis by a somewhat different author group [243] exploits the same
NNLO predictions. Differences are in the selection of the DIS data, and the addition of further
non-normalized DIS jet data. That analysis finds a consistent result for a ( )mS Z

2 , equal-sized
experimental uncertainties, and also scale uncertainties of comparable size (albeit a bit
higher). It is concluded, that the superior sensitivity of H1ʼs normalized jet data to a ( )mS Z

2

makes the a ( )mS Z
2 result from the PDF+αS fit rather insensitive to changes in the inclusive

DIS data, or to the addition of further, absolute, jet cross sections from HERA. The scope of
[243] focuses on different QCD aspects, like PDFs, but it does not supersede the original αS

analysis [320], since it does not employs improved predictions, or achieves smaller uncer-
tainties in a ( )mS Z

2 . Therefore, the present αS from HERA (normalized) jet data from PDF+αS

analyses remains is quoted in [320], and equation (4.35). Future uncertainty reductions can be
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achieved with improved predictions, like N3LO, or by adding normalized jet data from more
experiments.

5. αS ðm2
ZÞ from electroweak data

The present QCD coupling world average [251] contains an ‘electroweak precision fit’
category where an a = ( )m 0.1208 0.0028S Z

2 value is determined from the average of two
results: (i) a global fit of multiple SM electroweak and Higgs observables with the QCD
coupling constant left as single free parameter, yielding a = ( )m 0.1194 0.0029S Z

2 [334],
and (ii) a fit of three hadronic pseudoobservables measured at LEP and SLC in e+e− colli-
sions at the Z mass pole [335], resulting in a = ( )m 0.1221 0.0027S Z

2 . More recently, [336]
has improved both Z-boson-based determinations by incorporating higher-order theoretical
corrections [337–339] and an experimental update of the LEP luminosity corrections [340]. In
addition, it has been shown that similar future high-precision measurement of W boson
hadronic decays [336, 341] will also provide competitive a ( )mS Z

2 determinations. The results
of these two latest a ( )mS Z

2 extractions from Z and W boson decays are summarized below.

5.1. Strong coupling from electroweak boson decays at N3LO accuracy88

The a ( )mS Z
2 value can be neatly extracted from various electroweak-boson hadronic pseu-

doobservables that can be accurately measured in high-energy e+e− collisions, such as:

1. The W and Z hadronic widths, computable theoretically through the expression
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where the Born width G = å( ∣ ∣ )f G m N, , ; VijW,Z F W,Z
3

C
2Born

depends on the Fermi constant
GF, the cube of the EW boson mass, the number of colours NC, and, in the W case, also
on the sum of CKM matrix elements |Vij|

2. The ai(Q) and δEW,mix,np terms are,
respectively, higher-order pQCD, EW, mixed, and non-pQCD corrections discussed
below. Since the total W and Z widths—given by the sum of hadronic and leptonic
partial widths G = G + GW,Z

tot
W,Z
had

W,Z
lep

—have smaller experimental uncertainties than the

hadronic ones alone, and since GW,Z
lep can be both accurately measured and computed, the

value of GW,Z
tot is often directly used to determine a ( )mS Z

2 .
2. The ratio of W, Z hadronic-to-leptonic widths, defined theoretically as
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where the a a= ( )fR , ,...W,Z
EW 2 prefactor, which depends on the fine structure constant α,

accounts for the purely electroweak dependence of the calculation. Experimentally, in the
W boson case the denominator of the RW ratio represents the sum of all leptonic decays,
which can be accurately determined from the ratio of hadronic over leptonic decay
branching ratios: = =  R 2.0684 0.0254W W

had
W
lep [251]. However, in the Z boson

case the denominator of RZ (often labeled Rℓ
0) is the average width over the three

charged lepton species, i.e. = G G = R 20.767 0.025ℓ
Z Z

had
Z [251] with G =ℓ

Z

G + G + Gm t( )1

3 Z
e

Z Z , which can be more precisely measured.

88 Authors: D d’Enterria (CERN).
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3. In the Z boson case, the hadronic cross section at the resonance peak in e+e− collisions,
theoretically given by

s
p

=
G G
G

·
( )

( )
m

12
, 5.3

e

Z
had

Z

Z Z
had

Z
tot 2

where Ge
Z is its electronic width. This quantity is also useful because sZ

had can be
measured with small experimental uncertainties in the e+e−→ Z→ hadrons process,
independently of any of the GZ

e,had,tot widths appearing in the theoretical equation.

In [336], two new determinations of the QCD coupling constant at the Z pole have been
carried out from detailed comparisons of inclusive W and Z hadronic decays data to state-of-
the-art pQCD calculations at next-to-next-to-next-to-leading order (N3LO) accuracy, incor-
porating the latest experimental and theoretical developments. In the W boson case, the total
width computed at N3LO has been used for the first time in the extraction. For the Z boson
pseudoobservables, the N3LO results have been complemented with the full two- and partial
three-loop EW corrections recently made available, and the experimental values have been
updated to account for newly estimated LEP luminosity biases. A combined reanalysis of the
Z boson data yields a = ( )m 0.1203 0.0028S Z

2 , with a 2.3% uncertainty reduced by about
7% compared to the previous state-of-the-art. From the combined W boson data, a value of
a = ( )m 0.107 0.035S Z

2 is extracted, with still large experimental uncertainties but also
reduced compared to previous works. The levels of theoretical and parametric precision
required in the context of QCD coupling determinations with permil uncertainties from high-
statistics W and Z boson samples expected at future e+e− colliders, such as the FCC-ee, are
discussed.

5.1.1. αS ðm2
ZÞ from W boson decays. The state-of-the-art analytic unintegrated expressions

for the leptonic and hadronic W boson decay widths [342, 343] have been integrated out, and
convenient parametrizations of all quantities of interest (GW

lep,had,tot and RW) have been derived
for the subsequent a ( )mS Z

2
fitting procedure. The parametrizations of all the W boson

observables include the full-N3LO QCD a( ) S
4 , the leading EW a( ) , and mixed QCD+EW

a a( ) S corrections. The value of a ( )mS Z
2 is then obtained by a combined fit of the theoretical

expressions for GW
tot and RW to the experimental data: G = 2085 42W

tot and RW =
2.0684± 0.0254 (combining the three leptonic decays, assuming lepton universality). The
relative experimental uncertainties of GW

tot and RW are 2% and 1.2%, respectively, and
combining both observables in the fit, assuming them to be fully uncorrelated [226, 344],
provides some improvement in the final a ( )mS Z

2 precision. The derived a ( )mS Z
2 values are

tabulated in table 8, and the corresponding goodness-of-fit Δχ2 scans are plotted in figure 23
(left). Without imposing CKM unitarity, the fitted QCD coupling constant is left basically
unconstrained: a = ( )m 0.042 0.052S Z

2 , due to the large dominant parametric uncertainties
of the theoretical GW

tot and RW calculations. Imposing unitary of the CKM matrix leads to an
extraction with ∼30% uncertainty of experimental origin. The obtained value of
a = ( )m 0.107 0.035S Z

2 (with comparatively negligible parametric and theoretical
uncertainties) is obviously, within its large uncertainties, in perfect accord with the current
world average (orange band in figure 23). With respect to the previous NNLO extraction,
a = ( )m 0.117 0.042S Z

2 based on RW alone [341], our new calculation leads to a ∼10%
relative improvement in the experimental (as well as more accurate N3LO theoretical and
parametric) uncertainties.

Achieving a truly competitive a ( )mS Z
2 determination from the W decay data, with

propagated experimental uncertainties reduced by a factor of ×30 at least (i.e. below the 1%
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level), requires much larger data samples than those collected in e+e− collisions at LEP-2
(about 40 000 events). This can be reached at a future machine such as the FCC-ee, where the
total W width can be accurately measured through a threshold e+e−→W+W− scan around

=s m2 W center-of-mass energies [139], and where the RW ratio will benefit from the huge
sample of 5 · 108 W bosons collected (about 12 000 times larger at LEP-2) . Without parallel
progress in the measurements of |Vcs|, |Vcd|, and mW, the parametric uncertainty would then
largely dominate the precision of any a ( )mS Z

2 extraction, as it is the case today when CKM
unitarity is not enforced. However, both CKM elements will be also accurately determined at
the FCC-ee by exploiting (i) the huge ( ) 1012 and clean samples of charmed mesons
available in runs at the Z pole, and (ii) an experimental precision of 0.5 (1.2)MeV for the
W mass (width) within reach with 12 ab−1 accumulated at the WW production threshold.

To assess the ultimate precision achievable from W-boson data, we run a combined
a ( )mS Z

2
fit with our N3LO setup employing the following experimental values expected at the

FCC-ee of the W observables and all other relevant parameters: (i) G = 2089.5 1.2 MeVW
tot

(to be compared to 2085± 42 today) and (ii) RW = 2.07570± 0.00008 (instead of the

Table 8. Values of a ( )mS Z
2 extracted from the combined GW

tot and RW measurements
compared to the corresponding N3LO theoretical calculations, assuming or not CKM
unitarity, with the breakdown of propagated experimental, parametric, and theoretical
uncertainties. The last row lists the a ( )mS Z

2 result expected in e+e− collisions at the
FCC-ee.

W boson observables a ( )mS Z
2 a ( )mS Z

2 uncertainties

exp. param. theor.

GW
tot, RW (exp. CKM) 0.042± 0.052 ±0.027 ±0.045 (±0.0014)

GW
tot, RW (CKM unit.) 0.107± 0.035 ±0.035 (±0.0002) (±0.0016)

GW
tot, RW (FCC-ee,
CKM unit.)

0.11790± 0.00023 ±0.00012 ±0.00004 ±0.00019

Figure 23.Δχ2
fit profiles of the a ( )mS Z

2 determined from the combined N3LO analysis
of the total W width and RW ratio, compared to the 2019 a ( )mS Z

2 world average
(vertical orange band). Left: extraction with the present W data assuming (blue curve)
or not (black curve) CKM unitarity. Right: extraction expected at the FCC-ee, with the
total (experimental, parametric, and theoretical, added in quadrature) uncertainties
(outer parabola) and with the experimental uncertainties alone (inner parabola).
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current 2.068± 0.0025 value), (iii) CKM unitarity (or, equivalently, |Vcs| and |Vcd|
uncertainties at the level of 10−5), and (iv) a W mass with mW = 80.3800± 0.0005 GeV
precision, leads to ∼0.1% uncertainties in a ( )mS Z

2 (last row of table 8). At such high level of
experimental and parametric precision, the present propagated theoretical uncertainties would
be about ten times larger than the former, although theory improvements are also expected in
the coming years [5]. The theoretical effort should focus at computing the missing two- and
three-loop a a( ) ,2 3 EW, N4LO QCD, as well as the mixed QCD+EW aa aa a a( ) , ,S S S

2 3 2

corrections, which are all of about the same size and yield today a relative theoretical
uncertainty of ∼3.5 · 10−4 in the W boson observables. With a factor of 10 reduction of the
theory uncertainties, a final QCD coupling extraction at the FCC-ee with a 2-permil total
uncertainty is possible: a =   ( )m 0.11790 0.00012 0.00004 0.00019S Z

2
exp par th (table 8,

last row), where the central value quoted is arbitrarily set at the world average. Figure 23
(right) shows the corresponding Δχ2 parabola for the a ( )mS Z

2 determination expected at the
FCC-ee compared to the 2019 world average (orange band), with the dashed band covering
the range between taking into account all uncertainties (outer curve) or only experimental
uncertainties (inner curve).

5.1.2. αS ðm2
ZÞ from Z boson decays. For the Z boson case, we incorporate into the

GFITTER v2.2 code [334] all parametrizations of the partial and total Z widths, including the
full two-loop a( ) 2 electroweak terms given in [337], plus the leading fermionic three-loop

a( ) 3 EW corrections of [339]. These 2-loop (leading fermionic 3-loop) EW corrections
increase the theoretical predictions for GZ

tot by +0.83MeV (+0.33 MeV), RZ by +0.0186
(−0.0037), and sZ

had by +1 pb. The theoretical errors from missing higher-order a( ) 3 EW,
a( ) 5 QCD, and aa aa a a( ) , ,S S S

2 3 2 mixed corrections estimated in [337, 339] are of
relative size of ∼1.5·10−4 for GZ

tot and sZ
had, and ∼2.5·10−4 for RZ, i.e. they are about a factor

of two better than the corresponding theoretical calculations for the W boson
pseudoobservables, as expected since the EW accuracy of the latter is only a( ) today.

On the experimental data, new studies [340, 345] have updated the LEP luminosity
corrections at and off the resonance peak that modify the PDG results for the Z boson
pseudoobservables GZ

tot and sZ
had. The change in GZ

tot is of +0.012%. The impact on sZ
had is the

largest of all pseudoobservables, with a 0.144% reduction of the hadronic cross section at the
Z peak that brings the data very close to the theoretical prediction. The central RZ ratios have
not changed, but an extra precision digit is added now. The experimental uncertainties today
(∼0.1%) are about a factor of four larger than their theoretical or parametric counterparts
(∼0.025%). Matching the uncertainties of the current theory state-of-the-art calls for higher
precision measurements in e+e− collisions at the Z pole with, at least, 20 times larger data
samples than those collected at LEP.

The extraction of a ( )mS Z
2 is carried out with 1-D scans of this variable as a free parameter

using single and combined observables with our updated version of GFITTER 2.2. The results
from these fits are listed in table 9, and the corresponding Δχ2 profiles are plotted in
figure 24. The solid lines represent the results of the present improved calculations and data,
whereas the dashed lines are those obtained with GFITTER in 2018 [334]. All new QCD
couplings are clustered around a =( )m 0.1200S Z

2 , whereas previously the extraction from
sZ

had was about 2σ lower (and also had larger uncertainties) than the average of the three, and
that from RZ was 1σ above it. Among a ( )mS Z

2 extractions, the most precise is that from RZ

(3.4% uncertainty), followed by the ones from GZ
tot (3.9% uncertainty) and sZ

had (5.6%
uncertainty). The precision did not change appreciably compared to the previous GZ

tot and RZ

results, but the extraction from the hadronic Z cross section has been improved by about 20%
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thanks mostly to the updated LEP data. When combining various Z observables, their
associated correlation matrix is used in the fit. Table 9 lists all results with their propagated
uncertainties broken down into experimental, parametric, and theoretical sources. Our final
values, a = ( )m 0.1203 0.0028S Z

2 from the combined Z boson data, and a =( )mS Z
2

0.1202 0.0028 from the full SM fit, and the PDG electroweak fit result
(a = ( )m 0.1203 0.0028S Z

2 ) [251] are all virtually identical now.
At the FCC-ee, combining the 3·1012 Z bosons decaying hadronically at the Z pole, and the

(tens of keV)-accurate s calibration obtained using resonant depolarization [346], will

Table 9. Values of a ( )mS Z
2 determined at N3LO accuracy from GZ

tot, RZ, and sZ
had

individually, combined, as well as from a global SM fit, with propagated experimental,
parametric, and theoretical uncertainties broken down. The last two rows list the
expected values at the FCC-ee from all Z pseudoobservables combined and from the
corresponding SM fit.

Observable a ( )mS Z
2 Uncertainties

exp. param. theor.

GZ
tot 0.1192± 0.0047 ±0.0046 ±0.0005 ±0.0008

RZ 0.1207± 0.0041 ±0.0041 ±0.0001 ±0.0009
sZ

had 0.1206± 0.0068 ±0.0067 ±0.0004 ±0.0012
All above combined 0.1203± 0.0029 ±0.0029 ±0.0002 ±0.0008
Global SM fit 0.1202± 0.0028 ±0.0028 ±0.0002 ±0.0008
All combined
(FCC-ee)

0.12030± 0.00026 ±0.00013 ±0.00005 ±0.00022

Global SM fit
(FCC-ee)

0.12020± 0.00026 ±0.00013 ±0.00005 ±0.00022

Figure 24. Δχ2
fit profiles of a ( )mS Z

2 determined from the combined Z boson
pseudoobservables analysis and/or the global SM fit compared to the 2019 world
average (orange band). Left: current results (solid lines) compared to the previous 2018
fit (dashed lines). Right: extraction expected at the FCC-ee –with central value
arbitrarily set to a =( )m 0.12030S Z

2 and total (experimental, parametric, and
theoretical, added in quadrature) uncertainties (outer parabola) and experimental
uncertainties alone (inner parabola)–compared to the present one from the combined Z
data (blue line).
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provide measurements with unparalleled precision. The statistical uncertainties in the Z mass and
width, today of±1.2MeV and±2MeV (dominated by the LEP beam energy calibration), will
be reduced to below±4 keV and±7 keV respectively. Similarly, the statistical uncertainty in
RZ

exp will be negligible and the measurement in the Z→μ+μ− final state alone, yielding an
experimental precision of 0.001 from the knowledge of the detector acceptance, will suffice to
reach an absolute (relative) uncertainty of 0.001 (5·10−5) on the ratio of the hadronic-to-leptonic
partial Z widths. Thus, accounting for the dominant experimental systematic uncertainties at the
FCC-ee, we expect: δmZ = 0.025–0.1MeV, dG = 0.1 MeVZ

tot , ds = 4.0Z
had pb, and δRZ =

10−3 relative uncertainties [139]. In addition, the QED coupling at the Z peak will be measured
with a precision of δα = 3 · 10−5 [347], thereby also reducing the corresponding propagated
parametric uncertainties. Implementing the latter uncertainties into our updated GFITTER setup,
namely taking G = 2495.2 0.1 MeVZ

tot , s = 41 494 4Z
had pb, and RZ = 20.7500±

0.0010, as well as mZ = 91.18760± 0.00001 GeV, and da = ( )( ) m 0.0275300had
5

Z

0.0000009, we derive the results listed in the last two rows of table 9 where, the central
a ( )mS Z

2 value is arbitrarily set at the current SM global fit extraction. The final uncertainties in
the QCD coupling constant are reduced to the ∼0.1% level, namely about three times smaller
than the propagated theoretical uncertainties today. Theoretical developments in the years to
come should further bring down the latter by a factor of four [5]. A final QCD coupling constant
extraction at the FCC-ee with a two-permil total uncertainty is thereby reachable:
a =   ( )m 0.12030 0.00013 0.00005 0.00022S Z

2
exp par th (table 9). Figure 24 (right)

shows the Δχ2 parabola for the a ( )mS Z
2 extraction from the Z boson data (or from the SM

fit that is almost identical) expected at the FCC-ee (with the central value arbitrarily set to its
present result), compared to the same extraction today (blue parabola) and to the 2019 world
average (orange band). The large improvement, by more than a factor of ten, in the FCC-ee
extraction of a ( )mS Z

2 from the Z boson data (and its comparison to the similar extraction from
the W boson, figure 23 right) will enable searches for small deviations from the SM predictions
that could signal the presence of new physics contributions.

6. αS ðm2
ZÞ from hadronic final-states in e+e− collisions

6.1. Hadronic vacuum polarization function, R-ratio, and the strong coupling89

The process of electron–positron annihilation into hadrons plays a distinctive role in ele-
mentary particle physics. This is primarily caused by the remarkable fact that its theoretical
description requires no phenomenological models of hadronization, which forms the
experimentally detected final-state particles. In turn, this feature makes it possible to extract
the key parameters of the theory from pertinent experimental data in a model-independent
way, thereby constituting one of the cleanest methods of their determination.

In the theoretical studies of e+e− annihilation into hadrons, one needs to operate with the
physical observable that depends on the timelike kinematic variable (namely, the center-of-
mass energy squared s = q2> 0), whereas such basic tools as the perturbative technique and
the renormalization group (RG) method are directly applicable only to quantities that depend
on the spacelike kinematic variableQ2 = − q2> 0. The proper description of the strong
interactions in the timelike domain substantially relies on the corresponding dispersion
relations, which provide the physically consistent way to interrelate the ‘timelike’ experi-
mentally measurable observables (such as the R-ratio of e+e− annihilation into hadrons) with

89 Author: A V Nesterenko (JINR, Dubna).
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the ‘spacelike’ theoretically computable quantities (such as the hadronic vacuum polarization
function and the Adler function), see, e.g. [348] and references therein for details.

The hadronic vacuum polarization functionΠ(q2) is defined as the scalar part of the
hadronic vacuum polarization tensor

ò p
P = = - P <mn m n m n mn

( )

( ) { ( ) ( )} ( ) ( )

6.1

q i d x e T J x J
i

q q g q q q0 0 0
12

, 0.iqx2 4
2

2 2 2

The physical kinematic restrictions on the process on hand define the location of the cut of the
functionΠ(q2) in the complex q2-plane, that enables one to write down the corresponding
dispersion relation. In particular, as discussed in, e.g. [349], for the processes involving final
state hadrons the functionΠ(q2) (6.1) possesses the only cut along the positive semiaxis of
real q2 starting at the hadronic production threshold pq m42 2, that implies

ò
s
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The function R(s) (6.3) is commonly identified with the so-called R-ratio of e+e− annihilation
into hadrons R(s) = σ(e+e−→ hadrons; s)/σ(e+e−→ μ+μ−; s). For the practical purposes it
proves to be convenient to deal with the Adler function [350]

= -
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The corresponding dispersion relation [350]
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directly follows from equations (6.2) and (6.4) and enables one to extract the experimental
prediction for the Adler function from the respective data on the R-ratio. In turn, the
theoretical expression for the function R(s) can be obtained by integrating equation (6.4) in
finite limits, namely [351, 352]

òp
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z
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e e

e
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2
lim , 6.6

s i
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where the integration contour in the complex ζ-plane lies in the region of analyticity of the
integrand. At the same time, equation (6.4) additionally provides the relation that expresses
the hadronic vacuum polarization function in terms of the Adler function, specifically
[353–356]

ò z
z
z

P - - P - = -( ) ( ) ( ) ( )Q Q D
d

, 6.7
Q

Q
2

0
2

0
2

2

where Q2 = − q2> 0 and = - >Q q 00
2

0
2 denote, respectively, the spacelike kinematic

variable and the subtraction point.
Basically, equations (6.2)–(6.7) constitute the complete set of relations, which mutually

express the functionsΠ(q2), D(Q2), and R(s) in terms of each other. The derivation of the
foregoing relations, being based only on the kinematics of the process on hand, requires
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neither additional approximations nor model-dependent phenomenological assumptions. It is
worthwhile to note also that the dispersion relations (6.2)–(6.7) impose a number of stringent
physical intrinsically nonperturbative constraints on the functionsΠ(q2), D(Q2), and R(s), that
should definitely be accounted for when one reaches the limits of applicability of the per-
turbative approach, see, in particular, [348, 357, 358] for a detailed discussion of this issue.
The nonperturbative aspects of the strong interactions will be disregarded hereinafter and the
massless limitmπ = 0 will be assumed in what follows.

