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Kurzfassung

Um auf bisher unbekannte Phänomene in der Teilchenphysik zu stoßen, ist es eines
der wesentlichsten Aspekte der Hochenergiephysik, Teilchenbeschleuniger mit sehr ho-
hen Energien (TeV) zu optimieren und diese auch neu zu entwickeln, damit neue Ent-
deckungen gemacht werden können. Für das Erreichen hoher Teilchenenergien und
Luminositäten braucht es vorallem neue Beschleuniger, die größer sind, aber zugleich
enorme finanzielle Kosten verursachen. Deshalb spielen bei der Planung dieser An-
lagen, abseits wissenschaftlicher Notwendigkeit, ökonomische und Energieeffizienz eine
sehr tragende Rolle. In Zukunft ist es das Ziel nicht nur Higgs-Bosonen im hohen Aus-
maß zu generieren, sondern auch Teilchen zu erzeugen, die uns noch völlig unbekannt
sind. Dadurch kann die Masse dieser Teilchen ermittelt werden und gewährt der Men-
schheit aller Wahrscheinlichkeit nach einen Blick hinter das gegenwärtige Standardmod-
ell der Teilchenphysik und öffnet die Tür für bahnbrechende neue Entdeckungen. Seit
dem Bekanntwerden der europäischen Strategie für Teilchenphysik des Jahres 2020 ist
es gleichsam zwingend, dass sich Wissenschaftler unter anderem dem Konzept für die
Entwicklung eines Myonen-Beschleunigers widmen, mit federführender Beteiligung des
CERNs.

Der Vorteil dieses Konzepts ist zum einen, dass Myonen zu den Leptonen zählen und bei
der Kollision die gesamte Schwerpunktsenergie für die Erschaffung neuer Teilchen umge-
setzt wird, was bei Kollisionen mit Hadronen nicht möglich ist. Das macht den Lepto-
nenbeschleuniger bei hohen Energien zu einer sehr präzisen Entdeckungsmaschine. Zum
anderen sind Myonen 200-mal schwerer als Elektronen, woraus folgt, dass Bremsstrahlung
und Synchotronstrahlung vernachlässigt werden können, was wiederum bei Elektro-
nenbeschleunigungen nicht möglich ist. Dennoch weist der Myonen-Strahl nach seiner
Erzeugung noch eine sehr hohe Emittanz auf, die das Divergieren des Strahls antreibt.
Die einzig machbare Möglichkeit, diese Emittanz innerhalb der sehr kurzen Lebenszeit
des Myons zu reduzieren bzw. zu kühlen, beruht auf dem Prinzip der Ionisationsküh-
lung. Vergangene Studien haben nicht optimale Emittanzen erzielt. Deswegen zielt diese
Arbeit darauf ab, die Emittanz des Strahls stufenweise abzukühlen mittels spezifischer
Absorber in sehr hohen Magnetfeldern, bevor er schließlich auf mehrere TeV beschleunigt
wird und der Myonen-Beschleuniger als geeignete Entdeckungsmaschine funktioniert.
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Abstract

Discovering unknown phenomena in particle physics – one of the most essential aspects
of high energy physics, requires optimizing and developing high energy particle accel-
erators, for new discoveries. To be able to reach high particle energies (TeV) at all,
new accelerators are needed that are larger and come with high financial costs. For this
reason, it is very relevant to develop energy efficient and economic accelerators while
continuing progress in that area. One of the most important goals is not only produce
Higgs bosons on a much larger scale than it is possible so far, but also generate com-
pletely unknown particles. This will allow us to determine the mass of these particles
and is likely to give us a glimpse of the physics beyond the Standard Model and there-
fore opening new doors for groundbreaking discoveries. Since the publication of the
European Strategy for Particle Physics in 2020, it is known that scientists are further
working on creating a concept of a new muon accelerator led by CERN.

Advantage of this technology include that muons are leptons and therefore convert the
entire center of mass energy to create new particles during collisions, which would not be
possible in collisions with hadrons. This makes the lepton accelerator to a precision and
discovery machine at high energies. Further, muons are 200 times heavier than electrons.
As a result, bremsstrahlung and synchotron radiation may be neglected, which in turn
cannot be done with electron accelerations. Nevertheless, the muon beam creates a
high emittance after its creation, which drives the divergence of the beam. The only
feasible way to reduce or cool this emittance within the very short lifetime of the muon
is based on the principle of ionization cooling. Past studies have not achieved optimal
final emittance values. Therefore, this work aims at gradually cooling the emittance of
the muons beam by means of specific absorbers inside very high magnetic fields before it
is finally accelerated to several TeV. As a result, the final cooling system should provide
muon beams with the optimal properties required by the muon collider design.
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Chapter 1: Introduction

The idea to accelerate and collide muons was already proposed by G. Budker [1, 2]
in the 1960s and later developed by Skrinsky [3]. Despite the muon’s short lifetime
of 2.2µs, a muon collider can prove to be a very useful technology for expanding our
knowledge of the universe’s beginning. Currently, the most powerful exploration machine
is the Large Hardron Collider (LHC) located at the European Organization for Nuclear
Research (CERN), where particle beams collide at a centre of mass (cm.) energy up to
13TeV for investigation of rare interaction processes in particle physics.

One big issue is that protons are hadrons, which contain quarks and a multiplicity of
gluons. Those are the mediators of the strong force and the interaction particle between
the quarks. Gluons, in turn, can briefly transform into quark-anti-quark pairs, known
in particle physics as sea quarks of the nuclei. It can be seen that a nucleus consists
of numerous complex systems coupled to each other. Therefore the parton distribution
function was introduced, that describes the fragmentation of the energy among the
quark-gluon system. The proton’s energy of 938MeV is relatively high compared to a
single (fictive) quark masses of a few MeV.

For that reason, bounded hadrons seems to be unsuitable for bringing the entire beam
energy to collision. Other types of particles can be used, which are able to propagate
freely in space. For this purpose, leptons such as electrons seem to be suitable. The
most powerful electron-positron accelerator was the Large Electron Positron Collider
(LEP) at CERN. Nevertheless, electrons colliding in a circular collider have a significant
disadvantage. When they are deflected by accelerator specific beam optics, they lose
energy in form of synchrotron radiation described with its dissipation power [4, 5]

P (E, r0) =
e2 · c

6πε0r2
0

(
E

m0c2

)4

. (1.1)

Equation (1.1) illustrates, that deflection of a relativistic particle leads to an energy
loss proportional to m−4, due to emitting photons. The natural constants in equation
(1.1) stand for the elementary charge e = 1.6022 × 10−19 C, the vacuum permittivity
ε0 = 8.8542× 10−12 AsV−1m−1 and the speed of light in vacuum c = 2.9979× 108 ms−1.

6



The cm. energy at LEP was limited to 209GeV (104.5GeV per beam direction), which
only allowed to thoroughly study the electroweak sector of the Standard Model (SM),
in fact the existence of the Higgs particle was not clarified.

Until 2012, there had been an intensive search of the Higgs particle to prove the validity
of the SM. LEP predicted that this fundamental particle must be heavier than 115GeV
[6]. Only with the conversion of LEP to LHC and the following operation, the data
collection analyzes allowed to measure at the two detectors ATLAS [7] and CMS [8] a
particle approximately at 125GeV, which identified as the spin-0 Higgs boson [9].

Nevertheless, the Higgs sector could not be measured precisely and the question still
remains whether there is one or even more Higgs like particles, opening new doors for
physics Beyond the Standard Model (BSM). In 2021, research groups working at the
LHCb experiment could confirm the violation of lepton universality, which is not com-
patible with the current SM [10]. In the same year, researchers from the g-2 experiment
at Fermilab published data [11] showing that the measured anomalous magnetic moment
(g-2) of the muon did not agree with the theoretical expectation and therefore provides
the need to further explore and extend the SM.

For discovering BSM an accelerator is needed that generates novel Higgs involved phe-
nomena, which cannot be proven at the present LHC. An alternative instrument would
be a lepton collider, which brings instead of the electron the 200 times heavier sister
particle (the muon) to collision. As it can be seen in equation (1.1), the synchrotron
radiation reduces for muons by a factor of 10−9 and can be therefore neglected. Thus,
muons could be accelerated to several TeV. The challenges, however, are to catch muons
immediately after their production, bundle and accelerate them within their short life-
time.

The production rate can be described as the product of the luminosity L of a collider
ring and the effective cross section σ:

Ṅ = L · σ. (1.2)

It is worth delving into equation (1.2) in the next two chapters for gaining a better
understanding of short-lived and exotic particle generation created by a µ+µ−-smasher.
This chapter will treat the muon collider’s L precisely to provide a better understanding
of collider beam parameters. Further, the importance of the emittance reduction by
ionization cooling will be underlined, as it is the main topic of this thesis. Prior to the
interaction of the ionization cooling concept, it is worth to to provide the mathematical
background required of this technique.
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1.1 Relativistic kinematics

In accelerator physics, it is common to describe particle motions in space-time. It is
worth to define the mathematical tools for describing it by means of Einstein’s special
relativity [12], which is inevitable needed for this work. A physical quantity is Lorentz
invariant, if it does not change its value under a transformation to any relatively moving
inertial frame. One of such quantities is the Einstein’s relativistic energy-momentum
relation

E2 = m2
0c

4 + p2c2, (1.3)

where the rest mass of the system is expressed by m0c
2, while p is its relativistic mo-

mentum. In special relativity, time, length and masses depend on the speed relatively
to a certain laboratory frame. Thus, the momentum p can be defined by

p = mv = m0γ
v

c
c = m0γβc (1.4)

usually expressed in eV/c units, where β and γ = (1−β2)−1/2 are the velocity depended
Lorentz factors. Energy and momentum can be summarized as

E = γm0c
2 p = βγm0c (1.5)

and satisfy equation (1.3). In the special relativity, a system of energy and momentum
is not described any more in the three-dimensional space, but in in the four-dimensional
Minkowski space, which contains a time component additionally to the three spatial
coordinates. The so-called contravariant four-vector for describing the relativistic mo-
mentum is defined as

pµ =
(
E, pxc, pyc, pzc

)>
=
(
E, ~pc

)> (1.6)

practically also known as the four-momentum of a particle and can be transformed in
any initial frame by Lorentz transformation. The Lorentz-invariant product of such a
four-vector follows the rule of the Lorentz product and is the multiplication of a covariant
and a contravariant four vector

a · b = aµb
µ = gµνa

νbµ =
(
a0 −~a

)(b0

~b

)
= a0b0 − ~a~b, (1.7)

where the indices µ = 0, 1, 2, 3 label the space time coordinates and the metric tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (1.8)
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describes the relationship between covariant and contravariant four-vectors. Equipped
with the technique of special relativity, it is possible to introduce the flux factor

F = 4EaEb(va + vb) = 4(Eapb + Ebpa) = 4
√

(papb)−m2
am

2
b (1.9)

where the right side oft this equation was derived by means of (1.5). It can be seen
that the argument inside the root contains a Lorentz product and a scalar expression of
particle masses, which are both invariant under a specific boost transformation.

1.2 Luminosity

Obtaining an expression for L, it is worthwhile to consider two particle distributions, each
confined in bunches, as illustrated in Figure 1.1. Lets assume these two bunches crossing
at the collision point s. The particle distributions inside the bunches are described by a
Gaussian

ρi(x, y, s,±s0) = Ni ρx,i(x)ρy,i(y)ρz,i(s± s0), (1.10)

for all three spatial directions with Ni (i = a,b) being the number of particles per
bunch.

�y

yb
xb

ya
xa

-s�
s s�

�x

Figure 1.1: Schematic view of a head-on bunch collision, where the particles inside the
bunches are distributed by a Gauss function.

Lets further assume, that the Gaussians of both beams are equally, which follows to

ρx,a(x) = ρx,b(x) =
(√

2πσx

)−1

e
− x2

2σ2x

ρy,a(y) = ρy,b(y) =
(√

2πσy

)−1

e
− y2

2σ2y

ρz,a(z) = ρz,b(z) =
(√

2πσs

)−1

e
− z2

2σ2s .

(1.11)

Since the two bunches are moving towards each other, the overlapping integral depends
not only on the space components but also on the time component. The following
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expression for the bunch luminosity has the form

Lbunch = K

∫
dt d3x ρaρb, (1.12)

where the kinematic factor K is an expression of the velocity of each bunch and can be
derived by equation (1.9) from the previous section:

K = va + vb =
F

EaEb

=

√(
pa
Ea

− pb
Eb

)2

−
(
pa
Ea

)2(
pb
Eb

)2

−
(
papb
EaEb

)2

. (1.13)

By means of the vectorial identity ~a × ~b = ~a2~b2 − (~a~b)2, the kinetic factor becomes
K =

√
(~va − ~vb)2 − (~va × ~vb)2/c2. In the case of head-on collisions and velocities near

to c, each bunch speed can be set to ~va = (0, 0, c)> and ~vb = (0, 0, −c)> and the kinetic
factor reduces to K = 2c. For simplicity, the time element in equation (1.12) can be
expressed by dt = ds0/c and the Lbunch transforms to

Lbunch = 2
NaNb√

2π
6
σ2
xσ

2
yσ

2
s

∫ ∞
−∞

dx e
− x

2

σ2x

∫ ∞
−∞

dy e
− y

2

σ2y

∫ ∞
−∞

ds0 e
− (s−s0)

2

2σ2s e
− (s+s0)

2

2σ2s . (1.14)

By applying the integration rule of
∫∞
−∞ dx exp(−αx2) =

√
π/α, the bunch luminosity

gets its final form of

Lbunch =
N2

4πσxσy
, (1.15)

using Na = Nb = N . For a symmetric Gaussian beam its transverse sizes have equal
values σx = σy = σ⊥. Inside the accelerator, the particles will be accelerated nearly to
the speed of light (β ≈ 1), the expression (1.15) changes to

Lbunch =
N2

4πε⊥,Nβ∗⊥
γ, (1.16)

where the beam size σ⊥ is defined as the product of the transverse beta-function β∗⊥ (at
the collision point) and the normalized transverse emittance ε⊥,N, which properties will
be discussed in detail in chapter 3.

If one considers a collider ring with a circumference C and one single collision point in
the beam line, the time between two bunch collisions is approximately t = C/c. Taking
the decay of the muons into account, the integrated bunch luminosity divided by the
collision time results to

1

C/c

∫ ∞
0

Lbunch dt ∝
∫ ∞

0

N2 dt =

∫ ∞
0

N2
0 e
− 2t
γτ0 dt, (1.17)
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where the particle decay is assumed to decrease exponentially. In this case, N0 describes
the number of particles at the moment of the injection into the collider. In addition,
Einstein’s relativistic time dilation must be included, which increases the mean decay
time τ0 of the muons by γ. Assuming that a fresh bunch is injected into the ring with a
certain repetition rate fr, one finally obtains an expression of

L =
γ2τ0c

2C

N2
0

4πε⊥,Nβ∗⊥
fr. (1.18)

According to this definition, it can be seen that the L increases when β∗⊥ reaches small
values. Nevertheless, β∗⊥ has limited design value at the interaction point, which can be
explained by means of the so called hour glass effect [13]. Before the bunch reaches the
interaction point, the beam size is squeezed to a minimum value σ⊥,0. From there to the
next optical element, no external field acts on the beam, which is also referred to as a
drift. From the interaction point to a certain distance s, β∗⊥ changes in the drift as

β∗⊥(s) = β∗⊥,0 +
s2

β∗⊥,0
, (1.19)

where β∗⊥,0 describes the minimum betatron-function at the collision point. The origin of
equation (1.19) can be derived by the mathematical tools of chapter 3. The transverse
beam width increases parabolic after the collision, and follows to β∗⊥,0 ≈ σz, i.e. the min-
imum beta-function at the interaction point is an expression of a minimum longitudinal
distance σz, which corresponds to the root mean square (rms) bunch length. The bunch
length can be described by means of the longitudinal emittance. It is defined as

εL = σzσδ, (1.20)

where σδ describes the relative momentum spread, assuming negligible longitudinal beam
correlation at the collision point. Using the normalized longitudinal emittance εL,N = γεL
(β ≈ 1), the luminosity for the muon collider finally scales to

L =
γ3τ0c

2C

N2
0σδ

4πε⊥,NεL,N
fr. (1.21)

As it can be seen from equation (1.21), the luminosity depends on various accelerator-
specific parameters.

• High luminosities are achieved when the circumference of the collider ring is kept
as small as possible. The circumference C depends on the strength of the bending
magnets in the collider complex, which rise increases the number of collisions and
hence, the luminosity. By means of the Lorentz force the luminosity is proportional
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to
L ∝ 〈B〉N

2γ2σδ
ε⊥,NεL,N

fr, (1.22)

with 〈B〉 as the average magnetic field of the collider. Increasing beam energies
requires higher magnetic fields. Strong focusing at the interaction point sets fur-
ther challenges for the collider design. It results that the R&D of high magnetic
facilities is inevitable.

• The luminosity also depends on the beam current I ∝ γNfr, as follows

L ∝ 〈B〉 Nγσδ
ε⊥,NεL,N

I (1.23)

• Due to the muon generation from the hadronic shower, the transverse emittance
must be decreased as much as possible, before the beam is injected into µ+µ−

smasher. The process can be ensured by ionization cooling to the beam energies
in the MeV range. However, this process increases the energy spread σE and
therefore the bunch length. Radio frequency (RF) cavities are used to reduce σE
for preventing high rises in σz.

