Observation of $\gamma\gamma \to \tau\tau$ in Pb+Pb collisions and constraints on the τ -lepton g-2with the ATLAS detector

Jakub Kremer for the ATLAS Collaboration April 7, 2022

Johannes Gutenberg University Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Alexander von Humboldt Stiftung/Foundation

Before going to the τ -leptons, let's look back at the photons...

$\gamma\gamma\to\gamma\gamma$: differential cross-sections

- Light-by-light scattering: probe rare SM process and search for BSM phenomena
- + Event selection: 2 photons with $E_{
 m T}^{\gamma}>$ 2.5 GeV, ${\sf A}_{\phi}^{\gamma\gamma}<$ 0.01, no tracks
- Backgrounds from:
 - CEP $gg \rightarrow \gamma\gamma$ (data-driven estimate)
 - + $\gamma\gamma \rightarrow ee$ with mis-identified electrons (MC estimate)
- Cross-sections measured differentially in $m_{\gamma\gamma}$, $|y_{\gamma\gamma}|$, p_{T}^{γ} , $|\cos\theta^{*}|$

$\gamma\gamma \rightarrow \gamma\gamma$: search for axion-like particles

- Axion-like particles can couple to photons in initial- and final-state of $\gamma\gamma\to\gamma\gamma$
- No significant deviation from SM
- Setting 95% CL limits on:
 - cross-section σ
 - coupling $1/\Lambda_a$
- Most stringent limits in the mass range 6 $< m_a <$ 100 GeV

Now let's move to the τ -leptons...

Introduction to a_{τ}

- g-factor relates a particle's magnetic moment to its spin: $\vec{\mu} = g \frac{q}{2m} \vec{S}$
- Dirac equation predicts g = 2, but higher-order corrections (QED, weak, hadronic loops, ...) lead to $g \neq 2$
- Lepton anomalous magnetic moments $a_{\ell} = \frac{(g-2)_{\ell}}{2}$ are sensitive to various BSM models (leptoquarks, lepton compositeness, SUSY, ...)

- a_e and a_μ are among the most precisely measured observables in Nature
- Tensions with SM predictions observed for a_e (2.5 σ) and a_μ (up to 4.2 σ)
- a_{τ} is much less constrained:
 - $-0.052 < a_{ au} < 0.013$ (95% CL) DELPHI, EPJC 35 (2004) 159
- \cdot $a_{ au}$ is more sensitive to some BSM effects

Measuring a_{τ} in ultraperipheral Pb+Pb collisions

- Theoretical framework outlined in:
 - L. Beresford, J. Liu, PRD 102 (2020) 113008
 - M. Dyndal, M. Schott, M. Klusek-Gawenda, A. Szczurek, PLB 809 (2020) 135682
- Exploit $\gamma\gamma \rightarrow \tau\tau$ cross-section to set limits on a_{τ}
- Experimental challenges:
 - hadronic backgrounds
 - neutrinos in the final state
- Advantages of ultraperipheral Pb+Pb collisions (UPC) over *pp* collisions:
 - + huge photon fluxes $\rightarrow Z^4$ cross-section enhancement
 - $\cdot\ \sim \text{no}$ hadronic pile-up \rightarrow exclusivity selections
 - + low $p_{\rm T}$ thresholds in trigger and offline reconstruction
- * au-leptons never directly targeted in measurements using nucleus-nucleus data

PLB 809 (2020) 135682

- $\cdot\,$ Measurement uses 1.44 $\rm nb^{-1}$ of 2018 UPC data
- Monte Carlo simulations:
 - + $\gamma\gamma \rightarrow \tau\tau$ signal: Starlight+Tauola (Pythia8+Photos for QED FSR)
 - + $\gamma\gamma \rightarrow \mu\mu$ background: Starlight+Pythia8
 - + $\gamma\gamma \rightarrow \mu\mu\gamma$ background: Madgraph5 (reweighted to Pb+Pb photon flux)
 - $\cdot\,$ all samples reweighted to photon flux from SuperChic3
- + Standard ATLAS hadronic τ reconstruction not efficient for signal ($p_{\rm T}^{\rm vis} \lesssim$ 10 GeV)
- Trigger signal candidates using muonic τ decays and categorise using electrons or low- p_T tracks for second τ decay: Muons: $p_T^{\mu} > 4 \text{ GeV}$
 - μ 1T-SR: muon + 1 track (e/μ /hadron)
 - µ3T-SR: muon + 3 tracks (3 hadrons)
 - μe-SR: muon + electron

- \cdot Data only: 0n0n ZDC selection to suppress photonuclear/hadronic backgrounds
- Simulation reweighted from 0n0n+0nXn+XnXn to 0n0n with data-driven weights
- + Exclusivity: veto additional clusters (μ 1T-SR and μ 3T-SR only) and tracks

JG U

CERN-EP-2022-079

Signal candidate events

 μ 1T-SR

JGU

- Background from $\gamma\gamma
 ightarrow \mu\mu(\gamma)$ production estimated using MC simulation
- \cdot Validation of modelling performed in dimuon control region (2 μ -CR)
- Normalisation off by +6% with SuperChic3 photon flux (Starlight: -13%)
- Good description of FSR emissions seen in $p_{\rm T}^{\mu\mu}$ distribution tail

