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1 Introduction

Among the existing inflationary models, Higgs Inflation is particularly attractive since it
aims to explain cosmological inflation in terms of a scalar field that plays a central role in
conventional particle physics, namely the standard Higgs boson that realises electroweak
symmetry breaking at low energies [1]. The model, although in very good agreement with
cosmological observations [2], requires a non-minimal coupling of the inflaton/Higgs to the
Ricci scalar ξ|H|2R with rather large values of the corresponding dimensionless parameter
ξ ∼ O(104 − 109), which through the derivative interactions induced in the Einstein frame
seems to cause a tree-level unitarity violation at a scale much below the Planck mass
MP [3–14].

Nevertheless, although it is certain that the non-renormalisable interactions induced
by the non-minimal coupling lead to precocious unitarity violation in the electroweak vac-
uum, the real issue of Higgs Inflation is whether this will show up in the Higgs scattering
amplitudes computed in the presence of the inflaton background . These amplitudes should
be computed at energies larger than the alleged unitarity violation scale (deduced on di-
mensional grounds to be MU = MP /ξ or MP /

√
ξ in the case of Palatini variation), in the

presence of an inflaton background φ�MP /
√
ξ.

In the above framework, we have calculated the relevant Higgs tree-level scattering
amplitudes in the case of the standard metric formulation of gravity, as well as in the
Palatini formulation. We find that the result, although different in the two formulations,
is frame-independent, having carried out the computation in both the Jordan and Einstein
frames. More importantly, we find that these amplitudes scale with the inverse inflaton
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background which provides an effective cutoff against unitarity violation up to the Planck
scale. This behaviour is common in both formulations, although the theories are different,
having different degrees of freedom.

It should be emphasized that our analysis was done for a complex non-minimally
coupled scalar field, since for a single non-minimally coupled scalar any apparent unitarity
violation can be taken away by a field redefinition [16]. Earlier estimates [15] of the
unitarity cutoff scale based on a single field model are of limited value not taking into
account cancellations at the level of the amplitudes and on-shell conditions. We also note
that the UV behaviour of the amplitudes we found is common in both the metric and
Palatini formulations. This is in partial disagreement with a recent treatment [17] of Higgs
inflation along similar lines associating this behaviour only with the latter formulation.

Our paper is organized as follows. The computation of the relevant 4-point scattering
amplitudes at the tree level is performed in section 2 in the Jordan frame and in section 3
in the Einstein frame. In section 4, we repeat the computation in the Palatini formula-
tion, where the connection is treated as independent variable from the metric, while in
section 5, we perform the calculations in the presence of an R2 term for both formula-
tions. In section 6, we investigate the possible link between amplitudes in the presence of
a large background and in the electroweak vacuum. Finally, our conclusions are presented
in section 7.

2 Metric formulation in the Jordan frame

In what follows, concentrating on possible unitarity violation that arises from the non-
minimal Higgs coupling, we ignore the potential and consider the action

S =
∫
d4x
√
−g

{1
2M

2
PΩ2R(g)− |∂H|2

}
, (2.1)

where

Ω2 = 1 + 2ξ
M2
P

|H|2 . (2.2)

It suffices to consider the Higgs field as H = 1/
√

2 (φ1 + iφ2) with φ1 developed around a
constant background value φ1:

φ1 = φ′1 + φ1 with φ1 �
MP√
ξ
. (2.3)

The metric is developed around a Minkowski background as gµν = ηµν + κhµν . Due to
the arising mixing between hµν and φ′1, we shall need the expansion of

√
−g R up to third
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order in h, while the expansion of
√
−g gµν up to second order will be sufficient. We have:

√
−gR|h = κ(∂µ∂νhµν −�h), (2.4)

√
−gR|h2 = κ2

4
(
2h∂µ∂νhµν − 2h�h− 8hµν∂µ∂ρhνρ + 4hµν�hµν

+ 4hµν∂µ∂νh− 4∂µhµρ∂νhνρ + 4∂µh∂νhµν

+ 3∂ρhµν∂ρhµν − ∂µh∂µh− 2∂µhρσ∂ρhµσ
)
, (2.5)

√
−gR|h3 = κ3

8
(
−2hµν∂µh∂νh+ h∂ρh∂

ρh− 4hµν∂ρhνµ∂ρh+ 4hµν∂σhνµ∂ρhρσ

− h∂ρhµν∂ρhνµ + 4hνµ∂νhµσ∂σh+ 4hµν∂νh∂ρhρµ
− 2h∂ρhρσ∂σh+ 4hµν∂σhρµ∂σhνρ + 2h∂µhρν∂νhµρ

− 4hµν∂ρhσµ∂σhρν + 2hµν∂µhρσ∂νhσρ − 8hµν∂νhσρ∂σhρµ
)
, (2.6)

and
√
−ggµν |h = κ

2 (hηµν − 2hµν), (2.7)

√
−ggµν |h2 = κ2

8 (h2ηµν − 2hρσhρσηµν − 4hhµν + 8ηρσhµρhνσ), (2.8)

where h = hµµ. The second order development
√
−gR(g)|h2 is often cited after simplifica-

tions that use integration by parts. Note however that because of the Ω2 coefficient that
depends on position through φ′1 and φ2, we will need the above expression in terms of the
shifted graviton and before any integration by parts simplifications in order to compute
the interaction vertices. On the other hand, the third order expansion

√
−gR(g)|h3 is given

after such simplifications.

Kinetic Terms. The resulting kinetic terms are

Lkinφ′
1
+Lkinφ2 =−1

2(∂φ′1)2− 1
2(∂φ2)2

Lmixφ′
1h

=κξφ1φ
′
1 (∂µ∂νhµν−�h) (2.9)

Lkinh = 1
4κ

2ξφ
2
1

(1
2∂

µh∂µh−
1
2∂

µhρσ∂µhρσ−∂µh∂νhµν+∂µhρσ∂ρhµσ
)
.