1.3 Muon collider design

The initial design of a possible muon collider has been developed by the previous U.S.
Muon Accelerator Program (MAP) study [14, 15] and will be integrated, investigated
and improved by the internationl Muon Collider Collaboration (IMCC) study. The
pre-accelerator and collider complex is built up in six main structures:

• Proton driver

• Front end

• Cooling channel

• Recirculating linear accelerator

• Accelerator ring

• and Collider.

The arrangement of these main elements is sketched in the Figure 1.2. In the following,
the composition of these components will be briefly discussed.
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Figure 1.2: For the IMCC studies the MAP design will be adapted and further im-
proved. It contains the front end where the muons are produced from a hadronic
shower and further bunched by RF systems. The transverse momenta of the parti-
cles and the emittance of the beam have to be reduced by cooling channels to enable
further beam injection into a LINAC and a ring accelerator.

Proton driver and front end

Target and decay channel: Generating an intense muon beam is a challenging task.
Surrounded by a high solenoid field (∼ 20T), a multi-GeV proton beam is imping into
a target with a power of a few MW [16]. The p+-target interaction creates a hadronic
shower containing negative and positive pions, which further transform in a decay chan-
nel (∼100m) to µ+ and µ−. The high magnetic field in the target area should maximize
the capture of the charged pions, which have high initial transverse momenta. Past
studies [17] suggested Hg [18] and C as possible target candidates, however, more in-
vestigations have to be conducted in order to verify, if those materials withstand an
appropriate operation time.

Buncher: After rejecting high energy particles by means of a chicane channel [19], a
sequence of RF cavities is following, which is confined inside a 1.5T solenoidal field [19].
The RF frequency fRF and the phase are set to a reference particle in the middle of
the initial muon bunch. The RF voltage is increasing, while the fRF decreases, hence
maintaining an adiabatic capture of muons into separated bunches. The length of this
channel is around 30m.

Phase rotator: These 40m long series of cavities set the highest energy particle in the
bunch stationary. A decreasing fRF accelerates the low energy particles in the bunch after
each cavity. In the end of the bunch, all particles should have the same energy, which
means a minimization of the momentum/energy spread. In the end of the channel, the
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initial bunch of muons has separated into 21 bunches of µ+ interleaved with 21 bunches
of µ− [20].

Initial cooling: After the Phase rotator, the beam is matched into an alternating 2.8T
solenoid field in the first cooling channel. Tens of cells are used, with each cell containing
absorber blocks and four RF cavities [20]. The principle of ionization cooling will be
described further in chapter 4. In the past simulation studies [19] on initial cooling
Lithium-Hydrate (LiH) has been used as absorber material. However, other studies also
completely exclude the initial cooling sector because of longitudinal emittance growth
and to place the charge separator or the 6D-cooling channel straight after the phase
rotator [21].

Cooling

Charge separator and pre-merge 6D-cooling: After the front end channel, the
beam will be divided into two separate charges by means of bent solenoids [22]. Due
to the dispersion, the particles are separated according to their momenta. Therefore,
muons with higher energies will be transported through longer absorber paths to ensure
more cooling in all 6 phase space directions than for low energy muons. A special target
geometry and bending optics has to be designed. In the past, an ionization cooling
ring (RFOFO) [23], a cooling (Guggenham) channel [24] and a helical cooling channel
(HCC) [25, 26] have been taken into account. Another possible option is a helical FOFO
snake channel design [27], where charge separation is not needed. The choice of the most
appropriate 6D-cooling design is one of the subjects of the ongoing IMCC study.

Bunch merge: Due to equation (1.21), the luminosity is proportional to the squared
number of muons in one bunch. The bunch merge servers to combine the 21 bunches from
the front end to one single bunch of each charge. A >100m long bunch merge contains
dozens of RF cavities [28, 29]. At first, the 21 bunches are merged longitudinally into
seven bunches. Afterwards, each of those bunches is kicked by a kicker magnet into 7
trombones [30] for a transverse merge. Each trombone has a different arc length, such
that all bunches reach a specific re-combination point (funnel) at the same time.

After merge 6D-cooling and final cooling: After the bunch merge, the longitudinal
as well as the transverse emittance grow by the factor of 10. Therefore, the beam has to
be cooled again with an additional 6D-cooling channel. In the after-merge-cooler, a lower
emittance compared to the emittance in the pre-merge channel is achieved [29]. The last
stage in the cooling section is the final cooling. It combines several cells, with each cell
containing liquid hydrogen absorber in a high magnetic field solenoid (30-50T), followed
by accelerating and phase focusing RF cavities. The goal is to decrease the transverse
emittance as low as possible, for maintaining high L and low machine sizes and therefore
minimizing material costs.
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Accelerator and collider ring

Acceleration: The cooled bunch has a very low energy (few MeV) and a large longitu-
dinal emittance after the cooling section, i.e. the length of the bunch is wide. Therefore,
the beam must be first accelerated with normal conducting (NC) cavities at very low
frequencies, whereby the frequency can be increased while reaching higher energy. At
the energy of about 1GeV, the beam will be guided into a super conducting radio
frequency (SRF) Recirculation Linear Accelerator (RLA) [31], which has a dog bone
geometry. This kind of accelerator is unique and offers a factor two higher RF efficiency,
compared to a corresponding race track Linac. After reaching 100GeV of beam energy,
the beam is gaining its final colliding energy (several TeV) with a Rapid Cycling Syn-
chrotron (RCS) [32]. Since it is currently not possible to use superconducting bending
magnets for ramping, NC-magnets have to be used, where lower fields will be achieved,
which leads to a larger circumference of the ring accelerator.

Collider ring: As one can see from the equation (1.21), the aim is to minimize the
circumference of the collider for obtaining high luminosities. Due to the high rigidity of
the beam, the field strength in the collider’s bending magnets also has to be increased.
Assuming a system consisting solely of deflecting magnets, the length of all magnets can
be expressed as

L[m] = 2π
p/e[kg m s−1 C−1]

B[T]
⇒ L[km] ≈ 21

E[TeV]

B[T]
(1.24)

I.e. the collider size strongly depends on the development of super conductor technology
in the future. Considering the possibility to build 10T arcs, a 28.5TeV muon collider
would have a circumference of approximately 30 km which would be similar to one of
of the LHC. The usage of exiting collider infrastructure, which is available at CERN,
would therefore minimize construction costs and maintain smaller ecological footprint.
Additionally, the radiation effects have to be strongly considered. On one hand, due the
products of the muon decay

µ+ −→ νµ + e+ + νe

µ− −→ νµ + e− + νe,
(1.25)

ultra high energetic electrons [33] can disturb the superconducting properties of the
collider environment, which therefore has to be shielded. On the other hand, due to
the high decay rate, the neutrino radiation cannot be neglected anymore. Potential
contamination of surrounding area and safety issues need to be considered. Further
studies have to be done for neutrino flux mitigation. One possible solution is beam
wobbling [34, 35].
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Table 1.1: Parameter list defined by the international muon collider collaboration [36].

Parameter Symbol Units 3TeV 10TeV 14TeV
Luminosity L 1034 cm−2s−1 1.8 20 40
Muons/bunch N 1012 2.2 1.8 1.8
Repetition rate fr Hz 5 5 5
Beam power Pbeam MW 5.3 14.4 20
Collider circumference C km 4.5 10 14
Average bending field 〈B〉 T 7 10.5 10.5
Norm. long. emittance εL,N MeVm 7.5 7.5 7.5
Energy spread σE/E % 0.1 0.1 0.1
Bunch length σz mm 5 1.5 1.07
Interaction point beta β mm 5 1.5 1.07
Norm. trans. emittance ε⊥,N µm 25 25 25
Interaction point beam size σ⊥ µm 3.00 0.90 0.63

1.4 Thesis goal and structure

After deriving the luminosity of a muon collider, this chapter sketched the infrastructure
of such a novel machine. The goal of this overview was to introduce the reader about
the feasibility and technical challenges of this machine.

Chapter 2 discusses the motivation of such a multi TeV collider. The main focus lays
on the Higgs particle and its field, which gives massive particles their mass and could
possible interact with unknown particles like dark matter. Also the Higgs self interactions
by one subject of the investigation, which gives insights into the shape of the Higgs
potential. Furthermore, the possible operation of a muon collider of a Higgs factory will
be presented, when the muon collider’s cm. energy operates at the Higgs resonance.

The theoretical background of this work is based on the behavior of muons inside
solenoids. Chapter 3 introduces the magnetostatic of these optics and describes the
single particle dynamic in it. This will be further projected on an ensemble of muons,
where a beam can be defined by specific parameters in the phase space. This chapter
goes into a precise explanation of the transverse emittance, which is one key parameter
for the final cooling technique.

For reducing the emittance of a muon beam, a cooling technique especially adapted
for muons will be introduced, which is also known as ionization cooling. Back in the
days, this method was rarely used in the accelerator physics field and therefore ionization
cooling is hardly to find in academical books and publications. For this reason, chapter 4
attempts to describe especially the beam dynamics of ionization cooling and the physics
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behind a final cooling cell. An expression described the change of the emittance will be
presented, denoted as the cooling equation.

Tests with the simulation code ICOOL bring the opportunity to implement the appli-
cation of liquid deuterium as absorber material in the ICOOL’s legacy code, because it
has similar properties to liquid hydrogen and it was never foreseen in previous cooling
simulations. Due to the simultaneous transverse focusing of solenoids, the transverse
beam parameters are coupled. Chapter 5 describes a decoupling technique, which will
be applied on the ICOOL simulations.

Before demonstrating emittance reduction using ICOOL, chapter 6 will describe the
solution of the cooling equation by a numerical approximation technique, since it is not
possible to solve it analytically. At next, the muons will be tracked in a hard edge
solenoid with an absorber inside and the beam parameters will be additionally analyzed
by two different codes. One analysis technique is based on a rotating frame, which causes
a decoupling of the beam parameters and makes it easy to calculate the emittance. The
other code comes from the ICOOL package. Both techniques will be compared with the
theoretical prediction and discussed in this chapter. In the final section, the impact of
the absorber windows on the emittance will be explored with ICOOL and interpreted.

Finally, one reaches the last and most practically advanced part of this thesis. Chapter
7 introduces the complexity of real solenoids, which have end field effects next to their
entrance and exit. A Transfer matrix approach for these kind of solenoids, which mo-
tivates the idea of creating a similar lattice matrix by using a sequence of small hard
edge field matrices. The main goal of this chapter is to minimize the beam correlation
in the absorber area inside the solenoid, which can be achieved by with optimizing the
end fields. This will be performed by an analytic model and later applied for the used
ionization cooling code. It will be discussed, if it is possible to cool a muon beam below
the lowest reached normalized transverse emittance from the past MAP studies [37].
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Chapter 2: Physics potential

In the 20th century, particle physics had explained many phenomena by means of the
Quantum Electrodynamic (QED) [38–41] and the Quantum Chromodynamic (QCD)
[42]. These two mechanism, known as the electromagnetic and strong force, were not
sufficient enough to explain multiple physical phenomena, such as the radioactive beta
decay. For this type of radioactivity, the nuclear charge number of an atom is changed
by emitting an electron (e−)/ positron (e+) and an electron-anti-neutrino (νe)/ electron-
neutrino (νe).

Already in the 1930s, E. Fermi [43] attempted to explain the beta decay by a 4-fermion-
point interaction caused by a short-lived and heavy exchange particle. This transmitting
force is known as the weak interaction, whereby C. S. Wu made a great scientific con-
tribution by discovering experimentally the non-conserved parity of the beta decay [44],
theoretically predicted by T. D. Lee [45] one year before Wu’s famous experiment. For-
mally, the parity transformation is a sign flip of the three spatial coordinates.

With the hard efforts of C. Rubbia [46, 47] and S. Van der Meer [48], they have been
discovered at CERN’s Super Proton Synchrotron (SPS) two charged W+/− and one
neutral Z0 spin-1 vector bosons, during proton anti-proton collisions. The properties of
the Z0 boson additionally lead to a mixture of the electromagnetic and weak interaction,
which was already predicted by S. L. Glashow [49], A. Salam [50] and S. Weinberg
[51] and combined these two forces to the origin of the names Glashow-Salam-Weinberg
(GSW) electroweak unification.

In those times, the masses of these new vector bosons could not be explained. Also the
mechanism which gives the fermions their mass has not been inquired, because it was a
matter of course that the terrestrial life is “solid” and “compact”. Nevertheless, the young
theorists P. W. Higgs [52] and F. Englert with R. Brout [53] independently searched for
a new mathematical unification. They created a theoretical technique, where massive
particles generate their masses by coupling with a certain field, also know as the Brout-
Englert-Higgs (BEH) field. This kind of mass generation is called the BEH mechanism.
This chapter provides motivation for the investigation of building a muon collider by
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some basic analytical calculations and approximations from the particle physics point of
view.

2.1 Cross section

The effective cross section is an expression that describes the probability of an interaction
between approaching particles. Consider type a particles propagate with a flux φa

through a region with density nb (particles per unit volume), the interaction rate in this
region can be expressed as

rb = σ · φa, (2.1)

where σ describes the interaction probability between particle a and b. Lets further
assume a finite time δt, where a-particles pass with velocity va through a defined surface
A with δNb = nb(va + vb)Aδt particles of type b moving with velocity vb in opposite
direction, visualized in Figure 2.1 on the left side.

�t�va+vb�

A
�

a
b

Figure 2.1: The left sketch shows colliding particles which are interacting in a small
region. The right figure illustrates the projected view of a penetrating particles,
where an interaction only takes place, when it is imping into the cross section σ,
placed around a target particle.

An interaction only takes place, if particle a penetrates through the surface σ (Figure
2.1 right), which is known as the cross section. In classical physics, σ is π(ra + rb)2,
which is an expression of the colliding particles’ radii ra, rb. In particle physics, σ comes
from a quantum mechanical approach described by an average value, that still allows an
interaction, by exchanging a virtual particle. For that reason, the interaction probability
can be described by

δP =
δNb · σ
A

= nb(va + vb)σ δt, (2.2)
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which further results to an interaction rate

ra =
δP

δt
= nb(va + vb)σ. (2.3)

Generalizing the rate ra for a finite number of a-particles for a beam with Na = na · V
particles it further develops to a generalized rate

r = ra na V = (nav)(nbV )σ = φaNb σ (2.4)

with v = va +vb and is consistent with definition (2.1). Normalizing the interaction rate
for one particle per volume leads to the transition matrix element

Γfi =
va + vb
V

σ, (2.5)

which can be derived by Fermi’s golden rule [41, 43]. Normalizing this equation using
the one particle per volume approach na = nb = 1/V , where V can be described by an
unitary cell, the cross section scales to

σ =
Γfi

va + vb
. (2.6)

Defining a suitable expression for the transition rate requires a complicated derivation,
which would be beyond the scope of this work. It can be verified by means of reference
[54], allowing to describe the cross section by the following structure

σ =
1

4EaEb

1

(2π)2

pf
4
√
s

∫
|Mfi|2 dΩ, (2.7)

in case of a collision in the cm. frame, where Ex (x = a,b) describes the energy of
particle a and b in the cm. frame, the cm. energy of the system

√
s = Ea +Eb and the

final momentum pf of the particle after its collision. The expression within the solid
angle Ω integral stands for the Lorentz invariant transition matrix element Mfi.

The value 4EaEb in equation (2.7) can be expressed by the flux factor (1.9) and the
Lorentz invariant properties of equation (2.7). When colliding particles have the same
initial momentum pi, the flux factor can be also expressed as

F = 4EaEb

(
pi
Ea

+
pi
Eb

)
= 4pi(Ea + Eb) = 4pi

√
s (2.8)

with the cm. energy Ea +Eb =
√
s. Thus, the cross section of the Lorentz-invariant two
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body collision can be defined as

σ =
1

64π2s

pf
pi

∫
|Mfi|2 dΩ. (2.9)

2.2 BEH mechanism

Unlike in quantum mechanics, in which the particle are represented as a wave function,
one can use the principle of quantum field theory, in which the particles are described
as excitations of the a quantum field. Instead of the Schrödinger equation (or the Dirac
equation in the relativistic case) the Euler-Lagrange equation is used

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= 0, (2.10)

with the Lagrangian L(qi, q̇i), qi, which is a function of a set of generalized coordinates
qi and q̇i (the dot is the time derivative of qi). In the case of a system of particles with
n generalized coordinates, the Lagrangian can be exchanged by the Lagrange density L
and the generalized coordinates are replaced by the time-space depending fields φi(x

µ)
and forms to

∂µ

(
∂L

∂(∂µφi)

)
− ∂L
∂φi

= 0, (2.11)

where the derivative is defined as

∂µφi ≡
∂φi

∂xµ
. (2.12)

Lets consider the Lagrangian of the Dirac equation

LDirac = iψγµ∂µψ −mψψ (2.13)

with m as the fermion mass, i the imaginary number, ψ the spinor field and γµ as the
gamma matrix. The definition of the gamma matrices in the Dirac-Pauli notation are

γ0 =

(
1 0
0 −1

)
γk =

(
0 σk
−σk 0

)
, (2.14)

where σk (k = 1, 2, 3) represents the Pauli matrices. Equation (2.13) must be invariant
under a U(1) local phase transformation of the field ψ(x) → ψ′(x) = eiqχ(x)ψ(x) with
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the local phase χ(x) and the charge q in the exponent. Nevertheless, in doing so

LDirac → L′Dirac = iψ
′
γµ∂µψ

′ −mψ′ψ′

= ie−iqχψγµ[eiqχψ + iqeiqχ∂µ(χ)]−mψψ
= LDirac − qψγµ∂µ(χ)ψ,

(2.15)

it can be determined, that the Lagrangian of equation (2.13) is not gauge invariant.
Therefore, a covariant derivative and an additional gauge field must be introduced

Dµ = ∂µ + iqAµ

A′µ = Aµ − ∂µχ,
(2.16)

for establishing the invariance, whereby the unwanted term qγµ∂µ(χ) will be finally
canceled. Thus the new gauge invariant Lagrangian for spin-1

2
fermions leads to

LFermion = ψ(iγµ∂µ −m)ψ − qψγµAµψ, (2.17)

with an additional exchange gauge boson, also know as the photon. The expansion
of this expression by introducing the gauge invariant kinetic term FµνF

µν , the QED
Lagrangian for an electron with charge q = −e and the massless interaction photons can
be described by

LQED = ψ(iγµ∂µ −m)ψ + eψγµAµψ −
1

4
FµνF

µν . (2.18)

The local gauge principle is an elegant description of the standard model in QED and
QCD, but the local gauge invariance for massive particles of the weak interaction is
destroyed.