To calculate the R-ratio of e+e− annihilation into hadrons one usually starts with the
perturbative expression for the hadronic vacuum polarization function
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In this equation ℓ specifies the loop level, q2< 0 denotes the spacelike kinematic variable,
μ2> 0 is the renormalization scale, αs = g2/(4π) stands for the strong coupling,

m a m b p=( ) ( ) ( )( ) ( )a 4ℓ ℓ
s

2
s

2
0 , β0 = 11− 2Nf/3 denotes the one-loop β function perturbative

expansion coefficient, Nf is the number of active flavours, and the common prefactor
å =N Qf

N
fc 1
2f is omitted throughout, where Nc = 3 stands for the number of colours and Qf

denotes the electric charge of f-th quark. In particular, at the one-loop level (ℓ = 1)
equation (6.8) reads
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As mentioned earlier, in practice it is convenient to employ the Adler function (6.4), which,
contrary to the hadronic vacuum polarization function (6.1), is an RG-invariant quantity.
Specifically, equations (6.4) and (6.8) imply that at the ℓ-loop level the perturbative
expression for the Adler function reads
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Note that the hadronic vacuum polarization function (6.1) and the Adler function (6.4) satisfy,
respectively, the inhomogeneous and homogeneous RG equations, which, in turn, enable one
to express the higher-order coefficientsΠj,k entering equations (6.8) and (6.10) in terms of the
lower-order ones. In particular, such RG relations have been obtained at the first few loop
levels in [360, 117, 359], at the higher loop levels in [361], and at an arbitrary loop level (in a
compact recurrent and unfolded explicit forms) in [362].

The native choice of the renormalization scale μ2=Q2 (that amounts to the RG summation
in the spacelike domain) casts the Adler function (6.10) to a well-known form (Π0,1= 1)

å å= P = + = P =
= =
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It is worthwhile to note here that a general choice of the renormalization scale μ2 = c Q2

(with c≠ 1 being a positive constant) retains in the resulting expression for the Adler
functionD( ℓ)(Q2) all the terms proportional to the higher-order coefficientsΠj,k appearing on
the right-hand side of equation (6.10). The function ( )( )a Qℓ

s
2 entering equation (6.11) can be

represented as the double sum
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where Λ is the QCD scale parameter and bm
n (the integer superscriptm is not to be confused

with a respective power) stands for the combination of the β function perturbative expansion
coefficients (in particular, =b 11

0 , =b 02
0 , b b= -b2

1
1 0

2, see, e.g. appendix A of [348]).
For example, at the one-loop level (ℓ = 1) the Adler function (6.11) takes a quite simple form
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The Adler function perturbative expansion coefficients dj entering equation (6.11) were
calculated up to the fourth order in the strong coupling (1� j� 4), see [100, 280, 363] and
references therein, whereas the β function perturbative expansion coefficients βj appearing in
equation (6.12) are available up to the five-loop level (0� j� 4), see [364–367] and
references therein.

In turn, the dependence of the hadronic vacuum polarization function (6.8) on the renor-
malization scale can be eliminated in the following way (see, in particular, [353–355]).
Namely, for this purpose one first calculates the corresponding Adler function (6.4), then
performs the RG summation, and then employs the relation (6.7), that yields at the one-loop
level [353–356, 358]
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where ( )( )a Qs
1 2 and d1 are given in equation (6.13). At an arbitrary loop level the

corresponding expression for the hadronic vacuum polarization function has been obtained
in [361]:
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z = Q2/Λ2, and the coefficients dj and b
m
n are specified in equations (6.11) and (6.12),

respectively, see [361] for the details.
At this point there are two equivalent methods to calculate the R-ratio of e+e− annihilation

into hadrons. Specifically, the first one consists in applying the relation (6.6) to the Adler
functionD(Q2) (6.11). This method eventually leads to an integral representation for the
function R(s), which involves the so-called spectral function, the latter being the discontinuity
of the strong correction to the Adler function d(Q2) (6.11) across the physical cutQ2< 0.
In turn, the second method to calculate the R-ratio consists in applying the relation (6.3) to the
hadronic vacuum polarization function (6.15). At the one-loop level the R-ratio of e+e−
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annihilation into hadrons takes the following form (note that this expression first appeared in
[368] and only afterwards was derived in [351, 356, 369–371]):
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where the coefficient d1 is given in equation (6.13) and it is assumed that ( )xarctan is a
monotonic nondecreasing function of its argument [namely, p p-  ( )x2 arctan 2
for −∞< x<∞ ].

Basically, the first method of calculation of the R-ratio becomes somewhat inconvenient at
the higher-loop levels. In particular, since the required spectral function turns out to be rather
cumbrous beyond the one-loop level, its integration can, in general, be performed only by
making use of numerical methods. Moreover, at the higher-loop levels the explicit calculation
of the spectral function represents a rather demanding task, whereas its numerical evaluation
needs a lot of computation resources and essentially slows down the overall computation
process. Nonetheless, the required spectral function has explicitly been calculated at the first
few loop levels in, e.g. [372–374] and at an arbitrary loop level in [348, 375], that, in turn,
facilitates the numerical calculation of the R-ratio within the first method.

The explicit expression for the R-ratio of e+e− annihilation into hadrons, which properly
accounts for all the effects due to continuation of the spacelike perturbative results into the
timelike domain, has recently been obtained at an arbitrary loop level within the second
method in [361], namely
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In this equation dj stand for the Adler function perturbative expansion coefficients (6.11),
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denotes the ℓ-loop j-th order ‘timelike’ effective expansion function (which constitutes the
corresponding continuation of the j-th power of ℓ-loop function [ ( )]( )a Qℓ j

s
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into the timelike domain), the coefficients bm
n are specified in equation (6.12),
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( )n mmod denotes the remainder on division of n bym, and = L( )y sln 2 , see [361, 375] for
the details.

It is worthwhile to note that a commonly employed way of calculation of the R-ratio of
e+e− annihilation into hadrons, being different from the two equivalent methods described
above, leads to an incomplete result for the function R(s). In particular, here one applies the
relation (6.3) directly to equation (6.8) and then assigns the renormalization scale μ2 = |s|
(that factually amounts to an incomplete RG summation in the timelike domain, see, e.g.
[353–356, 361, 362, 375] and references therein), that yields [92]
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In this equation the function (∣ ∣)( )a sℓ
s is given in equation (6.12), dj stand for the Adler

function perturbative expansion coefficients (6.11), and δj embody the contributions of the
so-called π2-terms, which play a significant role in the studies of the process on hand [376].
At the first two loop levels the coefficients δj (6.28) vanish (δ1 = δ2 = 0) and the first several
non-vanishing coefficients δj were reported in [143, 348, 361, 375–377]. The explicit
expression for the coefficients δj (6.28) has recently been obtained at an arbitrary loop level
in [362]:
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where the coefficients dj are specified in equation (6.11), βj denote the β function perturbative
expansion coefficients, and the function K(n) is defined in equation (6.27), see [362] for the
details.

It is necessary to emphasize that, as argued in, e.g. [353–356], the effects due to con-
tinuation of the spacelike perturbative results into the timelike domain are only partially
accounted for in equation (6.28) by the coefficients δj, whereas the ignorance (complete or
partial) of such effects may yield misleading results. In particular, it was shown
[361, 362, 375] that the approximation Rappr(s) (6.28) factually constitutes the truncated re-
expansion of the proper expression R(s) (6.19) at high energies and the validity range of such
re-expansion is strictly limited to p> L L( )s exp 2 4.81 . Moreover, the contribution of
a given order to the proper expression for the R-ratio (6.19) appears to be redistributed over
the higher-order terms in its approximate form (6.28), thereby substantially amplifying them.
In turn, this makes the loop convergence of a commonly employed approximation of the
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R-ratio (6.28) much worse than that of its proper form (6.19) and increases the resulting
theoretical uncertainty of the strong coupling and the QCD scale parameter associated with
the higher-loop perturbative corrections disregarded in equation (6.28). Basically, the
aforementioned truncation of the re-expansion of the proper expression for the R-ratio (6.19)
neglects all the higher-order π2-terms in equation (6.28), though the latter may not necessarily
be small enough to be safely neglected. Specifically, it was shown that the higher-order
π2-terms omitted in a commonly employed approximation Rappr(s) (6.28) can produce a
considerable effect on the determination of the strong coupling and the QCD scale parameter
from the experimental data on the R-ratio, see [361, 362, 375] and references therein for the
details.

6.2. αS ðm2
ZÞ from soft parton fragmentation functions90

We summarize a derivation of the QCD coupling αS from the energy evolution of the
moments of the parton-to-hadron fragmentation functions (FFs) at low hadron Feynman
momentum fraction z. In [378–382], the energy evolution of the moments of the parton-to-
hadron FFs were computed up to approximate next-next-to-leading-order (NNLOå) fixed-
order including next-to-next-to-leading-log (NNLL) resummation corrections. A fit to the
corresponding experimental jet data from e+e− and deep-inelastic e±, ν-p collisions, to the
NNLO*+NNLL predictions yields a =  ( ) ( )m 0.1205 0.0010 exp 0.0022S Z

2 (th), in good
agreement with the current αS world average. Forthcoming prospects based on full-NNLO
calculations are discussed.

The conversion of a quark and gluon (collectively called partons) into a final jet of hadrons
is driven by soft and collinear gluon bremsstrahlung [383] followed by the final transfor-
mation into hadrons of the last partons produced in the QCD shower at nonperturbative scales
approaching ΛQCD. The distribution of hadrons inside a jet is described by its fragmentation
function, Da→h(z, Q), that encodes the probability that an initial parton a eventually fragments
into a hadron h carrying a fraction z = phadron/pparton of the parent partonʼs momentum.
Starting with a parton at a given δ-function energy Q, its evolution to any other lower energy
scale ¢Q is driven by a branching process of parton radiation and splitting, a→ b c, that can be
perturbatively computed. At large z 0.1 one uses the DGLAP evolution equations
[239–241], whereas the Modified Leading Logarithmic Approximation (MLLA) [384],
resumming soft (along with hard) and collinear logs, provides an appropriate theoretical
framework at small z. In this latter approach, one writes the FF as a function of the log of the
inverse of z, i.e. x = ( )zln 1 , in order to describe the region of low hadron momenta that
dominates the jet fragments. Due to colour coherence and interference in gluon radiation
(angular ordering), not the softest partons but those with intermediate energies multiply most
effectively in QCD cascades, leading to a final FF with a typical ‘hump-backed plateau’
(HBP) shape as a function of ξ (figure 25, left). Such a shape can be perfectly reproduced by a
distorted Gaussian (DG, [385]) parametrized in terms of the hadron multiplicity  (giving
the integral, and thereby the normalization, of the DG), the mean peak position x̄ , the
dispersion σ, the skewness s, and kurtosis k of the distribution.

In [379], we described a new approach that solves the set of integro-differential equations
for the FF evolution combining both DGLAP and MLLA corrections. This is done by
expressing the Mellin-transformed hadron distribution in terms of the anomalous dimension

γ: ⎡⎣ ⎤⎦
 òa g a ¢( ( )) ( ( ))D C t t dtexpS

t
S where =t Qln is the ‘time’ evolution variable in QCD

parton showers. The analysis leads to a series in half powers of αS:

90 Authors: R Perez-Ramos (DRII-IPSA and LPTHE, Paris), D d’Enterria (CERN).
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g a a a a a~ + + + + +( ) ( ) ( ) ( ) ( )    S S S S S
1 2 3 2 2 5 2

, where integer powers of αS

correspond to fixed-order corrections, and half-integer terms can be identified with increas-
ingly accurate resummations of soft and collinear logarithms. The full set of NLO a( ) S

2

terms for the anomalous dimension, including the one-loop splitting functions ( )Pac
1 and the

two-loop running of αS, plus a fraction of the a( ) S
5 2

terms, coming from the NNLO
expression of αS have been computed [386]. Upon inverse-Mellin transformation, one can
derive the analytical expressions for the energy evolution of the FF, and its associated
moments, as a function of = L( )Y Eln QCD , for an initial parton energy E, down to a shower
cutoff scale Q0>ΛQCD for Nf = 3, 4, 5 quark flavours. By introducing l = L( )Qln 0 QCD ,
the resulting formulas for the energy evolution of the moments depend on ΛQCD as a single
free parameter. Simpler expressions can be further obtained for Q0→ΛQCD (limiting spec-
trum) motivated by the ‘local parton-hadron duality’ hypothesis for inclusive-enough
observables. Thus, by fitting to the distorted Gaussian, the measured HBP at various energies,
one can determine αS from the corresponding jet energy-dependence of the FF moments  ,
x̄ , σ, s, and k.

In the phenomenological analysis, we first start by fitting to the DG all existing jet FF data
measured in e+e− and e±, ν-p collisions over »s 1–200 GeV, and thereby derive the
corresponding FF moments at each jet energy [387]. The overall normalization of the HBP
spectrum (ch), which determines the average charged-hadron multiplicity of the jet (i.e. the
zeroth moment of the FF), is an extra free parameter in the DG fit which, nonetheless, plays
no role in the finally derived ΛQCD value since the latter is solely dependent on the relative
evolution of the multiplicity, and not on its absolute value at any given jet energy. The impact
of finite hadron-mass effects in the DG fit are taken into account through a rescaling of the
theoretical (massless) parton momenta with an effective mass meff≈mπ. Varying such
effective mass from zero to a few hundred MeV, results in small propagated uncertainties into
the final extracted ΛQCD (and associated a ( )mS Z

2 ) value, as discussed in [379].
Once the energy evolution of all FF moments has been obtained from the individual

experimental measurements, one can perform a combined fit of them as a function of the
original parton energy. In the case of e+e− collisions, the latter corresponds to half the centre-
of-mass energy s 2 whereas, for DIS, the invariant four-momentum transfer QDIS is used.
The experimental and theoretical evolutions of the hadron multiplicity and FF peak position

Figure 25. Left: HBP charged-hadron spectra in jets as a function of x = ( )zln 1
measured in e+e− at »s 2–200 GeV, fitted to a DG distribution. Right: energy
evolution of the peak position of the DG measured in e+e− and DIS data (open and
closed symbols) fitted to the NNLOå+NNLL predictions (dashed curve).
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as a function of jet energy are shown in [387]. The hadron multiplicities measured in DIS jets
appear somewhat smaller (especially at high energy) than those from e+e− collisions, due to
limitations in the FF measurement only in half (current Breit) e±-p hemisphere and/or in the
determination of the relevant Q scale [379]. The NNLOå+NNLL limiting-spectrum (λ = 0)
predictions for Nf = 5 active quark flavours (the moments of the lowest- s data have a few-
percent correction applied in order to account for the slightly different (Nf = 3, 4) evolutions
below the charm and bottom production thresholds), leaving ΛQCD as a free parameter,
reproduce very well the data. Fit results for the rest of the FF moments can be found in [379].
Figure 25 (right) shows the result of the peak position fit. Among FF moments, the peak
position xmax appears as the most ‘robust’ for the determination of ΛQCD, being relatively
insensitive to most of the uncertainties associated with the extraction method (DG fits, energy
evolution fits, finite-mass corrections, ...) as well as to higher-order corrections [387]. Finally,
the energy evolution of all or a fraction of HBP moments can be simultaneously fitted to the
corresponding theoretical predictions in the limiting-spectrum case with just ΛQCD as single
free parameter.

The QCD coupling obtained from the combined fit of the multiplicity and peak position is
a =  ( ) ( ) ( )m 0.1205 0.0010 exp 0.0022 theoS Z

2 , where the first uncertainty includes all
experimentally-related sources discussed in [379], and the second one is a theoretical scale
uncertainty derived at NLO by stopping the parton evolution of the FFs at =Q 1 GeV0 rather
than at the limiting spectrum value = LQ QCD0 . Our extracted a ( )mS Z

2 value is consistent with
all other NNLO results from the latest PDG compilation [251], as well as with other deter-
minations with a lower degree of theoretical accuracy [388]. The precision of our result
(±2%) is competitive with the other extractions, with a totally different set of experimental
and theoretical uncertainties.

Outlook: Given the robustness of the observables chosen, energy evolution of FF
moments, the purely experimental uncertainties of our a ( )mS Z

2 extraction are small, ∼0.8%,
and will be eventually negligible with the large jet data samples, orders of magnitude larger
than those at LEP, expected to be collected at future e+e− machines [139, 389]. Thus, the
main source of imprecision is of theoretical origin. The main theoretical challenges of the
approach presented here are to match the MLLA anomalous dimension to the MS anomalous
dimension and to reach full-NNLO pQCD accuracy. It is known that the MLLA anomalous
dimension obtained within the massive gluon (MG) regularization scheme [390] turns out to
be inconsistent with the expected N4LL+NNLO result in the MS scheme. For instance, the
inconsistency between NNLO DLs terms to the anomalous dimension calculated in [390] and
those calculated in [391] can be explained from the use of different regularization and
factorization schemes [392]. More recently, it has been noticed that the main difference is
entirely due to running coupling effects being truncated in a quite severe way [393]. In
addition, in order to extract a coupling constant with NNLO fixed-order accuracy from the
moments of the FFs, the diagonalization of the matrix elements (i.e. the splitting functions)
beyond the a( ) S

5 2 order is a crucial step forwards. The diagonalization method to be
adopted was considered a major technical challenge since the splitting functions do not
commute beyond leading order. However, it becomes now possible thanks to the recent work
by Kotikov and Teryaev [394]. To conclude, the implementation of the approach used in
[394] and the change from the MG regularization scheme to the MS scheme may make it
possible to complete the present programme on the full-NNLO extraction of a ( )mS Z

2 from the
moments of FFs.
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6.3. Power corrections to event-shape distributions and impact on αS extractions91

In this brief note we discuss some recent developments on the fits of αS from event-shape
distributions at lepton colliders. These determinations rely on the fact that event shape
variables that vanish in the two-jet limit are directly sensitive to the QCD ¯qqg vertex, and thus
arguably offer one of the simplest frameworks to extract the strong coupling constant. The
present status of these measurements as reported in the Particle Data Group (PDG) [226, 251]
is not very satisfactory. In particular, determinations in which nonperturbative corrections are
estimated via analytic models tend to give values for the strong coupling which are sys-
tematically smaller than those obtained using Monte Carlo generators to correct for
nonperturbative effects. Specifically, some of the most precise a ( )mS Z

2 determinations
obtained with analytical nonperturbative models (a = ( )m 0.1135 0.0010S Z

2 [395] from
fitting thrust data, and a = ( )m 0.1123 0.0015S Z

2 [396] from C-parameter data), are in
tension with the world average of 0.1179± 0.0010 and from other individual precise
extractions, such as 0.1185± 0.0008 from lattice step scaling [18] and 0.1188± 0.0013 from
jet rates [397]. A similar extraction, that of [398], uses the thrust distribution and an analytical
hadronization model and returns a value for a ( )mS Z

2 compatible with those of [395, 396],
although with larger uncertainties.

A feature common to analytic approaches to nonperturbative corrections (see e.g.
[395, 396, 398–411]) is that their application to event shapes relies upon a power series in
1/Q (with Q being the centre-of-mass energy of the e+e− collision), of which only the leading
(linear) term is retained. This linear power correction is proportional to a nonperturbative
parameter (that is extracted together with αS) via a calculable, observable-dependent coeffi-
cient. Furthermore, this coefficient is commonly calculated in the 2-jet limit, in general
supplementing a Sudakov resummation of logarithmic corrections assuming that the above
coefficient remains constant across the fit range, which instead covers both 2- and 3-jet
configurations (see e.g. [395, 396, 398, 410, 411]). This assumption has recently been
questioned in [412, 413], where the first calculations of the nonperturbative correction in
three-jet configurations have appeared.

In this note, we briefly discuss the calculation of the leading power correction reported in
[412, 413]. We start by recalling how the calculation is performed in the two-jet limit, and
then we outline how it can be performed in the symmetric three-jet limit, as well as in a
generic three-jet configuration. Finally, we present some phenomenological considerations on
the impact on αS fits, and discuss future developments.

6.3.1. Definition of the observable. Here we limit our discussion to the C-parameter, but
analogous considerations apply to other shape variables such as thrust [414]. The C-parameter
variable for a hadronic final state in e+e− annihilation is defined as follows [415],

l l l l l l= + +( ) ( )C 3 , 6.301 2 2 3 3 1

in terms of the eigenvalues λi of the linearized momentum tensor Θαβ [416, 417],


 
åQ =

å
ab

a b

∣ ∣ ∣ ∣
( )

p

p p

p

1
, 6.31

i i
i

i i

i

where
∣ ∣pi is the modulus of the three momentum of particle i and

 api is its momentum
component along spatial dimension α (α = 1, 2, 3). In events where all particles are
massless, this can also be written as

91 Authors: P F Monni (CERN), P Nason (MPI Munich, INFN and Univ. Milano).
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where Q is the centre-of-mass energy, pi denotes the four-momentum of particle i, xi =
2(pi ·Q)/Q

2, and θij is the angle between particles i and j. We consider the calculation of the
linear power correction in the context of the so-called dispersive model [404], which
postulates that the leading power correction to the cumulative distribution of the event shape,
i.e.

ò
s

S º ¢
¢

( ) ( )C dC
d

dC
, 6.33

C

0

is due to the radiation of a soft and nonperturbative system with gluon quantum numbers, i.e.
a gluer. Starting from a Born configuration of final state momenta { ˜}p (e.g. at the leading
order º{ ˜} { ˜ ˜ }¯p p p,q q in the two-jet limit and º{ ˜} { ˜ ˜ ˜ }¯p p p p, ,q q g in the three-jet limit), Σ(C)
schematically reads

ò òs s sS = - Q - + Q -{ }( ) ({ ˜}) ( ({ ˜}) ) ({ } ) ( ({ } ) ) ( )C d p C p C d p k C p k C, , , 6.34

where σ is the total cross section (in which the radiation of the gluer k does not generate any
linear correction [404]), s ({ ˜})d p includes also the contribution in which the gluer is virtual,
and dσ({p}, k) encodes the one in which the gluer is real. In the latter term, we have denoted
with ({p}, k) the set of hard momenta {p} (¹{ ˜}p due to kinematic recoil) and the collective
set of soft particles (k) constituting the gluer system.