At this point we choose the perturbation factor κ2 = 4/(ξφ2
1). Then, we shift the graviton

so that the mixing with φ′1, after integration by parts, goes away, namely introduce h̃µν as

hµν = h̃µν −
√
ξφ′1ηµν . (2.10)

The resulting scalar kinetic terms are

− 1
2 (1 + 6ξ) (∂φ′1)2 − 1

2(∂φ2)2 = −1
2(∂χ1)2 − 1

2(∂φ2)2 (2.11)

in terms of the canonically normalised scalar χ1 ≡ (1 + 6ξ)1/2φ′1.
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Next, in order to obtain the graviton propagator for h̃µν (being the same as for hµν)
we need to introduce gauge-fixing in the form of a term

Lgf = −
(
∂µh̃µν − α∂ν h̃

)2
, (2.12)

parametrised in terms of the gauge parameter α. The resulting Lkinh + Lgf term is

− 1
2∂

ρh̃µν
(
δσρ δ

µ
αδ

ν
β + (2α2 − 1)δσρ ηµνηαβ − 2(2α− 1)δσβηραηµν

)
∂σh̃

αβ . (2.13)

Therefore, the graviton propagator in momentum space is −i
k2G

µν
αβ , where G

µν
αβ is the inverse

of the tensor

∆µν
αβ(k) = 1

2
(
δµαδ

ν
β + δναδ

µ
β

)
+ 2(α2 − 1)ηµνηαβ − (2α− 1)

(
kαkβ
k2 ηµν + kµkν

k2 ηαβ

)
. (2.14)

This is inverted to give the graviton propagator

− i

k2G
µν
αβ(k) = − i

k2

(
Iµναβ − 2Tµναβ + (2α− 1)

2(α− 1)C
µν
αβ −

(2α− 1)2

(α− 1)2 K
µν
αβ

)
(2.15)

in terms of the bi-tensors

Iµναβ = 1
2
(
δµαδ

ν
β + δναδ

µ
β

)
, T µναβ = 1

4η
µνηαβ

Cµναβ = 1
2

(
kαkβ
k2 ηµν + kµkν

k2 ηαβ

)
, Kµν

αβ = kµkνkαkβ
(k2)2 .

(2.16)

Interactions. At this point we decide to focus on the amplitude for φ1, φ2 → φ1, φ2
scattering. In order to identify the interactions resulting from the

√
−gR and

√
−ggµν

couplings we use the developed expressions given previously, including the extra interac-
tions induced from the shifting of the graviton. After some calculations it turns out that
the only relevant terms in

√
−ggµν are

√
−ggµν ⊃ 1

ξ1/2φ1

(
ηµν h̃− 2h̃µν − 2ξ1/2φ′1η

µν
)
, (2.17)

while all φ′1
2 terms cancel out. In an analogous fashion, after quite a bit of computation,

the other coupling yields the relevant terms:

√
−gR|h = 2

ξ1/2φ̄1
(∂µ∂ν h̃µν −�h̃+ 3ξ1/2�φ′1) (2.18)

√
−gR|h2 = 4

ξ1/2φ̄2
1

(
2∂µ∂νφ′1h̃µν + ∂µφ′1∂

ν h̃µν

−1
2�φ

′
1h̃+ 1

2(∂φ′1 · ∂h̃) + 3
2ξ

1/2(∂φ′1)2
)

(2.19)

√
−gR|h3 = − 4

ξ1/2φ
3
1

(
(∂µφ′1)(∂νφ′1)

(
h̃µν + 1

2ηµν h̃
)

+φ′1
2(∂µ∂ν h̃µν −�h̃)− 3ξ1/2φ′1(∂φ′1)2

)
. (2.20)
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Thus, we end up with the following basic interactions, expressed in terms of the canon-
ical scalars and the shifted graviton:

Lχ3
1

= χ1(∂χ1)2

φ1(1 + 6ξ)1/2 , Lχ2
1φ

2
2

= 3ξφ2
2(∂χ1)2

φ
2
1(1 + 6ξ)

Lχ1φ2
2

= −6ξφ2(∂χ1 · ∂φ2)
φ1(1 + 6ξ)1/2 + χ1(∂φ2)2

φ1(1 + 6ξ)1/2

Lχ2
1h̃

= − 3ξ1/2

φ1(1 + 6ξ)
χ2

1

(
∂µ∂ν h̃µν + �h̃

)
+ (∂µχ1)(∂νχ1)

φ1ξ
1/2

(
h̃µν −

1
2ηµν h̃

)

Lφ2
2h̃

= ξ1/2

φ1
φ2

2

(
∂µ∂ν h̃µν −�h̃

)
+ (∂µφ2)(∂νφ2)

φ1ξ
1/2

(
h̃µν −

1
2ηµν h̃

)
.

(2.21)

Calculation of the Jordan frame χ1φ2 → χ1φ2 scattering amplitude. The re-
sulting vertices relevant to the χ1, φ2 → χ1, φ2 scattering amplitude are

Vχ2
1φ

2
2

= − 12iξ
φ

2
1(1 + 6ξ)

(pχ1,1 · pχ12)

Vχ3
1

= − 2i
φ

2
1(1 + 6ξ)1/2

(p1 · p2 + p1 · p3 + p2 · p3)

Vχ1φ2
2

= − 6iξ
φ1(1 + 6ξ)1/2 p

2
χ1 −

2i
φ1(1 + 6ξ)1/2 (pφ21 · pφ22)

V µν

χ2
1h̃

= 6iξ1/2

φ1(1 + 6ξ)
Aµν(kh̃)− i

φ1ξ
1/2B

µν(pχ11 · pχ12)

V µν

φ2
2h̃

= −2iξ1/2

φ1
Aµν(kh̃)− i

φ1ξ
1/2B

µν(pφ21 · pφ22)

(2.22)

where

Aµν(k) = kµkν − ηµνk2 and Bµν(p1, p2) = pµ1p
ν
2 + pν1p

µ
2 − η

µν(p1 · p2) . (2.23)

We consider all momenta incoming and have used momentum conservation to simplify
expressions.