For that reason, Brout, Englert and Higgs introduced a scalar field

LScalar =
1

2
(∂µφ)∗(∂µφ)− V (φ) =

1

2
(∂µφ)∗(∂µφ)− 1

2
µ2φ2 − 1

4
λφ4, (2.19)

where the first term in LScalar is the kinetic term of the scalar field φ, the second term
is an expression of the particle mass µ and the third term is associated with the self
interaction of this scalar field λ > 0. If µ2 > 0, the potential has its minimum at 0
(Figure 2.2 left), but else if µ2 < 0, the potential has two minima at −v and v and one
maximum at 0, which can be seen in Figure 2.2 on the right hand side.
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V(φ)

φ

V(φ)

φ
v-v

Figure 2.2: The scalar field have one minimum for negative µ (left), but two in the
positive values of µ which are known as the vacuum states.

The derivation of this equation (2.19) exhibits the two vacuum states

v = ±
√
−µ
λ
. (2.20)

If one takes the liberty to decide between the two vacuum states, the symmetry is broken.
For the following calculation, the positive value v will be chosen for simplicity.

Lets assume, that in the early beginning of the universe, where all particle were massless,
the scalar potential was not in any minimum state. For simplicity, lets imagine a particle
place on the maximum of the potential and falls spontaneously into one of the minima,
which results in a total break of the system’s symmetry, like it is illustrated in Figure
2.2. Compared to classical mechanics, the particle does not simply remain stationary in
the potential’s valley, but oscillates back and forth around the vacuum state, which can
be regarded as an excitation around this state

φ(x) = h(x) + v. (2.21)

Inserting this new expression with the new excited field h into equation (2.19) leads to

L(h) =
1

2
(∂µh)∗(∂µh)− λ2vh2 − λvh3 − 1

4
λh4 +

1

4
λv4

=
1

2
(∂µh)∗(∂µh)− 1

2
m2
hh

2 + triple + quartic + const,
(2.22)

where 1
2
(∂µh)∗(∂µh) describes the kinetic term of the h-field and mh =

√
2λv2 the mass

of this spin-0 particle. The next two terms describe the cubic and the quartic interaction
of the scalar field, where λv is the coupling constant of the triple and 1

4
λh4 the one of

the quartic interaction. These self interactions can be illustrated as Feynman diagrams
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in Figure 2.3. The constant 1
4
λv4 has no physical meanings and it will be therefore not

considered in the further calculations of this chapter.

h

h

h h

h h

h

Figure 2.3: Cubic (left) and quartic (right) self interaction of the h-field.

In summary, the BEH mechanism is based on the following three techniques:

• spontaneous symmetry break and choice of a specific vacuum state,

• field perturbation at this vacuum state and

• covariant derivative exchange with local gauge transformation subsequently.

This rule helps to understand the generation of electroweak boson and fermion masses,
while the last mentioned one will be explained in detail in the next section.

2.3 Fermionic mass generation

The leptons and quarks generate their masses by coupling to the BEH field, which was
described by H. Yukawa [55]. The fermionic field can be expressed by a left-handed
isospin doublet fL and a right-handed isospin singulett fR. For leptons and down-like
particles, the SU(2)L-U(1)Y Lagrangian yields to

Lfermion = −gf
(
ψLφψR + ψRφψL

)
, (2.23)

where gf is the coupling constant of the fermion-Higgs vertex and φ as a doublet state
of the Higgs field. After the symmetry break the Lagrangian for e.g. leptons scales to

Llepton = − ge√
2

[(
νe e

)
L

(
0

v + h

)
eR + eR

(
0 v + h

)(νe
e

)
L

]
= − ge√

2
[eLeRv + eLeRh+ eReLv + eReLh] .

(2.24)

The same derivations can be done with up-like particles by using the charge conjugation
operator −iσ2 on the isospin states ψ. In general, the fermion mass can be easily
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expressed by the first term in equation (2.24) and yields to mf = −gfv/
√

2, which
further gives an expression of the Higgs-fermion coupling term

gHff = −imf

v
(2.25)

and is needed for some calculations in one of this chapter’s section. Before that, it is
worth to mention, that the BEH mechanism does not generate neutrino masses. Never-
theless, due to neutrino oscillations, a group around the Super-Kamiokande experiment
proofed the appearance of a non-zero neutrino mass [56]. Therefore, the BEH theory
reaches its limits, which is an indication of BSM physics.

2.4 Possibilities for discovering hidden sectors

What can be achieved with µ+µ− collisions are the still undiscovered self interactions
of the Higgs particle, illustrated in Figure 2.3. Due to this, the Higgs sector cannot
be fully confirmed without measuring the cubic and quartic self interaction coupling
constants as well the Higgs-electroweak couplings. Their determination is crucial for
exploring possible different λ-values of equation (2.19), which finally defines the shape
of the Higgs potential [57, 58] in Figure 2.2. Additionally, this would open new doors
for studying the electroweak symmetry break precisely. However, with a future 100TeV
p+p+ collider it would be extremely challenging to measure these kind of scalar self
couplings [59, 60].

A multi-TeV muon collider in the 1035 cm−2s−1 luminosity range provides the indication
of the cubic and quartic self coupling [61]. The only processes, which are able to cre-
ate such self interactions is Higgs-strahlung or at

√
s & 1.5TeV W -boson fusions are

dominated since the cross sections scales with σ ∼ log(s) [61]. This two processes are
depicted in Figure 2.4.

What can still be found out is whether the Higgs is connected to other scalar/vectorial
particles, which are still totally unknown. Since it couples with all mass-bearing SM
particles (except neutrinos), it is possible that Higgs is connected with unknown massive
matter. New stable particles interacting with BEH field would be excellent dark matter
candidates.

It is in a high interest to accelerate the investigation of Higgs physics. As this section
already showed new physics seem to be hidden behind the Higgs particle, which is
also known as the Higgs portal model [62]. After providing several physical motivation
to build a muon smasher, the IMCC tries to proof the feasibility of such a discovery
machine. Nevertheless, there exists a concept of a pre-stage in the low energy range
described in the next section, which would be suitable for a possible test facility.
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Figure 2.4: Two possibilities of cubic Higgs interaction processes at a µ+µ− collision
exist: Right: Higgs-strahlung; Left: W fusion with (or Z0 fusion at higher energy).

2.5 Higgs factory as a pre-stage option

Before constructing a multi TeV muon collider, one option is to work with well cooled
muon beams in the low energy range in form of preliminary stage. Based on the higher
coupling of the muons to the Higgs field (explained in section 2.3) the next paragraphs
proof the feasibility to suggest a muon collider based Higgs factory as a pre-stage facility.
With such a machine it would be able to measure the Higgs’s mass and its decay width
very precisely.

For calculating a s-channel Higgs event, it is necessary to introduce helicity of a particle.
This is a four-vector, which describes the projection of one particle’s or antiparticle’s
spin on its momentum. While a particle/antiparticle has one of the two different spin
states, depends on spherical polar coordinates (θ, φ) of the momentum p. The so called
spinors u↑ and u↓ describe the particles up and down helicity, while v↑ and v↓ are the
spinors of the antiparticle.

In the ultra relativistic limit (E � m), up and down helicity states transforms into
Lorentz invariant right and left handed chiral states:

uR =
√
E


c

s eiφ

c
s eiφ

 , uL =
√
E


−s
c eiφ

s
−c eiφ



vR =
√
E


s

−c eiφ
−s
c eiφ

 , vL =
√
E


c

s eiφ

c
s eiφ


(2.26)

where s = sin(θ/2) and c = cos(θ/2) were written for simplifications. Lets assume a
Higgs creation by a high energy µ+µ− annihilation (a so called s-channel), which further
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decays into the most proper bottom (often called beauty) meson bb pair. It is possible to
construct the matrix element of this interaction process by means of the corresponding
Feynman diagram in Figure 2.5 left.

µ−

µ+
b

b

p1

p2

h

p4

p3

�� ��
�
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b
_

p1
p2

p3

p4

Figure 2.5: Left: The s-channel Feynman diagram illustrates the creation of the Higgs
particle due to µ+µ− annihilation. The Higgs further decays into to the most proper
bb-pair. Right: Scattering kinematic of the muon collision in the φ = 0 plane.

For the matrix element, the four-current of the µ- and b-channel has to be evaluated by
means of the Feynman rules [54]. The Lorentz-invariant currents are composed of the
chiral states multiplied in the opposite flux direction, which are linked to the coupling
strengths with the BEH field from section 2.3. Together with the Higgs propagator the
Matrix element can be formed to

− iMfi =
[
v(p2)

{
−imµ

v

}
u(p1)

] 1

q2 −m2
H + imHΓH

[
u(p3)

{
−imb

v

}
v(p4)

]
. (2.27)

Due to the scalar properties of h, only left-left or right-right handed four-currents are
unequal zero. The factor ΓH in the propagator is the total decay width of the Higgs and
has the value of approximately 1.3MeV [63]. The bar over the first chiral states in each
four-current is the corresponding adjoint spinor of u = u†γ0 or v = v†γ0.

Due to the Lorentz invariant properties of Mfi, it is possible to make the calculation
in the rest frame of the Higgs particle. The spherical polar coordinates for the chiral
states can be evaluated by means of Figure 2.5 right and will be simplified by choosing
the unitary plane φ = 0. Further, the four possible matrix elements scale in the Higgs
frame to

MRR RR = MLL LL = −MRR LL = −MLL RR =
mµmb

v2mHΓH

4E2, (2.28)

where E = mH/2 is the muon energy. By means of the squared matrix element

〈|M |2〉 =
1

4

[
|MRR RR|2 + |MRR LL|2 + |MLL RR|2 + |MLL LL|2

]
, (2.29)
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the cross section for the Higgs s-channel can be evaluated with equation (2.9) and scales
to

σµ+µ−→h→bb =
m2
µm

2
b

16πv4

s

(s−m2
H)

2
+m2

HΓ2
H

, (2.30)

which is a type of the so called Breit-Wigner resonance formula.

In the case of direct Higgs production via e+e− annihilation, the cross section would be
the same like (2.30), but replacing mµ with me. While the electron is 200 times lighter
than the muon, the cross section of the muon smasher would be 4 ·104 higher than what
can be achieved by an electron collider, which motivates the idea of muon driven Higgs
factory.

Nevertheless, it must be taken into account, that muon annihilations and corresponding
b-pair creations can be also mediated by electroweak processes. A positive and negative
muon can create as well a neutral particle like a photon or a Z boson as depicted in the
Feynman diagram in Figure 2.6.

µ−

µ+
b

b

p1

p2

γ/Z0

p4

p3

Figure 2.6: Photon/Z0 boson exchange process for a b-pair production caused by a
µ+µ− annihilation.

For QED like processes, the cross section depends only on the charge of the involved
particles, which is the same for electrons and muons (l± = e±, µ±). A bottom-muon pair
interaction by a photon scales to the cross section of

σl+l−→γ→bb =
4πα2

27s
(2.31)

In such a lepton collider, this b-pair production appears also from a Z0 creation after a
µ+µ− annihilations. The final cross section of this process is a combination of vectorial
cV and axial-vectorial cA leptonic and down-kind coupling constants. Applying the
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Feynman rules, the cross section scales to

σl+l−→Z→bb =
g4
Zm

2
Zs

192π

[(
clV
)2

+
(
clA
)2
] [(

cbV
)2

+
(
cbA
)2
]

(s−m2
Z)

2
+m2

ZΓ2
Z

, (2.32)

where gZ is the coupling of the physical Z0 Boson, ΓZ its decay width and mZ the mass
of the Z0 boson. All used parameters in equation (2.32) are collected in the Particle
Data Group (PDG) [63] .
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Figure 2.7: At the Higgs resonance the collision of muons is several magnitudes higher
than with electrons. The mediation via γ/Z0 is for electrons and muons the same, be-
cause these processes are only charge depended. Higgs created by electron annihilation
could not be detected, due to the high background of the γ and Z0 creation.

Comparing the s-channel of the Higgs creation with the electroweak process in Figure
2.7, it is indeed possible to produce Higgs particles with muons, depicted as the blue line
in the graph. Compared with electron-positron collision, a direct Higgs creation would
never be possible due to the electrons weak Higgs coupling constant ge. Electron colliders
for Higgs factories would only be possible as a linear collision complex in the TeV range
for mitigating synchrotron radiation. Proposed linear colliders like the Compact Linear
Collider (CLIC) [64, 65] and the International Linear Collider (ILC) [66, 67] generate
Higgs via WWH and ZZH processes, as shown depicted in Figure 2.4.
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As it can be seen in Figure 2.7, the width of the Higgs resonance is very thin, which leads
to the requirement of a very small energy spread for a future muon collider design. A
recent discussion predicts an energy spread of around 0.004% for muon collider operating
at 125GeV cm. energy [68]. Therefore, ionization cooling with 6D-cooling cells plays a
crucial role for a muon driven Higgs factory.

Luminosity requirements are several orders of magnitudes lower than for a multi TeV
muon collider [14]. Nevertheless, since the luminosity is inverse proportional to the cubic
cm. beam energy, a small emittance has to be achieved, which could be provided by final
colling cells. However, the final cooling follows to higher energy spreads and it would be
difficult to scan the resonance of the Higgs particle.

This chapter gave a brief motivation why a muon collider should be built as a next
generation accelerator machine. As mentioned, the final cooling is one of the bottle necks
of the proposed collider design and is the main focus of this thesis. Ionization cooling is
the target technology for a final cooling cell and is a kind of exotic technique in accelerator
science because it almost had never come into use. Therefore, this thesis continues with
the beam dynamics of solenoids, which are main components of a final cooling cell. After
that, this work will follow with the physics behind ionization cooling.
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Chapter 3: Beam dynamics

The main goal of this thesis is to describe and investigate the method of squeezing
a spread muon beam and reducing its transverse momenta in the same time, what is
especially applied in a final cooling cell. The formal description of the cooling technique
applied in the muon collider design studies requires the introduction to accelerator typical
beam parameters, which are usually defined by means of beam dynamical formalism
provided in this chapter.

Accelerator scientists usually use a standard coordinate system, which is curvilinear. It
follows the path s of an ideal particle and points towards the direction of the beam
line. One uses the term of a so called reference orbit for such an individual track.
Perpendicular to s is the horizontal x-axis, which outwards radial of the ideal orbit.
The vertical coordinates are directed in the y-axis. Referred to the reference orbit, each
particle motion can be described by that orthogonal system (x, y, s), which is also known
as the Frenet-Serret space and is illustrated in Figure 3.1.

It is useful to introduce a co-moving tangential z-axis in addition. Together with the
vertical and radial axes, they describe a Cartesian coordinate system. The axes of s and
z differ by their metric from each other. In particular, this thesis is following mostly the
particle motions in the x-y-plane, which is also known as transverse beam dynamics. For
completeness, physical descriptions along the s axis is usually referred to as longitudinal
beam dynamics.

It is sufficient to define the 6-dimensional phase space coordinates for a complete de-
scription of a particle, which are composed of 3 spatial and 3 momentum deviations(

x, px, y, py, z, pz
)>
. (3.1)

Accelerator physicists usually assume that the quotient of the transverse momentum
px,y and the longitudinal one pz is very small compared to 1 (assumption: pz ≈ ps).
According to linear approximation, it is possible to express the transverse momenta as
angles

x′ =
∂x

∂s
≈ px
ps

and y′ =
∂y

∂s
≈ py
ps
, (3.2)
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which are the derivatives with respect to s. The angles are often differentiated ac-
cording to z, but the resulting differences to equations (3.2) are negligible in the linear
approximation [69].

The longitudinal displacement of a particle from the ideal one with velocity vs can be
described as

l = −vs (t− ts) , (3.3)

where the expression in brackets describes the time delay between the reference and
objective particle. The momentum deviation specifying the momentum p of a particle
relative to the reference one ps is defined as

δ =
p− ps
ps

=
∆p

ps
. (3.4)

Distinguishing between momentum and angle phase spaces, text books sometimes define
the so called trace space in case of an angle depended beam description [70], which is
finally summarized to (

x, x′, y, y′, l, δ
)>
. (3.5)

s
x

y

z

xi yi

Figure 3.1: The Frenet-Serret coordinate system is curvilinear and follows an ideal
trajectory s. An addition Cartesian system can be introduced as well at any position
of s.

For this work, high field (HF) solenoids will be used as focusing elements in a final cooling
cell. Before a single particle trajectory can be described in such an optical component,
it is necessary to understand the field dynamics of such solenoids.

