
Prepared for submission to JINST

Segmentation of EM showers for neutrino experiments
with deep graph neural networks

V. Belavin,𝑎 E. Trofimova,𝑎,𝑏,1 A. Ustyuzhanin𝑎

𝑎Laboratory of methods for Big Data Analysis, National Research University Higher School of Economics,
Pokrovsky Boulevard 11, Russia

𝑏Skolkovo Institute of Science and Technology,
Bolshoy Boulevard 30, bld. 1, Russia

E-mail: etrofimova@hse.ru

Abstract: We introduce a first-ever algorithm for the reconstruction of multiple showers from the
data collected with electromagnetic (EM) sampling calorimeters. Such detectors are widely used
in High Energy Physics to measure the energy and kinematics of in-going particles. In this work,
we consider the case when many electrons pass through an Emulsion Cloud Chamber (ECC) brick,
initiating electron-induced electromagnetic showers, which can be the case with long exposure times
or large input particle flux. For example, SHiP experiment is planning to use emulsion detectors for
dark matter search and neutrino physics investigation. The expected full flux of SHiP experiment
is about 1020 particles over five years. To reduce the cost of the experiment associated with the
replacement of the ECC brick and off-line data taking (emulsion scanning), it is decided to increase
exposure time. Thus, we expect to observe a lot of overlapping showers, which turn EM showers
reconstruction into a challenging point cloud segmentation problem. Our reconstruction pipeline
consists of aGraphNeural Network that predicts an adjacencymatrix and a clustering algorithm. We
propose a new layer type (EmulsionConv) that takes into account geometrical properties of shower
development in ECCbrick. For the clustering of overlapping showers, we use amodified hierarchical
density-based clustering algorithm. Our method does not use any prior information about the
incoming particles and identifies up to 87% of electromagnetic showers in emulsion detectors. The
achieved energy resolution over 16, 577 showers is 𝜎𝐸

𝐸
= (0.095± 0.005) + (0.134±0.011)√

𝐸
. The main

test bench for the algorithm for reconstructing electromagnetic showers is going to be SND@LHC.

1Corresponding author.

ar
X

iv
:2

10
4.

02
04

0v
6

 [
cs

.L
G

]
 9

 D
ec

 2
02

1

mailto:etrofimova@hse.ru

Contents

1 Introduction 1

2 Related work 3

3 Dataset description 5

4 Reconstruction algorithm 5
4.1 Graph construction 6
4.2 Edge classification 8

4.2.1 Graph convolution block 8
4.2.2 Binary classification block 8
4.2.3 Solving an issue of slow receptive field growth: EmulsionConv 9
4.2.4 Summarised architecture 10

4.3 Showers clusterization 10
4.4 Clusters classification 13
4.5 Kinematic reconstruction 13

5 Experiments and results 14
5.1 Architecture evaluation 15
5.2 Clusterization 16
5.3 Classification of clusters 17
5.4 Energy reconstruction 17

6 Conclusion and perspectives 18

A Tracklet pairs energy and likeliness estimates 20

B Grid search of optimal parameters 21

C Different multiplicities 21

1 Introduction

Electromagnetic (EM) showers are produced by interactions of incoming particle decay products
with the photographic plates of emulsion cloud chamber (ECC) bricks [1]. The ECC brick has a
modular structure made of a sequence of lead plates interleaved with emulsion films (figure 1). It
combines the capability of high-precision tracking of nuclear emulsion films and the large stopping
power from the passive material [2]. EM showers reconstruction algorithm is needed to accurately

– 1 –

estimate the decay point, full momentum, and energy of the incoming particle within the brick from
the tracking data collected with ECC brick.

The ECC has been used in the Oscillation Project with Emulsion-Tracking Apparatus (OPERA)
experiment. OPERA collected data for five years, from 2008 to 2013, and discovered muon to tau
neutrino oscillations in appearance mode [3]. One of the future experiments, SHiP [4], is planning
to follow the same principle and a similar design as the OPERA experiment. An expected full flux
of the particles passing through SHiP detectors will be about 2 × 1020 protons over five years [5].
That is about 50-300 showers per brick.