6.3.2. Schematic illustration of the calculation. We now focus our discussion on the two-jet
limit, i.e. º{ ˜} { ˜ ˜ }¯p p p,q q . Here the value of C approaches zero (i.e. =({ ˜})C p 0) as

~({ } ) ( ) ( )C p k k, . 6.35

Quadratic corrections to the above equation (e.g. due to the recoil of the hard partons against
k) can be safely ignored if one is interested in the computation of the linear power correction

( ) Q1 . In order to single out the linear contribution ( ) Q1 , we can therefore recast
equation (6.34) as

ò

ò

s s s

s

S = - + Q -

+ Q - - Q -

{
}

( ) ({ ˜}) ({ } ) ( ({ ˜}) )

({ } ) ( ({ } ) ) ( ({ ˜}) ) ( )

C d p d p k C p C

d p k C p k C C p C

,

, , . 6.36

The first line in the r.h.s. of equation (6.36) reduces to the total cross section, which is well
known to be free from linear corrections. Therefore, the second line in the r.h.s. of
equation (6.36) is the only source of linear power corrections. Because of the linear
suppression (6.35), this can be computed in the soft approximation along the lines of
[403, 418, 419].

The C parameter is special in that it has two singular points which feature a scaling of the
type 6.35. One of them is the two-jet limit discussed in the previous section (i.e. C = 0) and
the second is the symmetric three-jet configuration (i.e. C = 3/4) at which the distribution
features a Sudakov shoulder [418, 420]. Due to this property, the value of the C parameter is
nearly constant (i.e. up to quadratic corrections) near the symmetric three-jet limit, and the
same considerations used for the two-jet case apply also here. One can therefore apply
equation (6.36) by considering only the contribution of the second line and restricting the
calculation to the soft approximation as done in [412].
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In between the two- and symmetric three-jet configurations (i.e. 0< C< 3/4), the
simplifications derived in the above sections do not apply trivially. To simplify the discussion,
let us consider for simplicity the radiation of the gluer k off a single colour dipole (the final
result is simply obtained by summing over all possible dipoles). Let us assume the existence
of a mapping º ({ ˜} )p p p k, that is collinear safe in the limit where the system k is collinear
to the ends of the radiating dipole, and such that in the soft limit one has (schematically)

å= + +({ ˜} ) ˜ ({ ˜}) ( ) ( ) p p k p p k k, , 6.37
i

i
2

where the sum runs over all constituents ki of the gluer, and the tensor only depends on
{ ˜}p . The master formula (6.36) can be rewritten as

ò

ò

s s s

s

S = - + Q -

+ Q - - Q -

{
}

( ) [ ({ ˜}) ({ ({ ˜} )} )] ( ({ ˜}) )

({ ({ ˜} )} )[ ( ({ ({ ˜} )} ) ) ( ({ ˜}) )]
( )

C d p d p p k k C p C

d p p k k C p p k k C C p C

, ,

, , , , .

6.38

The first line of equation (6.38) represents a cross section that is integrated inclusively over k
at fixed { ˜}p according to a mapping of the form (6.37). According to the finding of [413],
such cross section is free of linear power corrections, and therefore the only linear
contribution comes from the second line as in the previous cases. Moreover, the expression in
squared brackets of the second line of equation (6.38) is suppressed in the soft limit so that
one can once again compute the linear contribution in the soft approximation.

6.3.3. Results and impact on αS fits. One finds that the leading power correction can be
parametrized as

⎛

⎝
⎜

⎞

⎠
⎟z

a m
S = S - D( ) ( )

( )
( )C C C

Q
, 6.39Ipert 0

2
NP

where the quantity ΔNP does not depend on C, and Σpert denotes the perturbative cumulative
distribution. The parameter a m( )I0

2 is a nonperturbative quantity related to the mean value of
the strong coupling constant in a physical scheme at scales smaller than μI [404]. It is
commonly extracted from fits to experimental data together with αS. The entire dependence of
the leading power correction on C is encoded in the function ζ(C), which can be extracted
directly from the calculations outlined in the above sections. Specifically, [412] obtains that ζ
(3/4)/ζ(0); 0.476, i.e. the nonperturbative correction in the three-jet limit is about a factor of
two smaller than the result in the two-jet limit.

In order to study the intermediate region 0< C< 3/4, [412] considered a set of possible
functional forms for the function ζ(C), with which a fit of the strong coupling constant from a
differential distribution of the C parameter was performed. This relies on a NNLO+NNLL
perturbative calculation obtained with the results of [421–423] and experimental data from
[424, 425] (we refer to [412] for the technical details). This study reveals that the variation of
the functional form of ζ(C) can impact the extracted value of the strong coupling at the ∼4%
level. In particular, the standard assumption ζ(C) = ζ(0) used in past extractions leads to the
following values of a ( )mS Z

2 and a m( )I0
2
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a a m= =-
+

-
+( ) ( )m 0.1121 , 0.53 ,S IZ

2
0.0016
0.0024

0
2

0.05
0.07

and agrees well with that of [396] (albeit with larger uncertainties, in part due to the use of
NNLL+NNLO theory in [412] rather than N3LL+NNLO [426] as in [396]). Conversely,
several of the assumed ζ(C) scalings lead to a χ2 value that is the same as, or smaller than,
that for the fit within the ζ(C) = ζ(0) assumption. In particular, one of the considered models
returns

a a m= =-
+

-
+( ) ( )m 0.1163 , 0.51 ,S IZ

2
0.0018
0.0028

0
2

0.04
0.06

with a χ2 that is similar to that of the previous fit. This corresponds to a potential additional
uncertainty in a ( )mS Z

2 due to nonperturbative corrections of about 3.7%. With this uncertainty
taken into account, the extracted values of αS become compatible with the world average
a = ( )m 0.1179 0.0010S Z

2 [427].
With the above conclusions, an important question is whether one can calculate ζ(C)

between the two-jet and three-jet limits. As discussed in section 6.3.2, [413] demonstrates that
such a calculation can be performed in the soft approximation provided certain regularity
conditions (6.37) are met by the kinematic map used to share the recoil due to the radiation of
the gluer among the three hard particles in the event. Figure 26 shows the results of a
calculation of this type performed in [412], where it was observed that the displayed ζ(C)
scaling obtained with three commonly used recoil schemes [428, 429] yielded identical
results. Later, in [413] it was shown that (in a simplified theoretical framework, described in
detail in that reference) one obtains the correct power correction if the recoil scheme satisfies
scalings of the kind given in equation (6.37). Specifically, as shown in [430], the three recoil
schemes considered in figure 26 do satisfy an appropriate scaling.

A precise extraction of αS with the above ζ(C) profile and further in depth studies of the
interplay of the nonperturbative corrections discussed in this note with perturbative aspects of
the calculation at higher orders are still necessary in order to make conclusive statements on
the impact of the developments discussed in this note. Furthermore, similar studies for other
event shape observables such as thrust (also addressed in [413]) will be essential to shed more
light on the current discrepancies among the different event-shape based extractions of αS

considered in the world average [427].

Figure 26. Fixed order calculation of ζ(C) with different recoil schemes [412].
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6.4. The strong coupling from groomed event shapes92

Event-shape variables such as thrust have been measured with high precision by the LEP
experiments. These observables have played and continue to play an important role in the
determination of the value of the strong coupling, see for instance [395, 398, 411, 431–436],
as well as the discussion in this report. While event shapes can be calculated with astonishing
precision within perturbative QCD, both at fixed-order and resummed levels, nonperturbative
contributions in particular due to hadronization can be sizable and thus affect the ultimate
precision achievable. In the context of jet-substructure analyses of final states produced in
hadronic collisions the soft-drop grooming technique offers a handle to reduce
nonperturbative corrections [437]. This idea can be transferred to (global) event shapes in
lepton [438] and hadron [439] collisions. With a possibly reduced impact of nonperturbative
contributions, this can offer an improved precision in extractions of αS. In [440] this has been
explored for the soft-drop version of thrust in e+e− collisions at =s mZ.

The soft-drop variant of thrust (and similarly for other event shapes) is defined by first
determining the conventional thrust axis and accordingly separating a given event into two
hemispheres. The soft-drop procedure is then applied to both hemispheres independently.
Soft-drop thrust is calculated based on the remaining constituents of both hemispheres,
according to
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where

nL R denote the axes for the left and the right hemispheres, respectively, and the sums

extend over all particles in the full event ( ), the soft-dropped event (SD) or the left and right
hemispheres (L R). Thereby, the e+e− version of soft drop operates on the hemispheres
defined by the thrust axis, reclusters them using the Cambridge–Aachen algorithm and
discards soft subjets failing the criterion

q
+

> - b( )
( ) ( )

E E

E E
z

min ,
1 cos . 6.41

i j

i j
ijcut

2

While the parameter zcut determines how stringent the cut on the subjet energies is, β provides
an angular suppression to grooming.

Though originally designed to reduce nonperturbative effects like what is usually
accounted for in multiple parton interaction (MPI) and underlying event (UE) simulations at
hadron colliders [441], soft drop has been shown to also significantly reduce the impact of
hadronization corrections in event shapes and jet observables at lepton colliders [438]. The
viability of using soft-drop thrust in fits of αS was studied in detail in [440]. Theoretical
predictions computed at NLO+NLL¢ accuracy were employed in fits to hadron-level pseu-
dodata generated with SHERPA [442] based on merging the NLO pQCD matrix elements for
e+e−→ 2, 3, 4, 5 partons with the dipole shower [443], using a nominal value of
a =( )m 0.117S Z

2 , and the cluster-fragmentation model [444]. The main results of this study
are summarized in figure 27.

Firstly, the results obtained from fitting αS in the NLO+NLL¢ prediction for the soft-drop
thrust distribution depend less strongly on nonperturbative effects than for plain thrust when
using the same Monte Carlo (MC) pseudodata. This is illustrated in the left plot of figure 27.
While the best-fit αS values obtained from plain thrust change significantly when going from

92 Authors: S Marzani (INFN and Univ. Genova), D Reichelt (Durham), S Schumann (Univ. Göttingen), G Soyez
(CEA-Saclay).
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using fixed-order (FO) results to including resummation effects (Res) and again when
including nonperturbative (NP) effects, either extracted from MC simulations or from an
analytic model (ana). This change is reduced when considering soft-drop thrust, shown in
figure 27 for β = 1 and a variety of zcut values. Note, in [440] also the cases β = 0 and
β = 2 have been considered.

Secondly, for soft-drop thrust the value of αS obtained from the fits is less affected by the
choice of the considered observable range. This is illustrated in the right plot of figure 27. The
minimal observable value tmin included in the fit is lowered from the default value
t = 0.07min . The upper boundary is thereby kept fixed at t = 0.25max . For plain thrust, this
results in dramatic changes due to increasing and severe hadronization corrections. Conse-
quently, for plain thrust this additional observable range, i.e. phase-space region, cannot be
reliably used in an αS extraction. However, the results obtained from soft-drop thrust, with the
various choices of zcut, are significantly more stable and the fit range could be extended into
those areas.

From an experimental point of view, an obvious problem is that soft-drop event shapes
have not been measured by the LEP experiments. However, their data are preserved and have
recently been reanalysed for other observables [445–448]. Thus, we believe, it would be very
interesting to measure soft-drop event shapes, as well as broader families of (groomed)
substructure observables like angularities or energy correlation functions, on archived LEP
data and use them to perform novel fits of the strong coupling. On the other hand, soft-drop
groomed event shapes can also be studied in hadron collisions [439], so analogous analyses
could be performed at the currently running LHC experiments. The same comment applies to
analyses of soft-drop groomed jet substructure observables, see for example [449–455] for
recent theoretical and experimental results. However, it should be noted that the study in
[456] identified a strong correlation between αS and the overall structure of the hard collision,

Figure 27. Results of [440] illustrating the advantages of using soft-drop thrust in fits of
αS. Both are based on fits to pseudodata generated with SHERPA. Left: dependence of
the results on the effects included in the calculation, starting from only fixed order, i.e.
NLO QCD, on the left and including effects of resummation, corresponding to NLO
+NLL¢ accuracy, and upon including nonperturbative effects in two different
approaches. Right: dependence of the αS best-fit value on the range of (soft-drop)
thrust included in the fit.
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in particular the fraction of quarks and gluons that enter the calculation, as one of the main
challenges for extractions of αS from jet-shape measurements in proton-proton collisions.
Thus, in this context, it would be important to find observables that can break this degeneracy.

On the theory side, we also anticipate that higher-accuracy calculations will be necessary
to be competitive with fits using traditional event shapes. At fixed order, NNLO accurate
predictions are in principle available [457]. Furthermore, resummed predictions for soft-drop
observables have been obtained at NNLL [458] and some results are available even at N3LL
[459]. Regarding all-orders soft-gluon effects, a crucial ingredient is an improved under-
standing of the transition region where emissions soft enough to be groomed become
important for the distribution. The resummed calculations like the ones used in [440] are
performed in the strict τ= zcut= 1 limit. However, judging from the ranges where αS has
been extracted from LEP data of the thrust distribution, and assuming a traditional choice of

~ ( )z 0.1cut , it seems however inevitable that a fit would also rely on the region τ zcut or
even τ∼ zcut. Extending calculations to this region has been discussed recently in [460]. With
this, NNLL accuracy appears to be achievable over the whole range, however still limited to
the assumption zcut= 1. A better understanding of those power corrections in zcut is still a
missing ingredient to date.

Finally, despite the fact that soft drop successfully reduces the sensitivity to
nonperturbative effects, calculations aimed at precision determinations of the strong coupling
cannot neglect them. In this context, significant improvement has been recently achieved,
both in the analytic and MC approaches. Using effective field theory techniques, a more
detailed understanding of power corrections due to hadronization in the presence of soft-drop
grooming has been achieved in [461, 462]. The Monte Carlo approach has also been
improved thanks to the implementation of so-called transfer matrices [454]. This method
allows us to better model the effect that the hadronization process has on the event kine-
matics, although it was shown in [440] to not significantly alter the effect of nonperturbative
corrections in the range of soft-drop thrust used for the central fits, like the ones in the left plot
of figure 27. However, outside of this range, differences might be sizable. In this context, it
would be interesting to compare this improved numerical model with the aforementioned
first-principle analysis.

7. αS ðm2
ZÞ from hadronic final-states in e−p and p−p collisions93

7.1. αS from jet-production cross sections in neutral-current DIS using NNLO predictions

The measurements of jet-production cross sections in neutral-current deep-inelastic scattering
(NC DIS) are performed at HERA in the Breit frame of reference and provide clean and
precise measurements. The Breit frame is defined as a brick-wall frame, where in leading-
order NC DIS the incoming parton, literally, bounces back from the photon wall. Conse-
quently, once the outgoing partons have significant transverse momenta, the process is
described by a 2→ 2 photon-parton scattering process in pQCD and is proportional to a( ) S

in leading order. Progress in the antenna subtraction formalism enabled to perform predictions
for single-inclusive jet and dijet production cross sections up to next-to-next-to-leading order
(NNLO) in pQCD [328, 329]. Several measurements of inclusive jet and dijet cross section
measurements from the H1 and ZEUS collaborations, from different run-periods and different
kinematic ranges in Q2, were already exploited for the determination of αS.

93 Authors: D Britzger (MPI Munich).
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a. Methodology. The value of a ( )mS Z
2 is determined from HERA jet cross sections in a

χ2-minimization procedure of NNLO predictions to data. Following the application of the
factorization theorem, the pQCD predictions for jet cross sections are

òås s=
=

( ) ˆ ( ) · ( )
¯

xf x x cd , 7.1
k q q g

k k
, ,

had

where fk denotes the parton-distribution functions, ŝ the partonic NNLO cross section, and
chad nonperturbative correction factors which account for hadronization effects. Both
components at the hard scale, fk and ŝk , exhibit a sensitivity to a ( )mS Z

2 , which can directly be
seen when calculating the partial derivative s

a
¶

¶ ( )mS Z
2 . In order to account for both αS-sensitive

terms, a constant starting scale μ0 is introduced, similarly as in DGLAP-based PDF-fits, and
consequently the PDFs fk are defined through their x-dependence at μ0 and evolved to the
factorization scale using the DGLAP formalism, where also the αS-sensitivity in the DGLAP
kernels is exploited in the fitting procedure. The evolution starting scale is chosen to be
μ0 = 20 GeV. In a study by H1, it was observed that the extracted values of a ( )mS Z

2 are
rather insensitive to the exact choice of the starting scale, and that the predominant sensitivity
to a ( )mS Z

2 arises from the NNLO coefficients ŝ. The value of a ( )mS Z
2 is then determined by

minimizing the χ2 expression based on log-normal probability distribution functions

c s s= + + = --( ) ( )r rV V V rusing log log , 7.2T
i i i

2
exp had PDF

1
data, pred .,

where the covariance matrices are calculated from relative uncertainties of the data (Vexp), the
hadronization factors (Vhad) and the PDFs (VPDF) and the cross sections σdata,i and σpred.,i refer
to data and the NNLO predictions (pred.) in a bin i, respectively. The PDF uncertainties are
calculated from the eigenvectors or replicas of a given PDF set from an external analysis.
Note that, by including the PDF uncertainties in the χ2 expression, the fit exploits the same
degrees of freedom as the respective PDF fit, and the PDFs become profiled in the
minimization procedure. This procedure is de-facto equivalent to adding the HERA jet to the
PDF fit, while contrary the a ( )mS Z

2 inference exploits exclusively the jet data and thus ensures
a theoretically and experimentally cleaner determination of a ( )mS Z

2 than PDF fits, which mix
different predictions and processes.

The NNLO predictions are obtained using the program NNLOJET [329], which is
interfaced [245] to fastNLO [331] and Applgrid [463] to enable repeated calculations with
differing values for a ( )mS Z

2 and differing PDFs. The DGLAP evolution is done with
QCDNUM [327] or Apfelxx [464], and the hadronization correction factors are provided by
the experimental collaborations together with the data and are commonly determined using
the MC event generators Djangoh [332] or Rapgap [333]. The PDFs are obtained from
NNPDF3.1 [268] and further PDF sets are studied [208, 215, 223, 252] and are used to define
a so-called PDFset uncertainty. The renormalization and factorization scales are identified
with m = +Q p2 2

T
2, where pT is identified with the single-jet transverse momentum in case

of inclusive jets, and with the average pT of the two leading jets in case of dijet cross sections.

b. αS from single-jet inclusive cross sections. The value of a ( )mS Z
2 was determined from

inclusive jet cross sections from previously published data by H1 in [320], and from H1 and
ZEUS inclusive jet cross sections in [245]. Both experiments employ the kt jet-algorithm with
a distance measure R = 1.0 and provide double-differential cross section data as functions of
Q2 and jet transverse momenta pT

jet. The combined analysis of the H1 data using NNLO
predictions exploits five independent cross section measurements [242, 321, 324, 465, 466] in
the kinematic range of 5<Q2< 15 000 GeV2 and < <p4.5 50 GeVT

jet and yields a value
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of a =( ) ( ) ( )m 0.1157 10 36S Z
2

exp th [320], where the first uncertainty comprises experimental
uncertainties, and the second collects theoretical uncertainties from PDFs, hadronization, and
missing higher orders. The analysis of ZEUS inclusive jet cross sections exploits two data sets
from the HERA-I running period [467, 468] in the kinematic range 120<Q2< 20 000 GeV2

and yields a =( ) ( ) ( )m 0.1227 21 19S Z
2

exp th [245]. Since H1 provides more data, and data at
lower scales μ, their experimental uncertainty is smaller as compared to the ZEUS result,
while contrary the highly-sensitive low-scale data results in increased scale uncertainties.

The combined analysis of H1 and ZEUS inclusive jet data yields the most precise result
of [245]

a =( ) ( ) ( ) ( )m 0.1178 15 21 , 7.3S Z
2

exp th

which is obtained by restricting the selected data to μ> 28 GeV (figure 28, left). The NNLO
predictions provide an excellent description of the data in all aspects and the value of χ2/ndof
is found to be 79.2/104. The dominant uncertainty arises from scale variations of the NNLO
predictions, while several PDF-related uncertainties are found to be (negligibly) small. Future
improved predictions may exploit these low-μ data and may achieve total uncertainties of less
than ±0.002.

c. αS from di-jet cross sections. A determination of a ( )mS Z
2 from dijet cross sections in NC

DIS was performed by H1. Four previously published double-differential dijet cross section
measurements as a function of Q2 and the average transverse momenta of the two leading jets
in the Breit frame 〈pT〉 were analyzed using NNLO pQCD predictions. The data were taken
during different HERA run-periods, at different e±-p center-of-mass energies and different
kinematic regions in Q2. From all four dijet data sets together a value of [320]

Figure 28. Strong coupling a ( )mS Z
2 determined from HERA inclusive jet (left) and dijet

(right) cross section measurements using NNLO pQCD predictions (left). The vertical
bands indicate the 2019 world average.
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a =( ) ( ) ( ) ( )m 0.1157 22 23 7.4S Z
2

exp th

is determined, and the fit exhibits an excellent quality with χ2/ndof = 31.6/43. While the
above value is restricted to data with μ> 28 GeV, a determination from all dijet data yields
a =( ) ( ) ( )m 0.1174 10 36S Z

2
exp th (figure 28, right). Hence, the experimental uncertainty would

significantly be reduced, but contrary the theoretical uncertainties increase overly, which is
due to enhanced sensitivity to a ( )mS Z

2 of data at lower scales and thus increased scale
uncertainties.