3.1 Magnetostatics of solenoids

The solenoid field is assumed to be stationary, or in other words, if it is not changing
in time. Hence, the time depending terms in Maxwell’s equations cancel away and the
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magnetic field ~B contained equations reduce to

∇ ~B = 0, (3.6)

∇× ~B = µ0
~j. (3.7)

Those are the fundamental field descriptions of magnetostatics, where the law (3.6) de-
scribes that there are any field divergences demonstrating the non existence of magnetic
monopoles. Formula (3.7) is known as the Ampere’s law and expresses an electrical
current flux ~j induced by a rotating field. Solenoids are usually made out of wounded
helical coils and create a dipole field, when the wires are supplied by direct current I.

R

L

�� ���
�

s
d

��
V

A

r

Figure 3.2: For a solenoid of length L and radius R, the almost constant field inside
can be calculated by using the integral over area A. The radial parts of the end fields
can be determined by integrating an additionally introduced cylinder with volume V
and radius r. The axial field strength at any point at s is the summation of the coil
elements dξ from the beginning α1 of the coil to its end α2.

It can be assumed, that the field is approximately constant inside the solenoid and its
value can be calculated by the following approach. If one imagines an arbitrary closed
curve with surface A, like it is depicted in Figure 3.2, it possible to apply the surface
integral on equation (3.7). By means of Stoke’s theorem the surface integral applied on
a rotation is equal to the loop integration, and the field in a solenoid yields to∮

~B d~s = Nµ0I → Bs = nµ0I, (3.8)

where N is the number of loops of the solenoid and n the loops per unit length.

As it can also be seen in Figure 3.2, the field in front of the entrance and behind the
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exit of the solenoid has a radial component Br, which is commonly called fringe field.
To express it mathematically, one can consider an arbitrary cylinder with volume V and
radius r illustrated in Figure 3.2. In doing the integration of equation (3.6) over this
volume, the divergence disappears by applying Gauss’s theorem and the volume changes
to a surface integration of the cylinder. From the center comes a magnetic flux of πr2Bs

flowing through the entrance of that concentric cylinder. Considering an infinitely long
cylinder, at one point, the flux is going to exit the side surface, which can be expressed
as

r2πBs + 2πr

∫
Br ds = 0 → Br = −rB

′
s

2
, (3.9)

where the radial field is proportional to the longitudinal derivative of Bs.

For real solenoids, the longitudinal field Bs(s) decreases by increasing the distance ξ
from its center, depicted in Figure 3.2. The origin of the coordinate system is assumed
to be in the middle of the solenoid and its optical axis is equal with the reference orbit.
The field from a small coil element with length dξ acting on an arbitrary point on the s
axis is

dB =
µ0 I R

2π n

2π [R2 + (s− ξ)2]3/2
dξ, (3.10)

when the solenoid has the length L and radius R [71]. The field strength can be further
integrated over the angle

Bs(s) = −µ0nI

2

∫ α2

α1

cos(α) dα

=
Bs

2

 s+ L/2√
R2 + (s+ L/2)2

− s− L/2√
R2 + (s− L/2)2

 . (3.11)

Equipped with the knowledge of the solenoids’ field dynamics, the next section will
describe the particle’s motion in such a field.

3.2 Single particle motion inside solenoids

For describing the track of a single particle inside a solenoid in this section, it is useful
to apply cylindrical coordinates with unitary vectors

r̂ =

cos(θ)
sin(θ)

0

 , θ̂ =

− sin(θ)
cos(θ)

0

 , ŝ =

0
0
1

 , (3.12)
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while the position of the particle r, its first and second time derivative can be expressed
as

~r = rr̂ + sŝ,

~̇r = ṙr̂ + rθ̇θ̂ + ṡŝ,

~̈r =
(
r̈ − rθ̇2

)
r̂ +

(
2ṙθ̇ + rθ̈

)
θ̂ + s̈ŝ.

(3.13)

The force acting on the particle by the solenoid’s magnetic field can be expressed as the
Lorentz force in the cylindrical system

q
(
~̇r × ~B

)
= γm~̈r. (3.14)

Setting the derivations (3.13) into the Lorentz equation (3.14), the force is following to

mγ

 r̈ − rθ̇2

2ṙθ̇ + rθ̈
s̈

 = q

 rθ̇Bs

− (ṡrB′s/2 + ṙBs)

ṙθ̇rB′s/2

 , (3.15)

where the magnetic azimuthal component was assumed to be Bθ = 0. The focusing
strength can be derived by integrating the first line of equation (3.15) and yields to

r̈ = − q2rB2
s

4(γm)2
→ r′ = −q

2

4

∫
rB2

s

(γmṡ)2
ds, (3.16)

where θ̇ can be derived by the second line of equation (3.15) and the time derivative
exchanges by ∂/∂t = ṡ ∂/∂s. The focal length of a solenoid with length L and a field
Bs is defined for a particle with a given momentum p as

1

f
= kL =

r′

r
=
q2

4

∫
B2
s

p2
ds, (3.17)

following that the focusing strength of a solenoid scales to

k = κ2 =
q2B2

s

4p2
. (3.18)

In order to calculate the track of a single particle, the solenoid’s environment has to be
first separated into three parts. One is the area of the confined space of the solenoid
itself. The other two are the entrance and the exit regions. Lets consider the case
of a hard edge solenoid, which fringe field length is infinite small. Due to the radial
field component, the particle experiences in the entrance of the solenoid an azimuthal
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momentum kick, which can be expressed by the second component of equation (3.14)

ṗθ = qṡBr → ṡp′θ = −qṡrB
′
s

2
, (3.19)

where it was assumed that the particle initially propagates only in longitudinal direction
with velocity ṡ. Transforming the momentum kicks into trace space coordinates, they
follow to

∆x′ =
∆px
ps

= −pθ sin(θ)

ps
= κy,

∆y′ =
∆py
ps

=
pθ cos(θ)

ps
= −κx.

(3.20)

In accelerator physics the particle propagation is described by means of in the so called
transport matrices. In the fringe fields at the entrance and the exit of the solenoid, the
propagation is described by

Mentry =


1 0 0 0
0 1 κ 0
0 0 1 0
−κ 0 0 1

 , Mexit =


1 0 0 0
0 1 −κ 0
0 0 1 0
κ 0 0 1

 . (3.21)

Those matrices differ from each other by their opposite momentum kicks. For hard edge
solenoids, the magnetic field in the body is constant and the particle is carrying out a
circular motion in the transverse plane. Over the length L of the solenoid [69], the total
rotation angle is

θ = −qBs

ps
L = −2κL. (3.22)

The transport matrix of the solenoid’s body can be further expressed as

Mbody =


1 L

θ
sin(θ) 0 −L

θ
(1− cos(θ))

0 cos(θ) 0 − sin(θ)
0 L

θ
(1− cos(θ)) 1 L

θ
sin(θ)

0 sin(θ) 0 cos(θ).

 (3.23)

Finally, the solenoid matrix is the multiplication of the body and its fringe field transport
matrices

MSol = MexitMbodyMentry =


C2 SC/κ SC S2/κ
−κSC C2 −κS2 SC
−SC −S2/κ C2 SC/κ
κS2 −SC −κSC C2

 , (3.24)
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with C = cos(κL) and S = sin(κL). It can be seen that the transport matrix of a
solenoid couples the particle motion transversely, which has to be taken into account in
future muon cooling simulations.

3.3 Transverse beam dynamics

In accelerator physics, the properties of an ensemble of particles are considered, because
calculating the trajectory of each particle would be impractical. The sum of all tracks
forms an envelope in a beam line, which can be described by specific parameters. Those
depend on the optical elements and will be introduced in this section.

The optical functions are well defined in a circular accelerator due to its periodic bound-
ary conditions. In such a ring, it is worth looking at the two-dimensional trace space of
a single particle, while it passes through an arrangement of beam optical elements.

Evaluating the trace space coordinates (x, x′) after each turn of the particle at a specific
point s in the optical lattice, the occupied trace space of the particle forms to an ellipse-
like shape. This is better known as the trace (phase) space ellipse and is illustrated in
Figure 3.3. Particles starting with smaller initial trace space coordinates form ellipses
which are within the one of the particle with a higher spatial and angular offset.

In beam dynamics, one chooses a particle, which elliptical surface describes the whole
beam. Usually, the beam profile is assumed to be Gaussian and considers the standard
deviations (σx, σx′) as the phase space limits of the beam. Equal calculations are valid for
the (y, y′) trace space. However, this section will generalize the 2-dimensional dynamics
in (x, x′) coordinates Since the optical elements of a ring are periodical, the particle
equation of motion can be described by the so called Hill’s equation [72]

x′′(s)− k(s)x(s) = 0, (3.25)

which differs from the harmonic oscillator by the non constant focusing strength k(s).
The Hill equation describes the oscillating motion inside the presence of strong focusing
elements in a ring. Equation (3.25) can be solved by Floquet’s theorem and follows to

x(s) =
√
εx
√
βx(s) cos(ψ(s) + φ), (3.26)

which describes the transverse path of the particle along the reference orbit s. The
so called beta or betatron function βx(s) is a function of the amplitude of the beam’s
oscillation and describes together with εx the beam size or the maximum amplitude√
εxβx(s) of the beam motion at any position s. The parameter ψ(s) is the phase

advance and φ its initial condition.
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Figure 3.3: Particles orbiting a periodical beam optical structure and form at each
point of s a trace space ellipse. Observing the blue ellipse it can be concluded, that
this particle has the highest initial offset in angle and spread in comparison to the
red an green motion. The maximum of x and x′ defines for a Gaussian beam the rms
values σx and σx′ , which are functions of one beam parameter multiplied by ε.

The fist and second s depending derivatives of Hill’s solutions are

x′(s) =
√
εx

β′x(s)

2
√
βx(s)

cos(ψ(s)− φ)−
√
εx
√
βx(s)ψ

′ sin(ψ(s)− φ), (3.27)

x′′(s) =
√
εx

(
β′′x(s)

2
√
βx(s)

− (β′x(s))
2

4
√
βx(s)

3 −
√
βx(ψ

′(s))2

)
cos(ψ(s)− φ)

−
√
εx

(√
βx(s)ψ

′′(s) +
β′x(s)√
βx(s)

ψ′(s)

)
sin(ψ(s)− φ).

(3.28)

Inserting equation (3.26) and (3.28) into Hill’s equation (3.25), the equation of motion
is separated into a cosine and a sine term, which are fulfilling Hill’s equation only when
both are 0 [70]. The phase advance can be expressed by setting the sine term to zero
following

ψ(s) =

∫ s1

s0

ds̃

βx(s̃)
. (3.29)

39



Setting the cosine term equals zero and and express ψ′ with (3.29), a second order
differential equation of the beta function can be expressed by

2β′′x(s)βx(s)− (β′x(s))
2

+ 4β2
x(s)κ

2 − 4 = 0, (3.30)

which is in this case the beam envelope equation of solenoidal fields. Lets further consider
the first derivative of the Hill’s solution by exchanging the cosine with x(s)/

√
εxβx(s),

which is

x′(s) = −
√
εx√
βx(s)

(
αx(s)

x(s)√
εxβx(s)

+ sin(ψ(s)− φ)

)
, (3.31)

where a new beam parameter α(s) was introduced, namely

αx(s) = −β
′
x(s)

2
(3.32)

which describes the skewness of the ellipse and is a kind of coupling between the motion
of space and angle known as correlation. Bringing the x-depending term of equation
(3.31) to the left side and further square the whole equation, the geometrical emittance
can be expressed as an ellipse equation

εx = βx(s)x
′2(s) + 2αx(s)x(s)x′(s) + γx(s)x

2(s), (3.33)

where the third beam parameter γx(s) is defined as

γx(s) =
1 + α2

x(s)

βx(s)
. (3.34)

This geometrical emittance describes the beam ellipse in the trace space and by mul-
tiplying π it expresses the occupied area of the beam. Due to Liouville’s theorem this
trace space area remains to be constant along the beam line, but the shape of the ellipse
is changing at each point of s. This is certainly true, but due to changes of ps in a beam
optical complex, the beam sizes changes due to relativistic contractions. To undergo
this issue the geometrical emittance can be made Lorentz invariant by multiplying the
Lorentz factors on it

εx,N = βγ εx, (3.35)

which is also called the normalized emittance and was already mentioned in chapter
1. The s depended parameter are known as Twiss parameters or also Courant-Snyder
invariants [73] and describe the elliptical shape of the beam ellipse. In Figure 3.3 it is
possible to express the beam sizes by means of the geometrical emittance and specific
Twiss parameters.

Trace space coordinates transformation from a point s0 to s1 can be computed applying
a single transfer matrix or even a lattice matrix M(s), which is the multiplication of

40



several transfer matrices, on an initial trace space vector(
x1

x′1

)
=

(
c(s) s(s)
c′(s) s′(s)

)(
x0

x′0

)
, (3.36)

where M(s) depends on sine s(s) and cosine c(s) like functions and their derivatives. By
means of the inverse matrix M−1 it is possible to find the transfer matrix for the Twiss
parameters, which scales toβ1

α1

γ1

 =

 c2(s) −2c(s)s(s) s2(s)
−c(s)c′(s) c(s)s′(s) + c′(s)s(s) −s(s)s′(s)
c′2(s) −2c′(s)s′(s) s′2(s)

β0

α0

γ0

 . (3.37)

Since the introduction of the luminosity in equation (1.18), the normalized transverse
emittance is considered as one main target parameter of a potential muon collider and
this thesis will pay central attentions on that. This work will present later the perfor-
mance of single particle tracks for the final cooling. It is therefore essentially to introduce
a statistical technique for evaluating the emittance of an ensemble of particles.

3.4 Statistical emittance definition

The particle distribution of a beam can be described by its first central moment 〈x〉 or
〈px〉, which is the core’s motion of a particle bunch and is also know as the mean value

〈x〉 =

∑N
i=0 xi
N

, 〈px〉 =

∑N
i=0 pxi
N

. (3.38)

The second central moments [74] of a beam distribution are defined as

〈x2〉 =

∑N
i=0 (xi − 〈x〉)2

N
, 〈p2

x〉 =

∑N
i=0 (pxi − 〈px〉)

2

N
. (3.39)

If the core of a beam has a specific offset with respect to the origin of the ideal orbit, the
mean value has also to be taken into account, like it was included in equations (3.39).
In case of a Gaussian distribution the square root of the second moment yields to its
standard deviation σx =

√
〈x2〉 and σpx =

√
〈p2
x〉.

For evaluating the emittance of a beam, it is sufficient to calculate the surface area of
the phase space, which is occupied by the particles and are lower equal to the rms limits
(σx, σpx). For a horizontal or vertical lying phase space ellipse, the surface area is the
product of the semi major and semi minor axes and the geometrical emittance scales
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to
εx =

√
〈x2〉〈p2

x〉. (3.40)

In case of a non-upright ellipse, the emittance calculation is not so trivial anymore.
Therefore a rotating coordinate system (x̃, p̃x) can be introduced for a correlated phase
space ellipse as illustrated in Figure 3.4. The transformation of a single particle in the
roting frame follows

x̃i = |px,i cos(θ)− xi sin(θ)|,
p̃x,i = |xi cos(θ) + px,i sin(θ)|.

(3.41)

�

Figure 3.4: The surface area of a correlated phase-space ellipse can be calculated by
means of a rotating system (x̃, p̃x).

Considering the rms value of the transformed momentum this would further scale to

〈p̃2
x〉 = 〈p2

x〉 cos2(θ) + 〈x2〉 sin2(θ)− 2〈xpx〉 sin(θ) cos(θ). (3.42)

This function reaches its minimum at a certain angle θmin [74], which can be evaluated
by the derivative ∂〈p̃2

x〉/∂θ and follows to

tan(2θmin) =
2〈xpx〉
〈x2〉 − 〈p2

x〉
. (3.43)
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The next step is to rewrite equation (3.42) by means of some trigonometric changes to

〈p̃2
x〉 =

1

2
〈p2
x〉+

1

2
〈x2〉+

1

2

(
〈p2
x〉 − 〈x2〉

)
sin(2θ)− 2〈xpx〉 sin(2θ) (3.44)

Inserting the minimum angle (3.43) into the equation above further yields to

〈
p̃2
x

〉
=

1

2

(
〈p2
x〉+ 〈x2〉 − 2

〈xpx〉2

sin2(θmin)

)
. (3.45)

The coordinate transformation by θmin of 〈x2〉 is following the same calculation technique,
which was applied for evaluating 〈p̃2

x〉 and scales to

〈
x̃2
〉

=
1

2

(
〈p2
x〉+ 〈x2〉+ 2

〈xpx〉
sin(θmin)

)
. (3.46)

The rotation of the the minimum angle cancels the correlation in the new system and
the geometrical emittance can be calculated by the square rooted product of equation
(3.45) and (3.46), which is

εx =
1

2

√
〈x2〉+ 〈p2

x〉+ 2〈x2〉〈p2
x〉 − 4

〈xpx〉2
sin2(2θmin)

. (3.47)

By means of the identity sin(arctan(x)) = x/
√

1 + x2, the emittance finally scales to

εx =
√
〈x2〉〈p2

x〉 − 〈xpx〉2, (3.48)

which is in turn of the Lorentz invariant case the normalized emittance

εx,N =
1

mµc

√〈
(x− 〈x〉)2〉 〈(px − 〈px〉)2〉− 〈(x− 〈x〉) (px − 〈px〉)〉2. (3.49)

From the emittance evaluations it is possible to construct a certain sigma matrix Σ
which includes the second moments and their correlation

Σ =

(
〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

)
=

(
εβ −εα
−εα εγ

)
, (3.50)

where it was assumed that 〈xx′〉 = 〈x′x〉. The geometrical emittance can be calculated
by the square root of the sigma matrix’s determinant

√
det(Σ). The ellipse equation

(3.33) can be therefore reconstructed by

u>Σ−1u = εx, (3.51)
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if u = (x, x′)> and the identity
βγ − α2 = 1 (3.52)

is valid and agrees with equation (3.33). After introducing the theoretical background
of the transverse beam dynamic and the single particle motion in a solenoid field, it
is possible to apply these for describing the normalized emittance reduction of a muon
beam by means of ionization cooling.
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Chapter 4: Muon beam cooling

As it was already mentioned in this work, the divergence and the spread of the muon
beam must be reduced after its creation as fast as possible. In accelerator physics, the
reduction of beam sizes is usually denoted as cooling. Otherwise, the luminosity defined
in equation (1.18) cannot reach the desired high level, thus new physics would be hard
to explore.