Lead
plate

Figure 1: Sectional emulsion brick. The brick
consists of 56 lead plates and 57 plastic plates
with nuclear photographic emulsions glued on
both sides [6].

Tracklet

Micro-track

Figure 2: Micro-track and tracklet in emul-
sion film definition.

Reconstruction of electromagnetic showers starts with the off-line data taking, performed by
fully automated optical microscopes [7, 8]. The scanning system provides three-dimensional spatial
information of particle tracks by identifying micro-tracks in emulsion films and connecting them
across the plastic base to form tracklets (figures 2). Due to the long exposure time (in SHiP ECC
bricks are planned to be replaced twice a year [9]), showers could overlap. These overlaps make
it difficult to correctly determine a mapping between tracklets and showers and, consequently, to
recover the properties of the initial particle.

A rapidly emerging field of Deep Learning known as Graph Neural Networks (GNN) [10–15]
provide an effective approach to analyse unordered data with an inner structure that can be expressed
as a graph. As a result, there is a growing interest in the application of this type of networks in high
energy physics (HEP) problems. In our work, we use GNN to predict an adjacency matrix for the
clustering algorithm. The key motivation for using GNN is the highly structured nature of the data
associated with the EM shower development in the detector.

In this paper, we (1) propose a new type of layer (EmulsionConv) for GNNs that utilizes prior
knowledge of the physical problem, (2) develop an adapted version of theHDBSCANalgorithm [16],
(3) we validate our pipeline on the semantic segmentation of overlapping showers, i.e., assigning
each track shower label (figure 3).

This paper is structured as follows. In section 2 we outline the literature about EM showers
reconstruction algorithms andGraph Neural Networks applications for the calorimetry and tracking.
In section 3, we introduce the dataset used to perform experiments. In section 4, we describe an
algorithm for showers segmentation. In section 5 we present experimental results that demonstrate

– 2 –

the practical viability of the proposed method. 1

z, mm
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 y,

 m
m

40
20
0
20
40

x,
 m

m

60

40

20

0

20

40

60

(a) Unclustered simulated showers: all tracklets with
the same color.

z, mm
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 y,

 m
m

40
20
0
20
40

x,
 m

m

60

40

20

0

20

40

60

(b) Clustered showers: tracklets are colored accord-
ing to the Monte-Carlo ground truth shower label.

Figure 3: EM showers in a emulsion brick.

2 Related work

Several problems can compromise the reconstruction of electromagnetic showers in the SHiP and
SND@CERN experiments. One group of problems is connected with background noise rejection.
Another one, that we address in this work is EM showers overlapping. The largest source of
background is expected from pass-through muons. Other possible sources of noise are instrumental
background, cosmic rays, EM showers induced by the deep inelastic scattering of muons and
coherent neutral current neutrino scattering, with the production of single neutral pion [17]. Some
of these problems were already addressed; for example, in [18, 19] authors propose algorithms for
instrumental background rejection, in [2] 𝜋0/𝑒-separation is studied, and in [20] active muon shield
is proposed to deflect the muons out of the acceptance of the spectrometer. An efficient algorithm
for electron showers separation and reconstruction would also allow to further improve algorithms
for background EM showers rejection. We discuss some works on EM showers reconstruction in
more detail below.

To the best of our knowledge, there was no prior work that addressed the problem of multiple
showers reconstruction. The most closely related works are focused on the separation of two
electromagnetic or electromagnetic-hadronic showers for highly granular silicon calorimeter [21].
Another work [22] provides an algorithm for the separation of up to three showers in the cellular
gams-type calorimeter. In contrast, we tackle the problem of the separation of the variable number
of showers inside the sampling emulsion calorimeter.

1The code for this work is available in [23] under MIT licence

– 3 –

In [2], the algorithms for electron shower reconstruction have been developed and are applied
to study the electron/pion separation and the shower energy estimation in an emulsion brick. The
algorithm iteratively matches each tracklet to tracklets in the downstream films based on specified
angular and position requirements. Extrapolation of the tracklet candidate is allowed at most for
three films.