There are five distinct tree diagrams (and their corresponding amplitudes) generated
by these vertices that contribute to χ1, φ2 → χ1, φ2, namely, one from the quartic vertex
(M4), two from φ2-exchange in the s and u channel (Mφ2,s andMφ2,u), and two from χ1
and h̃ exchange in the t-channel (Mχ1,t andMh̃,t). We label the momenta according to

χ1(p1), φ2(p2)→ χ1(p3), φ2(p4) , (2.24)

noting that the momentum of the graviton will be k = p1 − p3. The corresponding Man-
delstam variables are s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2.

Using the above vertices, the scalar propagators i/p2 and the graviton propagator
−iGµναβ/k2, we calculate these amplitudes. Nevertheless, it is important to make sure that
the amplitudes involving graviton exchange are gauge-invariant (i.e. independent of the
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gauge-fixing parameter α). This is indeed the case based on the fact that contractions of
the form MαβLµναβNµν , where M and N are either A(k), B(p1,−p3) or B(p2,−p4) (defined
in (2.23)) and L is either C or K (defined in (2.16)), vanish on shell. The contractions that
do not vanish correspond to the α-independent terms of the graviton propagator:

A(−k)GA(k) = −3
2 t

2, B(p1,−p3)GB(p2,−p4) = 1
2(s2 + u2 − t2)

A(−k)GB(p2,−p4) = −1
2 t

2, B(p1,−p3)GA(k) = −1
2 t

2 . (2.25)

The resulting amplitudes in the center of mass frame (s = 4E2, t = −2E2(1 − cos θ),
u = −2E2(1 + cos θ)) are

iM4 = − 6iξ
(1 + 6ξ)

t

φ
2
1
, i (Mφ2,s +Mφ2,u) = i

(1 + 6ξ)
t

φ
2
1

iMχ1,t = it

φ
2 , iMh̃,t = i

φ̄2
1

(
12ξ + 2
1 + 6ξ t+ 1

2ξ
s2 + u2 − t2

t

) (2.26)

and the total amplitude is

iM = − iE
2

φ̄2
1

(8(1 + 3ξ)
1 + 6ξ (1− cos θ) + 4(1 + cos θ)

ξ(1− cos θ)

)
. (2.27)

3 Metric formulation in the Einstein frame

Starting from the action (2.1) we convert it to the Einstein frame through a Weyl rescaling
of the metric

gµν = Ω2 ḡµν , (3.1)

where
Ω2 = 1 + 2ξ

M2
P

|H|2 = 1 + ξ

M2
P

(
φ2

1 + φ2
2

)
. (3.2)

The Einstein frame action is

S =
∫
d4x
√
−g

{
1
2M

2
PR(g)− 3

4
M2
P

Ω2

(
∂Ω2

)2
− |∂H|

2

Ω2

}
, (3.3)

where we have dropped the “bar” symbol on the metric for simplicity of notation. The
scalar part of the action consists of the terms

Li = −1
2

(∂φi)2

Ω2 − 3ξ2φ2
i

M2
PΩ4 (∂φi)2 with i = 1, 2 (3.4)

and
L12 = −6ξ2φ1φ2

M2
PΩ4 (∂φ1 · ∂φ2) . (3.5)

Again we consider a constant background value in the φ1 direction

φ1 = φ′1 + φ1 with φ1 �MP /
√
ξ . (3.6)
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Then, we have

Ω−2 ≈ M2
P

φ
2
1ξ

(
1− 2φ

′
1
φ1

+ 3φ
′
1

2

φ
2
1
− φ2

2

φ
2
1

)
, Ω−4 ≈ M4

P

φ
4
1ξ

2

(
1− 4φ

′
1
φ1

+ 10φ
′
1

2

φ
2
1
− 2φ2

2

φ
2
1

)
(3.7)

and
Lkinφ′

1
= −M

2
P

φ
2
1

(1 + 6ξ)
2ξ (∂φ′1)2 Lkinφ2 = − M2

P

2ξφ2
1
(∂φ2)2 . (3.8)

The scalar interaction terms are

Lφ′
1

3 = M2
P

φ
3
1

(1 + 6ξ
ξ

)
φ′1(∂φ′1)2

Lφ′
1φ

2
2

= M2
P

ξφ
3
1
φ′1(∂φ2)2 − 6M2

P

φ
3
1
φ2(∂φ′1 · ∂φ2)

Lφ′
1

2φ2
2

= M2
P

φ
4
1

(1 + 12ξ
2ξ

)
φ2

2(∂φ′1)2 − 3M2
P

2ξφ4
1
φ′1

2(∂φ2)2 + 18M2
P

φ
4
1

φ′1φ2(∂φ′1 · ∂φ2) .

(3.9)

At this point we introduce the canonically normalised scalars χ1 and χ2 as

φ′1 = φ1
MP

(
ξ

1 + 6ξ

)1/2
χ1 and φ2 = ξ1/2 φ1

MP
χ2 . (3.10)

In addition to the above interactions of the scalars we also have their interaction to the
gravitational perturbation field gµν ≈ ηµν + κhµν through their kinetic terms

Lχ2
1,2h

= 1
MP

(∂µχ1∂νχ1 + ∂µχ2∂νχ2)
(
hµν − 1

2η
µνh

)
. (3.11)

Focusing again on the χ1, χ2 → χ1, χ2 scattering amplitude we list the relevant ver-
tices. They are

Vχ3
1

= − 2i
MP

(
ξ

1 + 6ξ

)1/2
(p1 · p2 + p1 · p3 + p2 · p3)

Vχ1χ2
2

= − 2i
MP

(
ξ

1 + 6ξ

)1/2
(pχ21 · pχ22)− 6iξ

MP

(
ξ

1 + 6ξ

)1/2
p2
χ1

V µν
χ2
i ,h

= − i

MP

(
pµχi1p

ν
χi2 + pνχi1p

µ
χi2 − η

µνpχi1 · pχi2
)

Vχ2
1χ

2
2

= − 2iξ
MP

(1 + 12ξ
1 + 6ξ

)
(pχ11 · pχ12) + i

MP

6ξ
(1 + 6ξ)(pχ21 · pχ22)

− i

MP

18ξ2

(1 + 6ξ)(pχ11 + pχ12) · (pχ21 + pχ22) .