There are several types of cooling techniques like electron cooling [1] and laser cooling
[75]. However, these methods would not be suitable for muons, due to their several orders
higher cooling time [76] compared with the muon lifetime. Stochastic cooling [77, 78]
applied on muon beams had been studied, but seems to be technologically challenging
[79].

Passing through the absorber, the muon beam loses momentum as well in transverse
components as in the longitudinal direction by storing energy inside the material as
shown in Figure 4.1. After the passage through the absorber, the lost energy will be
restored by a re-acceleration but only in the longitudinal directions by means of RF
cavities. Due to repeating passage through the absorber and RF cavities, the beam will
be collimated, which is equalizing with an emittance reduction.

Nevertheless, because of multiple scattering effects appearing inside the absorber, it was
suggested to place that in a strong focusing element. A high field solenoid seems to
provide a suitable optic, since it focuses the beam in both transverse directions simul-
taneously described by the solenoid’s transfer matrix (3.24). Considering a bunch of
muons undergoing these last described processes, the muon beam will be reduced in its
transverse emittance.

4.1 Final cooling cell structure

While in the beginning of this chapter the beam collimation was sketched by means
of absorbers with RF systems in between, this section describes the role of high field
solenoids for a final cooling cell. At first, it is useful to consider a single particle with
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Figure 4.1: For reducing the divergence of a muon beam, its transverse momenta has to
be decreased. Passing through low-Z materials followed by longitudinal re-acceleration
periodically, the muon beam will be collimated which means a reduction of the trans-
verse emittance.

an initial offset x0 and momentum p. Propagating in a hard edge solenoid without any
absorber inside, the particle’s trajectory is a helix, due to the momentum kick at the
solenoid’s entrance described in matrix (3.24). An example is given in Figure 4.2 left,
where a particle is performing a circular motion in the transverse plane, depicted as the
blue line. The initial parameters are p = 100MeV/c, x0 = 0.1m and the field strength
of the magnet is 5T.

The next step is to include a momentum loss per unit length inside the solenoid, which
simulates in somewhat the stopping power of an absorber, which describes the energy
loss of a particle inside matter and will be discussed more in detail in the next section.
Performing the tracking of the particle in the transverse plane with a chosen loss of
0.01MeV/c per 100µm longitudinal propagation, the radius of this helix reduces con-
tinuously. Figure 4.2 shows this process in a red track and the particle spirals into a
limited point, which is half of the initial offset.

One can incorrectly assume, that the geometrical emittance converts to zero, because
it seems that the transverse momenta disappear totally by cooling the particles long
enough. Assuming a continuous and slow beam stopping of a 4-dimensional distribution
in the trace space with σx, σy, σx′ and σy′ , the spatial spreads are limited by

σx −→ σx/2 ≡ σx1 ,

σy −→ σy/2 ≡ σy1 ,
(4.1)

naively shown by the single particle track of Figure 4.2. While reducing the muons’
velocity, the angular spread disappear, but due the couplings of the optics distributions
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in the transverse plane are created:

σx′ −→ σx′/(2κ) ≡ σy2 ,

σy′ −→ σy′/(2κ) ≡ σx2 ,
(4.2)

where κ is the focusing strength of the solenoid. In the case of a completely stopped
muon bunch, the distributions would scale to


σ̃x
σ̃x′
σ̃y
σ̃y′

 =


√
σ2
x1

+ σ2
x2

0√
σ2
y1

+ σ2
y2

0

 ≈

σx1

(
1 +

σ2
x2

2σ2
x1

)
0

σy1

(
1 +

σ2
y2

2σ2
y1

)
0

 , (4.3)

when σx2,y2 � σx1,y1 is assumed. If the beam leaves the solenoid in the right before
loosing its energy, the beam will experience a transverse force from the fringe field.
Multiplying the momentum kick matrix (3.21) with the distribution vector (4.3), the
emittance limitation in the x-plane yields

εx =
1

4
κσxσy +

1

8

σy′σy
κσx

+
1

8

σx′σx
κσy

, (4.4)

and similar to the y-plane.
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Figure 4.2: The plot on the left side illustrates the transverse particle motion inside
a solenoid with (red line) and without (blue line) an absorber. For efficient emittance
reduction it proves to be useful to set a field flipped solenoid after the first one. As
illustrated in the right graph, the particle spirals next to the beam optical axis (green
line).
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To bring the emittance to zero, one possibility is, that the particle leaves the solenoid
after 2π n of transverse turns, while n is an arbitrary integer number. Further, the
particle enters a second solenoid with an absorber inside. It is assumed, that it has the
same field strength as the one before, but its field arrows henceforth in the opposite
direction. This is also referred to as a field flip. In Figure 4.2 it can be seen, that indeed
in the second solenoid the particle spirals to the reference orbit, which is depicted as the
green path in the plot. Therefore the emittance reductions follows to εx → 0.

To summarize, the final cooling cell structure contains a high field solenoid with a
low-Z absorber material inside. After the beam deceleration, the particles have to be
accelerated again by RF cavities. Finally, the muon bunch enters into a field flipped
solenoid-absorber complex acting more efficient emittance reduction. The sketch in
Figure 4.3 illustrates a typical final cooling cell structure based on solenoids. Before this
work goes into detailed description of the beam dynamic in ionization cooling channel,
it is useful to know how charged particles like muons behave inside matter, losing the
energy by interacting with the absorber electrons.

Ionization cooling is only suitable for muons, because protons would scatter too much
in that process and electrons would additionally loose energy due to bremsstrahlung
[80]. Lets consider a muon beam with longitudinal and transverse momentum passing
through an absorber. For avoiding high scattering effects, a low-Z material with low
ordinary numbers seems to be suitable.
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Figure 4.3: A single cell of the final cooling channel consists of two solenoids with
absorbers inside, where the right one is field flipped respective to the first optic. In
between, a series of RF cavities re-accelerates the beam after losing its momenta in
the first solenoid.

4.2 Stopping power of absorbers

Traveling through low-Z material, muons are losing kinetic energy by radiative and
collision processes, mostly caused with bounded or free electrons inside the absorber.
These kind of inelastic interactions are known as ionizations and excitations, where
the passing muon loses a proportion of its kinetic energy 〈dE/ds〉, also called energy
loss or stopping power of the charged particle. For describing this phenomenon in a
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mathematical approach, it is useful to consider the classical model introduced by N.
Bohr [81, 82].

In the first one-dimensional assumption, a muon interacts with an electron inside the
material and experiences a momentum loss expressed by

∆p =

∫
F dt = e

∫
E
ds

v
, (4.5)

while the force F can be derived by an electric field E acting on the electron’s charge
e and the time element dt can be exchanged by ds/v. The minimum distance between
a specific electron and the path of corresponding interacting muon is described by the
impact parameter b, which is illustrated in Figure 4.4. Using the integral form of Gauss’s
law, where the Cartesian volume element dx3 is replaced by means of the generalized
Stokes theorem with the surface element 2πb ds in cylindrical coordinates, one gets∫

∇ ~E dx3 Stokes
= 2πb

∫
E ds =

Ze

ε0
⇒ e

∫
E
dx

v
=

1

4πε0

2Ze2

bv
. (4.6)

with the number of electrons Z within the integrated volume, equally with the already
mentioned ordinary number. Further, the momentum can be expressed by means of
equation (4.5) as

∆p =
1

4πε0

2Ze

bv
. (4.7)

The energy transfer from the traveling muon to an electron depends on the impact
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�-
b

Figure 4.4: The impact parameter b can be described by the minimum distance be-
tween an electron and the path of a muon passing through the absorber.
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parameter as follows

∆E(b) =
(∆p)2

2me

=
1

(4πε0)2

2Z2e4

meb2v2
. (4.8)

Further, the loss of the muon’s energy inside a volume element dV = 2πb db ds of the
absorber with its electron density ne can be expressed as

− dE = ∆E(b)ne dV =
1

4πε0

4πZ2e4

mev2
ne
db

b
ds, (4.9)

where the final form of the energy loss per unit length inside a specific absorber is the
integration from the minimum to the maximum impact parameter and takes the form

− dE

ds
=

1

4πε0

4πZ2e4

mev2
ne

∫ bmax

bmin

db

b
. (4.10)

For the minimum impact parameter, head on collisions [83] can be taken into to account,
where the electron moves with twice the velocity of the imping muon after colliding with
a muon. By means of equation (4.8) the minimum impact parameter can be approached
as

bmin =
1

4πε0

Ze2

mγβ2c2
, (4.11)

while the maximum impact parameter is a function of the mean excitation potential I
of a specific absorber and can be expressed as well by means of equation (4.8) as

bmax =
1

4πε0

Ze2

cβ

√
2

meI
. (4.12)

This leads to the conclusion, that the excitation energy can be evaluated experimentally,
demonstrating that it follows the law of I [eV] = 16 Z0.9 for low-Z materials [63]. A list
of values of I for different absorbers, prepared specifically suitable for muon cooling
simulations, can be found in P. Grubers review [86] or in the Particle Data Group [87].
Finally, the classical non-relativistic stopping power formula transforms to its final form
by executing the integral of equation (4.10),

− dE

ds
=

1

4πε0

4πZ2e4

mev2
ne

1

2
ln

(
2mec

2γ2β2

I

)
. (4.13)

For relativistic muons imping with high energies into an absorber, the classical approach
can not be used anymore for further energy loss predictions. Therefore, H. Bethe and
F. Bloch extended equation (4.13) by including relativistic and quantum mechanical
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Table 4.1: Parameter summary of the Bethe-Bloch equation [84, 85].

Symbol Definition Units and/or Values
A Atomic mass of the absorber g mol−1

Z Atomic number of the absorber
NA Avogadro number 6.022 · 1023 mol−1

a0 Bohr radius 4πε0~2/(mee
2) 5.292 · 10−11 m

re Classical electron radius e2/4πε0mec
2 2.817 fm

mec
2 Electron mass 0.511 MeV

e Elementary charge 1.602 · 10−19 C
α Fine structure constant e2/4πε0~c 1/137.036
mµc

2 Incident muon mass 105.658 MeV
ε0 Vacuum permittivity 8.854 · 10−12 Fm−1

K 4πNAr
2
emµc

2 0.307 MeV g−1cm2

approaches, leading to the derivation of the well known Bethe-Bloch formula [88–90],

−
〈
∂E

∂s

〉
= K

Z

A

1

β2

[
1

2
ln

(
2mec

2β2γ2Tmax

I2

)
− β2 − δ(βγ)

2

]
, (4.14)

where Tmax describes the kinetic energy of an electron with mass me after a head-on
collision with a relativistic muon with mass mµ, which can be described by

Tmax =
2mec

2β2γ2

1 + 2γme/mµ + (me/mµ)2
. (4.15)

The letter A stands for the atomic number and K is composed on a couple of constants
defined in table 4.1. In equation (4.14) the energy depended density term δ(βγ) comes
from the polarization effect of the media, which will be relevant for considering muon
energies above 1GeV [85]. A full list of the used parameters for the last derivations is
provided in Table 4.1.

Bear in mind, that the unit of the stopping power in equation (4.13) and (4.14) is
MeVg−1 cm2, which is also known as the stopping cross section. This can be changed
into MeV cm−1 multiplying by the appropriate density ρ [g cm−3] [87]. The Bethe-Bloch
formula is a good approach to describe the energy loss of charged particles due to electron
stopping. Especially for muons, this law is valid for the kinetic energy in the range
between 5MeV and 100GeV.
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Figure 4.5: The Bethe-Bloch formula describes the electronic stopping of charged par-
ticles inside a certain absorber material in the range of some MeV to several GeV.
This graph illustrates the stopping cross section of muons inside several elements. Re-
markable is the curve of liquid hydrogen, which will be ideally suited for future muon
cooling systems. The density factor is not included in this plot.

Below or above this range other theories have to be taken into account which behave com-
pletely different than the Bethe-Bloch estimation, such as the Lindhard-Scharff model
[90], which describes the energy loss of charged particles in the keV range, where pos-
itive and negative muons do not behave equally anymore. E.g. this would be used for
frictional cooling [91], which is not foreseen in the final cooling scheme, since relativistic
time dilatation would be reduced, hence muons would decay faster in the laboratory
system and lowering the luminosity (1.18) at the collision point in the collider ring.

To get some impressions, how equation (4.14) behaves, Figure 4.5 illustrates its function
without including any density effects. For a final muon cooling scheme, the energy range
is small enough and therefore the density term of equation (4.14) can be neglected.

It is noticeable, that the stopping power for muons inside liquid hydrogen is quite high
in comparison to other elements. In the past studies, muon cooling simulations were
performed with liquid hydrogen, lithium or even with lithium hydrate. However Figure
4.5 demonstrates, that the shape of lithium is similar to aluminium.
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Nevertheless, high-Z elements have higher atomic masses and can lead to higher scatter-
ing angles. Therefore, elements with higher Z than lithium are not be taken into account
for further muon cooling simulations.

4.3 Transverse muon ionization cooling

If the derivative respective to the reference orbit s is carried out, two terms appear

d

ds
ε⊥,N = ε⊥

d(βγ)

ds
+ βγ

dε⊥
ds

. (4.16)

with ⊥= x, y. The first term of equation (4.16) contains the derivative of both Lorentz
factors, which can be expressed by applying relativistic kinematics to

d(βγ)

ds
=

1

mc2

d(pc)

ds
=

1

mc2

d

ds

√
E2 −m2c4 =

1

β ·mc2

dE

ds
. (4.17)

The second term is not so trivial to express and comes from few approximations. The
sigma matrix (3.50) was introduced in chapter 3 and the differentiation of the geometrical
emittance therefore results to

dε⊥
ds

=
d

ds

√
det Σ =

1

2ε⊥

(
σ2
x′
dσ2

x

ds
+ σ2

x

dσ2
x′

ds
− 2〈xx′〉d〈xx

′〉
ds

)
. (4.18)

Now one has to make a few assumptions, such as the beam being inside an absorber
surrounded by a solenoid. Its interior is embedded with a very strong and nearly ho-
mogeneous magnetic field (several T) in the longitudinal direction. For simplification, it
is assumed that the beam is already matched with the solenoid’s machine ellipse. This
means also, that the beam envelope has the shape of a waist through the hole solenoid.

From the previous chapter 3 it is clear, that the beam waist is represented as a upright
trace space ellipse. Thus, the third term, which expresses the changes of the correlation
effects in equation (4.18) is canceled. For strong focusing, the growth of the transverse
dimension can be neglected [92], thus the second term in equation (4.18) can be assumed
to be zero.

The only term left in the equation (4.18) is the change in the transverse angular distri-
bution, where σ2

x′ is an expression of many small squared angle deflections of the muon
inside the absorber caused by Coulomb scattering described by Rutherford’s cross sec-
tion [93]. These multiple scattering angles are following a Gaussian distribution, but
due to hard scattering with nuclei, the angle distribution has a further non-Gaussian
tail. This multiple scattering approximation is described by Moliére’s theory [94] and
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further extended by B. Rossi and K. Greisen [95]. The second moment of the the muon
beam can be described as [96]

〈x′2〉 =

[
13.6[MeV]

βcp

√
s

LR

[
1 + 0.038 ln

(
s

β2LR

)]]2

≈ (13.6[MeV])2

β2p2c2

s

LR

, (4.19)

where s also expresses the absorber thickness and LR is the absorber’s depended radiation
length. The expression (4.19) is inserted into the remaining second term of equation
(4.18). Tanking into account the trace space spread σx =

√
β⊥ε⊥ and σx′ =

√
ε⊥/β⊥ for

an upright ellipse, one obtains

dε⊥
ds

= σ2
x

1

2ε⊥

d〈x′2〉
ds

=
β⊥(13.6[MeV])2

2β2p2c2LR

. (4.20)

Finally, the expressions (4.17) and (4.20) can be inserted into equation (4.16) and one
gets the well known ionization cooling formula

dε⊥,N
ds

= − ε⊥,N
Eβ2

〈
∂E

∂s

〉
+
β⊥(13.6[MeV])2

2β3Emc2LR

= cooling + heating, (4.21)

first derived by D. Neuffer [80]. The first term describes the cooling of the muon beam
and the second term describes the heating due to scattering effects of muons with the
absorber’s nuclei. From equation (4.17) the derived energy can be identified as the the
energy loss based on the Bethe-Bloch formula (4.14). Both terms depends on specific
absorber parameters, some potential candidates for ionization cooling are summarized
in the table 4.2.

Table 4.2: Absorber specific parameter list [87].