In [18], authors solve the problem of shower reconstruction in the presence of a dominated
instrumental background due to the ambient radioactivity and cosmic rays. The algorithm for one
shower reconstruction is based on prior knowledge about the initial point and shower direction, and
utilized Boosted Decision Trees from TMVA [24] to classify all tracklets as a signal or background.
For energy reconstruction, a linear regression on the number of selected tracklets is applied. The
achieved energy resolution is 𝜎𝐸

𝐸
= (0.28 ± 0.09) + (0.09±0.04)√

𝐸
. In [19], authors also address the

problem of electron shower identification in the presence of an instrumental background that is
orders of magnitude larger than the signal. They propose and study new topological variables that
are used in Random Forest for efficient background rejection. They assume many showers in brick
with fixed energy on the level of 6GeV but do not address the problem of showers overlap and focus
solely on the identification of segments of the showers in an environment with high noise density.

Similarly to [18], [25] presents an algorithm for background classification that does not rely
on the information of the shower origin. It also utilizes Boosted Decision Trees, followed by the
Conditional Random Field model for pattern identification. The achieved energy resolution is 0.27.
This approach is similar to ours in the sense of the absence of prior information about showers
origin. However, the authors are not solving the problem of showers semantic segmentation.

There are also many works that propose algorithms for electromagnetic shower reconstruction
with deep learning techniques. For example, [26–28] use convolutional neural networks for shower
reconstruction, as well as for the classification of the type of input particle.

In [14] and [15], authors justify the use of GNNs for particle tracking and reconstruction in
HEP. The authors describe how HEP reconstruction tasks could be reformulated into problems
involving graphs. For example, track search could be formulated as a classification of edges of the
graph and jet tagging as a regression of graph characteristics. The authors also note the practical
advantages of using GNNs. The computational performance of many established reconstruction
algorithms does not scale well with the increasing collision complexity of physical events, while
GNNs can scale better.

In [29], authors apply edge classification with clustering post-processing for the task of particle
tracking. Their work is similar to ours in the sense that they are using GNN to classify edges for the
identification of the doublets and triplets. Track labelling task is solved with Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [30], using predicted edges scores. We show that
a naive implementation of their approach, demonstrated on a 10 layers detector, does not function
well when applied to 56 layers, likely due to vanishing gradients over too many message-passing
steps, the issue that we study in section 5.1. We propose a heuristic procedure for graph construction
and a new layer type for GNN for the fast growth of the receptive field.

And in [31], the authors demonstrate that Graph Neural Networks have promising results for
tracking and calorimetry in high energy physics. They use GNN to classify edges in a graph
and combine it with a connecting-the-dot algorithm for tracking problems and calorimeter cluster
problems for single-particle samples. In comparison, we are solving a clusterization problem for

– 4 –

multiple particle samples with a much larger diversity of clusters and possible overlaps.
This work aims to recover multiple showers in a sampling emulsion calorimeter with GNNs

while achieving the same energy resolution as one shower reconstruction algorithm for the same
task. In our approach, we do not use information about shower origin or direction that authors of [18]
inferred from Changeable Sheets (CS) doublets [32], a pair of nuclear emulsion films attached to
the downstream side of the ECC brick.

3 Dataset description

Tracklets, reconstructed by automatic scanning system, are represented by tracklet position (x,
y, z coordinates) and its slope (𝜃𝑥 = 𝑝𝑥/𝑝𝑧 and 𝜃𝑦 = 𝑝𝑦/𝑝𝑧 , where ®𝑝 = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) is the
particle momentum). Tracklets exist only inside the brick emulsion. That leads to the following
constraints on tracklets coordinates: 𝑥 ∈ [−62500𝜇𝑚, 62500𝜇𝑚], 𝑦 ∈ [−49500𝜇𝑚, 49500𝜇𝑚]; 𝑧 =
1293𝑘𝜇𝑚, 𝑘 ∈ {0, ..., 56} (figures 4, 5). We also preselect tracklets in accordance with visibility
conditions as in [33]. We discard tracklets produced by low momentum particles (less than 30
MeV) and with high angle of traversal of the emulsion film (