(3.12)

The contributing amplitudes are again the one corresponding to the quartic point inter-
action (M4), two corresponding to a χ2 exchange in the s and u channels (Mχ2,s and
Mχ2,u), one corresponding to χ1-exchange in the t-channel (Mχ1,t) and one corresponding
to graviton exchange in the t-channel (Mh,t). Having carried out gravitational compu-
tations in the Jordan frame in an explicitely gauge invariant fashion, we feel confident

– 7 –
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enough to simplify things by restricting ourselves here to a particular gauge. Thus, using
the graviton propagator in the α = 1/2 gauge

− i

2k2G
ρσ
µν(k) = − i

2k2

(
δρµδ

σ
ν + δσµδ

ρ
ν − ηµνηρσ

)
, (3.13)

and the scalar propagator i/p2, the above amplitudes are calculated to be

iMχ2,s = − is

M2
P

ξ

(1 + 6ξ) , iMχ2,u = − iu

M2
P

ξ

(1 + 6ξ) , iMχ1,t = iξt

M2
P

iM4 = it

M2
P

2ξ(1 + 3ξ)
(1 + 6ξ) , iMh,t = − i

2M2
P

(
1− s2 + u2

t

)
.

(3.14)

Considering scattering in the center of mass, we have s = 4Ẽ2, t = −2Ẽ2(1 − cos θ) and
u = −2Ẽ2(1 + cos θ), where Ẽ is the energy in the Einstein frame, related to the energy in
the Jordan frame as Ẽ ≈ MP

φ1
√
ξ
E. The resulting overall amplitude is

iM = − iE
2

φ̄2
1

(8(1 + 3ξ)
1 + 6ξ (1− cos θ) + 4(1 + cos θ)

ξ(1− cos θ)

)
, (3.15)

exactly the same as the amplitude (2.27), calculated in the Jordan frame.
As before, this amplitude scales like E2/φ̄2

1 when ξ is large. In contrast, a scaling
ξE2/φ̄2

1 ∼ ξ2Ẽ2/M2
p requires the existence of an amplitude that scales like ξ2 in the Einstein

frame, due to the factor ξ in the relation between the two frames. Nevertheless, as we can
see from the vertices (3.12), the only way to obtain an amplitude that scales as ξ2 in the
Einstein frame is to use the χ1χ

2
2 vertex two times, due to its second term. This has been

done when computingMχ2,u andMχ2,u, but in these two cases, the χ1 line attached to the
vertex is external, so p2

χ1 is equal to zero and the dangerous contribution vanishes. Another
possibility would be to consider χ2, χ2 → χ2, χ2 scattering. In this case, the χ1χ

2
2 can arise

two times with an internal χ1 line. But this contribution would arise in all of the s, t
and u channels, with each amplitude being proportional to the corresponding Mandelstam
variable. So in the end, we get an expression proportional to s+ t+u = 0 since the scalars
we consider are massless. In fact, when considering χ1, χ1 → χ1, χ1 or χ2, χ2 → χ2, χ2
scattering, the only non vanishing amplitudes are the ones due to graviton exchange:

iMh̃ = i

2M2
p

(
t2 + u2

s
+ u2 + s2

t
+ s2 + t2

u

)
(3.16)

leading in terms of E and θ:

iMh̃ = − iE

φ̄2
1ξ

(3 + cos2 θ)2

1− cos2 θ
. (3.17)

Similarly, the 2→ 2 amplitudes with external gravitons cannot scale as ξ2 in the Einstein
frame. Once the canonically normalised scalars are introduced, the three-point interactions
χ2
ih have no ξ dependence. There are four-point interactions χ3

ih, but none of them scale
as ξ2 in the Einstein frame.
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4 Palatini formulation

In the so-called Palatini or first order formulation [18] of GR the metric gµν and the
connection Γρµν are treated as independent variables and the standard Levi-Civita relation
relating the two arises as an equation of motion. Although the two formulations are entirely
equivalent within GR, in the case of scalar fields non-minimally coupled to gravity the two
formulations differ leading to different results [19]. In this section we shall analyse the
unitarity issue of Higgs inflation in the framework of the Palatini variation. We start again
with the action

S =
∫
d4x
√
−g

{1
2M

2
PΩ2R(g, ω)− |∂H|2

}
, (4.1)

where the Ricci scalar is a function of the independent metric gµν and spin connection ωµab.
Again, Ω2 = 1 + 2ξ

M2
P
|H|2.

Varying the action with respect to ωµab we obtain

δS = 1
2M

2
P

∫
d4x eeµae

ν
bΩ2

(
Dµδω

ab
ν −Dνδω

ab
µ

)
= 1

2M
2
P

∫
d4x eeµae

ν
bΩ2

(
2∇µδω abν + T ρµνδω

ab
ρ

)
, (4.2)

having introduced the torsion. Integrating by parts we arrive at

δS = 1
2M

2
P

∫
d4x e

{
Ω2
(
T ν
ab + T ρ

ρae
ν
b − T σσbeνa

)
−
(
∂aΩ2eνb − ∂bΩ2eνa

)}
δω abν , (4.3)

which gives the equation

Ω2
(
T ν
ab + T ρ

ρae
ν
b − T σσbeνa

)
= ∂aΩ2eνb − ∂bΩ2eνa . (4.4)

This equation is solved to give the torsion

T ν
ab = −1

2Ω−2
(
∂aΩ2 eνb − ∂bΩ2 eνa

)
. (4.5)

Next, we can use this to express the contorsion tensorKµνρ = −1
2(Tµνρ−Tνµρ+Tρµν) = Tνρµ

and insert it in the spin connection, written as a sum of the torsion-free part ω abµ (e) =
2eν[a∂[µ e

b]
ν] − e

ν[a e b]σeµc∂νe
c
σ and Kµνρ as

ωµνρ = ωµνρ(e) +Kµνρ . (4.6)