An analysis of dijet cross section measurements from ZEUS exploits a single double-
differential measurement [469], as a function of Q2 and 〈pT〉, where data were taken during
HERA-I and HERA-II. However, its sensitivity to a ( )mS Z

2 is somewhat reduced, since the
most sensitive data at low 〈pT〉 have to be omitted since the definition of the dijet observable
causes instabilities of the pQCD predictions because of symmetric cuts on the two jets
[329, 469]. The ZEUS dijet cross sections yield a value

a =( ) ( ) ( ) ( )m 0.1156 34 25 . 7.5S Z
2

exp th

Due to the limited sensitivity of the ZEUS dijet cross sections to a ( )mS Z
2 , a combined analysis

with H1 data does not improve over the H1 only result. For the future, a reanalysis of these
data would be desirable, such that they can have a relevant impact on a ( )mS Z

2 , and the
analysis would profit from uncorrelated experimental uncertainties of the two independent
experiments and high statistics.

d. αS from jet cross sections of the H1 Collaboration. The H1 Collaboration performed a
determination of a ( )mS Z

2 from inclusive jet and dijet data simultaneously using NNLO
predictions. Although these observables are highly statistically correlated, this was made
possible by a simultaneous analysis of inclusive jet and dijet data, where the statistical
uncertainties and their correlations were measured as well [242, 324]. The analysis further
includes inclusive jet data from H1 from HERA-I and when restricting the data to
μ> 28 GeV the result yields a value of [320]

a =( ) ( ) ( ) ( )m 0.1166 19 24 . 7.6S Z
2

exp th

Since the inclusive jet and dijet data are highly correlated, the result improves only
moderately over the result from the respective inclusive jet data alone. The smallest
experimental uncertainty is achieved with relaxed cut on μ and yields an experimental
uncertainty of δαS = ± 0.0009, which motivates future improved predictions to underbid the
experimental precision.

7.1.1. The running of αS from HERA jet cross sections. Measurements of jet cross sections at
HERA can be employed to test the running of the strong coupling, because these
measurements cover a wide kinematic range. Once the renormalization scale μr is identified
with final-state observables, every single cross section measurement of the double-differential
data sets covers a well-defined range in μr. Hence, determinations of a ( )mS Z

2 from selected
data points with similar values of μr provide a determination of αS, where the validity of the
renormalization group equation (RGE) is employed only within a limited μr range. The value
of a ( )mS Z

2 can be translated to a m( )S r
2 , using a representative value of μr of the selected data

sets, and multiple measurements at different μr provide a test of the running of αS.
The running of the strong coupling constant is tested using NNLO predictions together

with inclusive jet and dijet data from H1 [320], or solely inclusive jet data but from H1 and
ZEUS were exploited [245], respectively. The MS renormalization scheme with 5 active

J. Phys. G: Nucl. Part. Phys. 51 (2024) 090501 Major Report

99



flavours is used. Results from [320] are displayed in figure 29 and compared to the world
average value and other determinations. Good consistency between results from inclusive jet
and from dijet cross sections is observed, and all results are in good agreement with the world
average value and the expectation from the RGE.

The HERA jet data are capable of testing the running of αS in the range from about 7 to
90 GeV with a considerable precision of about 2.5 to 4%.

7.1.2. Further processes. In the recent years, the determination of a ( )mS Z
2 from e−p

collision data focused mainly on inclusive jet and dijet data from HERA. This is because the
recently achieved NNLO calculations [328, 329] provided a significant improvement over
previously available NLO predictions [320], and since H1 provided a comprehensive set of jet
measurements from the HERA-II running period [242, 324]. However, many further
observables and final states can be exploited for a ( )mS Z

2 , either once HERA data are further
analyzed or when theoretical advancements are achieved.

Some examples, where future improvements could be possible, would be three-jet cross
sections, heavy-flavour cross sections, event-shape observables, jet substructure observables
or observables in photoproduction. As an example, three-jet cross sections from
measurements by H1 were proven to provide small experimental uncertainties in αS of
about 1% [242, 324], but only NLO [472] predictions are available and thus largely limit the
precision, and no corresponding measurement from ZEUS is published either. Similarly, in
photoproduction, a precision measurement of inclusive jet cross sections by ZEUS exhibits
high sensitivity to αS [473], but no corresponding measurement from H1 is available, and no
theoretical advancements were achieved for this process since then. The measurements of
various event-shape observables in NC DIS by H1 [474] and ZEUS [475] from HERA-I data
proved a significant sensitivity to αS. However, although recent theoretical improvements
were achieved [476] and new calculation techniques and observables [477–479], or

Figure 29. Left: tests of the running of αS using NNLO pQCD predictions together with
H1 inclusive jet data, dijet data, or both together. The lower panel displays a ( )mS Z

2 as
obtained in the fit to selected data points, and the upper panel the respective value of
a m( )S r

2 for a representative value of μr. The blue shaded band shows the expectation

when assuming the world average value from PDG 2016. Right: a comparison ofa ( )mS Z
2

and corresponding a m( )S r
2 from different measurements [236, 434, 435, 470, 471]. Both

figures taken from [320].
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substructure [455] could be studied, no suitable measurement of any such observable was
published by the HERA experiments from HERA-II data (though, note the ongoing work in
[480]). A recent measurement of lepton-jet correlation observables in NC DIS [481], where
the jets are defined in the laboratory rest-frame, may provide high sensitivity to a ( )mS Z

2 , and
also theoretical predictions with considerable precision are available.

7.1.3. Future prospects. Future electron-proton collider experiments provide many
opportunities for precision determinations of αS. At lower center-of-mass energies, the
electron-ion collider in the USA (EIC) [307, 482] and in China (EicC) [483] will provide new
high-luminosity data. Early studies investigate a measurement of the 1-jettiness global event
shape observable and prospect a determination of a ( )mS Z

2 at a level of a few percent [482].
The proposed Large-Hadron-electron-Collider experiment at CERN (LHeC) [162, 246]

will provide e±-p collision data at a center-of-mass energy of 1.3 TeV and hence the
measurements of hadronic final state observables cover a considerably larger range than it was
possible at HERA. These data will provide new precision measurements of inclusive NC and
CC DIS cross section data. Because of an excellent detector acceptance and high-luminosity,
also the high-x region will be measured with high precision. This will provide the opportunity
to determine αS from inclusive DIS data alone, something that was not possible with HERA
data, and an experimental uncertainty of [246]

da =  +( ) ( ) ( )m 0.00022 exp PDF , 7.7S Z
2

can be expected in combined determination of PDFs and a ( )mS Z
2 . The prospected

uncertainties are compared with recent determinations in global PDF fits in figure 30.
From a simulation of inclusive jet cross section data with a complete set of systematic

uncertainties, a determination of a ( )mS Z
2 with uncertainties of

da =  ( ) ( ) ( ) ( )m 0.00013 exp 0.00010 PDF , 7.8S Z
2

Figure 30. Left: comparison of prospected determination of a ( )mS Z
2 from inclusive DIS

data at the LHeC and (global) PDF fits. Right: an illustration of the prospected
experimental uncertainties in a study of the running of αS from inclusive jet cross
sections at the proposed LHeC experiment. Both figs. taken from [246].
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where the first uncertainties accounts for experimental uncertainties only and the second for
PDF uncertainties, is expected in the LHeC/HL-LHC era. While experimental uncertainties
can be well estimated, it is not quite possible to estimate the size of theoretical uncertainties
reliably.

Similarly as at HERA, the running of αS can be tested because of the dynamic scale of
the jet data. Prospects for scale-dependent determinations of a ( )mS Z

2 (and corresponding
values a m( )S r

2 ) are displayed in figure 30. It is observed that, from LHeC inclusive jet cross
sections, the running can be tested in the range from a few GeV up to about 600 GeV with
permille precision. These measurements will become an indispensable experimental
confirmation of its validity, which will allow to combine the low-scale αS determinations
from τ-decays or lattice QCD with those at the electroweak scale.

7.2. αS ðm2
ZÞ from inclusive W and Z cross sections in p−p collisions94

A new determination of a ( )mS Z
2 has been recently proposed [484, 485] based on comparing

the fiducial cross sections of electroweak (EW) boson production in p−p collisions at the
LHC, pp→W, Z + X (with the EW bosons decaying into clean final states with electrons or
muons) to the corresponding theoretical cross sections computed at next-to-next-to-leading-
order (NNLO) accuracy. The method employed follows a similar approach to that used to
derive a ( )mS Z

2 from inclusive top-quark pair cross sections [486]. Such an extraction exploits
the fact that, first, there are many W and Z boson cross sections available and that those are
the most precisely measured ones at the LHC (with typical ±0.5% statistical uncertainties and
±2% systematic uncertainties, dominated by the integrated luminosity), and, second, that
their theoretical values can also be precisely computed (with scale and PDF uncertainties
amounting to 0.5%–1% and 2%–4%, respectively). Theoretically, the cross sections can be
derived from the convolution of parton densities fi(xi, μF) (evaluated at fractional momentum
xi and factorization scale μF) and elementary parton-parton cross sections (evaluated at
renormalization scale μR) written as an expansion in the QCD coupling,

ò òs m m s a m s a m s= + + + + ( ) ( )[ˆ ( ) ˆ ( ) ˆ ]

( )

x x f x f xd d , , .

7.9

F F S R S Rpp W,Z X 1 2 1 1 2 2 LO NLO
2

NNLO

Although the bulk of the cross section, given by ŝLO, is a pure EW quantity, the contributions
of NLO and NNLO higher-order pQCD corrections increase the overall σW,Z value
[487–491], and provide the dependence on a ( )mS Z

2 that allows extracting this parameter from
a combined data-theory comparison. The size of the higher-order corrections, encoded in the
so-called K-factor given by the ratio of NNLO to LO cross sections, amounts to

s s= »K NNLO LO
1.22, 1.33, and 1.29 in the typical ATLAS, CMS, and LHCb fiducial

acceptance for W± and Z final states, respectively. Such a result indicates that indeed W and
Z boson production in p−p collisions is sensitive to a ( )mS Z

2 , through ∼25% higher-order
matrix-elements direct contributions to their total cross sections.

Up to the year 2019, there were 12+ 9+ 7 = 28 W± and Z fiducial cross sections
measured in p−p collisions by CMS, LHCb, and ATLAS, respectively, that have been
exploited in [484, 485] to determine a ( )mS Z

2 by comparing them to the corresponding NNLO
theoretical predictions computed with MCFM v.8 [490, 491] for a variety of PDF sets (CT14
[223], HERAPDF2.0 [215], MMHT14 [252], and NNPDF3.0 [492]) and a =( )m 0.115S Z

2 –

0.121 values. The absolute W± and Z cross section data exploited here were not used by any
of these PDF sets in their global fits to extract the parton densities themselves, so there is no

94 Authors: D d’Enterria (CERN).
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‘double counting’ of the same data samples in the a ( )mS Z
2 determination. The final numerical

accuracy of the calculations is 0.2%–0.6%, comparable to ∼1% differences found with
alternative NNLO calculators such as FEWZ [489] or DYNNLO [488]. In the theoretical
cross sections, we included corrections (mostly negative, of a few percent size) due
to EW and photon-induced production processes evaluated at NLO accuracy with
MCSANC v.1.01 [493].

Figure 31 shows examples of experimental ATLAS (left) and LHCb (right) cross sections
(horizontal lines and bands) compared to the corresponding theoretical predictions per PDF as
a function of a ( )mS Z

2 (coloured ellipses). From the computed cross sections, a linear
dependence of sW,Z

th on a ( )mS Z
2 is derived, and the filled ellipses are constructed to represent

the contours of the joint probability density functions (Jpdfs) of the theoretical and exper-
imental results, with a width representing a two-dimensional one standard-deviation obtained
from the product of both probability densities for each PDF. The uncertainty in the theoretical
cross sections is given by the quadratic sum of its associated PDF, scale, and numerical
uncertainties.

The predictions are consistent with data within uncertainties but not systematically for the
same a ( )mS Z

2 value (in particular, HERAPDF2.0 results do not always overlap with any of the
others within the 1 std.-dev. region). For a fixed a ( )mS Z

2 value, HERAPDF2.0 (NNPDF3.0)
predict larger (smaller) cross sections. Namely, HERAPDF2.0 (NNPDF3.0) favour system-
atically smaller (larger) a ( )mS Z

2 values, whereas MMHT14 and CT14 predictions are in
between and less scattered over the 28 measurements considered. The predictions derived
with HERAPDF2.0 (MMHT14) always feature the smallest (largest) slope, i.e. HERAPDF2.0
(MMHT14) cross sections are the least (most) sensitive to underlying a ( )mS Z

2 variations.
With the 28 fiducial cross sections computed, we find that for the baseline QCD coupling
constant value of a =( )m 0.118S Z

2 of all PDF sets, the data-theory accord is overall better for
the predictions calculated with CT14 and MMHT14 (goodness-of-fit per degree of freedom,
χ2/ndof≈ 1) than those obtained with the HERAPDF2.0 and NNPDF3.0 sets (χ2/ndof≈ 2.1).

Figure 31. Examples of data-theory comparisons for EW fiducial cross sections in p−p
collisions measured by ATLAS (W+ bosons at =s 13 TeV, left) [494] and LHCb (Z
boson at =s 8 TeV, right) [231]. The experimental cross sections are plotted as
horizontal black lines with outer darker (inner grey) bands indicating their total
(integrated luminosity) uncertainties. The theoretical predictions are computed for each
PDF set as a function of a ( )mS Z

2 , and combined with the experimental results into Jpdfs
shown as filled ellipses. The vertical dashed line indicates the expected predictions
for a =( )m 0.118S Z

2 .
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The cross sections calculated with different a ( )mS Z
2 values are fitted (using

χ2-minimization) to a first-order polynomial and the corresponding slope k is extracted for
each PDF and measurement. The value of a ( )mS Z

2 preferred by each individual measurement
is determined by the crossing point of the fitted linear theoretical curve with the experimental
horizontal line. All the individual 28 a ( )mS Z

2 derived per PDF set, and the correlation matrices
associated with all their uncertainties, are given as inputs of the CONVINO v1.2 [495] program
employed to determine the final best estimate of all combined values. Table 10 lists the
a ( )mS Z

2 values, along with the uncertainty breakdowns from every source, determined for
each PDF set through the combination of the 28 individual determinations. The total sym-
metrized uncertainties amount to ∼1.4% for CT14, ∼2.1% for HERAPDF2.0, ∼1.3% for
MMHT14 and ∼1.6% for NNPDF3.0. The last column of table 10 lists the (χ2/ndof) of the
final single combined result compared to the 28 individual a ( )mS Z

2 extractions.
The final a ( )mS Z

2 values determined for each individual PDF are plotted in figure 32 (left)
compared with the 2018 world average of a = ( )m 0.1181 0.0011S Z

2 (orange band) [226].
The (asymmetric) parabolas are constructed to have a minimum at the combined value and are
fitted to go through Δχ2 = 1 (horizontal black lines) at the one std. deviation uncertainties
quoted in table 10. The robustness and stability of the final a ( )mS Z

2 determination per PDF is
cross-checked by varying key experimental and theoretical ingredients and uncertainties. For
this purpose, the CONVINO combination is redone as follows: (i) for a fraction of the data
subsets (ATLAS, CMS, or LHCb alone; or for 7, 8, 13 TeV c.m. energies only), (ii) varying
the correlation factors of the PDF/scale uncertainties between 0 and 1, (iii) shifting the central
values of the computed cross sections by ±1σ of the theoretical uncertainty prior to com-
bination, and (iv) adding±1% uncorrelated theoretical uncertainty (to cover differences
among NNLO calculators). The results of such tests indicate that the MMHT14 result is the
most stable against any variations in the analysis, whereas a few larger-than-1-standard-
deviation changes appear in some cases for the results of the other PDF sets. The preferred
QCD coupling value extracted from this study is that of MMHT14,
a = ( )m 0.1188 0.0016S Z

2 plotted in figure 32 (right), because (i) it features the largest
sensitivity (slope) of σW,Z to αS, (ii) it shows the lowest χ

2/ndof of the final single combined
result compared to the 28 individual a ( )mS Z

2 extractions, (iii) it has the smallest (symme-
trized) propagated uncertainties, and (iv) it is the most stable against any data or theory
analysis variations.

This study confirms that the total inclusive W± and Z boson cross sections at hadron
colliders are new promising observables that can provide useful constraints on the value of the
QCD coupling constant, and that can eventually help improve the precision of the a ( )mS Z

2

world average. The recent availability of N3LO codes [496, 497] for the calculation of
inclusive W± and Z boson production cross sections, with one extra higher degree of
theoretical accuracy compared to the one used here, will allow for further reductions of the
propagated scale uncertainties, provided that PDF uncertainties are available at the same level
of pQCD accuracy. Such theoretical developments, combined with upcoming EW boson
measurements at the LHC with ( 1%) experimental uncertainties, mostly thanks to further
reduced integrated luminosity uncertainties, will enable future a ( )mS Z

2 extractions with pro-
pagated uncertainties below the 1% level.
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Table 10. Strong coupling constant a ( )mS Z
2 values extracted per PDF set by combining all the individual results obtained for each W± and Z boson

production cross section measurements, listed along with their propagated total and individual uncertainties. The last column tabulates the χ2/ndof
of the final single combined result compared to the 28 individual a ( )mS Z

2 determinations.

PDF a ( )mS Z
2 δ (stat) δ (lumi) δ (syst) δ(PDF) δ(scale) δ (num) χ2/ndof

CT14 -
+0.1172 0.0017

0.0015 0.0003 0.0005 0.0006 -
+

0.0013
0.0011 0.0006 0.0003 23.5/27

HERAPDF2.0 -
+0.1097 0.0023

0.0022 0.0004 0.0009 0.0009 -
+

0.0016
0.0015 0.0007 0.0005 27.0/27

MMHT14 -
+0.1188 0.0013

0.0019 0.0002 0.0008 0.0003 -
+

0.0007
0.0015 0.0007 0.0002 19.3/27

NNPDF3.0 0.1160± 0.0018 0.0006 0.0004 0.0005 0.0013 0.0006 0.0007 56.9/27
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7.3. αS ðm2
ZÞ from the transverse-momentum distribution of Z bosons95

A new determination of a ( )mS Z
2 , using QCD resummed theory predictions and based on a

semi-inclusive (i.e. radiation inhibited) observable at hadron-hadron colliders, has been
recently proposed in [498]. The strong-coupling constant a ( )mS Z

2 is determined from the
transverse-momentum distribution of Z bosons measured at =s 1.96 TeV with the CDF
experiment, using predictions based on qt-resummation at N3LO+N3LL accuracy, as
implemented in the DYTurbo [497, 499] program. The measurement is performed through a
simultaneous fit of a ( )mS Z

2 and the nonperturbative Sudakov form factor. This measurement
has all the desirable features for a precise determination of a ( )mS Z

2 : large observableʼs sen-
sitivity to a ( )mS Z

2 compared to the experimental precision; high accuracy of the theoretical
prediction; small size of nonperturbative QCD effects.

Measuring a ( )mS Z
2 , or equivalently LQCD

MS , from semi-inclusive Drell–Yan cross sections

was first proposed in [500], by using Monte Carlo parton showers to determine LQCD
MC and

later convert it to LQCD
MS . The conversion is based on resummation arguments showing that a

set of universal QCD corrections can be absorbed in coherent parton showers by applying a
simple rescaling, the so-called Catani-Marchesini-Webber (CMW) rescaling.

The Z-boson transverse-momentum distribution at small transverse momentum is one of
such semi-inclusive observables. The recoil of Z bosons produced in hadron collisions is
mainly due to QCD initial-state radiation, and the Sudakov form factor is responsible for the
existence of a Sudakov peak in the distribution, at transverse-momentum values of
approximately 4 GeV. The position of the peak is sensitive to the value of the strong-coupling
constant.

For the measurement of a ( )mS Z
2 from the Z-boson transverse-momentum distribution it is

necessary to rely on fast computing codes which allow the calculation of variations in the
input parameters with small numerical uncertainties. To this end, the DYTurbo program
was used.

The CDF measurement of Z-boson transverse-momentum distribution [501] at the Teva-
tron collider is ideal for testing the extraction of a ( )mS Z

2 with DYTurbo predictions. This

Figure 32. Final a ( )mS Z
2 values determined from the analysis of the EW boson

inclusive cross sections at the LHC using the CT14, HERAPDF2.0, MMHT14, and
NNPDF3.0 PDF sets (left), and a ( )mS Z

2 extraction from the MMHT14 PDF alone
(right), compared to the 2018 world average (vertical orange band).

95 Authors: S Camarda (CERN), M Schott (JGU Mainz).
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measurement was performed with the angular coefficients technique, which allows extra-
polating the cross section to full-lepton phase space with small theoretical uncertainties. The
full-lepton phase space cross section allows fast predictions and avoid any theoretical
uncertainties on the modelling of the Z-boson polarization. Another advantage of this mea-
surement with respect to similar measurements performed at the LHC is the fact that Tevatron
is a proton-antiproton collider, and the Z-boson production has reduced contribution from
heavy-flavour-initiated processes compared to proton-proton collisions at the LHC.

The CDF measurement is performed in the electron channel, with central (|η e|< 1.1) and
forward (1.2< |η e|< 2.8) electrons, allowing a coverage up to Z-boson rapidity of y = 2.8,
and a small extrapolation to the full rapidity range »∣ ∣y 3.1max of Z-boson production at

=s 1.96 TeV. The data sample is characterized by low values of the average number of
interactions per bunch crossing, and by good electron resolution, at the level of 1 GeV for
central electrons, and 1.5 GeV for forward electrons. The good resolution allows fine trans-
verse-momentum binning (0.5 GeV) while keeping the bin-to-bin correlations smaller
than 30%.

The nonperturbative QCD corrections to the Z-boson transverse-momentum distribution
are modelled by including a nonperturbative term in the Sudakov form factor:
S(b)→ S(b) · SNP(b). The general form of SNP(b) is mass and centre-of-mass energy depen-
dent [502]. However, at fixed invariant mass q = mZ, and for one value of centre-of-mass
energy, the form of SNP(b) can be simplified to depend on a single parameter g:

= -( ) ( · )S b g bexpNP
2 . The nonperturbative parameter g is generally determined from the

data, and its value depends on the chosen prescription to avoid the Landau pole in the impact-
parameter b-space, which corresponds to a divergence of the Sudakov form factor. The
divergence is avoided by using the so-called bå prescription, which freezes b at a given value
blim:  =

+b b b

b b1 2
lim
2 . In this analysis blim is set to the value of 3 GeV−1.

The sensitivity of the Z-boson transverse-momentum distribution to a ( )mS Z
2 mainly comes

from the position of the Sudakov peak, and is related to the average recoil scale
〈pT〉≈ 10 GeV. The sensitivity of the Z-boson transverse-momentum distribution to g also
comes from the position of the Sudakov peak. However, the scale of the nonperturbative
smearing governed by g corresponds to the value of primordial kT. Typical values of g≈ 0.6
GeV2 corresponds to a primordial kT of approximately 1.5 GeV. It is possible to disentangle
the perturbative contribution to the Sudakov form factor, governed by a ( )mS Z

2 , from the
nonperturbative one, determined by g, thanks to their different scale, as shown in figure 33.