√︃
(arctan 𝜃𝑥)2 + (arctan 𝜃𝑦)2 > 1 rad),

because they could not be reconstructed by the scanningmicroscope. Our target variables are energy,
momentum, and direction of the initial electrons. To sum up, the data has the following format:
one matrix where each row contains tracklet information ({𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦 , shower_id}) and another
matrix where each row contains shower information ({shower_id, 𝑥init, 𝑦init, 𝑧init, 𝜃init𝑥 , 𝜃init𝑦 , 𝐸true}).

To assess the performance of our algorithm, we have generated 16,577 electron-induced showers
using FairShip framework [34][35]. We modify FairBoxGenerator class from FairROOT to better
match one-dimensional distributions of energies and polar angles of electrons to the ones that
we expect to observe in neutrino interactions in SHiP. To simulate energy, we have used gamma
distribution with parameters 𝛼 = 1.4, 𝛽 = 0.5. To simulate polar angle, we have used log-normal
distributionwith parameters 𝜈 = 0, 3, 𝜎 = 0.7 to sample pseudorapidity (𝜂), which is connectedwith
polar angle (𝜃) by a simple relation: 𝜃 = 2 arctan(exp(−𝜂)). This leads to the energy distributed
from 0 to 40 GeV with a peak at 6.4 GeV (figure 6).

For our experiments, we aggregate showers into a dataset with a variable multiplicity of 50-300
showers per brick that serves as a proxy for a realistic scenario, where we expect a random number
of showers per brick. The resulting dataset consists of 100 emulsion bricks EM showers data with
50-300 showers in each brick (figure 7). In this work, we consider electromagnetic showers data to
be cleaned from the background tracklets.

4 Reconstruction algorithm

Our algorithm for EM showers reconstruction comprises five steps. First, we heuristically construct
a directed graph, where each tracklet is assignedwith a vertex. Second, we predict the probability for
each edge to connect a pair of tracklets from the same shower with a neural network. Third, we use
transformed probabilities from the previous step as weights in clusterization. Forth, because cluster
assignment is ambiguous, we also introduce a simple boosting tree classifier to select clusters (that
we also denote in the text as “reconstructed showers”) for the subsequent kinematic reconstruction.

– 5 –

0 10000 20000 30000 40000
z0, m

0

100000

200000

300000

400000

500000
mean z0 coordinate = 14924.2

Figure 4: Distribution of the showers 𝑧init

positions.

0 20000 40000 60000
z, m

0

20000

40000

60000

80000 Mean z coordinate = 38605.8

Figure 5: Distribution of all tracklets 𝑧 co-
ordinates.

0 10 20 30 40 50
Energy, GeV

0

20000

40000

60000

80000

100000

120000
mean energy = 9.6

Figure 6: Distribution of the showers true
energy.

50 100 150 200 250 300
Number of EM showers

0

5

10

15

Figure 7: Distribution of the number of
shower per brick (realistic case).

And, fifth, for reconstructed showers, we estimate kinematic variables such as the position of decay,
direction and energy of the primary particle that initiated the shower.

4.1 Graph construction

We build a directed graph with vertices representing tracklets. To decide whether to connect two
vertices with an edge or not, we introduce a distance metric defined on pairs of tracklets that we call
“integral distance”. Integral distance is equal to the area formed by the union of the extrapolations
of tracklets (figure 8).