This expression gives the spin connection in terms of e and Ω2(H). Inserting it into the
expression for R(e, ω) = eµae

ν
b (∂µω abν − ∂νω abµ + ω acµ ω bνc − ω acν ω bµc) we finally obtain

R = R(g) + 2∇µK µν
ν +K µσ

µ K ν
νσ −K µσ

ν K ν
µσ , (4.7)

where R(g) is the standard metric Ricci scalar. Considering now the K-part of the action
we have∫

d4x
√
−gΩ2∇µK µν

ν = −
∫
d4x
√
−g∂µΩ2K µν

ν = −3
∫
d4x
√
−gΩ−2(∂Ω2)2, (4.8)
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while

K µσ
µ K ν

νσ −K µσ
ν K ν

µσ = −3
2Ω−4(∂Ω2)2 . (4.9)

Thus, finally, we have the following Palatini form of the action

S =
∫
d4x
√
−g

{
1
2M

2
PΩ2R(g) + 3

4M
2
P

(∂Ω2)2

Ω2 − |∂H|2
}
. (4.10)

Note that the second term in the action is up to a sign equal to the term that would arise
in the metric formulation if we were to make a Weyl rescaling that would take us to the
Einstein frame. In fact, if we make a Weyl rescaling gµν = Ω2ḡµν in (4.10) the extra term
generated will exactly cancel out this term and we will obtain a standard Einstein frame
Palatini action of the form M2

P

∫
d4x
√
−ḡ

{
R(ḡ)/2− Ω−2|∂H|2

}
. Thus, the appearance of

such a term should have been anticipated.
We shall now proceed to eventually analyse the general behaviour of scattering am-

plitudes calculated on the basis of (4.10) as we did in the case of the metric formulation.
Staying in the Jordan frame we introduce a Higgs/inflaton background φ1 � MP /

√
ξ as

φ1 = φ′1 + φ1. Again we have

Ω−2 ≈ M2
P

φ
2
1ξ

(
1− 2φ

′
1
φ1

+ 3φ
′
1

2

φ
2
1
− φ2

2

φ
2
1

)
. (4.11)

From here on the analysis is entirely analogous to the analysis carried out in the metric
case with the additional contributions of the extra term. The resulting contributions that
are relevant to φ1, φ2 → φ1, φ2 scattering are (denoting with the superscripts (P) and (M)
the corresponding Palatini and metric contributions)

L(P )
kinφ′

1
= L(M)

kinφ′
1

+ 3ξ(∂φ′1)2 = −1
2(∂φ′1)2

L(P )
φ′

1
3 = L(M)

φ′
1

3 −
6ξ
φ1
φ′1(∂φ′1)2 = φ′1

φ1
(∂φ′1)2

L(P )
φ′

1φ
2
2

= L(M)
φ′

1φ
2
2

+ 6ξ
φ1
φ′1(∂φ′1 · ∂φ2) = φ′1

φ1
(∂φ′1 · ∂φ2)

L(P )
φ′

1
2φ2

2
= L(M)

φ′
1

2φ2
2
− 18ξ

φ
2
1
φ′1φ2(∂φ′1 · ∂φ2)− 3ξ

φ
2
1
φ2

2∂φ
′
1)2 = −18ξ

φ
2
1
φ′1φ2(∂φ′1 · ∂φ2)

L(P )
φ′

1
2h̃

= L(M)
φ′

1
2h̃
− 3ξ1/2

φ1
(∂µφ′1)(∂νφ′1)

(
h̃µν −

1
2ηµν h̃

)

= −3ξ1/2

φ1
φ′1

2
(
∂µ∂ν h̃µν −�h̃

)
+ 1
ξ1/2φ1

(∂µφ′1)(∂νφ′1)
(
h̃µν −

1
2ηµν h̃

)
.

(4.12)

Note that contrary to the metric case φ′1 is already canonically normalised and there is no
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need to introduce new scalars. The resulting interaction vertices are

Vφ′
1φ

2
2

= − 2i
φ1

(pφ21 · pφ22) , Vφ′
1

2φ2
2

= 6iξ
φ

2
1

(pφ′
11 + pφ′

12) · (pφ21 + pφ22)

Vφ′
1

3 = − 2i
φ1

(
pφ′

11 · pφ′
12 + pφ′

11 · pφ′
11 · pφ′

13 + pφ′
12 · pφ′

13
)

V µν

φ′
1

2h̃
= 6iξ1/2

φ1
Aµν(kh̃) − i

ξ1/2φ1
Bµν(pφ′

11, pφ′
12)

V µν

φ2
2h̃

= −2iξ1/2

φ1
Aµν(kh̃)− i

ξ1/2φ1
Bµν(pφ21, pφ22)

(4.13)

where all momenta are considered incoming and

Aµν(k) = kµkν − k2ηµν and Bµν(p1, p2) = pµ1p
ν
2 + pν1p

µ
2 − η

µν(p1 · p2) . (4.14)

Using these interaction vertices, the scalar propagator i/p2 and the α = 1/2 graviton
propagator (3.13) we proceed to calculate the amplitudes corresponding to the relevant
tree diagrams that contribute to φ′1, φ2 → φ′1, φ2 scattering. As previously, we have the
quartic contact interaction (M4), φ2-exchange in the s and u channels (Mφ2,s andMφ2,u),
φ′1-exchange in the t channel (Mφ′

1,t
) and graviton exchange in the t channel (Mh̃,t).

Labelling the momenta as φ′1(p1)φ2(p2) → φ′1(p3)φ2(p4) and expressing the amplitudes in
terms of Mandelstam variables s = (p1 + p2)2, t = (p1− p3)2, u = (p1− p4)2, we obtain the
amplitudes

iM4 = −18iξt
φ

2
1
, i (Mφ2,s +Mφ2,u) = it

φ
2
1
, iMφ′

1,t
= it

φ
2
1

iMh̃,t = i

φ
2
1

(
(18ξ + 2)t+ s2 + u2 − t2

2ξt

)
.