IGL

Backgrounds: diffractive photonuclear events

- \cdot Data-driven estimation of diffractive photonuclear events in μ 1T-SR and μ 3T-SR
- Templates built from control regions similar to SRs, but requiring an additional track with $p_T < 500$ MeV and allowing 0nXn ZDC events
- + Normalisation: relax cluster veto \rightarrow use region with 4-8 unmatched clusters
- Kinematic distributions in this region well described by the CR templates

Signal region distributions

GI

Fit setup

- Measure $\gamma\gamma \rightarrow \tau\tau$ signal strength and a_{τ} using profile likelihood fit to the muon $p_{\rm T}$ distribution in the three SRs and 2μ -CR
- Build templates for different a_{τ} values by reweighting signal MC using weights from PLB 809 (2020) 135682:
 - a_{τ} values: 0, ±0.01, ±0.02, ±0.03, ±0.04, ±0.05, ±0.06, ±0.1
 - \cdot 3D weights in $m_{ au au}$, $|y_{ au au}|$, $|\Delta\eta_{ au au}|$
- Pre-fit distributions of p_{T}^{μ} in the SRs assuming SM value of a_{τ} :

Post-fit p_{T}^{μ} distributions

- Post-fit distributions of $p_{\rm T}^{\mu}$ in the SRs and 2μ -CR
- Results of combined fit using all regions
- Clear observation ($\gg 5\sigma$) of $\gamma\gamma \rightarrow \tau\tau$ process
- Photon flux modelling well constrained with high-precision and high-purity 2µ-CR

IG U

- + Fit of $\gamma\gamma \rightarrow au au$ signal strength assuming SM value for $a_{ au}$
- \cdot Result for each signal region compatible with unity
- Combined fit reaches 5% precision, limited by statistical uncertainties

Results: a_{τ}

- \cdot Expected 95% CL limits from combined fit: $-0.039 < a_{ au} < 0.020$
- · Observed 95% CL limits: $a_{ au} \in$ (-0.058, -0.012) \cup (-0.006, 0.025)
- Double-interval structure due to interference of SM and BSM amplitude
- Constraints on $a_{ au}$ similar to those observed by DELPHI
- Statistical uncertainties dominant, leading systematic uncertainties: trigger efficiency, τ decay modelling

Summary

- UPCs can be used to probe rare SM processes and search for BSM phenomena
- Clear observation of $\gamma\gamma \rightarrow \tau\tau$
- Signal strength of $\gamma\gamma \to \tau\tau$ measured with 5% precision
- Opening hadron-collider studies of electromagnetic τ properties
- Constraints on a_{τ} competitive with electron-collider results
- Results limited by statistical uncertainties → room for improvement with more data!

see also: poster by A. Ogrodnik

IG

Additional slides

Signal / control regions

μ 1T-SR

- exactly 1 muon
- no electrons
- exactly 1 track
- net charge = 0
- $\cdot \ p_{\rm T}^{\mu+{\rm trk}} > 1 \ {\rm GeV}$
- $\cdot \ p_{\rm T}^{\mu+{\rm trk}+\gamma} > 1 \ {\rm GeV}$
- $\cdot \ p_{\rm T}^{\mu + {\rm trk} + {\rm clus}} > 1 \, {\rm GeV}$
- $\cdot \ A^{\mu,\,\text{trk}}_\phi < 0.4$
 - Trigger requirements:
 - $\cdot p_{\mathrm{T}}^{\mu} > 4 \; \mathrm{GeV}$
 - · total E_{T} in calorimeter below 50 GeV
 - + E_T in forward calorimeters below 3 GeV (rapidity gaps)
 - + Data only: 0n0n ZDC selection (simulation reweighted: 0n0n+0nXn+XnXn \rightarrow 0n0n)
 - $\cdot\,$ Exclusivity: veto additional clusters (µ1T-SR and µ3T-SR only) and tracks

μ 3T-SR

- exactly 1 muon
- \cdot no electrons
- exactly 3 tracks
- net charge = 0
- $\cdot~m_{
 m trks} <$ 1.7 GeV
- $A^{\mu,\,\mathrm{trks}}_{\phi} < 0.2$

μe -SR

- exactly 1 muon
- exactly 1 electron
- net charge = 0

2μ -CR

• exactly 2 muons

IGIU

 $\cdot m_{\mu\mu} >$ 11 GeV

 $\begin{array}{l} {\rm Muons:} \ p_{\rm T}^{\mu} > 4 \ {\rm GeV} \\ {\rm Electrons:} \ p_{\rm T}^{e} > 4 \ {\rm GeV} \\ {\rm Tracks:} \ p_{\rm T}^{\rm trk} > 100 \ {\rm MeV} \\ {\rm Clusters:} \ p_{\rm T}^{\rm clus} > 1 \ {\rm GeV} \ (|\eta| < 2.5), \\ p_{\rm T}^{\rm clus} > 100 \ {\rm MeV} \ (2.5 < |\eta| < 4.5) \end{array}$

Background processes

 $\gamma\gamma
ightarrow \mu\mu(\gamma)$ production

diffractive photonuclear events

Systematic uncertainties in a_{τ}

- Detector-related:
 - \cdot muon trigger efficiency
 - muon/electron reconstruction/identification efficiency and calibration
 - \cdot track reconstruction efficiency
 - cluster reconstruction efficiency and calibration
- Background:
 - photonuclear background template variation
- Theory:
 - photon flux modelling (SuperChic3 vs. Starlight)
 - $\cdot ~ au$ decay modelling (Tauola vs. Pythia8)
 - OnOn ZDC reweighting variation