If we assume that the one tracklet is described by the parameters 𝑥1, 𝑦1, 𝑧1, 𝜃𝑥1 , 𝜃𝑦1 , and the
other one by 𝑥2, 𝑦2, 𝑧2, 𝜃𝑥2 , 𝜃𝑦2 , then this distance is expressed by the following integral, which can
be evaluated in closed form:

IntDist =
𝑧1∫

𝑧2

(
(𝑧(𝜃𝑥2 − 𝜃𝑥1) − (𝑥1 − 𝑥2 + 𝜃𝑥2 (𝑧2 − 𝑧1)))2

) 1
2
𝑑𝑧 +

𝑧1∫
𝑧2

(
𝑧(𝜃𝑦2 − 𝜃𝑦1) − (𝑦1 − 𝑦2 + 𝜃𝑦2 (𝑧2 − 𝑧1)))2

) 1
2
𝑑𝑧

(4.1)

– 6 –

The integral distance combines the angle difference and impact parameter difference into one
scalar metric by calculating area projections on 𝑥𝑧 and 𝑦𝑧 planes.

The edge is directed from a tracklet with a smaller 𝑧 coordinate to a tracklet with a larger 𝑧
coordinate. An edge could connect tracklets not only from two successive plates but from any
pair of plates because the particle could pass several layers of the detector without leaving any
reconstructible tracklets. For each tracklet, only 10 outgoing and 10 incoming edges with the
smallest value of the IntDist are left. We have chosen the number of incoming and outcoming edges
by assessing the segmentation of the ground truth showers within the constructed graph. I.e. for
each ground truth shower, we calculate the number of clusters (connected components in the graph)
and the relative size of the largest clusters to the total number of tracklets in the original shower. In
figure 9 we plot the 80th percentile of the number of clusters. In the ideal case, one ground truth
shower should be associated with exactly one cluster. So we have to choose the number of edges
that minimize this metric. On the other hand, we can tolerate situations when one ground truth
shower is associated with one large cluster and several tiny ones. Thus, to distinguish situations
when we have several clusters of approximately equal size (in terms of the number of tracklets) and
situations when we have one large cluster, we also calculate the relative size of the largest cluster.
In figure 10 we plot the 20th percentile of the relative size of the largest cluster to the total number
of tracklets in the original shower as the function of the number of edges. As one can notice, when
the number of edges is larger than 5, we observe neither an improvement in the number of clusters
nor a significant increase in the relative size of the largest cluster. Considering this and considering
computational demands during neural network training with dense graphs, we have decided to keep
the number of incoming and outdoing edges equal to 10.

zi zi+1

Tracklets

Figure 8: Integral dis-
tance (red area).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of edges in graph construction

100

101

N
um

be
r

of
 c

on
ne

ct
ed

co

m
po

ne
nt

s
fo

r
sh

ow
er

s

Figure 9: 80th percentile of num-
ber of clusters per shower as a func-
tion of number of edges.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of edges in graph construction

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
si

ze

of
 th

e
la

rg
es

t c
lu

st
er

Figure 10: 20th percentile of the
relative size of the largest clusters
as a function of number of edges.

To further lower computational costs and reduce the size of the neural network used, we
perform feature engineering and combine features that describe vertices and edges. In clustering
algorithms, the choice of the feature space and the measure of the distance between objects is of
critical importance. From first principles of the proposed clustering algorithm, good features should
be approximately equal for tracklets from the same shower and take as distinct values as possible
on tracklets from separate showers. Experimentally, the following vertex features, presenting the
azimuthal angle, cartesian x, y coordinates projections on the z-axis and their combinations, were
found to improved the algorithm’s quality over the raw data case:

1. initial features: 𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦

– 7 –

2. trigonometric features: 𝜙 = arctan
(𝑦
𝑥

)
,
√

𝑥2+𝑦2
𝑧
, 𝑥
𝑧
, 𝑦
𝑧
, (sin(𝜙)+cos(𝜙))

𝜙

Edge features include:

1. IntDist (eq. 4.1),

2. IP (impact parameter) projections on the X and Y axes for tracklet pairs,

IP projection on the X axis =
𝑥1 − 𝑥2 − (𝑧1 − 𝑧2) · 𝜃𝑥𝑖

𝑧1 − 𝑧2
, (4.2)

IP projection on the Y axis =
𝑦1 − 𝑦2 − (𝑧1 − 𝑧2) · 𝜃𝑦𝑖

𝑧1 − 𝑧2
, (4.3)

where 𝑖 ∈ 1, 2

3. tracklet pairs energy and likeliness estimates (eq. A.2).