The statistical analysis leading to the determination of a ( )mS Z
2 is performed by interfacing

DYTURBO to xFitter [503]. The agreement between data and predictions is assessed by means
of a χ2 function, which includes experimental and PDFs theoretical uncertainties [504]. The
nonperturbative form factor is added as unconstrained nuisance parameter in the χ2 definition,
i.e. it is left free in the fit. The fit to the data is performed in the region of transverse
momentum pT< 30 GeV by minimising the χ2 as a function of a ( )mS Z

2 , with αS variations as
provided in LHAPDF.

The corrections to the Z-boson transverse-momentum distribution due to QED initial-state
radiation are estimated with PYTHIA8 and the AZ tune [505] of the parton shower parameters,
and applied as multiplicative corrections. They are the level of 1%, and are responsible for a
shift in the measured value of a ( )mS Z

2 of da = -( )m 0.0004S Z
2 .

The determination of a ( )mS Z
2 with the NNLO NNPDF4.0 PDF set [260] yields

a =( )m 0.1187S Z
2 , with a statistical uncertainty of ±0.0007, a systematic experimental

uncertainty of ±0.0001, and a PDF uncertainty of ±0.0004. The value of g determined in the
fit is g = 0.66± 0.05 GeV2, and the value of the χ2 function at minimum is 41 per 53
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degrees of freedom. Various alternative NNLO PDF sets are considered: CT18 [222], CT18Z,
MSHT20 [247], HERAPDF2.0 [215], and ABMP16 [208]. The determined values of a ( )mS Z

2

range from a minimum of 0.1178 with the ABMP16 PDF set to a maximum of 0.1192 with
the CT18Z PDF set. The midpoint value in this range of a =( )m 0.1185S Z

2 is considered as
nominal result, and the PDF envelope of ±0.0007 as an additional source of uncertainty.
Missing higher order uncertainties are estimated through independent variations of μR, μF and
Q in the range mℓℓ/2� {μR, μF, Q}� 2mℓℓ with the constraints 0.5� {μF/μR, Q/μR,
Q/μF}� 2, leading to 14 variations. The determined values of a ( )mS Z

2 range from a mini-
mum of 0.1177 to a maximum of 0.1193, yielding a scale-variation envelope of ±0.0008.
Alternative fits with a value of =b 2lim GeV−1 in the b* regularization procedure and with
the minimal prescription yields an uncertainty of -

+
0.0004
0.0006. A fit in which the NNPDF4.0 PDF

set is evolved with a variable-flavour number scheme yields da = -( )m 0.0002S Z
2 . The sta-

bility of the results upon variations of the fit range is tested by performing fits in the regions of
Z-boson transverse momentum pT< 20 GeV and pT< 40 GeV. The spread in the determined
values of a ( )mS Z

2 is at the level of ±0.0001 and is not considered as a source of uncertainty.
Since the region 20< pT< 40 GeV is sensitive to the matching of the resummed cross section
to the fixed order prediction, this test provides a strong confirmation that the missing O(aS

3)
contributions to the asymptotic term and the V+jet finite-order cross section are negligible for
this analysis. The measured value of the strong-coupling constant is a = -

+( )m 0.1185S Z
2

0.0014
0.0015,

with a statistical uncertainty of ±0.0007, an experimental systematic uncertainty of ±0.0001,
a PDF uncertainty of ±0.0008, missing higher order uncertainties of ±0.0008, and additional
theory uncertainties of -

+
0.0004
0.0007. The post-fit predictions are compared to the measured Z-boson

transverse-momentum distribution in figure 34 (left).
We make some observations on this determination of a ( )mS Z

2 . Contrary to other hadron
collider observables, the Z-boson transverse-momentum distribution in the Sudakov region is
not included in PDF fits, therefore this determination does not have any issue of correlations
with existing PDF sets. The PDF uncertainties are estimated with a conservative approach,
including the envelope of six different PDF sets. Missing higher order uncertainties are
estimated with the standard approach of computing an envelope of scale variations. The
model for nonperturbative QCD effects based on a Gaussian form factor is simple but

Figure 33. Sensitivity of the Z-boson transverse-momentum distribution to a ( )mS Z
2

(left) and to the nonperturbative QCD parameter g (right).
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effective, as it describes the data very well. Generous uncertainties on this model are esti-
mated with variations of the Landau pole prescription. The measured value of a ( )mS Z

2 has a
relative uncertainty of 1.2%, and is compatible with other determinations and with the world-
average value, as illustrated in figure 34 (right).

Finally, we outline our personal wish-list for experimental and theoretical developments.
LHC measurement of Z-boson transverse-momentum distributions are significantly more
precise than measurements at the Tevatron. By analysing LHC data it is likely to reach a few
10−4 experimental uncertainty on a ( )mS Z

2 with the LHC Run-2 and Run-3 data samples. The
main experimental limitation will be the lepton momentum/energy scale, currently known at
∼10−3. Improving the lepton scale to 10−4 will help to reach high precision on a ( )mS Z

2 .
Measurements of Drell–Yan transverse-momentum distributions at high mass will bring
further sensitivity to a ( )mS Z

2 , but resolution may be a limiting factor. Precise measurements of
Drell–Yan transverse-momentum at low and intermediate masses will help reducing the
nonperturbative uncertainties.

From the point of view of theory predictions, the analysis will clearly benefit from even
higher order predictions. The N4LL accuracy is likely to be possible in the near future, and
approximate N4LL’ could also be on reach in the coming years. The required ingredients for
N4LL are the 5-loop cusp anomalous dimension, the 4-loop rapidity anomalous dimension.
For N4LL’ also N3LO PDFs, N4LO TMD, and the 4-loop quark form factor are needed. In
order to make full usage of the extremely precise LHC measurements, it is needed to have an
improved heavy-flavour treatment, with variable-flavour number scheme and/or massive
corrections. The inclusion of joint qT/small-x resummation [506] may also be relevant or
even required. The precision of the measurement will greatly benefit from first-principle
understanding of nonperturbative corrections. As a last remark, the availability of public
software for Z+jet predictions at NNLO would help the inclusion of currently missing O(aS

3)
terms in the matching to fixed order. In conclusion, prospects to reach subpercent precision in
the next 5–10 years mostly rely on theory developments.

Figure 34. Left: comparison of the N3LO+N3LL DYTurbo prediction to the measured
Z-boson transverse-momentum distribution. Right: comparison of the a ( )mS Z

2 derived
here to the results of other categories of the world-average value.
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7.4 Crucial aspects of PDF fits relevant for αS ðm2
ZÞ determination96

Parton densities uncertainties play an important role in a ( )mS Z
2 determinations from hadron

collider measurements. A novel analysis at NNLO accuracy for the determination of a new set
of proton PDFs using diverse measurements in p−p collisions at s = 7, 8 and 13 TeV
performed by the ATLAS experiment at the LHC, and combined with DIS data from e−p
collisions at the HERA collider, has been presented in [507] with the resulting set of PDFs
called ATLASpdf21. In this analysis, particular attention is paid to the correlation of sys-
tematic uncertainties within and among the various ATLAS data sets and to the inclusion of
theoretical scale uncertainties, two crucial aspects of PDF fits if an ultimate precision below

( ) 1% is sought on PDFs determination.
Specifically, the correlations of various systematic sources have been considered between

different analyses that use jet data: tt data in the lepton+jets channel [234, 508], W/Z+ jets
data [509, 510], and inclusive jet data [511]. The difference in the resulting ¯xd and gluon xg
PDFs, when such correlations among the input data sets are considered and when they are not,
is shown in figure 35. Such differences are still visible at LHC energy scales, indeed this
figure is made for the scale Q2 = 104 GeV2 to illustrate so.

It is visible how correlations of sources of systematic uncertainty both within and among
data sets need to be carefully considered in PDF fits and although the difference between the
resulting PDFs is not large in the best-known kinematic region (namely 0.01< x< 0.1,
corresponding to mass scales ∼100 GeV →1 TeV at the LHC) it can nevertheless be large
enough to have an impact. In the less well-known regions, at smaller and larger mass scales,
the impact can be considerably greater.

Another important aspect to be considered is the inclusion of theoretical scale uncer-
tainties, which are evaluated as follows. The K-factors are evaluated for separate changes of
the renormalization (μR) and factorization (μF) scales by factors of 2 and 0.5. The magnitude

Figure 35.Difference in the gluon and the ¯xd PDFs shown in ratio to the ATLASpdf21
(default) PDFs at scale Q2 = 104 GeV2. The default (red) analysis applies the full
correlation of specified systematic sources among the data sets which use jet data, and
the alternative (blue) analysis does not apply any correlation of systematics sources
(apart from the integrated luminosities) among the data sets.

96 Author: F Giuli (CERN).
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of the K-factor difference is symmetrized as (K[μR(2)]−K[μR(0.5)])/2 and (K[μF(2)]−
K[μF(0.5)])/2 and its sign is preserved as positive if the upward variation of μR or μF makes
the K-factor increase, and negative if it makes the K-factor decrease. In the ATLASpdf21
analysis, for the ATLAS W and Z/γ* inclusive data sets at both 7 and 8 TeV, both the total
experimental uncertainty and the scale uncertainties approach ∼0.5%, so the scale uncer-
tainties are considered as additional theoretical uncertainties (the effect of scale uncertainties
for the other data sets entering in the fit was studied and was found to be negligible). Due to
the similarity of the W and Z processes, both the μR and μF scales are considered correlated
within the W, Z data sets at 7 TeV and between the W and Z data sets at 8 TeV. They are also
considered to be correlated between the W and Z data sets at 7 and 8 TeV for the central fit.

Different choices for the treatment of the scale uncertainties in inclusive W, Z data are
considered, and two alternative cases are considered:

1. The scale uncertainties are not correlated between the 7 and 8 TeV data,
2. Scale uncertainties are not applied at all.

Figure 36 shows the results of fits for these two cases, compared with the central fit, shown as
a ratio at a scale Q2 = 104 GeV2, relevant for LHC physics. The uncertainties are very similar
in size. The differences between the shapes of the PDFs are not large, but they can be
important if the desired accuracy of the PDFs is ( ) 1% . The difference between the cases
where the scale uncertainties are applied as being correlated or uncorrelated between the 7 and
8 TeV inclusive W, Z data sets is shown by the green line in these figures and it can be seen
that it is generally a smaller effect.

The two aforedescribed effects should be taken into account properly when performing
future precision data analyses, such as the measurement of mW, qsin2

W or a ( )mS Z
2 , because

fits to these quantities can be very sensitive to (even) small changes.

Figure 36. ATLASpdf21, showing the ratios of a fit not including theoretical scale
uncertainties in the inclusive W, Z data to the central fit which does include these
uncertainties, at the scale Q2 = 104 GeV2, for xdv (eft) and xg (right).
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7.5 Exact fixed-order pQCD predictions for cross section ratios97

In the standard approach, pQCD predictions for ratios of cross sections are computed as the
ratio of the fixed-order predictions for the numerator and the denominator. Beyond the lowest
order in the perturbative expansion, this result does, however, not correspond to a fixed-order
prediction for the ratio. This contribution describes how exact fixed-order results for ratios of
arbitrary cross sections can be obtained. Differences between the standard approach and the
exact fixed-order results should be regarded as uncertainties of the predictions, related to
possible higher-order contributions to the perturbative expansion. While this idea was
motivated by our groupʼs αS determinations from ratios of jet cross sections in hadron
collisions (for which pQCD predictions are currently available up to NLO), the method can be
applied at any order pQCD, for any processes, and arbitrary cross sections. The full details of
the method are documented in [512]. Here, we describe the general method for the compu-
tation of the exact fixed-order results and provide specific results for the NLO and NNLO
cases. For various multijet cross section ratios in hadron collisions that were previously used
in αS determinations, we compare the NLO pQCD predictions for the two methods, and study
how they describe the experimental data.

A measurable quantity = s
s

R n

d
is defined as the ratio of two cross sections σn and σd. It is

assumed that the quantity R is defined in bins of an energy or transverse momentum related
variable p which is defined for both σn and σd. At a fixed value (or in a given bin) of p, the
quantity R is given by = s

s
( ) ( )

( )
R p p

p
n

d
, and it is assumed that in a pQCD calculation the

renormalization scale μr can be related to p by the same simple function (like μr = p or
μr = p/2) for both, σn and σd. In other words, in a given bin of p, the ratio R is probing αS

and the pQCD matrix elements for σn and σd at the same μr. For the sake of brevity, the
dependence on p is omitted in the following.

In phenomenological analyses of experimental data, the LO, NLO, and NNLO pQCD
prediction for R are usually computed from the ratios of the corresponding pQCD predictions
for the numerator and denominator, σn and σd, as

s
s

s
s

s
s

= = = ( )R R Rand and . 7.10n

d

n

d

n

d
LO

,LO

,LO
NLO

,NLO

,NLO
NNLO

,NNLO

,NNLO

While the LO pQCD prediction for R is uniquely defined, the higher-order pQCD predictions
can be obtained in different ways. In the following, we refer to the above results as the
‘standard’ approach. Note that, beyond LO, these ratios are not exact fixed-order pQCD
results for the quantity R.

We write the perturbative expansion for σn as σn = σn,LO · (1+ kn,1+ kn,2+ ...) where kn,1
is related to the NLO correction = s s

s
-( )kn,1

n n

n

,NLO ,LO

,LO
and kn,2 to the NNLO correction

= s s
s
-( )kn,2

n n

n

,NNLO ,NLO

,LO
. The variables kn,i for i� 3 (corresponding to corrections beyond

NNLO) are defined correspondingly, and also the corresponding variables kd,i i� 1 for the
denominator σd. The ratio R is then given by

 = + + + + + + -· ( ) · ( ) ( )R R k k k k1 1 . 7.11n n d dLO ,1 ,2 ,1 ,2
1

To obtain an exact fixed-order result for R, the second parenthesis is expanded in a Taylor
series (1+ x)−1 = 1− x+ x2− x3+Lwith x = kd,1+ kd,2+L . The terms of this series
are multiplied with the terms in the left parenthesis, and the resulting products of kn,i and kd,j
are sorted in powers of αS. The infinite series is then truncated at the corresponding order at

97 Authors: L Sawyer, C Waits, M Wobisch (Louisana Tech Univ.).
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which σn and σd were computed. This is the general procedure by which exact fixed-order
results for R are obtained at arbitrary orders in pQCD. At NLO, (with x = kd,1 in the Taylor
series) this yields

= + -· ( ) ( )R R k k1 , 7.12n dNLO LO ,1 ,1

and at NNLO (with x = kd,1+ kd,2 in the Taylor series)

= + - + - - -· [ ( ) ( ( )] ( )R R k k k k k k k1 . 7.13n d n d d n dNNLO LO ,1 ,1 ,2 ,2 ,1 ,1 ,1

In the following discussion, these results are referred to as the ‘fixed-order’ results for R.
The obtained formulas for the ‘standard’ and ‘fixed-order’ expressions are now used to

compute NLO pQCD predictions for selected quantities which are then compared to each
other and to the results from experimental measurements. For this purpose, we focus on five
measurements of different multijet cross section ratios at the CERN LHC (in p−p collisions at

=s 7 and 8 TeV) and the Fermilab Tevatron Collider (in p-p̄ collisions at =s 1.96 TeV).
These include measurements of the quantities R3/2, RΔf, and RΔR, which are different ratios
of three-jet and two-jet production processes. The theoretical predictions for the ratios at NLO
are obtained from the LO and NLO pQCD results for the two-jet and three-jet cross section
calculations, which are computed using NLOJET [513, 514] with fastNLO [331, 515]. The
proton PDFs are taken from the results of the CT18 global analysis [222]. The renormali-
zation, μr, and factorization scales, μf, are set to the same values as used in the experimental
publications of the measurement results, either to one of the relevant jet pT variables, or to
half of the total jet pT sum, HT/2. The uncertainty of the pQCD results due to the μr,f
dependence is computed from independent variations of μr and μf by factors of 0.5–2 around
the nominal choices. The corresponding range of variations is referred to as ‘scale depend-
ence’. Correction factors, to account for nonperturbative contributions are taken from the
estimates that were obtained in the experimental analyses. PDF uncertainties are not relevant
for the following discussions and have not been evaluated. The computations are referred to
as ‘fixed-order’ results and ‘standard’ method, respectively.

The CMS Collaboration has measured the ratio of the inclusive three-jet and two-jet cross
sections, R3/2, for jets with pT> 150 GeV and rapidities of |y|< 2.5 [255]. The results are
published as a function of the average transverse momentum of the two leading jets in the
event, 〈pT1,2〉, over the range 0.42< 〈pT1,2〉< 1.39 TeV, as displayed in figure 37 (left).

Figure 37. The multijet cross section ratio R3/2, measured in p−p collisions at =s 7
TeV as a function of 〈pT1,2〉 in the CMS experiment [255], and in p-p̄ collisions at

=s 1.96 TeV as a function of pT
max in the D0 experiment [516]. Two sets of pQCD

predictions, corrected for nonperturbative contributions, are compared to the data: the
fixed-order results for R3/2, and the results from the ‘standard’ approach, computed
from the ratio of the fixed-order results for the two cross sections. The shaded areas
represent the ranges of the scale dependencies of the calculations.
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Another measurement of the ratio R3/2 was made by the D0 Collaboration for jets with
rapidities |y|< 2.4 and for various lower jet pT requirements, pT

min. The results are published
as a function of the leading jet pT, pT

max, over the range < <p80 500T
max GeV and for four

pT
min choices from 30 to 90 GeV, as displayed in figure 37 (right). The results of the fixed-

order and ‘standard’ calculations for the CMS and D0 measurements are compared to the
data, with their error bands representing the range of their respective scale dependences. For
the CMS results, both methods results are in agreement, and both describe the data equally
well. For the D0 data, the fixed-order calculation predicts lower values everywhere and the
scale uncertainty bands of the two calculations do either not, or hardly, overlap. Only towards
larger pT

min and larger pT
max, the uncertainty bands get closer.

The D0 Collaboration also published measurements of a new quantity, RΔR, which also
probes the ratio of three-jet and two-jet production [517]. The starting point is an inclusive jet
sample (which probes the two-jet production process). The presence of a neighboring jet with
ΔR< π is a sign of an event topology with three or more jets. The fraction of all inclusive jets
with a neighboring jet, RΔR, is therefore also a three- over two-jet cross section ratio. The
quantity RΔR was measured for different pT requirements, pT min

nbr , and different angular
separations, ΔR, for the neighboring jets, as a function of inclusive jet pT from 50 to
450 GeV. The results of the fixed-order and the ‘standard’ calculations for RΔR are compared
to the data in figure 38 (right). In almost all of the phase space the conclusions mirror those
for the theoretical description of the CMS R3/2 data in figure 37 (left): the fixed-order pQCD
predictions agree with those from the ‘standard’ method, and both give a good description of
all data with p 50 GeVT min

nbr . Only in the softer regime, for =p 30 GeVT min
nbr at smaller pT,

they slightly underestimate the experimental measurement results.
The measurements of the multijet cross section ratio RΔf by the D0 and ATLAS Colla-

borations [518, 519] probe the azimuthal decorrelations of the two leading pT jets in an event,
and both analyses follow the recommendations from the original proposal [520]. The ATLAS
result is shown in figure 38 (left). The D0 result is shown in [512]. Both measurements are
performed in the same three rapidity regions, y*, and for the same azimuthal decorrelation

Figure 38. The multijet cross section ratio RΔf, measured in p−p collisions at =s 8
TeV in the ATLAS experiment [518] (left) as a function of HT, in three regions of y*

and for three values of fD max, and the multijet cross section ratio RΔR, measured in p-p̄
collisions at =s 1.96 TeV in the D0 experiment [517] (right) as a function of pT, in
four values of pT min

nbr and in three regions of ΔR. Two sets of pQCD predictions,
corrected for nonperturbative contributions, are compared to the data: the fixed-order
results for RΔf and RΔR, and the results from the ‘standard’ approach, computed from
the ratio of the fixed-order results for the two cross sections. The shaded areas represent
the ranges of the scale dependencies of the calculations.
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requirements, fD max. The ATLAS (D0) data are presented as a function of the scalar pT sum
of all jets in an event, HT, over the range 0.46–4 TeV (180–900 GeV). The degree of
agreement between the NLO pQCD predictions from the fixed-order and the ‘standard’
calculations and how they describe the data is pretty much the same for the ATLAS and D0
data sets. In different y* and fD max regions, however, the two calculations exhibit a rather
different behavior. For 0< y* < 1 and f pD = 7 8max and 5π/6, both calculations agree very
well, exhibit a relatively small scale dependence, and both describe the data. At
f pD = 3 4max , the two predictions start to deviate from each other, and in some cases their

larger scale uncertainty bands have only a small overlap. The data are described by both
predictions. At 1< y* < 2, for f pD = 7 8max and 5π/6, the two predictions have a different
HT dependence and disagree at high HT. In these regions, the fixed-order calculation gives a
better description of the overall HT shape for both data sets.

The results from these comparisons can be summarized as follows: in all cases where the
results from the two methods agree with each other (as seen for the CMS R3/2, the D0 RΔR,
and some regions of the ATLAS and D0 RΔf measurements), they also both describe the data.
In all cases where the two methods disagree (meaning that their scale uncertainty bands do not
overlap, as seen for the D0 R3/2 data and the high HT tails in some of the ATLAS and D0 RΔf

data at y* > 1), one of them (but not always the same) describes the data. In some intermediate
cases, where the scale uncertainty bands from the two methods have little overlap (as for the
ATLAS and D0 RΔf data with f pD = 3 4max ), both predictions are somehow consistent
with the data.

It has to be noted that the ‘fixed-order’ and ‘standard’ method both stand on the same
footing. In any given order pQCD, the results from both methods are equally valid repre-
sentations of the perturbative expansion, and they only differ in higher-order terms. Therefore
their discrepancy should be regarded as a genuine uncertainty of a fixed-order calculation, in
addition to the scale dependence (since the latter does not always cover the spread of the two
methods). The central value can be chosen from either method; there is no fundamental
argument, to pick one over the other, and the choice may depend on the specific goal. In αS

determinations, where one assumes that the pQCD predictions are able to describe the data,
one should possibly pick the method that gives a better description of the data. The proposed
treatment of the spread of the two methods as additional uncertainty will provide more
realistic estimates of theoretical uncertainties in future αS determinations and other phe-
nomenological studies. A small spread of the two methods can also be a criterion for iden-
tifying robust measurable quantities for which the theoretical approximations are more
reliable.