Parameter Symbol [Units] liquid H2 liquid D2 liquid He Li
Mean ionization I [eV] 21.8 21.8 41.8 40.0
Atomic ratio Z/A 1 0.5 0.5 0.43

Radiation length LR [g cm−2] 63.4 125.98 94.32 82.77
Density ρ [g cm−3] 0.07080 0.1638 0.1249 0.5340

The betatron function can be estimated by means of equation (3.30). When correlation
effects are negligible, the derivatives of the beta function are zero and the envelope
equation reduces to β2

⊥κ
2 = 1. Therefore, a final expression for a beta function matched

to a given solenoid scales to

β⊥[µm] =
2p[MeV/c]

c ·Bs[T]
1012. (4.22)
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The betatron function was expressed in µm, because the emittance in the final cooling
simulations is usually expressed in this units. The heating term in equation (4.21)
contains the unit MeV, therefore the momentum in (4.22) is expressed in MeV/c.
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Figure 4.6: These plots show the equilibrium emittance of liquid hydrogen, liquid deu-
terium, liquid helium and lithium at 30 and 50T. Cooling can be achieved if the initial
normalized emittance is above the equilibrium emittance. Otherwise the beam would
be heated up.

Since the change of the normalized transverse emittance in the absorber depends on the
instantaneous variables E and ε⊥,N, it is useful to know how cooling and heating terms
change in response to these two free parameters. For this purpose, the limit values are
determined at which cooling and heating compensate each other. Equation (4.21) is set
to zero and further expressed in terms of ε⊥,N resulting to an expression known as the
equilibriums emittance

εeq
⊥ =

β⊥(13.6[MeV])2

2βmc2LR

〈
∂E
∂s

〉 . (4.23)

In the Figure 4.6, several εeq
⊥ have been considered as a function of kinetic energy, which

are shown graphically for different high magnetic fields and absorber materials. It has
to mentioned that the graphs behave differently compared to the previous final cooling
study [37]. For a dominating cooling term in equation (4.21), it must be ensured that the
initial normalized emittance is higher than the corresponding equilibrium emittance.

For the final cooling design, the minimum requirements for the beam energy and field
strength can be found by means of formula (4.23). Assuming perfect beam parameter
matching conditions, Figure 4.7 shows the behavior of the magnetic field, B, according
to the beam’s kinetic energy EKin at different equilibrium emittances. For example, with
a strength of 30T for the last solenoid in the final cooling channel, the kinetic beam
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energy has to be lower than approximately 12MeV to achieve the target normalized
transverse emittance of ε⊥,N = 25µm [36].
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Figure 4.7: Field strength and beam energy requirements for the final cooling design
can be estimated by using the equilibrium emittance εeq

⊥ .

So far the impact of ionization cooling on the transverse emittance was well discussed,
the behavior of the longitudinal emittance’s changes of a beam will be briefly introduced
in this section. In general, the longitudinal emittance εL, in the uncorrelated case, is the
product of the bunch length σz and the the relative momentum spread σδ. Multiplied
by the Lorentz factors, this parameters scale to the normalized longitudinal emittance
defined as

εL,N = βγ σzσδ = βγ εL. (4.24)

Its change caused by an absorber can be derived by the same technique as it was applied
to the transverse emittance change before in equation (4.18) and approximates to

d

ds
εL,N ≈ −εL,N

d

dE

〈
∂E

∂s

〉
. (4.25)

As it can be seen, the longitudinal emittance change depends on the slope of the Bethe-
Bloch function 〈∂E/∂s〉 and results to positive values for kinetic beam energies above
200-300MeV (absorber depended), but negative below this range. Nevertheless, in order
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to maximize transverse emittance reductions, only kinetic energies of about 100MeV
will be considered and leads to increase of the normalized longitudinal emittance.

Additionally, muons penetrating through the absorber are deflected by Coulomb scat-
tering at random points. Their energy loss is stochastic and can be described by the so
called straggling distribution function [92, 97, 98]. This contributes to a further heating
term in the formula (4.25) and increases the longitudinal emittance in the final cool-
ing sector more. However, this thesis deals exclusively with the transverse emittance
reduction, since it has a higher priority, due to the capability to shrink the size of the
accelerator and of the collider ring according to the beam width obtained with a reduced
transverse emittance.

4.4 Simulation tool for ionization cooling

Simulation studies on ionization cooling with muons require a three-dimensional tracking
code. The decay of muons and the interaction between these unstable particles with
matter have to be taken into account. The required program must include energy losses,
multiple scattering effects and momentum straggling. In addition, magnetic field maps
on the particle tracks have to be created, which satisfy the beam optics requirements for
the final cooling cell and have to be consistent with Maxwell’s equations.

For such requirements, two simulation codes can be considered for ionization cooling
studies. One option is the usage of a G4BEAMLINE, which is based on the GEANT4 code
[99]. This simulation tool was used for the previous final cooling study during the MAP
collaboration [37]. Another existing code is a FORTRAN77 based simulation framework,
which is called ICOOL created by R. Fernow [100] at the Brookhaven National Labora-
tory. In the past couple of decades, only a few of the published ionization cooling studies
have been performed this program. Therefore it was decided especially for this thesis
to get familiar with ICOOL and execute simulation test, which will be further verified
against theoretical models.

ICOOL was specifically developed for the purpose of designing muon colliders and neu-
trino factories. Installing ICOOL on a LINUX or macOS based operating system, one
option are the following command lines :

1 $ wget --no-check-certificate https://www.cap.bnl.gov/ICOOL/icool-332.
zip

2 $ unzip icool-332.zip
3 $ make

The first command downloads the ICOOL package, while the last one compiles the
program. A remark at the edge, this study used ICOOL-331.1 for any special reason,
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which is almost identical with the newest version. To perform beam tracking in ICOOL,
the command file for001.dat has to be set up, which structure contains [101]

• Simulation control variables,

• Beam definitions,

• Muon-absorber interaction and

• Tracing definitions.

The simulation is then to be executed from the command line:
1 $ ../icool

It the next chapters the tests with ICOOL will be presented and the beam parameter
methods fo analyzing will be introduced. The 6-dimensional coordinates of each muon
will be saved in a file called for009.dat on specific positions at the reference orbit
s. The task is therefore to perform a suitable statistical analyzes code for evaluating
the normalized emittance. Finally, the first results of muon beam cooling with different
absorber materials inside high magnetic fields will be presented in section 6.2.
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Chapter 5: ICOOL simulation tests

As it was already mentioned before, ICOOL is not a commonly used standard program for
beam dynamic studies. However, it was suggested to perform some important tests for
checking the program’s functionality for future beam cooling simulations. In this chapter,
the main target is to analyze the scatter distribution of muons with various absorber
materials and further compare them with existing analytical models. On this occasion,
this work took the opportunity to integrate and test liquid deuterium in ICOOL, which
was never foreseen as ionization cooling target before. In the last section of this chapter,
a strategy will be presented to analyze the beam parameters obtained form ICOOL.
Since solenoids couple the transverse beam dynamics, a special statistical decoupling
mechanism will be applied for evaluating the beta function and the beam correlation
with the theory introduced in chapter 3.

5.1 Scattering simulations of high-Z materials

Tests of multiple scattering events caused by high-Z elements play also an essential role
in the field of ionization cooling. For the confinement of liquid absorbers, thin metallic
layers will be used. After cooling the emittance in liquid absorbers, the beam has to
penetrate through that confinement layer at least. Scattering effects and emittance
changes in high-Z materials has to be also considered in the muon collider study. For
minimizing multiple scatterings, it is suggested to test Be and Al, because they are high
up in the periodic table and are therefore metals with low densities.

First experiments with muon ionization cooling were performed at the international
Muon Ionization Cooling Experiment (MICE) using liquid hydrogen, where ∼ 300µm
thick Al walls were used for the absorber confinement [102]. Those barriers are denoted
as windows in the muon collider community. At MICE they were made out of one
primary and a second safety Al window with a thin vacuum gap in between [103].

Concerning Be: on one hand, thin Be windows can also be considered since it is used
for separating RF cavities in the cooling channel [104]. On the other hand, this element
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is carcinogenic due to its toxic properties against human bodies. Engineering progresses
on Be window constructions will seem to be a challenge in the near future.

For testing the scattering effects with ICOOL simulations, 104 muons were generated.
They initial longitudinal momentum was set at 47MeV/c (EKin ≈ 10MeV), which is
within the momentum range, where the particles leave the absorber and therefore passing
further through the metallic window. For the simulation, momentum and spatial spreads
in each direction were excluded, for maintaining a pure parallel and mono-energetic
beam. Penetrating through the absorber, the divergence of the beam can be tracked
with ICOOL and the calculation on the muons’ rms scattering angle can be statistically
executed.

� s
xi

yi ri

L

Figure 5.1: On the left side, a particle penetrates an absorber with length L and its
trajectory is perturbed from multiple deflections. Its angle can be calculated by means
of the muon’s initial and end position. The histogram on the right side exhibits the
Gaussian shape of the angle distribution with a characteristic non-Gaussian tail.

In the program, the particle tracking step size for the following ICOOL job was set at
1µm. The reason for this was that the absorbers thickness varies from 20 to 1000µm.
Such very thin windows are worth to investigate, since a 6µm aluminised mylar was al-
ready used for liquid hydrogen confinements for spallation reaction experiments [105].

Several multiple scatter models are available in ICOOL, but especially for this study the
so called Fano-model was applied [101]. Under this program setting, ICOOL simulates
multiple small angle deflections caused by Coulomb scattering, which depends on the ab-
sorber material. The net scattering angles of the muons follows a Gaussian distribution.
In addition, rare hard scattering effects (muon-nucleus collisions) cause a non-Gaussian
characteristic tail in the angle distribution.

Evaluating the rms scatter angle, the angle of every single muon at the end of the
absorber has to be observed. It has to be ensured, that only muons are included, since
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ICOOL counts also electrons created by muon decays in the program’s output file. The
lighter electrons would deflect inside the absorber much stronger, which would distort
the total muon rms scatter angle. ICOOL has the feature to switch off the muon decay,
which can sortout the problem for the calculation.

By means of a specific absorber length L the angle of each muon can be calculated in
the x-plane with

θi = arctan(xi/L). (5.1)

For verifying the calculation, the sketch in Figure 5.1 on the left side can be helpful.
Sorting the evaluated scatter angles into a histogram, the distribution can be determined,
where one example is illustrated with a 100µm thick Al absorber in the right plot of
Figure 5.1. In this histogram, also the characteristic tail in the high angle range can be
confirmed.
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Figure 5.2: The rms angles for different window thicknesses calculated by ICOOL agree
with the analytical model from the PDG. The triangles in blue illustrates the simu-
lations through Al, while the red dots are the ones for Be.

For certain absorber lengths, the rms scatter angle

〈θICOOL〉 =

√∑n
i=0 θ

2
i

n
. (5.2)
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can be compared with equation (4.19), suggested from the PDG [63]. The comparison
is illustrated in Figure 5.2 and it seems that scattering at low energies and thin high-Z
materials follows the analytical model in a good agreement.

5.2 Liquid hydrogen and deuterium scattering
analyses

Due to multiple scattering events, only a few low-Z elements come into to account for
ionization cooling [103, 106]. These absorbers would be H2 and He both in a liquid state,
or solid Li. However, during the past, the isotope deuterium has never been considered
as a possible absorber candidate for ionization cooling. This common isotope can be
extracted from heavy water, which is for example used in nuclear power plants.

Deuterium has one additional neutron more compared to hydrogen, and has in a liquid
state a radiation length approximately twice the one of liquid hydrogen (table 4.2).
Comparing the equilibrium emittance in Figure 4.6, it can be realized that analyzing
liquid deuterium leads to slightly lower εeq

⊥ compared to liquid hydrogen. Following
that, the cooling efficiency could be improved by using this isotopic configuration of
hydrogen.

The next step is to implement this proposed material in ICOOL. Ten material specific
parameters were added into the ICOOL code (icool.for), which are the ordinary and
atomic numbers, its density and the seven deuterium specific Sternheimer coefficients
taken from the PDG [87].

For testing the functionality of liquid deuterium with ICOOL, investigating the rms
scatter angle was suggested again like in the previous section. To get closer to the final
cooling conditions, the absorber length ranges from 20mm to 1m and a beam with 104

muons was generated at ps = 176.4MeV/c (EKin ≈ 100MeV) without any spatial or
momentum spreads. The particle tracking step size for this test were set at 1mm for
saving computation time.

Due to low probability of hard scattering events in liquid deuterium, no angular limita-
tions were suggested for calculating the rms scatter angle. Additionally, a second test
run was performed with liquid hydrogen, to compare those almost similar materials.
Both simulations were contrasted with the corresponding analytical prediction (4.19)
and then illustrated in Figure 5.3.

As expected, the scattering angle of liquid deuterium is slightly higher compared to
liquid hydrogen, because of the lower radiation length. Figure 5.3 shows, that both
simulations are following the shape of the theoretical prediction, but do not fit exactly
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with predicted values. It can be assumed that the analytical model reaches its limits for
long absorbers and higher imping energies.
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Figure 5.3: This graph compares the calculated rms angles of liquid hydrogen (trian-
gles) and liquid deuterium (dots) from ICOOL with the PDG’s analytical model.

5.3 Parameter decoupling by means of rotations

Since the transverse coordinates are coupled in a solenoid, the emittance can not be
easily calculated by the description of section 3.4. One way for determining them is
to transform the particle coordinates into a rotating system. The rotation causes a
decoupling of the off-diagonal sub-matrices in a 4-dimensional transverse sigma matrix
Σ4D and the beam parameter calculations in the (x, px) and (y, py) plane can be done
separately.

For calculating the rotation angle, the second line of equation (3.15) has to be taken
into account and can be rewritten as

mγ

r

∂

∂t

(
r2θ̇
)

=
−q
2r

∂

∂t

(
r2Bz

)
. (5.3)
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Subsequently, the time derivatives cancel themselves out and the rotation angle can be
expressed as

θL = −q
∫

Bs

2ps
ds, (5.4)

which is better known as the Larmor angle. This rotation is not only depending on the
magnetic field of the solenoid and the longitudinal momentum of the particle, but also
its axial position of the reference particle plays a crucial role.

Following a particle with an initial vertical y-offset and entering a solenoid with a longi-
tudinal momentum pz, it performs a helical motion in the (x, y, s) space. This circulation
passes through the initial position of the particle and a point on the beam optical axis s
periodically, which is illustrated in Figure 5.4. A θL depended rotating coordinate system
(x̃, ỹ) depicted in red in Figure 5.4 shows, that the particle performs only an oscillation
on the ỹ-axes. This rotation decouples the particle track from the x-direction.
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xy
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Figure 5.4: To provide a better understand of the decoupling mechanism applied by a
rotating coordinate system, it is useful to follow the track of a circulating particle on
the (x, y) orbit with an initial offset only in y direction. An accompanying rotating
coordinate system (x̃, ỹ), which depends on the particle’s momentum pz, the field Bs

and the position s, decouples the motion and the particle moves only along the ỹ axis.

For proofing the beam dynamics with ICOOL, one single particle was initially generated
with an offset of y = 10 cm and a longitudinal momentum of pz = 176.4MeV/c inside
the environment of a homogeneous 4T hard edge solenoid field. Tracking the particle
position, which is recorded in the ICOOL’s output file. Observing the tracked particle
position in the transverse plane shows the expected circular movement of the muon, as
illustrated as the blue dots in Figure 5.5. Applying the rotation matrix

R(θL) =


cos(θL) 0 sin(θL) 0

0 cos(θL) 0 sin(θL)
− sin(θL) 0 cos(θL) 0

0 − sin(θL) 0 cos(θL)

 (5.5)
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on each transverse particle position
(
x, x′, y, y′,

)
follows to the predicted particle

motion along the y-axes, depicted in Figure 5.5.
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Figure 5.5: Tracking with ICOOL a muon in a 4T solenoid field results to a circular
motion (blue). In a rotating frame, the particle moves on the y-axis (red dots), which
is depends only on one transverse plane.

After introducing the rotation matrix, it is worth to execute the transformation on the
solenoid’s transfer matrix

R ·MSol =


C S/κ 0 0
−κS C 0 0

0 0 C S/κ
0 0 −κS C

 . (5.6)

It can be observed, that the decoupled matrix focuses a particle not only in (x, px), but
also in the (y, py) phase space. That is one of the key arguments to use such solenoid
for ionization cooling.
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Rotation

Figure 5.6: Flowchart of the beam parameter analyzes. The particles will be decoupled
by a rotating coordinate system.

The next step is to apply the rotating coordinate system technique for evaluating the
beam parameters of a whole muon bunch with ICOOL. The betatron function inside a
solenoid for a specific reference momentum ps and a constant field strength Bs can be
calculated by means of equation (4.22). For each simulation it has to be ensured, that
the beam parameters are matched with the given parameters of the lattice. For a hard
edge solenoid, the matching condition of the muon distribution are

σx,y =

√
0.3

Bzmµε⊥,N
2

, σpx,py =

√
2mµε⊥,N

0.3Bz

. (5.7)

For instance creating a 1m long and 4T strong hard edge solenoid lattice with ICOOL,
the value of the machine specific beta function is approximately 29.4 cm for a reference
beam momentum of ps = 176.4MeV/c. For the ongoing simulation no energy spreads
will be included. Further, a beam with 104 muons was created and distributed by means
of 5.7. Otherwise, the betatron function of the beam would oscillate inside this optical
element, due to beam filamentations [69].

After tracking the generated beam through that hard edge lattice in the ICOOL, the next
task is to analyze the beam parameters provided in ICOOL’s output file. Analyzing the
beam parameters at each longitudinal position, the mean momentum 〈pz〉 is evaluated.
It is important to underline again, that ICOOL includes during the simulation the decay
of the muon. Therefore it has to be taken into account, that any electrons will be
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counted. Otherwise, the electron would distort the muon distribution and the emittance
of the muon beam would not be constant anymore.