As a result, 10 and 7 features are used for vertex and edge description respectively.

4.2 Edge classification

We use two neural networks to predict the probability that edge connects tracklets from the same
shower: a Graph Convolutional Network (GCN) that predicts embeddings of the vertices and a
Fully Connected Neural Network (FCNN) that predicts classification scores for edges.

4.2.1 Graph convolution block

To predict meaningful embeddings of vertices, we are using Graph Convolution Network. GCN is
a special type of neural network that generalizes convolution operations on regular N-dimensional
grids to the unstructured grids described by a graph. The proposed GCN includes two components:
an encoder for input graph transformation in the latent representations of each vertex and each edge
and a module that performs message-passing for latent features updating.

In particular, we use EdgeConv layer. EdgeConv is proposed in [36] for the segmentation of
3D clouds. The key idea is to modify a way to compute messages. They propose to use relative
information about vertices in the message-passing step, i.e. using the following formula to compute
messages: 𝑚𝑣𝑣′ = 𝑀 (ℎ𝑣 , ℎ𝑣′ − ℎ𝑣 , 𝑒𝑣𝑣′), where ℎ𝑣 and 𝑒𝑣𝑣′ are the latent representation of vertex
and edge, respectively, and 𝑀 is a differentiable function, for example, neural network.

4.2.2 Binary classification block

A Fully Connected Neural Network takes the vertices embeddings from the GCN as an input. Then,
it predicts the probability for each edge to connect tracklets from the same shower.

The distribution of edges classes is highly imbalanced (approximately 10:1). Thus, we are
using focal loss [37] during training:

FL(𝑤𝑣𝑣′, 𝑦) = −
(
𝑦(1 − 𝑤𝑣𝑣′)𝛾 log(𝑤𝑣𝑣′) + (1 − 𝑦)𝑤𝛾

𝑣𝑣′ log(1 − 𝑤𝑣𝑣′)
)
, (4.4)

where 𝑤𝑣𝑣′ is the output of the model estimating the probability for the class 𝑦 = 1 and 𝛾 is the
focusing parameter (we choose 𝛾 = 3.0).

– 8 –

4.2.3 Solving an issue of slow receptive field growth: EmulsionConv

Tracklets that are closer to the shower origin, i.e. produced in the early stage of shower development
by hard electrons and photons, contain more information about a shower than tracklets produced in
the late stages by soft particles. Thus, we need to encourage awareness of the neural network of
early-stage tracklets when this network makes predictions about late-stage tracklets. In other words,
we need to ensure the fast growth of the receptive field of neural network [38, 39].

In EdgeConv, messages propagation from vertex 𝑣 to some vertex 𝑣′ takes as many steps
as the length of the shortest path between 𝑣 and 𝑣′. It would take 56 (equal to the number of
emulsion layers in the detector) message-passing steps for the network from the last message-
passing step to consider early-stage tracklets when making predictions for late-stage tracklets. More
generally, without additional tricks, the receptive field of GCNs grows linearly with the number
of convolution blocks, which, in combination with vanishing gradient problem [40, 41], leads to
the abuse of shallow networks that can not properly propagate information in large graphs. We
propose the EmulsionConv layer in which we modify the algorithm to collect messages and update
hidden representation vectors (ℎ𝑣) of vertices for each emulsion layer separately. EmulsionConv
aims to solve the problem of the slow growth of the receptive field and computation burden of such
inefficient updates in vanilla GCN, by exploiting the tree-like structure of electromagnetic showers.
First, the proposed layer splits edges into 56 groups, grouping edges 𝑒𝑣𝑣′ by the 𝑧 coordinate of the
tracklet associated with vertex 𝑣′. Second, EmulsionConv performs the full message-passing within
one group before proceeding to the next group. Because of the lesser computational parallelism
and inability to fully utilize GPU parallelization, every single step of EmulsionConv takes more
time than one step of EdgeConv. However, in one step of EmulsionConv, we gain a forward in
z receptive field of size 56, which is impossible to achieve with the same number of EdgeConv
layers. The output of EmulsionConv at vertex 𝑣 is an average of messages passed, and updated
vertex embeddings for each vertex 𝑣 ∈ 𝑁 (𝑣). The EmulsionConv layer algorithm is summarized
in Algorithm 1. We parameterize the message updating function M with a linear layer followed by
ReLU activation function.