7.6. Energy range for the RGE test and PDF sensitivity in αS evaluations from jet cross section
ratios98

A series of determinations of αS are performed at the LHC e.g. using jet-based observables,
which include the three-jet mass [521], R32 [255, 522, 523], transverse energy-energy
correlations (TEECs) [524] and RΔf [518]. We discuss the relevant energy range on which
running of the coupling, determined by the renormalization group equation (RGE), is probed
through jet cross-section ratio and event shape observables at hadron colliders, as well as the
PDF sensitivity in the corresponding αS evaluations. This contribution is based mainly on
remarks made in [525, 526].

98 Authors: B Malaescu (LPNHE, Paris).
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For fixed incoming parton kinematics, constructing the ratios between the cross sections
for three-jet and two-jet final states can reduce the PDF dependence. At the same time, the
resulting R32 ratio is still sensitive to αS [255, 522]. The angular decorrelation observable RΔf

in two-jet final states is defined as the ratio between the cross section of events with an
azimuthal angular separation below some upper limit and respectively the inclusive dijet cross
section. It also allows to probe three-parton final state kinematics and has been used for an αS

evaluation [518].
TEECs are event shape variables computed as energy-weighted angular distributions of all

individual object pairs in the event. Similarly to e.g. the case of the inclusive jet cross section,
a TEEC distribution receives multiple contributions from each event. Since analytical pre-
dictions for their distributions can be computed from first principles [527], probing hence
fundamental symmetries of QCD, the TEECs are particularly attractive observables. The
TEECs and the associated asymmetries (ATEEC) were measured by ATLAS and used for a
determination of αS [524]. It is interesting to note that in this study the theoretical prediction
is also provided by a three-jet to two-jet cross-section ratio evaluated using NLOJET++
[513, 514], complemented by nonperturbative corrections based on PYTHIA8 [528] and
HERWIG++ [529].

The choice of the scale used in the theoretical calculations for observables like R32, RΔf,
and (A)TEECs is often based on event-level quantities. Typical examples are the average
transverse momentum of the two leading jets [255, 523, 524], the transverse momentum of
the leading jet [522], or half of the scalar sum of the transverse momenta of all the selected
jets in the event [518]. The evaluated αS values are typically displayed as a function of this
same scale, reaching values up to a few TeV (see e.g. [251]). However, we note that the
sensitivity to αS for such observables is actually directly related to the probability for
emission of extra radiation (yielding a third or higher order jet). This implies that these αS

determinations probe the prediction of the renormalization group equation in QCD at energy
scales related to the transverse momentum of the third jet (pT3), rather than to the event-level
quantities above. It is to be noted that the typical values for pT3 are indeed significantly lower
than the scale based on such event-level quantities. Indeed, in the case of the (A)TEEC studies
at 8 TeV [524], if the average scales used in the theoretical calculations range between 412
and 810 GeV (depending on the bin), the corresponding average pT3 values are between 169
and 215 GeV.

It is desirable to achieve consistency between scale used for theory calculation and the
scale at which the RGE test is claimed, while taking into account the remarks above. The
MiNLO procedure [530] may indeed provide a way forward towards this goal.

The αS determinations from ratios of three-parton-like over two-parton-like final states (i.e.
from observables like R32, RΔf, (A)TEEC) are impacted by residual PDF uncertainties that
have been quantified in the corresponding experimental studies [255, 518, 521–524]. Con-
trary to what one may have initially expected, the PDF uncertainties (originating from the
PDF eigenvectors/replicas, as well as from the differences among various PDF sets) are
found to be nonnegligible, being typically larger than the combined experimental uncer-
tainties, but smaller than the NLO scale uncertainty (table 11). Furthermore, in cases where
direct comparisons are possible, it can be noted that the αS determinations from ratio
observables can have even larger PDF uncertainties compared to the corresponding absolute
cross sections.

Actually, these features reflect the fact that the three-parton and two-parton processes that
are used to define the respective cross section ratios have different composition of partonic
initial states (see also contribution by BM in [531]). Indeed, the probability of extra
radiation (which is what makes these observables nontrivial) is correlated, through the
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Table 11. List of a ( )mS Z
2 values obtained from various LHC observables, together with their corresponding uncertainties from various sources

(experimental, PDF eigenvectors/replicas, nonperturbative NP, scale variations) or their quadratic sum. The last column lists the range of a ( )mS Z
2

values probed for various PDF sets. See the corresponding references for any details, in particular for the ensemble of PDF sets considered in each
study.

Observable [Ref.] a ( )mS Z
2 Range PDF variations

R32 [522]  -
+( ) ( )0.111 0.006 exp PDF, NP, scale0.003

0.016 0.109− 0.116
R32 [255]   ( ) ( ) ( )0.1148 0.0014 exp 0.0018 PDF 0.0050 theory 0.1135− 0.1148
3-jet mass [521]    -

+( ) ( ) ( ) ( )0.1171 0.0013 exp 0.0024 PDF 0.0008 NP scale0.0040
0.0069 0.1143− 0.1183

2-jets [523]  ( )0.1159 0.0025 exp, PDF, NP 0.1159− 0.1183
3-jets [523]  ( )0.1161 0.0021 exp, PDF, NP 0.1159− 0.1179
2- and 3-jets [523]  ( )0.1161 0.0021 exp, PDF, NP 0.1161− 0.1188
R32 [523]    -

+( ) ( ) ( ) ( )0.1150 0.0010 exp 0.0013 PDF 0.0015 NP scale0.0000
0.0050 0.1139− 0.1184

TEEC [524]    -
+( ) ( ) ( ) ( )0.1162 0.0011 exp 0.0018 PDF 0.0003 NP scale0.0061

0.0076 0.1151− 0.1177
ATEEC [524]    -

+( ) ( ) ( ) ( )0.1196 0.0013 exp 0.0017 PDF 0.0004 NP scale0.0013
0.0061 0.1185− 0.1206

RΔf [518] -
+

-
+

-
+( ) ( ) ( ) ( )0.1127 exp 0.0006 PDF NP scale0.0018

0.0019
0.0001
0.0003

0.0019
0.0052 0.1127− 0.1156
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relevant matrix elements, to the type of partons in the initial state. Furthermore, both the αS

and PDF sensitivities of the observables are reduced when taking ratios. Both aspects are
relevant for the corresponding evaluations of αS, hence the presence of two competing effects
resulting in residual PDF uncertainties. This residual PDF sensitivity is especially relevant in
phase-space regions where PDFs are not strongly constrained. It can hence be related to the
slopes observed in some comparisons of the energy dependence for the extracted αS values,
with the corresponding RGE predictions (see e.g. [518, 524]).

Up to now, the precision of the αS determinations from three-jet-type observables has been
limited by the NLO QCD theory uncertainty. This limitation will be overcome due to the
NNLO corrections to three-jet production computed recently [532], which will allow to
perform precision QCD studies with these observables. On the timescale of the FCC projects
[139], even more progress on the theoretical predictions for these observables is desirable,
allowing to further enhance the precision of these αS evaluations.

7.7. New results on αS and PDFs: QCD and SMEFT interpretation with inclusive jets at
√s= 13 TeV 99

Jet production in proton-proton collisions is instrumental for the extraction of the strong cou-
pling constant αS and the parton distribution functions (PDFs) of the proton. Furthermore, it is
sensitive to the presence of physics beyond the standard model (BSM). In the following, the
most recent QCD analysis [533] of the inclusive jet cross sections in p−p collisions at the LHC
at a center-of-mass energy of 13 TeV is discussed. The data are collected by the CMS Colla-
boration. The jets are reconstructed using the anti-kT algorithm [534] with distance parameters
R = 0.4 and R = 0.7, and the cross sections are measured double-differentially as a function
of the individual jet pT and the absolute rapidity |y|. The measurements using R = 0.7 are used
in the PDF analysis and correspond to an integrated luminosity of 33.5 fb−1.

In the PDF analysis, the jet cross sections measured for R = 0.7 are used, together with
the HERA combined [215] inclusive charged- and neutral-current deep inelastic scattering
(DIS) cross sections. The fit is performed at NLO and NNLO. In the NLO version of the
analysis, together with DIS and CMS jet measurements, the normalized triple-differential
cross section of top quark-antiquark ( ¯tt ) production measured by the CMS collaboration
[535], are utilized. In the NNLO (NLO) versions of the analysis, the PDFs, the value of
αS(mZ) (as well as the value of the top quark pole mass, mt

pole) are determined simultaneously.
Furthermore, an alternative SMEFT analysis is performed at NLO, where the cross section

for the inclusive jet production is extended to include the effective contributions of 4-quark
contact interactions (CI), exploring three different CI models. In this version of the analysis,
the relevant Wilson coefficient is fitted simultaneously with the PDFs and SM parameters,
avoiding the possibility of absorbing new physics in the PDF fit. No primary assumptions on
the values of the QCD parameters are applied, such that constraints on the SM and BSM
parameters are obtained simultaneously, mitigating their possible bias.

The fixed-order QCD predictions for inclusive jet production in p−p collisions are
available at NLO and NNLO, obtained with NLOJet++ [513, 514] and NNLOJET (rev5918)
[330, 536, 537], respectively, with the NLO calculations implemented in FASTNLO [331]. The
NLO cross-section is improved to NLO+NLL by using corrections computed using the NLL-

JET calculation, provided by the authors of [538], and the MEKS [539] code. Electroweak and
nonperturbative corrections are applied, and their details are given in [533]. The factorization
scale μf and renormalization scale μr are set to the individual jet pT for the inclusive jet cross

99 Authors: K Lipka, T Mäkelä (DESY) on behalf of the CMS Collaboration.
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section, and to the four-momentum transfer Q for the DIS data. In the theory predictions at
NLO for the used ¯tt production measurements, μr and μf are set to half the sum of the
transverse masses of the partons, following [535]. The QCD analysis is performed using the
XFITTER QCD analysis framework [503, 540] with an interface to CIJET [541, 542] for
SMEFT predictions, which are available at NLO.

To illustrate the impact of the 13 TeV data on a global PDF, the profiling procedure
[504, 543, 544] is used. The CT14 [223] sets at NLO or NNLO, where appropriate, are
chosen. Both the ¯tt and jet cross sections are observed to improve the precision of the gluon
PDF significantly, as illustrated in figure 39. Profiling of the non-PDF parameters, such as the
value of a ( )mS Z

2 , mt
pole, and CI Wilson coefficients is also performed and the results are

summarized in [533]. The disadvantage of the profiling approach is that the simultaneous
extraction of the PDFs and non-PDF parameters is currently not available. The full QCD
analyses, implying the simultaneous fit of the PDF and non-PDF parameters, are performed
using SM predictions at NNLO and NLO, or, alternatively, as a SMEFT fit, assuming three
SM+CI models. In the SMEFT analyses, the scale of the BSM interaction Λ is assumed and
the Wilson coefficient c1 is a free parameter of the fit, together with the PDF parameters and
the values of a ( )mS Z

2 and mt
pole. For each of the NLO and NNLO fits, and also for the SMEFT

fit, the investigation of the PDF parameterizations is performed independently. The SM fits at
NLO and NNLO result in slightly different parameterizations, due to inclusion of the ¯tt
measurements in the NLO analysis. The SM and SMEFT fits at NLO result in the same
solution for the preferred parameterizations.

The uncertainties are estimated following the HERAPDF approach [215], which accounts
for the fit, parameterizations and model uncertainties. The Hessian fit uncertainty emerges
from the uncertainties in the experimental measurements and is estimated by Hessian method
using the tolerance criterion of Δχ2 = 1. The uncertainty is also estimated using the Monte
Carlo replica method, and the results agree with those obtained by using the Hessian method.
The quality of the fit is estimated by χ2 divided by the number of degrees of freedom of

Figure 39. Fractional uncertainties in the gluon distribution, shown as functions of x for
the scale μf set to the top quark mass. The profiling is performed at NLO with CT14nlo
PDF (left) and at NNLO with CT14nnlo, by using the CMS inclusive jet cross section
at =s 13 TeV. The original uncertainty (red) and the profiled result (blue)
uncertainty are shown. The figure is taken from [533].
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1321/1118, with somewhat large value driven by the fit to the inclusive DIS data, investi-
gated in detail in [215]. The model uncertainties are obtained by varying the assumed non-
PDF parameter values such as quark masses, the value of the starting evolution scale,
strangeness fraction and the minimum value of Q2 of the used DIS data. The theory uncer-
tainties due to missing higher order contributions are obtained by an independent variation of
the QCD scales up and down by a factor of two (avoiding cases μf/μf = 4, 1/4). For each of
the independent scale choices, the QCD analysis is performed and the difference of the
resulting parameters to those obtained for the central scale choice is taken as an uncertainty,
which is treated as a model uncertainty. The parameterizations uncertainty arises from adding
and removing additional parameters in the PDF parameterizations, one at a time, and con-
structing a maximum-difference envelope. The total uncertainty in the PDFs is obtained by
adding the fit and the model uncertainties in quadrature, while the parameterizations uncer-
tainty is added linearly. To illustrate the improvement in the PDF uncertainty by adding the
CMS jet measurements at 13 TeV, the NNLO fit is also performed using only DIS data. A
significant improvement in the uncertainty, in particular for the gluon distribution is observed
(figure 40). In the same figure, also individual contributions of model, parameterizations and
fit uncertainties are shown. In the SM fit at NNLO, the strong coupling constant a ( )mS Z

2 is
obtained simultaneously with the PDFs and results in

a =     ( )( ) ( ) ( ) ( ) ( ) 7.14m 0.1170 0.0014 fit 0.0007 model 0.0008 scale 0.0001 param ,S Z
2

which agrees with the previous extractions of the strong coupling constant at NNLO at hadron
colliders [545, 546], of which it has best precision.

In the SMEFT analysis, the SM Lagrangian is extended with effective operators of
dimension 6, introducing vertices with 4 quark legs. The considered operators are colour-
singlets and lead to purely left-handed, vector-like and axial vector-like CI models, depending
on how the quarks’ handedness may change in the interaction. The operators’ Wilson
coefficients are fitted simultaneously with the PDFs, a ( )mS Z

2 , and mt
pole at NLO. Independent

Figure 40. Total (left) and individual (right) fractional uncertainties in the gluon
distributions resulting form the NNLO fit, shown as functions of x at the scale μf of the
top quark mass. The filled (hatched) band represents the results of the fit using HERA
DIS and the CMS inclusive jet cross section together (using the HERA DIS data only).
The line corresponds to the ratio of the central PDF values of the two variants of the fit.
The figure is taken from [533].
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of the value of Λ, the strong coupling constant and the top quark mass in these SMEFT fits
result to a =    ( ) ( ) ( ) ( ) ( )m 0.1187 0.0016 0.0005 0.0023 0.0018S Z

2
fit model scale param. , and

=    ( ) ( ) ( ) ( )m 170.4 0.6 0.1 0.1 0.2t
pole

fit model scale param. GeV. The Wilson coefficients
are obtained for different assumed values of Λ. For illustration, the values of c1 are shown for
three investigated CI models in figure 41 for Λ = 50 TeV.

To compare to a conventional search for CI, the Wilson coefficients obtained in the
SMEFT analysis are translated into unbiased 95% confidence level exclusion limits on Λ with
c1 = − 1, resulting in the limits of 24 TeV for left-handed, 32 TeV for vector-like, and
31 TeV for axial vector-like CI. The present analysis provides for the first time such limits
using hadron collider data while following an unbiased search strategy. To compare the PDFs
and QCD parameters obtained in the SMEFT fit to respective SM results, the NLO analysis is
performed considering only the standard model. The resulting QCD parameters obtained in
both variants of the fit, SM and SMEFT, agree well, however the SM results have smaller
parametrization uncertainty. The fit quality of both fits expressed in χ2 divided by number of
degrees of freedom results in 1411/1141 for the SM and 1401/1140 for SMEFT fits,
respectively. The PDFs resulting from the SMEFT fit are shown in figure 42 in comparison to
the results of the SM fit. Both results agree within the fit uncertainties.

For the future developments, the authors of this measurement and interpretation would
appreciate the public availability of the fast-grid techniques for the NNLO prediction of the
inclusive jet cross section. Furthermore, the used ¯tt data are interpreted at NLO, since the mea-
surements are split into categories according to the presence of an additional jet. In spite of the
strong sensitivity of these measurements to the top quark mass, strong coupling constant and to the
gluon distribution, these could not be used in the NNLO analysis. A stronger effort in development
of the theory calculation for the ¯tt production associated with a jet is highly desirable.

The performed SMEFT analysis is only a step towards the global SM+BSM inter-
pretation of the LHC measurements and implies only colour-singlet CI contributions. The
availability of colour-octet contributions and also of the corresponding EFT corrections for
the ¯tt cross section predictions at NLO, as well as to the other processes, probing the
operators of similar structure, would be necessary. Finally, bringing the EFT corrections to
the QCD processes to at least NNLO accuracy would be the ultimate goal for the inter-
pretation of the HL-LHC measurements.

Figure 41. The Wilson coefficients c1 obtained in the SMEFT analysis at NLO, divided
by Λ2, for Λ = 50 TeV. The solid (dashed) lines represent the total uncertainty at 68
(95)% confidence level (CL). The inner (outer) error bars show the fit (total)
uncertainty at 68% CL.
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7.8. The strong coupling constant and quark masses100

The determination of the strong coupling constant is strongly tied to the determination of
other fundamental parameters of the SM and, in particular, with the quark masses in the QCD
Lagrangian. Precise determinations of quark masses typically relies on a comparison of QCD
predictions beyond leading-order accuracy with the measurement of experimental obser-
vables. These measurements are often sensitive to both the strong coupling constant and the
mass value, and both parameters should ideally be treated in a simultaneous fit.

Like the strong coupling constant, quark masses are renormalized, scheme-dependent
quantities. In the MS scheme the value of the quark mass depends at a given order in
perturbation theory on the dimensionful renormalization scale μ. The evolution with this
scale, or ‘running’ of the mass, forms a testable prediction of the theory. QCD yields a precise
prescription for the scale evolution: given a value for a quark mass at a reference scale, its

Figure 42. The u-valence (upper left), d-valence (upper right), gluon (lower left), and
sea quark (lower right) distributions, shown as functions of x resulting from the fits
with and without the CI terms. The SMEFT fit is performed with the left-handed CI
model with Λ = 10 TeV. The figure is taken from [533].

100 Authors: M Vos (IFIC, València).
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value at any other scale can be determined using the renormalization group equation (RGE).
RGE calculations for the the running quark masses have by now reached the 5-loop a( ) S

5

level [547–549], and software packages such as RunDec [550] and REvolver [551] provide
access to state-of-the-art renormalization evolution and scheme conversions.

A large number of measurements over a broad range of energies characterize the evolution
of the strong coupling αS(μ) [251]. Experimental tests of the running of quark masses have
been performed for the charm [552], bottom [553–560] and top [561] quarks.

Two recent studies revisit the running of the bottom quark mass using Higgs decay
measurements at the LHC [563] and Z-decay rates to bottom quarks at LEP [564]. The
measurement of mb(mH) reaches a competitive precision of 14% using LHC Run-2 mea-
surements. The precision could improve to 2% after the complete LHC programme, including
the high-luminosity phase. The method has the potential for a subpercent-level determination
at a future electron–positron ‘Higgs factory’. The three-jet rates in a high-luminosity ‘GigaZ/
TeraZ’ Z-pole run at future ‘Higgs/EW/top factory’ electron–positron collider can improve
the measurement of mb(mZ) by a factor of two [565]. The determination of mb(mZ) from the
Z ¯bb decay rate is currently not competitive, but could reach an interesting precision (5%)
with a new Z-pole run.

Together, these measurements take the test of the scale evolution of quark masses to a new
level of precision [562]. Figure 43 from [562] compares the projections for mb(mZ) and
mb(mH) to the current averages and the predicted evolution of the mb(mb) world average. The
precision of mb(mH) is expected to increase rapidly in Run-3 of the LHC and the HL-LHC

Figure 43. The scale evolution of the bottom quark MS mass. The markers are
projections for mb(mZ) from three-jet rates at the Z-pole and for mb(mH) from Higgs
boson branching fractions. The prediction of the evolution of the mass is calculated at
five-loop precision with REvolver [551]. The grey error band includes the effect of
missing higher orders and the projected parametric uncertainties from mb(mb) and
a ( )mS Z

2 . [Figure from [562]].
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programme. A new electron–positron collider operated at the Z-pole and the optimal Higgs-
strahlung cross section (∼240–250 GeV) can improve mb(mZ) and mb(mH) further and take
tests of the ‘running’ of the bottom quark mass into the precision regime.

The scale evolution of the strong coupling and the quark masses is sensitive to the
presence of unknown, massive states that carry colour charge [10, 566]. A combined analysis
of the scale evolution of the bottom quark mass and the strong coupling constant is required to
consistently treat the impact of the new state on both quantities. A joint fit could possibly
include also the charm and top quark masses, that can also be improved with an electron–
positron collider [567].

With data collected in the next decades at the HL-LHC and a Higgs factory operated at
=s mZ and ~s 250 GeV, the precision of high-scale determinations of the bottom quark

mass is expected to increase very significantly, with mb(mH) reaching subpercent precision. A
joint analysis of the scale evolution of the strong coupling and the quark masses then provides
a powerful and model-independent handle on new coloured states in the mass range between
mb and mH.

8. αS ðm2
ZÞ from quarkonium

8.1. αS ðm2
ZÞ from relativistic quarkonium sum rules101

One of the classical observables in QCD is the inclusive cross section for e+e−→ hadrons,
which is more conveniently cast in terms of the so-called R ratio defined as
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where α is the fine fine-structure constant, s the center-of-mass energy, and the right-hand
side is exact if s m m+ - + -( )se e is calculated at tree level for massless muons. Here we are
interested in the case of heavy quarks, q = c, b.