(4.15)

In the center of mass frame, denoting by θ the angle between ingoing and outgoing φ′1, we
have t = −2E2(1 − cos θ), u = −2E2(1 + cos θ) and s = 4E2. Thus, the overall Jordan
frame scattering amplitude is

iM = − iE
2

φ
2

(
8(1− cos θ) + 4(1 + cos θ)

ξ(1− cos θ)

)
. (4.16)

It has been also checked that the same calculation carried out in the Einstein frame yields
exactly the same result. Both amplitudes, in the metric and Palatini formalism, scale in
a similar way, proportionally to E2/φ

2
1 when ξ is large. But this time, the absence of a

factor ξ in this scaling seems less trivial, since it is due to the cancellation of ξ-proportional
terms betweenM4 andMh̃,t. However, doing the calculation in the Einstein frame yields
3-point vertices scaling like

√
ξ and 4-point vertex scaling like ξ, from which it is clear that

the 2 → 2 scattering amplitudes cannot scale like ξ2 or higher. With the factor 1/ξ that
appears when replacing the Einstein frame energy by the Jordan frame energy, this means
that 2→ 2 scattering amplitudes scale proportionally to at most E2/φ̄2

1.
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5 Inflation in the presence of an R2 term

As it was mentioned in the introduction a most attractive feature of Higgs inflation is the
fact that cosmological inflation is directly related to particle physics, the role of the inflaton
being taken up by the Higgs field itself. There is an equally appealing philosophy associ-
ating inflation directly to gravity, realised in the Starobinsky model [20], which features a
quadratic Ricci scalar curvature term in the action, the role of the inflaton being taken up
by the extra scalar mode included in the gravitation multiplet. The Starobinsky model of
inflation is in good agreement with existing cosmological data [2]. Appart from the simple
Starobinsky model a number of models have also been proposed featuring both a Higgs-like
scalar field, non-minimally coupled to gravity, in the presence of an R2 term [21, 22]. It is
worthwhile to discuss the behaviour of inflaton scattering amplitudes in this class of models
as well.

Starting with the very simple case of the Starobinsky model in the metric formulation,1

the action can be expressed in terms of the auxiliary scalar χ as

S =
∫
d4x
√
−g

{1
2M

2
PR+ α

4R
2
}

=
∫
d4x
√
−g

{1
2M

2
PΩ2R− α

4χ
4
}

(5.1)

with Ω2 = 1 + α
M2
P
χ2. Going to the Einstein frame by a Weyl rescaling gµν → Ω−2gµν , we

obtain the action in the form

S =
∫
d4x
√
−g

{
1
2M

2
PR−

3M2
P

4Ω4 (∂Ω2)2 − αχ4

4Ω4

}
. (5.2)

Introducing a canonically normalised scalar ρ through

dρ = α
√

6
MP

χdχ

1 + α
M2
P
χ2 =⇒

ρ =
√

6MP

2 ln
(

1 + αχ2

M2
P

)

χ2 = M2
P

α

(
exp

( 2ρ√
6MP

)
− 1

) (5.3)

we have a canonical scalar ρ, minimally coupled to gravity, with a potential

V (ρ) = M4
P

4α

(
exp

(
2ρ√
6MP

)
− 1

)2

exp
(

4ρ√
6MP

) . (5.4)

This potential exhibits an inflationary plateau in the region 2ρ�
√

6MP . Setting ρ = ρ′+ρ,
where 2ρ �

√
6MP (this corresponds to a χ-background χ � MP /

√
α), we see that the

potential is flat and there is no ρ′-mass or any ρ′3, ρ′4 interactions. Therefore, the only
interaction is the minimal gravitational interaction ρ′2h. Computing the corresponding
amplitude for inflaton scattering2 ρ′ ρ′ → ρ′ ρ′, we obtain

iM = − iE
2

αχ2
(3 + cos2 θ)2

(1− cos2 θ) , (5.5)

where E is the Jordan-frame energy and θ is the incoming/outgoing ρ′ angle. Note that
αχ2 �M2

P .
1Note that in the Palatini variation of the Starobinsky model there is no propagating scalar degree of

freedom [21, 22].
2This is exactly the same for χ1 χ1 → χ1χ1 through Vχ2

1h
in the Einstein frame.
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5.1 Palatini Higgs inflation in the presence of an R2 term

Moving next to the more involved case of Higgs inflation in the presence of an R2 term,
we start with the action

S =
∫
d4x
√
−g

{1
2
(
M2
P + 2ξ|H|2

)
R− |∂H|2 + α

4R
2
}
, (5.6)

with R = R(g, ω), aiming at analysing scattering in the Einstein frame in the framework
of the Palatini variation.3 The action can be set in the auxiliary scalar form as

S =
∫
d4x
√
−g

{1
2M

2
PΩ2R− |∂H|2 − α

4χ
4
}
, (5.7)

where
Ω2 = 1 + 2ξ

M2
P

|H|2 + α

M2
P

χ2 . (5.8)

Going to the Einstein frame through a rescaling gµν → Ω−2gµν , we obtain

S =
∫
d4x
√
−g

{
1
2M

2
PR−

1
Ω2 |∂H|

2 − αχ4

4Ω4

}
. (5.9)

Variation with respect to the auxiliary χ gives an algebraic equation with the solution

χ2 = 2|∂H|2
(
M2
P + 2ξ|H|2

)[
M4
P + 2ξM2

P |H|2 − 2α|∂H|2
] . (5.10)

Again, we proceed introducing a background in the φ1 direction. Focusing on φ′1 φ2 →
φ′1 φ2 scattering, we still have the relevant terms that we had in the Palatini-Einstein-frame
analysis we made in the absence of the R2 term but we also have the extra terms arising
from χ2 and χ4. Using (5.10) and keeping relevant terms up to second order, we obtain

χ2 ≈ 1
M2
P

(
(∂φ′1)2 + (∂φ2)2

)
. (5.11)