Algorithm 1 EmulsionConv algorithm
Require: graph (𝑉, 𝐸) = {𝑣ℎ, 𝑒𝑣𝑣′}; 𝑀 ,𝑈 – neural networks
Ensure: updated graph (𝑉, 𝐸) = {𝑣ℎ, 𝑒𝑣𝑣′}
1: Group pairs of verticies 𝑔𝑘 = {(𝑣𝑣′) | 𝑧𝑣′ = 𝑧𝑘 ∧ ∃ 𝑒𝑣𝑣′} based on 56 unique 𝑧𝑘 .
2: for 𝑘 ∈ [1, . . . , 56] do
3: for each (𝑣𝑣′) in 𝑔𝑘 do
4: 𝑚𝑣𝑣′ = 𝑀 (ℎ𝑣 , ℎ𝑣′ − ℎ𝑣 , 𝑒𝑣𝑣′)
5: end for
6: 𝑚𝑣′ = sum{𝑚𝑣𝑣′}𝑣∈𝑁 (𝑣′)
7: ℎ𝑣′ ← ℎ𝑣′+𝑚𝑣′

2
8: end for

– 9 –

Convolution Block

Input:

Binary Classification Block

EmulsionConv
71 32→

Linear
10 32

+
BatchNorm

→

N ×

EdgeConv
(Linear

64 32 +
BatchNorm +

Tanh)

→

M ×

10 vertex
features

7 edge
features

32 neurons
× 2
+

Input: Linear
32 32→

Tanh

EmulsionConv
71 32→

Linear
10 32

+
BatchNorm

→

Tanh

Linear
71 32

+
BatchNorm

→

Tanh7 edge
features

32 neurons
× 2
+

Input:

Linear
32 1→

wvv′

Sigmoid

2 ×

Linear
32 32

+
BatchNorm

→

Tanh

Figure 11: Edge classification neural network architecture.

4.2.4 Summarised architecture

The graph convolution and binary classification blocks are illustrated in figure 11. The first block
is composed of N layers of newly proposed EmulsionConv and M layers of EdgeConv. We will
choose specific N and M in section 5. Next, the output of the graph convolution block is further
passed to the binary classification block, where we concatenate the embedding of vertices and the
corresponding edge features. Finally, the binary classifies predicts an edge probability 𝑤𝑣𝑣′.

4.3 Showers clusterization

For a final separation of the showers, there is a need for an algorithm that can operate with large
sparse graphs and that avoid breaking showers during the clustering. To perform clustering, we
need to introduce a distance between vertices, close to zero for edges that connect vertices from the
same shower and large for those edges that connect vertices from different showers. By default, if
there were no edge between two vertices after graph construction, we assume that 𝑑𝑣𝑣′ = +∞. For
all other pairs of vertices, we define distance as a function of 𝑤𝑣𝑣′:

𝑑𝑣𝑣′ =

arctanh (1 − 𝑤𝑣𝑣′)

𝑤𝑣𝑣′
,
arctanh (1 − 𝑤𝑣𝑣′)

𝑤𝑣𝑣′
< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

+ ∞, arctanh (1 − 𝑤𝑣𝑣′)
𝑤𝑣𝑣′

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(4.5)

From now on, we will define the shower-candidate as a “cluster” and the ground-truth shower
as a “shower”. We introduce a modified version of the HDBSCAN [16] clustering algorithm. We
call it an edge weight-based spatial clustering algorithm for graph structures (EWSCAM).