Further the transverse coordinates will be transformed by the matrix (5.5), which rota-
tion angle is depending on 〈pz〉, Bs and s. After decoupling, the next step is to calculate
the transverse spreads 〈x〉, 〈y〉 and the mean transverse momenta 〈px〉, 〈py〉. Finally
the normalized transverse emittance can be evaluated by means of equation (3.49). A
flowchart in Figure 5.6 summarizes the operations steps of the beam parameter calcula-
tion.
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Figure 5.7: If the beam matches with the machine ellipse of a 4T strong hard edge
solenoid, it can be observed that the values βx and βy are indeed constant, applying a
rotating coordinate system to decouple the particle coordinates. The correlations αx
and αy are almost 0.

Back to the simulation example, the beam parameters can be evaluated along the optical
axes. The beta functions and their corresponding correlations are illustrated in Figure
5.7 for both transverse planes. It can be noticed, that the beam fulfills almost the
matching conditions (5.7) and the betatron functions βx and βy are indeed constant.
The correlations αx and αy are oscillating weakly around zero, due to statistical reasons
and can be improved by tracking a larger number of muons. But this will lead to longer
running times by executing an ICOOL job.
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After performing beam optics analyzes and material tests with ICOOL, the next step is
to start simulations with solenoids, filled with low-Z materials inside. In the following
chapter, the previously discussed decoupling technique will be applied for evaluating the
normalized emittance reductions and compared with a standardized ICOOL diagnostic
code.
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Chapter 6: Cooling results in hard edge
fields

This chapter presents the first ionization cooling results done by ICOOL in the case
simple hard edge fields filled with absorbers. A semi-analytical code was developed to
compute the cooling formula (4.21) and the results are compared with ICOOL simula-
tions. Tracking the muon beam in a absorber field hard edge solenoidal field, two codes
where applied after each ICOOL run for evaluating the beam parameters and their dif-
ferences will be discussed in the following. In the final section, the influences of thin
metallic windows on the emittance will be simulated and discussed.

6.1 Numerical solutions of the cooling equation

To become familiar with ionization cooling, it is useful to illustrate the emittance change
graphically by performing semi-analytical calculations. While the cooling formula is not
solvable analytically due to the heating component, a precise numerical method has to
be chosen and applied on equation (4.21) for finding an appropriate approximation.To
evaluate a first order differentiation formula numerically, the four-stage Runge Kutta
(RK4) method was used here, as it is a fast and simple algorithm [107, 108].

Before going into the details ot this method, it is useful to define the common numerical
solution of an arbitrary initial value problem ∂y(x)/∂x, which is usually expressed as a
multi-step linear equation or better known as a recursion formula in form of

y(xn+1) = y(xn) + ∆xΦ(xn, y(xn); ∆x), (6.1)

where the initial parameters x0 and y0 have to be given [109]. Φ(xn, y(xn); ∆x) is
the increment function and characterize such numerical approximations. The value ∆x
stands for the iteration step, which influences the calculation time and the precision of
an initial value problem.
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Figure 6.1: In this plot the function ∂y(x)/∂x = y(x) is numerically approximated
by the RK4 method and compared with the Euler and Heun algorithm. By using
x(0) = y(0) = 0 and ∆x = 1, the RK4 fits very well with the analytical solution.

The increment of RK4 consists of four different slope functions and is expressed as

Φ(xn, y(xn)) =
1

6
(k1 + 2k2 + 2k3 + k4) , (6.2)

while their definitions are written by discredizing the differential equation to

f(xn, y(xn)) =

(
∂y

∂x

)
n

(6.3)

and the k terms finally specify to

k1 = f(xn, y(xn)),

k2 = f(xn +
∆x

2
, y(xn) +

∆x

2
k1),

k3 = f(xn +
∆x

2
, y(xn) +

∆x

2
k2),

k4 = f(xn + ∆x, y(xn) + ∆xk3).

(6.4)
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The advantage of using RK4 compared to other conventional methods can be shown
by the simple example y(x) = ∂y(x)/∂x, which analytical solution is the exponential
function. Choosing the initial condition x(0) = y(0) = 0 and the iteration step ∆x = 1.0,
the RK4 computation illustrated as the yellow dots in Figure 6.1 shows a good agreement
with the analytical solution depicted in this graph as the solid line.

Compared to one-stage numerical methods, e.g. the Euler method [109] or the Heun
technique [110], which reduces due to higher error expansions in using the same iteration
like before as it can be seen in Figure 6.1. This single-step calculation can be improved
with a smaller choice of ∆x, however it will require computation time simultaneously.

Algorithm 1 solves the cooling equation with RK4
Require: εinitial, Einitial, Estop, ∆E . Initial conditions
1: function Cool(E, ε) . Cooling function
2: return −ε/(Eβ2)
3: end function
4: function Heat(E) . Heating function
5: a = β⊥ (13.6)2 . Unit in MeV
6: b = 2β3Emc2LR

7: return (a/b)× 〈∂E/∂z〉−1

8: end function
9:

10: ε0 = εinitial, E0 = Einitial

11: repeat
12: save(ε0, E0)
13: k1 = (Cool(E0, ε0) + Heat(E0))×∆E . Calculation of k1

14:
15: E1 = E0 − 0.5×∆E, ε1 = ε0 + 0.5× k1

16: k2 = (Cool(E1, ε1) + Heat(E1))×∆E . Calculation of k2

17:
18: E2 = E1, ε2 = ε0 + 0.5× k2

19: k3 = (Cool(E2, ε2) + Heat(E2))×∆E . Calculation of k3

20:
21: E3 = E0 −∆E, ε3 = ε0 + k3

22: k4 = (Cool(E3, ε3) + Heat(E3))×∆E . Calculation of k4

23:
24: k = 1

6
(k1 + 2k2 + 2k3 + k4) . Increment

25: ε = ε0 + k . Recursion formula
26:
27: ε0 = ε, E0 = E3

28: until E0 ≤ Estop
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Applying the RK4 algorithm on the cooling formula, some changes of equation (4.21)
have to be performed at first. Since the cooling equation is the derivative of the nor-
malized transverse emittance with respect to the ideal orbit s, the iteration ∆s could
be used at the first look. However, since the energy change is high for materials in the
range of 5 < EKin < 100MeV, the choice of ∆E as energy step sizes might be more
practical. Transforming equation (4.21) into a recursive expression yields to

εn+1 = εn −
εn
Eβ2

∆E +
β⊥ (13.6[MeV])2

2β3Emc2LR

〈
∂E

∂s

〉−1

∆E, (6.5)

where εn is defined here as the normalized transverse emittance at step n. For a specific
material, the following code in algorithm 1 was created.
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Figure 6.2: Emittance reductions with the initial parameters ε⊥,N = 300µm and
EKin = 100MeV. The approximations were computed using different absorbers and
magnetic fields. The calculations stopped, when they reached a kinetic energy of
10MeV.
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The next step is to calculate several emittance reduction processes placed in different
absorbers. It was suggested to compare liquid hydrogen, liquid deuterium, liquid helium
and lithium under different magnetic fields [30T, 40T, 50T] by varying the initial pa-
rameters ε⊥,N and E. An iteration step of ∆E = 0.1MeV was chosen for evaluating the
emittance computation very fast.

A past study [24] referenced, that the transverse normalized emittance reached a value of
around 300µm, when the muon beam transfers from the 6D-cooling to the final cooling
channel. Therefore, the first calculations starts with this parameter proposal, while an
initial kinetic Energy of 100MeV was chosen, since it is a limit for ionization coolings.
Feeding algorithm 1 with the given initial parameters ε⊥,N, EKin and ∆E, the resulting
emittance approximations are presented in Figure 6.2, while the calculation routine stops
after reaching the chosen stopping condition of EKin = 10 MeV.
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Figure 6.3: Approximation of the cooling equation beginning with ε⊥,N = 55µm and
EKin = 30MeV.
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Figure 6.2 demonstrates the agreement with the predicted equilibrium emittance shown
in Figure 4.6, proving that the beam will be cooled by all low-Z materials in the three
high field environments. Especially lithium seems to be very effective, since it cools
the emittance down to very low values within short distances. This could be a possible
game changer for the costs of solenoid fabrications, because the solenoid’s length can be
shortened. Nevertheless, the solenoid and absorber width will stay in correlations with
the size and costs of the re-acceleration components in the final cooling sector.

As it was already mentioned in the previous study [37], a final emittance of around 55µm
was reached, which is still a factor of 2 too high compared to the target parameter in
table 1.1. For ensuring cooling, the initial kinetic beam energy must be low,according to
(4.23). The field strength for was set at 50T. For instance, let’s consider a beam at an
initial normalized transverse emittance of 55µm and a kinetic energy of 30MeV going
through different absorbers, which results can be compared in Figure 6.4. Applying
lithium and liquid helium results to large values of εeq

⊥ and would cool the beam very
inefficient or even heat it up. Only liquid deuterium and hydrogen are suitable absorber
candidates of a kinetic energy of 30 < EKin < 10MeV.
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Figure 6.4: With 50T solenoid fields it is still possible to cool the target emittance of
25µm further down with liquid hydrogen or deuterium.

The take home massages of the plots in Figure 6.2 and 6.3 is, that in the high emittance
and high energy range lithium would be suitable for absorbers in a final cooling cell.
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But, the absorber length has to be short, because the muons would be decelerate to
much and decay in addition. In the simulations Otherwise, in low emittance and energy
ranges, only liquid hydrogen or deuterium can be used, while the other elements seems
to be very inefficient for ionization cooling. Liquid helium shows in general a very bad
performance, since it is a noble gas and therefore hard to ionize. The interaction of
imping muons in helium with its strong bounded electrons is weak and therefore the
muons’ momentum can not be significantly reduced and cooling becomes inefficient.
These primary calculations proof already, that liquid helium can be excluded for future
absorber choices in final cooling.

Before closing this section, it is worth to mention, that maybe it would be possible to cool
a beam below the emittance goal of 25µm, which would improve other target parameters
for the muon collider design. This would for example reduce the muon production at
the proton-target interaction point or would decrease the size of the entire muon collider
complex. As Figure 6.4 depicts, it is indeed possible to reach values below 25µm with
liquid hydrogen or deuterium for example inside 50T fields.

6.2 First emittance reduction demonstration with
ICOOL

The next step is to compare the theoretical predictions with the simulations. Here,
the emittance reductions of a hard edge solenoid with absorbers are investigated. The
solenoid is sliced in the simulation, possible due to condition

Mexit ·Mentry = 1, (6.6)

coming from description (3.21).

In the simulation setup, 104 particles were used for each ICOOL job. The hard edge
field lattices for 30T and 50T were generated and the beam ellipse was matched with
the solenoid machine ellipse corresponding to criteria (5.7) transverse sizes. The initial
normalized transverse emittance of ε⊥,N = 300µm was chosen in these examples and the
initial kinetic energy in beam direction started at 100MeV. No additional longitudinal
momentum spread was included for this studies.

It was decided to test a 1m hard edge solenoid filled with liquid hydrogen and liquid
deuterium. Tests with liquid helium were excluded, since the last section underlined its
unusable properties. Simulating with lithium at 100MeV kinetic energy, only a 60 cm
solenoid can be used, because the muons would completely decelerate and further decay
inside a longer absorber.
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Figure 6.5: ICOOL simulations with liquid hydrogen, fluid deuterium and lithium in-
side a 50T and 30T hard edge field environment. The beam parameter analyzes were
performed with Ecalc9 and the rotating decoupling code described in section 5.3,
which are compared with the theoretical prediction.

For beam parameter analyzes, two codes were applied and compared to each other. One
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program is the decoupling technique with a rotating coordinate system described in
section 5.3. The second code is included in the ICOOL download package and is called
Ecalc9 programmed by G. Penn [101]. Both codes were executed after one ICOOL
job and compared with the theoretical prediction from section 4.3. The results are
summarized in Figure 6.5.

It is noticeable, that as well Ecalc9 as the rotation analysis code agrees at the first few
cm with the cooling equation (4.21). However, the trend of Ecalc9 deviates downward
the semi-analytical prediction, while the rotation technique behaves the other way round.
In the cooling simulations with lithium, it is clear to see that only Ecalc9’s analysis
follows the shape of the cooling theory.
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Figure 6.6: Energy spread increase using different materials. Higher densities resukts
to higher stopping powers and therefore more statistical fluctuations in the energy
distribution in a bunch of muons.

It is necessary to notice, that muons are decelerated differently due to straggling, which
influences statistical fluctuations in the muons’ energy of the bunch. This energy dis-
tribution can be expressed as the so called energy spread σE and Figure 6.6 shows that
it is clearly observed to the density of the material, when muons penetrate with initial
100MeV through the absorber.
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It can be assumed that higher stopping power rates tends to higher spreads. This equally
means, that an applied rotating coordinate system could not be matched anymore with
high values of σE, which can be clearly identified by analyzing the results of the cooling
using lithium. For future simulations it will be therefore recommended to analyze the
beam parameters with Ecalc9, since it is more reliable concerning σE growth.

It can be recognized in Figure 6.5, that the emittance evaluation with ECALC9 has also
a weak offset compared to the cooling equation (4.21), which expands with growing
σE. A possible explanation for this could be, that hard scattering events were not
excluded in the description of the cooling equation (4.21), but it was still contained
in the simulation by using the Fano model. If those wide angle events would not be
included in the simulation, like it was done with 1m long liquid hydrogen target inside
a 50T field, it can be seen in Figure 6.7, that the simulations indeed follow the semi-
analytical model from chapter 4. It has to be mentioned, that this is the case only for
the Ecalc9 analyzes and deviations of the rotating technique comes out more clearly in
this example. However, the inclusion of high scatter events is a more realistic assumption
and therefore it will be used for future ICOOL simulations.
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Figure 6.7: The Ecalc9 routine agrees better with the theoretical model, if hard
scatter events are be excluded.
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6.3 Thin metallic window impact on emittances

After reaching the final target emittance of 25µm in a liquid hydrogen or deuterium
absorber, the effects of the beam after passing the confinement window are still not be
understood. As it was mentioned in section 5.1, Be and Al has to be considered.

Let’s assume a window thickness of a few hundreds of µm and choose several different
initial beam momenta. The beam reaches a low energy, when it passes through the
absorber, thus it has been decided to start simulations with the kinetic beam energy of
[10, 8, 6, 4]MeV and an initial emittance of 25µm. The simulations were done with 50T
strong hard edge solenoids and includes Be or Al as absorber. Since the range is small
compared to the absorber thicknesses, the particle simulation step size was set to 1µm.
For evaluating the emittance change, ECALC9 was applied and additionally the particle
transmission was determined, which is in other words the particle survival rate. For all
simulations 105 muons are generated.
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Figure 6.8: Results obtained with ICOOL demonstrate, that no influence on heating
effects on the emittance and can still cool down the beam after served 100µm of
thickness. Care must be take at very low kinetic energy as in the case of 4MeV/c,
where the particles decay after around 700µm.

Results with Be shown in Figure 6.8 demonstrate, that the emittance is almost constant
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at 10MeV and 8MeV and no particle loss is observed. Comparing with Figure 6.10,
the initial conditions are indeed above the equilibrium emittance, which consequently
provides cooling. Even with 6MeV initial kinetic energy the beam will be still cooled
down to 23µm, which is slightly an advantage. However, at 4MeV initial EKin of the
beam was also cooled, but at 700µm of Be thickness the transmission breaks down.
Simultaneous show it was experienced, that under a certain momentum the muons decay
in ICOOL.
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Figure 6.9: Simulated emittance change using Al window shows, that with an initial
beam energy of 4MeV/c the emittance is almost not influenced by any heating effects,
if the thickness is lower than 500µm.

Heating impacts are more obvious for Al windows, due to their higher density. Figure
6.10 proves this statement, because the initial emittance at the energy range 10-4MeV
are below the equilibrium. It can be observed in Figure 6.9, that the beam has to be
cooled below the target value, due to a slight emittance increase caused by heatings.

For a range of kinetic energy decreases, after reaching the target emittance of 25µm in
liquid hydrogen, Al has more disadvantages compared to Be as a window. At higher
energies, due to the reheating effects it will be hard to achieve the emittance below
its target value once inside the window simultaneously (e.g. at ∼ 10MeV). For lower
energies, the target emittance can be reached more easily. However an Al window has
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to be thin enough to avoid a complete stopping of the muon beam, in the low energy
case. The usage of Be windows seem to be more promising since the stopping power is
lower than for Al and the emittance does not increase. Even for kinetic energies below
8MeV, the emittance can be still reduced. However, it is not sure how thin Be can be
technically produced. An alternative to both elements would be Mylar [105], which is
6µm thick. It has been used for liquid hydrogen confinements in the field of nuclear
spallation experiments.
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Figure 6.10: Equilibrium emittance curves of Al and Be at 50T solenoid strength.

82





Chapter 7: Cooling in soft edge fields

So far, the cooling of a muon beam in simple hard edge solenoids was considered. As
demonstrated on the simulations described in the last chapter, the results obtained with
ICOOL agree with the theoretical model. However, in order to take into account the
realistic case, solenoids with end field effects must be included in the simulation, which
are also known as soft edge fields.

7.1 Field shape requirements

The HF solenoids, which are designed to achieve field strengths between 30T and 50T,
are made of superconducting materials consisting of special atomic lattice structures.
The first prototypes [111, 112] of those are composed of wrapped tapes inside as inner
layers around such solenoids, which are made out of rare-erth barium copper oxide
(ReBCO). ReBCO is a high temperature superconductor (HTS), providing very high
upper critical field strengths Bc2 and would therefore be especially suitable for muon
cooling. Other non-HTS material lose their super conductive properties due to very low
Bc2 values.