Similarly, for Ω−2 we have

Ω−2 ≈ M2
P

ξφ
2
1

(
1− 2φ

′
1
φ1

+ 3φ
′
1

2

φ
2
1
− φ2

2

φ
2
1
− α

ξM2
P

(∂φ′1)2

φ
2
1
− α

ξM2
P

(∂φ2)2

φ
2
1

)
, (5.12)

while, for Ω−4 ≈M4
P /ξ

2φ
2
1 the constant term suffices. Without much effort we can see that

the only α-dependent term that can contribute to scattering is
α

2ξ2φ
4
1
(∂φ′1)2(∂φ2)2 = α

2M4
P

(∂χ1)2(∂χ2)2 , (5.13)

written also in terms of the canonically normalised scalars

χ1 = MP

ξ1/2φ1
φ′1, χ2 = MP

ξ1/2φ1
φ2 . (5.14)

3Having checked explicitly the frame-independence of the calculated scattering amplitudes in our analysis
of Higgs inflation, we restrict our study of Palatini-R2 inflation in the simpler Einstein frame.
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The corresponding contact interaction quartic vertex is

Vχ2
1χ

2
2

= 2iα
M4
P

(pχ11 · pχ12) (pχ21 · pχ22) . (5.15)

The new vertex modifies the result (4.16) as

iM = − iE
2

φ
2

(
8(1− cos θ) + 4(1 + cos θ)

ξ(1− cos θ)

)
+ 2iαE4

ξ2φ
4
1

(1− cos θ)2 , (5.16)

where again E is the center of mass energy in the Jordan frame and θ the angle between
the incident and the outgoing φ1.

5.2 Metric Higgs inflation in the presence of an R2 term

We start again with the action (5.6) rewritten in terms of the auxiliary scalar χ as

S =
∫
d4x
√
−g

{1
2M

2
PΩ2R(g)− |∂H|2 − α

4χ
4
}

(5.17)

in the framework of the metric formulation. Again,

Ω2 = 1 + 1
M2
P

(
2ξ|H|2 + αχ2

)
. (5.18)

Going to the Einstein frame through gµν → Ω−2gµν , we obtain

S =
∫
d4x
√
−g

{
1
2M

2
PR−

3M2
P

4Ω4 (∂Ω2)2 − 1
Ω2 |∂H|

2 − αχ4

4Ω4

}
. (5.19)

Introducing a background in the φ1-direction

φ1 = φ′1 + φ1 with φ1 �MP /
√
ξ , (5.20)

we have

Ω−2 ≈ M2
P

ξφ
2
1

(
1− 2φ

′
1
φ1

+ 3φ
′
1

2

φ
2
1
− φ2

2

φ
2
1

)(
1 + α

ξ

χ2

φ
2
1

)−1

Ω−4 ≈ M2
P

ξφ
2
1

(
1− 4φ

′
1
φ1

+ 10φ
′
1

2

φ
2
1
− 2φ

2
2

φ
2
1

)(
1 + α

ξ

χ2

φ
2
1

)−2

.

(5.21)

The scalar χ, initially introduced as an auxiliary, does propagate, having a non-canonical
kinetic term. Introducing a canonical scalar in its place through

− 1
2(∂ρ)2 = −3α2M2

P

ξ2φ
4
1

χ2(∂χ)2(
1 + αχ2

ξM2
P

)2 , (5.22)

we obtain (ρ(χ = 0) = 0)

ρ =
√

3
2MP ln

(
1 + αχ2

ξφ
2
1

)
or χ2 = ξ

α
φ

2
1

(
e

√
2
3

ρ
MP − 1

)
. (5.23)
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In a similar fashion we replace the non-canonical scalars φ′1 and φ2 with canonically nor-
malised fields χ1, χ2 as

φ′1 =
(

ξ

1 + 6ξ

)1/2 φ1
MP

χ1, φ2 = ξ1/2 φ1
MP

χ2 . (5.24)

At this point we focus on the fact that we aim at calculating the scattering amplitude
χ1, χ2 → χ1, χ2. Note however that part of this amplitude we have already calculated
when we considered metric Higgs inflation in the Einstein frame in the absence of the R2-
term. Thus, what we really aim at here are the extra α-dependent contributions, which
amount to just ρ-exchange in the t channel. To compute this amplitude we need to analyse
the interactions χ2

1ρ and χ2
2ρ that appear in various parts of the Lagrangian. Doing that

we obtain

Lχ2
1ρ

= (1 + 12ξ)√
6(1 + 6ξ)MP

ρ(∂χ1)2 + 18ξ√
6(1 + 6ξ)MP

χ1(∂χ1 · ∂ρ)

Lχ2
2ρ

= 1√
6MP

ρ(∂χ2)2 −
√

6ξ
MP

χ2(∂χ2 · ∂ρ) .
(5.25)

These interaction terms lead to the vertices

Vχ2
1ρ

= − 2i(1+12ξ)√
6(1+6ξ)MP

(pχ11 · pχ12) − 18iξ√
6(1+6ξ)MP

(pχ11 + pχ12) · pρ

Vχ2
2ρ

= − 2i√
6MP

(pχ21 · pχ22) + i
√

6ξ
MP

(pχ21 + pχ22) · pρ .
(5.26)

Apart from the ρ-interaction vertices we also need its propagator. It turns out the ρ is
massive, having a mass

m2
ρ = M2

P

3α =⇒ i

p2 −m2
ρ

. (5.27)

Combining the above we arrive at the corresponding α-dependent part of the amplitude

iM(α)
ρ,t = iα(1− 6ξ)

2M4
P

t2

1− 3αt
M2
P

. (5.28)

In the Einstein-frame center of mass energy Ẽ we have t = −2Ẽ2(1 − cos θ), in terms of
the angle θ between incoming and outgoing χ1. On the other hand, in terms of the Jordan
frame energy E2 ≈ ξφ

2
1

M2
P
Ẽ2, we have

iM(α)
ρ,t = 2iα(1− 6ξ)