Integrated moments of ( )¯R sqq are particularly suitable for phenomenological studies since,
as opposed to local measurements, they have significantly smaller errors and suffer less from
residual duality violations, allowing for a direct comparison with computations carried out
with partonic degrees of freedom. Furthermore, they can be computed accurately in pertur-
bation theory and receive small nonperturbative corrections, written as an expansion of local
operators with increasing dimension. In particular, the inverse moments of ( )¯R sqq , that we
denote ( )Mq

n , lead to the following sum rules [99, 568]

ò
p

= = P
¥

+ =
( )

!
( ) ( )( )

¯M
s

s
R s

Q

n s
s

d 12 d

d
. 8.2q

n

s n qq
c

n

n q s1

2 2

0
0

On the left-hand side, obtained from experimental data, s0 must be below the first q̄q narrow
resonance with the same quantum numbers as the photon. On the right-hand side, theoretical
moments can be related to derivatives of the heavy-quark vector correlator

ò- P = -mn m n m n( ) ( ) ⟨ ∣ ( ) ( )∣ ⟩ ( )·g s p p s i x e T j x jd 0 0 0 , 8.3q
i p x

q q

evaluated at s = 0 [ g=m m( ) ¯ ( ) ( )j x q x q xc ]. The moments are dominated by a short-distance
scale given by ∼mq/n>ΛQCD (where mq is the quark mass), so restricting n to small values
they can be computed in fixed-order QCD and their expansion is known up to a( ) S

3 for n� 4
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[51, 53, 569–577]. Due to the strong sensitivity of ( )Mq
n to the heavy quark mass, which

appears as a prefactor m[ ( )]m1 2 q m
n2 in their perturbative expansion, these sum rules have

been used for many years to extract mc and mb, the masses of the charm and bottom quarks,
with very good precision [48, 578–583] ( m( )mq m denotes the MS quark mass at scale μm).

Here we summarize the main results of [49, 584], where dimensionless ratios of roots of
moments ( )Mq

n were considered. Since the ratios of charm-quark moments lead to a more
precise determination of the strong coupling (mainly because experimental uncertainties are
smaller) we restrict the presentation to the charm-quark moment ratios defined as

º
+

+

( )
( )

( )
( )

( )R
M

M
. 8.4c

V n c
n

c
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,
1

n

n
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1

Ratios of this type were first introduced for the analysis of lattice data for the pseudoscalar
correlator [55, 56] (see also the contribution of Petreczky and Weber to this volume,
section 2.3). In the ratios Rc

V n, , the quark-mass dependence from the pre-factor of ( )Mc
n exactly

cancels. These dimensionless ratios are suitable for precise αS extractions for the following
reasons (some of them already stated):

1. They have a very small residual dependence on the quark mass,
2. are known up to a( ) S

3 for 1� n� 3,
3. contributions from nonperturbative physics are fairly small,
4. they can be determined experimentally from narrow resonance parameters and

continuous ( )¯R sqq data.

The QCD fixed-order perturbative expansion of the ratios Rc
V n, reads
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where - º -[ ] ( )i i1 Max 1, 0 and we use Nf = 4 (the Nf dependence in αS and the
perturbative coefficients will be omitted). The running coupling αS(μα) and quark mass

m( )mc m are expressed in the MS scheme and evaluated at the renormalization scales μα and
μm, respectively. We do not assume these scales to be the same, as they account for different
physics. This leads to a more conservative theory error estimate as argued in [48, 583]. We do
avoid, however, large logarithms when varying the scales μα and μm, as discussed below.
Note that the leading dependence of the ratios Rc

V n, on the quark mass is only logarithmic and
aS

2 suppressed. Concretely, for Rc
V ,2 at N3LO one finds

= + + +

- + - -
a

a a

[ ( )
( ) ] ( )

R a L a

L L L a

1.0449 1 0.57448 0.32576 2.3937

2.1093 4.7873 6.4009 9.9736 , 8.6
c
V

s s

m s

,2 2

2 3

with as = αS(μα)/π, m m=a a[ ( )]L mln c m and m m= [ ( )]L mlnm m c m . The total αS

corrections are about 12.5% for Rc
V ,1, 7.2% for Rc

V ,2, and 5.2% for Rc
V ,3, which makes

these observables rather sensitive to the strong coupling. The dominant nonperturbative
correction to these observables stems from the gluon-condensate contribution and is known to
NLO. We include it in our analysis, but the numerical impact is small.

We summarize now the determination of the moments Rc
V n, from experimental data, which

consists of three parts: the contribution from the narrow resonances (J/ψ and y¢), a
contribution from threshold data taken from [585–599], and the contribution for

>s 10.538 GeV, where there are no measurements anymore, modelled with perturbative
QCD (the ‘contiuum contribution’). Since charm threshold data is inclusive in all flavours,

J. Phys. G: Nucl. Part. Phys. 51 (2024) 090501 Major Report

125



one must also perform the subtraction of the u, d, s background and of the secondary charm
production which is not accounted for in theoretical computations. (Small singlet contribu-
tions can be neglected [579]). It is important to keep the value of αS used in the continuum
contribution and the subtraction of the u, d, s background as a free parameter, otherwise the
extraction of the coupling would be biased. For values not too far from the αS world average,
the dependence of Rc

V n, on the strong coupling is linear to an excellent approximation.
Parametrizing the results through aD º -a

= ( )( ) m 0.1181S
N

Z
5f we find

= - D 

= - D 

= - D 

a

a

a

( )
( )
( ) ( )

R

R

R

1.770 0.705 0.017,

1.1173 0.1330 0.0022,

1.03535 0.04376 0.00084. 8.7

c
V

c
V

c
V

,1

,2

,3

The above errors are dominated by threshold data and are quite small. This is in part due to
positive correlations between the moments ( )mc

n which produces a partial cancellation of the
errors in the ratios.

We extract αS equating the expansions of the type of equation (8.6) with the respective
experimental counterparts in equation (8.7) and solving for αS numerically. It is mandatory to
carefully and conservatively estimate the theoretical uncertainties arising from the truncation
of perturbation theory. In the case of the determination of quark masses, the work of [48, 583]
shows that it is important to vary the two renormalization scales μα and μm independently.
We therefore vary them in the interval m ma m , 4 GeVc m applying the constraint
1/ξ� (μα/μm)� ξ and using ξ = 2 for our final results. A much less conservative choice,
often adopted in related works in the literature, which leads to significantly smaller uncer-
tainties, is to set μα = μm, or equivalently ξ = 1. We obtain the uncertainties caused by
renormalization scale variation from the spread of values of αS in the μm× μα plane, using a
grid with 3025 points.

First, we verify the convergence of the extraction of αS order-by-order in perturbation
theory, considering solely the perturbative uncertainty—estimated through the scale variation
described above. In figure 44 (left), we show that the results display a nice convergence,
which indicates that the theory error bars from the truncation of perturbation theory are not

Figure 44. Left: results for αS obtained from the analysis of Rc
V n, with n = 1, 2, and 3,

order-by-order in perturbation theory. Only truncation errors are shown. Right: results
for αS obtained from Rc

V ,2 in the μm × μα plane. The shaded region in gray is excluded
from the analysis with ξ = 2 (see text).
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underestimated in our analysis. Further light on the perturbative uncertainty can be shed from
two-dimensional αS contour plots in the μm× μα plane, as shown in figure 44 (right) for Rc

V ,2.
One sees that setting μα = μm (corresponding to ξ = 1) the error would be underestimated.
Numerically, this choice leads to αS errors obtained from the analysis of Rc

V n, that are smaller
by factors of 3 (n = 1), 2 (n = 2), and 1.5 (n = 1) than those obtained with ξ = 2.

We can then extract the final value of αS from our analysis of the charmonium ratios Rc
V n, .

Apart from the truncation uncertainty (labelled ‘pt’), discussed in detail above, we include in
the final value the experimental error (‘exp’), the incertitude from the residual charm mass
dependence (which happens to be negligible), and the nonperturbative error (‘np’, estimated
from twice the gluon-condensate contribution). Ratios of moments with lower values of n
lead to smaller errors in αS from the truncation of perturbation theory but, on the other hand,
have larger experimental uncertainties. It turns out that the optimal determination is obtained
from the analysis of Rc

V ,2, which gives, after evolving to the Z boson mass scale,

a = == ( ) ( ) ( ) ( ) ( ) [ ]
( )

( ) m 0.1168 15 9 7 0.1168 19 charm vector current .

8.8
S
N

Z
5

pt exp np
f

This result is fully compatible with the world average [251]. We remark that by setting μα =
μm the total uncertainty would be reduced to 0.0013, which shows that our error estimate is
indeed conservative.

We have applied our method to bottom ratios Rb
V n, as well, but due to large experimental

uncertainties the extracted value for the strong coupling is not competitive. Furthermore, we
have reanalyzed lattice data on the moments of the pseudoscalar correlator. As opposed to the
vector current, the pseudoscalar 0th moment mc

P,0, which is scaleless and not sensitive to the
charm quark mass, is an observable and therefore a direct comparison to perturbative com-
putations is possible. From higher moments, one can construct ratios Rc

P n, in the same way as
displayed in equation (8.4). For either the 0th moment or the ratios, the exact same program
for estimating perturbative errors can be applied, and we find uncertainties that are, in general,
larger than what has been quoted in the original lattice articles. In particular, we find that the
result in equation (8.8) is slightly more accurate than the extractions that we obtain with our
method using lattice results quoted in [16, 54–56, 58].

A slightly more competitive determination can be obtained from a fit to Rc
V ,2 and mc

P,0

(which makes use of the fact that both theoretical and experimental uncertainties for those two
observables are uncorrelated), which renders

a =  += ( ) ( ) [ ] ( )( ) m 0.1170 0.0014 lattice continuum . 8.9S
N

Z
5

total
f

This result can be regarded as a hybrid lattice-continuum determination.
Our ongoing efforts to improve these αS determinations include a more refined treatment

of threshold data using an iterative reclustering procedure based on linear splines, in which
the new BES-III data [600] on the R-ratio below the charm production threshold has been
included. Recent results for the large-order behavior of the perturbative series in the large-β0
limit of QCD can also guide the design of new moments with reduced perturbative uncer-
tainties, see [601]. One way of making the bottom sum rules more competitive is taking n
large, such that experimental errors virtually vanish. This requires using nonrelativistic QCD
(NRQCD) in the theoretical expressions, but the necessary expressions are available since
some time already. Finally, as mentioned in section 9.2 on bottomonium, the method
explained in the preceding paragraphs should apply equally well to the ratios of bottomonium
bound-state masses, which again exhibit experimental errors negligibly small.
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8.2. αS ðm2
ZÞ determination from bottomonium spectrum102

Early attempts to determine αS from quarkonia are based on radiative ϒ(1S) decays. The work
of [602] uses the ratio of the radiative branching ratio over the nonradiative one Γ(ϒ
(1S)→ Xγ)/Γ(ϒ(1S)→ X), with X the inclusive set of possible final-state hadrons. The
relevant computations can be carried out with partonic degrees of freedom in the final state,
and taking into account the charge conjugation of ϒ(1S) it reduces to Γ(ϒ(1S)→ γgg)/Γ(ϒ
(1S)→ gg), where interesting cancellations take place. Hadronic matrix elements also play a
role, and need to be computed in the lattice or in the continuum. The theoretical prediction
was compared to CLEO data [603] and the value a ==

-
+( )( ) m 0.119S

N 5
Z 0.005

0.006f was found.
In [604], charmonium and bottomonium spectra were studied within NRQCD, employing the

short-distance low-scale scheme for the heavy quark mass known as MSR [605, 606] to remove
the renormalon inherited from the static potential. Since the bottom and charm quarks are no longer
dynamical degrees of freedom they have to be integrated out in the MSR mass as well: this
prevents the appearance of large logarithms and the power counting of the theory is not upset. It
was shown that, for a conservative estimate of perturbative uncertainties, the renormalization scales
of αS and the MSR mass should be varied independently in a given range determined by the
principal quantum number. Furthermore, for a global analysis the scales corresponding to the
different excited states should be correlated. Even though the main aim of the article was to
determine mc and mb from global fits (data for quarkonium masses was taken from the PDG, see
[251] for updated results), the possibility of obtaining αS from a 2-parameter fit to bottomonium
masses was also explored. Since experimental errors on ¯bb bound states are tiny, their impact in αS

is immaterial. However, the very strong correlation between mb and αS translates into a sizable
perturbative uncertainty: a = = ( )( ) m 0.1178 0.0051S

N 5
Z

f , very similar to that quoted in [602].
A related study [607] obtains the strong coupling from a renormalon-free combination of

charm and bottom bound-state masses, including ¯bc, namely - -h hm m m2 2Bc b c
, which is

also less sensitive to ultrasoft effects. Using the experimental values for the charm and bottom
masses as obtained from fits to the masses of ηc and ηb, respectively, the value
a = = ( )( ) m 0.1195 0.0053S

N 5
Z

f was obtained, with experimental values for the quarkonium
masses taken from the PDG. The uncertainty is very similar to that of [604], which opens up
the possibility of improving the determination through global fits (determining mc, mb and αS

simultaneously) to ¯bb, ¯cc and ¯bc bound states. Another promising way of obtaining a precise
value for the strong coupling is to adapt the strategy of [49], see also section 9.1, to botto-
monium. Taking the ratio of bound-states’ masses with different quantum numbers would
cancel most of the heavy-quark mass dependence, along with the leading renormalon: the
ratios are dimensionless and almost exclusively sensitive to αS. Results on this direction will
be reported soon.
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9. αS ðm2
ZÞ world average103

9.1. Preliminary considerations

We summarize here the current procedure used in the Particle Data Group (PDG) [251] to
obtain the world average value of a ( )mS Z

2 and its uncertainty, and we discuss future prospects
for its improvement.

Any physics observables where the strong interaction is involved (directly, or through loop
corrections) depend on the value of the strong coupling constant. This implies that a number
of different observables can be used to determine the QCD coupling constant, provided that a
suitable pQCD theoretical prediction is available for that observable. The following con-
siderations are taken into account to assess if a particular observable is suitable for use in the
determination of the strong coupling constant:

• The observable’s sensitivity to αS as compared to the experimental precision. For
example, for the e+e− cross section to hadrons (e.g. the R ratio), QCD effects are only a
small correction, since the perturbative series starts at order aS

0, but the experimental
precision is high. Three-jet production, or event shapes, in e+e− annihilation are directly
sensitive to αS since they start at order αS. Four- and five-jet cross-sections start at aS

2 and
aS

3 respectively, and hence are very sensitive to αS. However, the precision of the
measurements deteriorates as the number of jets involved increases.

• The accuracy of the perturbative prediction, or equivalently of the relation between αS

and the value of the observable. The minimal requirement is generally considered to be an
NLO prediction. The PDG imposes now that at least NNLO-accurate predictions be
available. In certain cases where phase space restrictions require it, fixed-order
predictions are supplemented with resummation. An improved perturbative accuracy is
necessary to guarantee that the theoretical uncertainty is assessed in a robust way.

• The size of nonperturbative effects. Sufficiently inclusive quantities, like the e+e− cross
section to hadrons, have small nonperturbative contributions, power corrections of order
∼Λ4/Q4. Other quantities, such as event-shape distributions, typically have contributions
∼Λ/Q. All other aspects being equivalent, observables with smaller nonperturbative
corrections are preferable.

• The scale at which the measurement is performed. An uncertainty δ on a measurement of
αS(Q

2), at a scale Q, translates to an uncertainty d a a d¢ = ( ( ) ( )) ·m QS S
2

Z
2 2 2 on a ( )mS Z

2 .
For example, this enhances the already important impact of precise low-Q measurements,
such as from τ decays, in combinations performed at the mZ scale.

The PDG determination of αS first separates measurements into a number of different
categories, then calculates an average for each category. Such per-category subaverages are
then used as inputs to the world average. The PDG procedure requires four specifications of:

(1) the conditions that a determination of αS should fulfill in order be included in the
average;

103 Authors: J Huston (MSU, East Lansing), K Rabbertz (KIT, Karlsruhe), G Zanderighi (MPP, Munich).

J. Phys. G: Nucl. Part. Phys. 51 (2024) 090501 Major Report

129



(2) the separations of the different extractions of a ( )mS Z
2 into the (approximately) independent

categories;
(3) the procedure within each category to compute the average and its uncertainty;
(4) the manner in which the different subaverages and their uncertainties are combined to

determine the final value of a ( )mS Z
2 and its uncertainty.

9.2. Details of the PDG averaging procedure

In the following, we summarize the procedure adopted in the last edition of the PDG [251].

9.2.1. Criteria for determinations to be included in the world average. In the PDG, the
selection of results from which to determine the world average value of a ( )mS Z

2 is restricted to
those that are

(1) accompanied by reliable estimates of all experimental and theoretical uncertainties;
(2) based on the most complete perturbative QCD predictions of at least NNLO accuracy;
(3) published in a peer-reviewed journal at the time of writing of the PDG report.

Note that the second condition to some extent follows from the first. In fact, determinations of
the strong coupling from observables in e+e− involving e.g. five or more jets are very
sensitive to αS, and could provide additional constraints. However, these observables are
currently described only at leading order (LO) or next-to-leading order (NLO), and the
determination of the theoretical uncertainty is thus considered not sufficiently robust. It is also
important to note that some determinations are included in the PDG, but the uncertainty
quoted in the relevant publications is increased by the PDG authors to fulfil the first condition.
Similarly, in some cases the central value used in the PDG differs from the one quoted in
some publications, but can be extracted from the analysis performed in that work.

9.2.2. Categories of observables. All observables used in the determination of a ( )mS Z
2 in

the PDG exercise are classified in the following categories (table 12 and figure 45):

1. ‘Hadronic τ decays and low Q2 continuum’ (τ decays and low Q2):
Calculations for τ decays are available at N3LO; there are different approaches to treat the
perturbative and nonperturbative contributions, which result in significant differences; the
value of αS is determined at the τ mass;

Table 12. PDG average of the categories of observables [March’22 update of the
PDG’21 results]. These are the final input to the world average of a ( )mS Z

2 .

category a ( )mS Z
2 relative a ( )mS Z

2 uncertainty

τ decays and low Q2 0.1178± 0.0019 1.6%
QQ bound states 0.1181± 0.0037 3.1%
PDF fits 0.1162± 0.0020 1.7%
e+e− jets and shapes 0.1171± 0.0031 2.6%
electroweak 0.1208± 0.0028 2.3%
hadron colliders 0.1165± 0.0028 2.4%
lattice 0.1182± 0.0008 0.7%
world average (without lattice) 0.1176± 0.0010 0.9%
world average (with lattice) 0.1179± 0.0009 0.8%
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Figure 45. Summary of determinations of a ( )mS Z
2 from seven subfields. The yellow

(light shaded) bands and dotted lines indicate the pre-average values of each subfield.
The dashed line and blue (dark shaded) band represent the final a ( )mS Z

2 world average
[March’22 update of the PDG’21 results [251]].
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2. ‘Heavy quarkonia decays and masses’ (QQ bound states):
Calculations are available at NNLO and N3LO;

3. ‘PDF fits’ (PDF fits)
Taken both from global PDF fits and analyses of singlet and non-singlet structure
functions; for theory uncertainty, half of the difference between results obtained with
NNLO and NLO is added in quadrature;

4. ‘Hadronic final states of e+e− annihilations’ (e+e− jets and event shapes):
Taken from measurements at PETRA and LEP; nonperturbative corrections are important
and can be estimated either via Monte Carlo simulation or analytic modeling;

5. ‘Observables from hadron-induced collisions’ (hadron colliders):
NNLO calculations for ¯tt , electroweak bosons, and jet production at both the LHC and
HERA, and Z+ jet production at the LHC have allowed measurements for these
processes to be used in αS determinations. There is still an ongoing discussion of whether
a simultaneous PDF fit has to be carried out to avoid any significant bias;

6. ‘Electroweak precision fit’ (electroweak):
αS determinations are averaged from electroweak fits to data from the Tevatron, LHC,
LEP and the SLC; such fits rely on the strict validity of the Standard Model; and

7. ‘Lattice’:
The average determined by the FLAG group in 2019 [12] from an input of eight
determinations was used; the 2021 result [11] came out too late to be included, but the
2021 αS average is very consistent with that of 2019.

Detailed information about which observables are included in the different categories can be
found in [251].

9.2.3. Average and uncertainty in each category. In order to calculate the world average
value of a ( )mS Z

2 , a preliminary step of pre-averaging results within the each category listed in
section 9.2.2 is carried out. For each subfield, except for the ‘Lattice’ category, the
unweighted average of all selected results is taken as the pre-average value of a ( )mS Z

2 , and
the unweighted average of the quoted uncertainties is assigned to be the respective overall
error of this pre-average. An unweighted average is used to avoid the situation in which
individual measurements, which may be in tension with other measurements and may have
underestimated uncertainties, can considerably affect the determination of the strong coupling
in a given category. As an example, the determination of a ( )mS Z

2 from e+e− jets and shapes
currently averages ten determinations and arrives at a = ( )m 0.1171 0.0031S Z

2 . Since two
determinations [395, 396], both based on a similar theoretical framework, arrive at a small
value of a ( )mS Z

2 and have a very small uncertainty, if one were to perform a weighted average
one would obtain an a ( )mS Z

2 from e+e− jets and shapes of a = ( )m 0.1155 0.0006S Z
2 ,

which is not compatible with the current world average. This would, in fact, considerably
change the world average because of the very small uncertainties. The current procedure is
instead robust against a ( )mS Z

2 determinations that are outliers with small uncertainties as
compared to the other determinations in the same category. For the ‘Lattice QCD’ (lattice)
subfield, we do not perform a pre-averaging step. Instead, we adopt the FLAG2019 average
value and uncertainty for this subfield [12]. FLAG2019 also requires strict conditions on its
own for a determination to be included in their average, which are in line with those used in
the PDG. The results of the averages of the categories are given in table 12. Following the
αS(2022) workshop, the subfields of ‘τ decays and low Q2

’ and ‘QQ bound states’ have been
updated to account for the latest studies of [121] and [49, 584], respectively. The world
average value does not change.
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From the table, it is clear that determinations from different categories are compatible
with each other and accordingly can be combined to give rise to a final average.