However, if constructing HF solenoids pure HTS would drive up the costs of a fu-
ture muon collider construction massively, because high costs of such super conductors.
Hence, it is proposed to use Nb3Sn additionally to wrapped around the ReBCO tapes
for mitigating HTS materials. According to the current state of the art, it is already
possible to produce solenoids with a strength of 28T industrially [113].

The behavior of such magnetic field in the longitudinal direction can be described by
means of equation (3.11) introduced in chapter 3. The field strength depends on the
ratio between the length L of the solenoid and its radius R. As mentioned before, HF
solenoids will be expensive and therefore they can not become arbitrarily long. It is
proposed to set in this work L constant, thus the fringe field is a function of R.

According to the final cooling channel design, the field of a real solenoid must fulfill
two important requirements. Firstly, it must reach its peak in the absorber area and
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secondly, it has to be as constant as possible through that stopping material, since a
constant field is required according to the derivation of the cooling equation (4.21). Lets
assume a solenoid with a fixed length of 1m and vary its radius arbitrarily by means
of equation (3.11) analytically demonstrated in Figure 7.1. It can be determined, that
these two criteria can be archived, when the ratio between the radius and the length of
a solenoid will be small enough. Under this condition the range of the fringe fields will
be decreased.
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Figure 7.1: Final cooling requires high and almost constant field Bs. The physical
range of the solenoid is illustrated as the light green area in the plot. The behavior of
the fringe field can be studied by comparing different radii.

7.2 Analytical soft edge lattice design

Chapter 3 introduced a linear approximation of the transfer matrix (3.24) of a hard
edge solenoid. A single transfer matrix for soft edge solenoids does not exist, but it can
be expressed by a so called lattice matrix M. It is a multiplication of several transfer
matrices of the beam line and forecasts the particle coordinates at the end of this lattice
by given initial coordinates.
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A soft edge field can be sliced in multiple hard edge solenoids Mi in the linear approx-
imation, which have an infinitesimal length ∆s. The s depended field strength follows
equation (3.11). Each optical element has therefore an individual field Bs(s), which
depends on the position s of the reference orbit, which is illustrated in Figure 7.2
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Figure 7.2: The particle transfer in a solenoid can be described by a lattice matrix
contained by a numerous small hard edge matrices Mi. Each infinitesimal optical
element has a specific field strength, which depends on the longitudinal position s for
ensuring the magnetic strength Bs(s) and follows the soft edge typical shape.

In the next step, the series of hard edge elements are expressed as the lattice matrix of
the soft edge solenoid

MSoft =
n∏
i=1

Mn−i, (7.1)

while the sequence of the multiplications follows the linear algebra of the beam dynamics
matrix formalism [70]. For the final cooling however, the transfer from the beginning to
the peak field area of the soft edge solenoid is in the main focus of interest. As it was
demonstrated in 4, efficient ionization cooling requires a constant betatron function and
zero correlation. Hence, the aim is to reach a minimum of correlation in the peak field
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Bp of a soft edge solenoid. There, the Twiss parameters scale toβp

αp

γp

 =

1/κp

0
κp

 , (7.2)

where κp is the solenoids square rooted focusing strength at Bp. The value of the beta
function in the central field is expressed by equation (4.22), while the divergence γinit

can be expressed by definition (3.34) by considering zero correlations. ICOOL generates
in the beginning of each run an uncorrelated beam, which means that the initial Twiss
parameters are β0

α0

γ0

 =

1/κ0

0
κ0

 , (7.3)

with κ0 as the function of the initial focusing strength in the low field area. Hence, the
next task is to find the lattice matrix, which transforms the parameters (7.3) into (7.2).
In the linear approximation, a transformation matrix (3.37) was introduced in chapter
3, which components Tij(R) (i, j = 1, 2, 3) can be constructed by the lattice matrix (7.1)
and the Twiss transformation follows toβp

αp

γp

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

β0

α0

γ0

 . (7.4)

This matrix depends on the radius of a solenoid and has to be optimized for satisfying
condition (7.4). For instance this can be reached by calculating the Twiss transfer matrix
with several radii. A radial scan from a starting value Rmin to a limitation Rmax in step
size ∆R can be applied for evaluating the lattice matrix from s = 0 to the peak field’s
position and makes it possible to compute Tij(R). Thus, the optimum radius can be
found by defining three constrain functions

g1 = βp − β0T11 − α0T12 − γ0T13 = 0,

g2 = αp − β0T21 − α0T22 − γ0T23 = 0,

g3 = γp − β0T31 − α0T32 − γ0T33 = 0,

(7.5)

by searching the minimum value of G =
√
g2

1 + g2
2 + g2

3.

A specific algorithm requires a given peak field of the solenoid and also an offset field
BOff , since the muons are generated in a low field environment. The computed values
G will be saved to the corresponding radii in a list. At least, the optimized radius
can be obtained by searching the minimum number in that list. Assuming a constant
solenoid length LSol and knowing the position sp of the peak field, the following method
is proposed in algorithm 2.
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Algorithm 2 optimizes the radius of a final cooling solenoid
Require: Bp, BOff , Rmin, Rmax, ∆R, LSol, ∆L, sp, p . Initial conditions
1: function Soft(Bp,L,R,s,BOff) . Solenoid field
2: f1 = (s+ 0.5L)/

√
R2 + (s+ 0.5L)2

3: f2 = (s− 0.5L)/
√
R2 + (s− 0.5L)2

4: return Bp × 0.5(f1 − f2) +BOff

5: end function
6:
7: function Sol(p,B, ∆L) . Hard edge solenoid matrix
8: κ = 0.15×B/p . Focusing strength
9: C = cos(κ∆L)

10: S = sin(κ∆L)
11: return [[C, S/κ], [−κS, C]]
12: end function
13:
14: function Twiss(M) . Twiss transformation matrix
15: c = M11, s = M12

16: c′ = M21, s′ = M22

17: return [[c2, −2cs, s2], [−cc′, sc′ + s′c, −ss′], [c′2, −2c′s′, s′2]]
18: end function
19:
20: β0 = p/(0.15×BOff), γ0 = 1β0 . Initial Twiss parameters
21: βp = p/(0.15×Bp), γp = 1βp . Twiss parameters at peak field
22: R = Rmin

23: repeat
24: M = 1 . 2× 2 Unitary matrix,
25: L = 0
26: repeat
27: B =Soft(Bp, LSol, R, L, BOff)
28: M = Sol(p,B,∆L)×M
29: L = L+ ∆L
30: until L > sp . Stop at the peak field position
31: T = Twiss(M)
32: g1 = βp − β0T11 − γ0T13

33: g2 = β0T21 + γ0T23

34: g3 = βp − β0T31 − γ0T33

35: list.append
(√

g2
1 + g2

2 + g2
3

)
. Save values into a list

36: R = R + ∆R
37: until R > Rmax

38: Ropt ← min(list) . Minimum value from list follows to optimum radius
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As an example serves a beam with initial normalized transverse emittance of 55µm
generated in a low field environment of 4T. The goal is to reach a peak field of 50T in the
solenoid’s center. With the beam momentum of 80MeV/c the initial Twiss parameters
(7.3) can be calculated. Lets further assume a 0.5m long solenoid and create multiple
lattice matrices by a radial scan. Care must be taken to limit the radius in its size, due
to the peak field’s fall off. Each radius corresponds to defined peak beam parameters and
a corresponding transformation matrix. The optimized radius finally results by using
algorithm 2.

After performing the optimization of the fringe field, it is possible to illustrate the
transverse beta function β⊥ and the corresponding derivative of the betatron oscillation
β′⊥, which is function of the beam correlation α⊥. This can be performed by taking
the parameters of the optimized lattice matrix and compute β⊥(s) and β′⊥(s) over the
reference orbit s by means of the envelope equation (3.30) for proofing the final cooling
conditions at the peak field region. Figure 7.3 shows the results from the previous
example and indeed a very weak oscillating correlation and a constant beta function in
the center is observed at around 1.0m, which corresponds to the center of the solenoid.

s

Figure 7.3: Along the solenoid’s axis s, the fringe field has to be optimized by finding a
suitable radius. For a 0.5m solenoid and with its peak field at the position s = 1.0m,
minimum correlation expressed as a function of β′⊥ can be found in the HF region
with a constant betatron function β⊥ inside.
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7.3 ICOOL simulations in soft edge fields

Evaluating computational an optimized fringe field by given beam parameter, the next
step is to create a corresponding solenoid map in ICOOL. It was suggested to use the
solenoid model 2 of this program [101], which describes the soft edge field by tanh-
approximation

Bs(s) =
Bc

2

[
tanh

(
s− LEnd

LA

)
− tanh

(
s− Lc − LEnd

LA

)]
+BOff . (7.6)

This approach includes the central field strength Bc and an additional offset field BOff ,
because the particles will be generated already in a low field environment before they
propagate through the solenoid. The length LEnd describes the orbit before entering and
after the leaving of the solenoid. The parameter Lc stands for the physical length of the
solenoid. The so called attenuation width LA is a parameter, which defines the slope of
the fringe field and rises with decreasing LA.
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Figure 7.4: After evaluating the optimized soft edge solenoid, a tanh depended function
will be fitted on that for creating an appropriate lattice with a certain ICOOL solenoid
model. Inside the optic, an absorber with a pre-calculated length will be integrated
symmetrically around the peak field area.
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While a optimized field shape of Bs(s) was found in the section 7.2 by means of equation
(3.11), the next task is to find an equal field in ICOOL with equation (7.6). Therefore a
fitting algorithm called curve_fit from scipy [114] was used, which is an optimiza-
tion package of python. Evaluating the field parameters, the tanh-function (dashed
line) can be compared with the equation (3.11) in Figure 7.4, which are in a good agree-
ment with the analytical optimization of the soft edge field described in section 7.2
before.

Further, an absorber has to be placed inside the solenoid for cooling the beam. With the
knowledge of the initial beam momentum ps of about 80MeV/c, it is possible to estimate
the absorber thickness by means of the cooling equation (4.21). By using liquid hydrogen
as stopping material and assuming a beam cooling until a mean momentum of around
33MeV/c (EKin ≈ 5MeV) will be reached, the absorber width is around 26 cm. Thus,
the absorber will be set symmetrically around the peak field area of the solenoid in the
ICOOL code, like it is illustrated as the creme colored surface in Figure 7.4.

s

Figure 7.5: A muon beam with an initial momentum of 80MeV/c and a normalized
transverse emittance of 55µm enters in a soft edge field of a 0.5m long physical
solenoid. A 26 cm long liquid hydrogen absorber is placed symmetrically around the
∼ 50T HF marked as the creme colored surface. The beam will be cooled down until
it reaches a mean momentum of 33MeV/c, while the beam’s emittance was reduced
to 37µm
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For the simulation, a beam with 105 particle was created and matched with the optimized
machine parameters with the matching criteria (5.7). The simulation step size was set
at 1mm and the transverse normalized emittance was evaluated with Ecalc9 after
running the job.

As it can be observed in Figure 7.5, it is indeed possible to cool a muon beam below
55µm with a field of around 50T. Nevertheless, it is also clear to see that the emittance
is after entering the absorber in the first 10 cm nearly constant. This means that there
exist still heating effects caused by correlation terms.

For optimizing the soft edge field, further studies has to be taken into account. The
next step is to focus on more realistic solenoid models in ICOOL and try to use other
optimization techniques in performing ionization cooling more efficient. Nevertheless,
further simulations would be beyond the scope of this master thesis and therefore this
work finally comes to its end. However, this chapter gave a lot of motivation to con-
tinue the task for investigating the field around ionization cooling advanced for a muon
collider.
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Chapter 8: Conclusions

8.1 Summary

A multi TeV muon collider opens the door to new physics discoveries, including unknown
particle creation and a deeper understanding of the Higgs potential. At a cm. energy of
125GeV, assuming a small energy spread of accelerated beams, a muon collider would
be a possible option for a Higgs factory. This could be a demonstrator of the future TeV
discovery machine and would test the novel accelerator technology especially designed
for the muon collider.

This thesis specifically considers on simulation studies for the final cooling system, which
is one of the key components required for reaching high luminosities in the collider by
means of transverse emittance reduction. Multiple scattering tests of muons inside
matter were performed with ICOOL. The scattering is an essential process in ionization
cooling and had to be investigated before starting the studies on emittance reductions.

Using thin Be and Al windows (10-1000µm) as absorber confinements, the rms scattering
angels of these high-Z materials agree statistically with the theoretical prediction. Due
to a small initial kinetic energy (10MeV) of the muon beam, high angle deflections are
more probable.

Low emittances and weak energies are realistic after-final cooling conditions, where the
beam has to pass through a window at least. This thesis demonstrates, that Al brings
more disadvantages than Be windows. The target emittance will be reheated, when the
beam penetrates the Al window with a too high energy, or the beam stops completely
inside the window at a too low energy. Windows made out of Be can be an option, but
it is not clear how thin they can be technically produced. It is therefore worth to take
mylar for future studies into account for the replacement of Al and Be windows.

To obtain the average scattering angles of liquid hydrogen absorbers, the interaction of
muons with liquid deuterium as an absorber was implemented in the existing code of
ICOOL. In both low-Z materials the resulting average angles differ slightly from to the
analytical model. It was assumed that this difference is due to simulating with high
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initial kinetic energies (∼100MeV) and long absorber lengths (10-100 cm), which are
baseline parameters of the final cooling system developed in the previous studies.

A rotating coordinate system was used for analysis of the beam parameters, as a solenoid
couples the transverse particle coordinates. The beam and machine dependent coordi-
nate transformation leads to a decoupling and makes it possible to evaluate the beam
parameters in the transverse planes separately.

Ionization cooling is described by a specific non-analytical formula, which was solved
numerically using the Runge-Kutta method. This made it possible to compare the
predicted emittance with the simulations. The equilibriums emittance of previous studies
strongly differs from calculations performed in this work. The beam parameter analyzes
of the tracked muons in hard edge fields with different absorbers inside were performed
using the rotating frame technique and an analyzes routine from ICOOL. By comparing
the beam parameters evaluated from the these two codes with the theoretical prediction,
it can be concluded, that this rotation method is sensitive to energy spread changes.

From the simulations it can be observed that lithium is a good candidate for cooling
a beam with high energies and high emittances. However, liquid deuterium and liquid
hydrogen are the only possible absorbers for reaching target emittance of 25µm within
a low beam energy range.

The fringe fields of real solenoids were previously calculated analytically for optimizing
the initial parameter settings in the ICOOL simulation. Compared to previous studies,
it was proven that it is possible to cool down a muon beam with a normalized transverse
emittance of 55µm by means of liquid hydrogen and a higher solenoid field (∼50T).
However, correlation effects are still present and other solenoidal models included in
ICOOL and optimization techniques have to be used for providing an efficient final
cooling scheme.

8.2 Outlook

The achievement of constant betatron functions or zero correlations in an absorber-
solenoid system is the target goal in final cooling simulations performed in this thesis.
Additionally, the non avoidable longitudinal emittance growth has to be studied and con-
trolled in future final cooling investigations, together with the optimization of emittance
increase, energy spread control and muon transmission rate.

Apart from high field solenoids and absorbers, the re-acceleration by means of a RF
system has to be taken into account. The rising energy spread after passing through
the absorber has to be controlled by means of phase focusing. During the acceleration
the muons have to be kept focused transversely, otherwise losses occur. Hence, the RF
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system must be surrounded by low field solenoids, imposing challenges on the cavity
developments for the muon collider studies.

The next task is to match the fringe field of a muon beam in the field-flipped solenoid
with an absorber inside. A more efficient emittance reduction by including a field-flipped
solenoid has to be proven. The optimization routines of a high field solenoid, RF system
and a field flipped solenoid unify the simulation of a whole final cooling cell. This makes
it possible to study an entire final cooling lattice by simulating several final cooling cells
in a row.

Besides investigating into computational calculations, engineering integration issues has
to be taken into account as well, which are for example the absorber design, windows
and hydrogen cryogenics inside a magnet system. Further, studying high field solenoid
and its fabrications is a key technology for ionization coolings. Especially the feasibility
studies of producing 50T magnets and beyond is one of the main efforts of the muon
collider collaboration.

Building a muon collider requires developments in research and technology, in order
to extend our knowledge of universe’s nature. Whether a muon collider will be built in
future, its environmental friendly construction will for sure enter a new area of accelerator
technology. The invention of novel technologies in the field of superconductors and
radiation protection will be used for industrial and medical purposes.
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Abbreviations

ATLAS A Toroidal LHC ApparatuS

BEH Brout-Englert-Higgs

BSM Beyond the Standard Model

CERN European Organization for Nuclear Research

CLIC Compact Linear Collider

cm. centre of mass

CMS Compact Muon Solenoid

GSW Glashow-Salam-Weinberg

HF high field

HTS high temperature superconductor

ILC International Linear Collider

IMCC internationl Muon Collider Collaboration

LEP Large Electron Positron Collider

LHC Large Hardron Collider

MAP U.S. Muon Accelerator Program

MICE international Muon Ionization Cooling Experiment

NC normal conducting

QCD Quantum Chromodynamic

QED Quantum Electrodynamic

PDG Particle Data Group

RCS Rapid Cycling Synchrotron
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ReBCO rare-erth barium copper oxide

RF Radio frequency

RK4 four-stage Runge Kutta

RLA Recirculation Linear Accelerator

rms root mean square

SM Standard Model

SPS Super Proton Synchrotron

SRF super conducting radio frequency
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