ξ2

(
E

φ1

)4 (1− cos θ)2(
1 + 6α

ξ
E2

φ
2
1

(1− cos θ)
) . (5.29)

6 Amplitudes in the electroweak vacuum

In a recent article [17], it has been argued that, in the Palatini formulation, the naive
unitarity violation scale MU = MP /

√
ξ in the electroweak vacuum is flawed, and a claim
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has been made that the correct unitarity violation scale can be deduced from the amplitude
in the presence of a large background. The argument is based on an estimation of the
magnitude of the fields φv = 〈φ2〉1/2 ∼ E in the interaction volume. The Palatini formalism
action in the Einstein frame is:

S =
∫
d4x
√
−g

{1
2M

2
PR−

1
Ω2 |∂H|

2
}

with Ω2 = 1 + 2ξ|H|2

M2
p

. (6.1)

Here, the unitarity violation scale Λ is deduced by developing Ω−2|∂H|2 to obtain for
instance:

Ω−2|∂H|2 ⊃ ξ

2M2
P

φ2
2(∂φ1)2 , (6.2)

from where we read Λ ∼ Mp/
√
ξ. But with the estimate φ1,2 ∼ E the expansion of Ω−2

starts to fail precisely when the energy approaches Mp/
√
ξ, calling for a different way to

obtain the cutoff Λ.
In the proposal of [17], one uses the estimate for the magnitude of fields φv ∼ E and

the assumption that a background φ̄ � E shall not affect the amplitude, which can in
this case approximate the one in the electroweak vacuum. The amplitude computed in the
presence of a background φ̄� E is then matched with the one in the electroweak vacuum
at φ̄ ≈ E, in some kind of threshold approximation. If this is right, we can take the limit
φ̄1 → E in equation (4.16) as the amplitude in the electroweak vacuum:

iM(P )
φ̄1=0 = −8i(1− cos θ)− 4i(1 + cos θ)

ξ(1− cos θ) . (6.3)

In the limit where ξ is large (and cos θ 6= 1), only the first term remains. Most importantly,
this amplitude does not grow with energy, suggesting that, besides a marginal degree of
violation, unitarity is preserved up to the Planck scale.

Now, in the metric formulation, there are additional terms in the action (3.3), such as:

L12 = −6ξ2φ1φ2
M2
PΩ4 (∂φ1 · ∂φ2) (6.4)

which, if Ω4 ' 1, induces a scale of unitarity violation Λ ∼ Mp/ξ. Indeed, using again
φ1,2 ∼ E, the approximation Ω4 ' 1 is valid up to that scale in the large ξ limit. So
contrary to the case of the Palatini formulation, this estimation for the cutoff Λ seems
consistent and we may accept it.

However, one can apply the same reasoning as before, in order to obtain the amplitude
in the electroweak vacuum from the one in the presence of a large background.4 Doing so,
we take the limit φ̄1 → E in equation (2.27) as an approximation for the amplitude in the
electroweak vacuum:

iM(M)
φ̄1=0 = −8i(1 + 3ξ)

1 + 6ξ (1− cos θ)− 4i(1 + cos θ)
ξ(1− cos θ) . (6.5)

4One should take however into account that the field φ1 is not canonically normalised in the Jordan frame
in the presence of a large background, as we have seen in (2.11), spoiling the estimate of the magnitude of
the fields φv = 〈φ2〉1/2 ∼ E on which the argument of [17] is based on.
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Just as in the Palatini case, the amplitude does not grow with energy, suggesting that
unitarity is preserved up to high scale in the electroweak vacuum.

This contradicts the cutoff Λ ∼ Mp/ξ that was obtained previously. So either this
cutoff is too naive, or the argument to connect amplitudes in the presence of a background
to amplitudes in the electroweak vacuum is not correct. To test this assumption, let us use
it for the following toy Lagrangian:

L = −1
2(∂φ1)2 − 1

2(∂φ2)2 − αM

2 φ1φ
2
2 . (6.6)

In the “electroweak vacuum” φ̄1 = 0, the amplitude for φ1φ2 → φ1φ2 scattering is:

iMexact
φ̄1=0 = − iα

2M2

4E2 + iα2M2

2E2(1 + cos θ) (6.7)

with E the center of mass energy and θ the angle between incoming and outgoing φ1. We
may now expand φ1 around an arbitrary background φ̄1 6= 0. This induces a mass to φ2,
and the amplitude becomes:

iM = − iα2M2

4E2 − αMφ̄
+ iα2M2

2E2(1 + cos θ) + αMφ̄
. (6.8)

Of course, this gives backMexact
φ̄1=0 when φ̄1 = 0. If the argument described above is correct,

we can approximate the amplitude Mexact
φ̄1=0 with the amplitude when φ̄ → E in this last

equation. However, this is clearly wrong as soon as E � αM . Therefore, the validity of
the argument in the more complicated case of Higgs inflation is questionable.

7 Conclusions

In this work, we analysed the ultraviolet behaviour of Higgs inflation models as well as
models with an R2 term, in both the metric and Palatini formulations of gravity. Although
the presence of a large non-minimal coupling introduces interactions that violate tree-level
unitarity at a scale much lower than the Planck scale within the standard electroweak
vacuum, we show that this is not the case in the presence of a large inflaton background.
Indeed all tree-level 4-point scattering amplitudes remain small on-shell at high energies,
lower than the background, which plays the role of the effective ultraviolet cutoff of the the-
ory, taking values up to the Planck scale. Our conclusions are based on the gauge-invariant
and frame-invariant computation of Higgs scattering amplitudes in the framework of both
the standard metric formulation of gravity and the Palatini formulation. No conclusion or
suggestion is made for the transplanckian regime, since purely gravitational tensor mode
scattering has a unitarity bound at MP . Our calculation and conclusions are strictly lim-
ited to tree-level unitarity. Nevertheless, the result suggests that in the presense of a large
background any conclusions on loop-level unitarity based on power counting arguments
within the electroweak vacuum could possibly be modified.
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