9.2.4. Final average. Since the six subfields (excluding lattice) are largely independent of
each other, the PDG determines a nonlattice world average value using a standard ‘χ2

averaging’ method. This result in the final average of the six categories of

a = ( ) ( ) ( )m 0.1175 0.0010, without lattice , 9.1S Z
2

which is fully compatible with the lattice determination (figure 45). In a last step the PDG
performs an unweighted average of the values and uncertainties of a ( )mS Z

2 from the nonlattice
result and the lattice result presented in the FLAG2019 report [12], which results in the final
average of

a = ( ) ( ) ( )m 0.1179 0.0009, final average . 9.2S Z
2

Performing a weighted average of all seven categories would instead give rise to
a = ( )m 0.1180 0.0006S Z

2 . The PDG uncertainty is instead more conservative and about
50% larger.

9.3. Outlook

While the strong coupling remains the least well-known gauge coupling, with an uncertainty of
about 1%, it is remarkable that the determinations from all categories agree remarkably well
with each other, all within one standard deviation. Future improvements will be driven by
categories which have smallest uncertainties, currently lattice and τ decays and low Q2. The
uncertainty quoted in the latter category includes the difference in the extractions that are
obtained using contour improved perturbation theory (CIPT) and fixed order perturbation theory
(FOPT). Recent arguments suggest that FOPT are to be preferred, see also dedicated discussions
on this point in this white paper. If confirmed, this would slightly shift the value of a ( )mS Z

2 in
this category to lower values, and would allow one to quote a reduced theoretical uncertainty
since this additional source of uncertainty would be completely removed. Further improvements
could come from a better understanding of nonperturbative effects. Some progress is also likely
to come in the category e+e− jets and shapes where the calculation of power corrections in the
3-jet region [412, 413] could have a sizeable impact, and improve fits of the coupling from
event shapes. In fact, the region used in the fits are dominated by events with an additional hard
emission, therefore the applicability of nonperturbative power corrections computed in the two-
jet limit has been questioned and a treatment of these corrections in the three-jet region is
certainly more appropriate. The impact of this on a ( )mS Z

2 in this category has still to be
assessed. For the hadron collider category, it is an open discussion how to deal with correlations
between PDF parameters and a ( )mS Z

2 in the cases where a full PDF+ αS fit is not performed
simultaneously. In view of many more NNLO results to come we can expect some advances
here. Particularly, NNLO for 3-jet production will enable to perform fits of a ( )mS Z

2 from ratios
with at least partial cancellation of some uncertainties. Some doubts were raised whether this
reduction in uncertainty also holds for the PDF dependence of such ratio predictions. Moreover,
for predictions of ratios of cross sections, the central scale definition in numerator and
denominator will require more elucidation. Finally, it is important to mention that the last years
have seen remarkable advances in the determination of a ( )mS Z

2 from lattice gauge theory, also
thanks to the FLAG effort which imposes strict quality criteria for lattice determinations to be
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included in the FLAG average. This is now the single most precise result of all categories
included in the PDG. The challenge is on to still beat it.

10. Summary

In this summary section we provide first an outline of the main points that were the subject of
discussions during the αS(2022) workshop, and secondly we recapitulate the current a ( )mS Z

2

uncertainties of each extraction method as well as the expected experimental and theoretical
developments that will help reduce those in the coming years (and, in some cases, in the
longer term of the next generation of collider facilities).

10.1. Summary of the discussions

We provide here a brief summary of the most relevant contributions of the live discussions of
the αS(2022) workshop meeting preparatory for this document.

Lattice: the FLAG collaboration uses a set of criteria accepted in the lattice community to
classify the analyses. Only analyses ranking high in all criteria are used to derive the final
FLAG determination of the strong coupling. This procedure is very similar to that adopted by
the PDG. It was suggested that the FLAG and PDG procedures should be harmonized as
much as possible. It was also pointed out that there were updates to individual analyses since
the current FLAG 2021 report [11] was published.

τ decays: the discussions covered broadly two areas. The first area concerned the treatment
of duality violations (DV) (incomplete asymptotic OPE) terms. One defines moments of the
tau spectral function to control and suppress DV terms. However, stronger DV term sup-
pression is correlated with more contributions of gluon condensates leading to a truncated
OPE. This was referred to as a kind of ‘seesaw mechanism’ by S Peris.

The presentation by A Hoang (section 3.4) providing an explanation in terms of renor-
malon effects of the FOPT versus CIPT differences in the pQCD predictions, generated
considerable interest. The analysis is not yet complete, and further important information
would be the value of the gluon condensate normalization. New data would not help directly.
The renormalon effects could possibly be studied on the lattice, but this would need a
dedicated effort. One would need input from hadronic τ decay theory to derive observables to
be measured on the lattice.

The second topic of discussion involved uncertainties connected with nonperturbative
contributions to predictions for the τ hadronic width that are not directly related to the FOPT
versus CIPT discussion. More and better spectral function data from τ decays at B-factories or
at new e+e− colliders, and from e+e− annihilation to hadrons at low energies could help to
understand and constrain the DV and/or OPE truncation effects.

Global PDF analyses: one focus of the discussion in this session was the treatment of
theoretical (missing higher-order) uncertainties in the comparison of the predictions with data.
The global fit analyses use ( ) 1000 data points and thus classical χ2-probabilities are hard to
interpret, and estimation of parameter uncertainties is difficult. Some authors recommend
including the prediction uncertainties in the fits. A critique to this procedure is that this
influences and possibly biases the fitted parameter values, including αS.

The ATLAS analysis of PDFs (talk by F Giuli, section 7.4) emphasized the importance of
a detailed analysis of systematic uncertainties and their correlations in the p−p collision data
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used in the fit. This was welcomed by global PDF fit groups who would like more detailed
information on experimental uncertainties and their correlations.

K Rabbertz collected a list of open problems104 in the area of a ( )mS Z
2 determinations from

global PDF analyses. This was welcomed in the discussion and could serve as a reference to
study and resolve pending and new issues.

e+e− annihilation to hadronic final states: the discussions in this area concentrated on the
level of understanding of nonperturbative (NP) corrections. The latest results providing a
better understanding of power corrections for the C-parameter observable (presentation by
Monni and Nason, section 6.3) were seen as an important step. It was pointed out that a
deeper understanding of NP corrections is also needed for other event-shape and for jet-based
observables. Other items for improvements were raised such as: NNLO calculations for

+ - bbge e , NNLL precision parton-shower algorithms and their matching to fixed order
predictions and the corresponding retuning of the MC event generators NP parameters
(hadronization, colour/flavour/spin correlations, etc). As a potentially useful approach to
reduce the NP corrections, groomed observables were discussed. It was stated that by pur-
suing such an agenda, a better consistency and precision of a ( )mS Z

2 results from e+e−

annihilation hadronic final states should be possible.
The improved prediction for the R-ratio at low energies (ANesterenko, section 6.1) was

discussed as promising, but needs more precise measurements than currently available.
Lepton–hadron colliders: analyses at the only so-far operating lepton–hadron collider

HERA showed high sensitivity to αS through a large variety of processes with precision
measurements available. These include inclusive cross sections, single- or multi-jet produc-
tion cross sections, event-shape observables, jet-substructure observables, and heavy-flavour
cross sections. Unfortunately, most of these measurements were not performed by the
experiments using their larger HERA-II data samples, and the only useful published data from
HERA-II that achieves 1%–2% experimental uncertainties are jet cross sections in neutral-
current DIS by H1, and inclusive jet cross section in photoproduction by ZEUS. Since
considerable progress on the theory side was made since the HERA times, the H1 and ZEUS
collaborations should feel encouraged to continue analyzing their data.

Future e−p experiments provide excellent opportunities for many precision measurements
of a ( )mS Z

2 . The use of polarized PDFs was highlighted as a novel interesting opportunity at
the future EIC. Beyond that, the PDFs from LHeC/FCC-ep will also allow improving many
αS analyses done at the HL-LHC.

Hadron colliders: the analysis presented by D. d’Enterria (section 8.2) was discussed for
two reasons. First, it was claimed that the use of the MCFM v.8.0 generator to compute
inclusive fiducial NNLO cross sections for W and Z bosons could be sensitive to power
corrections connected with its subtraction scheme [608]. However, in the publication a cross
check with a different generator (FEWZ) gave consistent (within few %) results. The second
topic was the correlation of a ( )mS Z

2 results from this analysis with results from global PDF
analyses, since a few of the more recent PDF global fits also use differential cross section
distributions of W- and Z-bosons measured at LHC.

The discussion on this second point moved on to considering merging the results from
hadron collider data and global PDF fits into the same a ( )mS Z

2 category, at least before the
inclusive hadron collider cross sections ( ¯tt and EW bosons at the LHC, and jets at HERA) are
not directly into the global PDF + αS fits. The hadron collider extractions use the a ( )mS Z

2

dependence of the public PDF sets to derive the QCD coupling itself, but it was pointed out
that this may not converge to the same result as a global PDF+ αS fit [271]. A complete

104 Link: https://docs.google.com/spreadsheets/d/13KpbCaTpgIP7zrOJL3eveCvLoynBoiT50shzIz1HCzo.
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merging of the ‘DIS and PDF’ and ‘hadron collider’ categories was seen as problematic, since
in a global fit with many data sets the impact of a given data set is difficult to quantify. The
‘Lagrange multiplier’ approach of the CT18 group is an advanced example of such studies.
One improvement could be to combine a new data set with a PDF fit in order to constrain the
PDFs, but report as main result only the obtained αS. An example of data sets for individual
analysis, possibly together with a PDF fit, are ratios of jet production cross sections. A further
problem of global analysis including specific data sets for αS studies is the missing infor-
mation on correlations of experimental uncertainties between data sets. In addition, the global
PDF fits have an intrinsic theory theoretical uncertainty from missing higher-order terms, and
any independent a ( )mS Z

2 determination from inclusive cross sections (not used in the fit)
provides also a useful cross-check. In any case, since updated PDF (or PDF+ αS) sets are
only released every ∼5 years, it was clear that keeping the independent measurements of the
‘hadron collider’ αS category of the PDG world-average is appropriate as long as those are not
directly incorporated into the global PDF+ αS fits.

Other discussions concerned with finding the appropriate choice of renormalization scale
in the pQCD predictions, especially in multiscale observables such as event shapes in p−p
collisions (e.g. TEEC, ATEEC, transverse thrust) or (multi)jet production. In addition, the
problem of properly determining the correlations between measurements of the different LHC
experiments was discussed. Jet production measurements are systematics limited and sensi-
tive to many not easy to control experimental effects. M Wobisch’s presentation (section 7.5)
of a different formulation of cross section ratios was seen as another way to estimate theory
uncertainties.

The determination of αS from the Z-boson transverse momentum distribution (Camarda,
section 7.3) was seen as a good example of an a ( )mS Z

2 extraction of the hadron collider
category, since its precision is high (1.3%) and its dependence on PDFs is smaller than other
extractions of this subfield. The measurements as well as the theory can further improve in the
future.

10.2. Prospects and wish-lists for high-precision extractions

In table 13, we summarize the current precision of the seven extraction methods that con-
tribute today to the PDG world average (table 12), as well as the expected improvements in
the next ∼10 years (or in the longer future, in parenthesis) for each one of them. For each
category, we list the dominant sources of theoretical and experimental uncertainties that
propagate into a ( )mS Z

2 today, and the anticipated progress in the next years (or in the longer
term of planned future collider facilities) that will lead to a corresponding reduction of the
uncertainties. The last row list the relative uncertainty of the current world-average (0.8%)
and of the one expected within the next decade (≈0.4%) obtained from taking a weighted
average of the individual per-category uncertainties (in parenthesis, we provide the permil
precision expected in the longer term from lattice-QCD and/or electroweak fits at a future
high-luminosity e+e− facility). Of course, the latter result assumes that no new physics
impacts any of the extraction methods and, as a matter of fact, significant inconsistency
among independent determinations would indicate either a problem in our theoretical/
experimental understanding of any given observable, or provide a potential indirect evidence
of BSM physics.

Lattice: the current ±0.7% precision of the lattice-QCD extraction of a ( )mS Z
2 can be

reduced by about a factor of two within the next ∼10 years. In order to improve the lattice-
QCD based determinations of αS, it would be important to reach higher renormalization
scales for more observables, which can be achieved by implementing elements of the step-
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Table 13. Summary of current and expected future (within the decade ahead or, in parenthesis, longer time scales) uncertainties in the a ( )mS Z
2

extractions used today to derive the world average. Acronyms and symbols: CIPT = ‘contour-improved perturbation theory’, FOPT = ‘fixed-
order perturbation theory’, NP = ‘nonperturbative QCD’, SF = ‘structure functions’, PS = ‘Monte Carlo parton shower’.

Relative a ( )mS Z
2 uncertainty

Method Current theory and exp. uncertainties sources Near (long-term) future theory and experimental progress

(1) Lattice 0.7% ≈0.3% (0.1%)
Finite lattice spacing and stats. Reduced latt. spacing. Add more observables

N2,3LO pQCD truncation Add N3,4LO, (active charm, QED effects)
Higher renorm. scale via step-scaling to more observ.

(2) τ decays 1.6% <1%
N3LO CIPT versus FOPT diffs. Add N4LO terms. Solve CIPT–FOPT diffs.

Limited τ spectral data Improved τ spectral functions at Belle II

(3) QQ bound states 3.3% ≈1.5%
N2,3LO pQCD truncation Add N3,4LO and more ( )cc , ( )bb bound states

mc,b uncertainties Combined mc,b + αS fits

(4) DIS and PDF fits 1.7% ≈1% (0.2%)
N2,(3)LO PDF (SF) fits N3LO fits. Add new SF fits: F g,p d

i2
, (EIC)

Span of PDF-based results Better corr. matrices. More PDF data (LHeC/FCC-eh)

(5) e+e− jets and evt shapes 2.6% ≈1.5% (<1%)
NNLO+N(1,2,3)LL truncation Add N2,3LO+N3LL, power corrections

Different NP analytical and PS corrs. Improved NP corrs. via: NNLL PS, grooming
Limited datasets w/ old detectors New improved data at B factories (FCC-ee)

(6) Electroweak fits 2.3% (≈0.1%)
N3LO truncation N4LO, reduced param. uncerts. (mW,Z, α, CKM)

Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCC-ee)

(7) Hadron colliders 2.4% ≈1.5%
NNLO(+NNLL) truncation, PDF uncerts. N3LO+NNLL (for colour-singlets), improved PDFs
Limited data sets (tt c, W, Z, e−p jets) Add more datasets: Z pT, p−p jets, σi/σj ratios, K

World average 0.8% ≈0.4% (0.1%)
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scaling technique even in infinite space-time volumes. This requires resources for dedicated
lattice simulations. In addition, it would be very helpful to push the corresponding pQCD
calculations to higher orders. Depending on the process under study, this will require to
calculate N3LO, N4LO, and/or N3LL contributions. In some cases it may also be beneficial to
compute lattice artifacts perturbatively, in order to improve the control of the continuum limit.
For extractions based on moments of quarkonium correlators, one should perform more
accurate lattice calculations with hadron masses mh� 2mc, where the truncation errors are
subleading in the current results. In view of the fully recursive step-scaling strategies, also
nonstandard perturbative techniques for selected finite volume renormalization schemes
should be developed. Aiming for 0.1% uncertainties will likely require the explicit inclusion
of charm quark effects (2+1+1 calculations) and of QED and isospin-breaking effects in the
determination of both the physical scale and the running of αS.

τ decays: the present a ( )mS Z
2 value of the τ lepton category has a ±1.6% uncertainty as

derived from the pre-averaging of four different determinations. Solving the CIPT versus FOPT
discrepancies, e.g. through the method proposed in [122], is a basic prerequisite to reduce in
about a half the current theoretical uncertainty assigned to this extraction method. Although
hard to compute, a calculation of the a( ) S

5 pQCD term (N4LO) would be also beneficial, given
the sometimes slow convergence of terms with typical weights. On the nonperturbative side,
increased data precision would allow more stringent tests of the duality-violation contributions.
In the near future, more precise 2-pion and 4-pion exclusive-mode τ data from Belle II would
also help to disentangle perturbative and nonperturbative contributions.

QQ bound states: the a ( )mS Z
2 value derived from quarkonium decays and masses has

today a ±3.1% uncertainty from the pre-averaging of six different determinations at NNLO or
N3LO accuracy. Improved determinations can be obtained by performing combined fits of αS

and charm and/or bottom quark masses, adding one extra degree of pQCD accuracy to the
NNLO predictions, and/or adding more cc , bb bound-states data.

Structure functions and global PDF analyses: the current a ( )mS Z
2 value of the parton

densities category has a ±1.7% uncertainty as derived from the pre-averaging of six different
determinations (two analyses of structure functions, and four from global PDF fits). With
complete N3LO predictions for DIS, the residual theoretical uncertainty due to the scale
variation and the truncation of the perturbative series will be limited to ≈1% in the range of
parton kinematics relevant for the current world DIS data and the EIC. In general, progress is
expected from analyses at future e−p colliders such as the EIC, LHeC, or FCC-eh. Adding
new observables, such as e.g. deuteron and spin-dependent structure functions, which can be
both measured at the EIC, will provide new useful constraints. Ultimately, an experimental
precision of da ~( )m 0.2%S Z

2 is projected at the LHeC/FCC-eh.
For PDF+ αS extractions, future N3LO fits (or, in the shorter term, an improved quanti-

fication of the impact of missing higher-order corrections) are required to reach ≈1% pre-
cision on a ( )mS Z

2 . Achieving such a higher degree of pQCD accuracy will likely reduce the
present broad span of a ( )mS Z

2 central values among global PDF fits. In addition, the avail-
ability of LHC experimental data with more complete information on correlations would
improve the global fit analyses.

e+e− annihilation to hadronic final states: the present precision of the a ( )mS Z
2 determination

from the e+e− category of the PDG world-average is of ±2.6%, as obtained by pre-averaging
10 different extractions based on event shapes or jet rates. Such a comparatively large uncer-
tainty is driven by the large span among central values derived from measurements where NP
corrections have been obtained with Monte Carlo parton showers or analytically. The former
(latter) corrections tend to give larger (smaller) QCD couplings than the world average. The
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main reduction of this uncertainty will therefore come through an improved convergence
between the theoretical (analytical and MC) descriptions of NP effects. First, detailed analytical
studies of nonperturbative power corrections exists now for the C-parameter that need to be
applied to other similar observables, such as thrust, to clarify the current discrepancies. Second,
improved parton-shower algorithms (e.g. of the PanXX family) reaching NNLL accuracy are
needed, followed by matching to fixed-order (NNLO) predictions plus a full retuning of the
hadronization and other final-state parameters (colour reconnection, spin correlations,K) of the
event generators. In parallel, improved soft-drop grooming techniques should be applied to the
e+e− data to evaluate their impact in the reduction of NP effects.

Electroweak fits: the a ( )mS Z
2 uncertainty of the EW category is of ±2.3% and is dom-

inantly driven by the statistical uncertainty in the measurements of the Z-boson pseu-
doobservables at LEP (the W-boson determination is even much less precise, and features a
±30% uncertainty). Such an a ( )mS Z

2 determination is extremely clean, and can reach the
0.1% precision provided one collects the 1012 and 108 Z- and W-bosons data samples
expected at a future high-luminosity e+e− collider such as the FCC-ee. To reach such a level
of precision will require also to compute missing higher-order pQCD (N4LO), EW a( ) 2,3 ,
and mixed pQCD+EW aa aa a a( ) , ,S S S

2 3 2 corrections that, today, are negligible compared
to the experimental uncertainties.

Hadron colliders: the QCD coupling derived from the hadron-collider category, obtained
from the pre-averaging of 5 different extractions at NNLO accuracy, has a ±2.4% precision
today. Theoretical (experimental) uncertainties are driven mostly by the scale and PDF
(luminosity) uncertainties. A natural way to reduce the a ( )mS Z

2 uncertainties would be to
incorporate N3LO corrections, but this seems realistically feasible in the next years only for
colour-singlet cross sections, and requires PDFs at the same level of accuracy. A faster way to
reduce the current uncertainties by about a half may come from the expected addition of many
more upcoming observables (Z pT peak at N3LO, p−p jets and σi/σj ratios at NNLO, K)
and/or extended high-precision datasets (integrated luminosity uncertainties at the LHC have
been lately reduced to the ≈1% level).

Final wish-list: the determination of the strong coupling has the potential to witness
considerable improvements in the decade ahead, with an anticipated reduction in the a ( )mS Z

2

world average uncertainty by a factor of about two (from 0.8% down to ≈0.4%) over this
time scale through well-identified experimental and theoretical developments. Such a progress
will have an important impact in the theoretical calculations and associated interpretation of
upcoming LHC data and in searches for new physics through high-precision SM studies.
Such advances will be facilitated by:

1. Sufficient dedicated computing resources to generate state-of-the-art samples for lattice
QCD analyses. Enough person-power to develop perturbation theory for selected
observables in a finite space-time volume, and compute identified higher-order pQCD
corrections to match improved lattice QCD samples as necessary basis for αS extractions.

2. Beyond lattice-related calculations, person-power is needed for all other important
theory efforts. These include the completion of the hadronic τ decay renormalon
analysis, the three-jet power corrections for e+e− event shapes and jet algorithms,
NNLL accuracy parton shower algorithms and their matching to fixed order, NNLO
MC simulations for complex final states in e+e−, e−p or p−p scattering, and
differential NNLO predictions for HERA and LHC multi-jet observables, among
others.

3. Incorporation of multiple new precision observables and/or datasets measured at the
LHC into NNLO hadron-collider- or PDF- based extractions, with an improved treatment
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of the experimental correlation uncertainties among measurements, will lead to a visible
improvement of the accuracy and precision of the world a ( )mS Z

2 average.
4. Measurements of DIS with new high-energy facilities (EIC first and, in the longer term

LHeC/FCC-eh) will allow determining PDFs+ αS over a large phase space covering
LHC kinematics. This would resolve PDF-αS ambiguities in hadron-collider analyses,
and provide new precision a ( )mS Z

2 determinations. A direct extraction of αS and studies
of its energy evolution will also benefit from high-precision PDFs over a large kinematic
range.

5. Arguably, the only way known to actually reach permil a ( )mS Z
2 uncertainty from purely

experimental measurements, without lattice-QCD data simulations, is through the study
of hadronic Z (and W) decays. A high-energy lepton collider (Higgs factory, ILC, FCC-
ee) with a Giga- or Tera-Z program and low-energy ( <s mZ) runs will massively
improve e+e− determinations of a ( )mS Z

2 via Z- and W-boson hadronic decays, τ decays,
jets rates and event shapes, significantly also improving our understanding of parton
showers and nonperturbative effects, and providing accurate tests of the αS evolution.
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