EWSCAM takes as input a graph {𝑣, 𝑑𝑣𝑣′}, the two hyperparameters 𝑘 (minimum samples
core) and min𝑐𝑙 (minimum cluster size) and produces a cluster hierarchy. Following the original

– 10 –

HDBSCANalgorithm, we are transforming the space, definingmutual reachability distance between
pairs of vertices as follows:

𝑑
mreach𝑘
𝑣𝑣′ = max(core𝑘 (𝑣), core𝑘 (𝑣′), 𝑑𝑣𝑣′), (4.6)

where core𝑘 (𝑣) is a distance from the vertex to the k-nearest neighbour. core𝑘 (𝑣) shows how dense
or sparse the area around the vertex.

We are using the graph {𝑣, 𝑑mreach𝑘
𝑣𝑣′ } to construct a minimum spanning tree (MST) with the

Kruskal algorithm [42], that at each step adds the lowest-weighted edge. MST and the order in
which each edge was added define a hierarchical tree structure (dendrogram) of vertices.

The next step is to condense the dendrogram of vertices into clusters. One way to look at this
procedure is from a top-down point of view. We are starting from the root of the dendrogram; if
both children at the current level have more than min𝑐𝑙 vertices, then we consider that cluster splits
into two different clusters. If only one child has more than min𝑐𝑙 vertices, then the cluster remains
the same, but with fewer vertices. Finally, if both children have less than min𝑐𝑙 vertices, then the
cluster disappears at this level.

After we have defined the hierarchical tree structure of clusters, we need to extract clusters, or,
in other words, choose levels in the dendrogram of clusters where we stop the splitting procedure.
We want to choose the most persistent clusters. First, we are defining 𝜆𝑏𝑖𝑟𝑡ℎ, which is equal to the
inverse of the mutual reachability distance when the cluster splits off from its parent. Then, stability
is defined as a sum over inversed weights of edges that were attached to the cluster within its path
in the dendrogram:

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑︁
{𝑣𝑣′ }

1
𝑑
mreach𝑘
𝑣𝑣′ − 𝜆𝑏𝑖𝑟𝑡ℎ

(4.7)

After computation of stabilities, we are going from bottom to top and pruning the dendrogram.
Suppose the sum of the stabilities of children is greater than the parent cluster stability; in that case,
parent vertex stability is set to be equal to the sum of the stabilities of the children. If, on the other
hand, the stability of the parent is greater than the stability summed over its children, then we prune
children. The EWSCAM algorithm is sketched in Algorithm 2.

The main difference between our algorithm and HDBSCAN is that in HDBSCAN, authors use
the Prim algorithm for Minimum Spanning Tree (MST) construction, whereas in EWSCAM, the
Kruskal algorithm is used. Both algorithms produce correct MST but connect vertices in a different
order, leading to different linkage and condensed trees. A condensed tree is obtained by assessing
the stability of each cluster in relation to the clusters into which it is divided. In our case, it is very
important not to over-cluster the showers. In our experiments, we observe that EWSCAM decreases
the number of broken showers (a more formal definition of the broken shower would be given in
4.4) by about four times.

– 11 –

Algorithm 2 EWSCAM algorithm
Require: graph {𝑣, 𝑑𝑣𝑣′}

𝑘 – minimum samples core, parameter for mutual reachability distance computation
min𝑐𝑙 – regulates the minimum cluster size at splitting

Ensure: a dendrogram 𝐷 with cluster
1: Compute mutual reachability distance and construct new graph {𝑣, 𝑑mreach𝑘

𝑣𝑣′ }
2: Construct minimum spanning tree (MST), i.e. tree with the lowest sum of 𝑑mreach𝑘

𝑣𝑣′

3: 𝑆 = {{𝑣𝑖}}𝑁𝑖=1 – initialize set of clusters with each cluster including one vertex
4: Initialize empty dendrogram 𝐷

5: for each edges 𝑒𝑣𝑣′ in 𝑇𝑠 in increasing order of 𝑑mreach𝑘𝑣𝑣′ do
6: cluster𝑣 ← cluster from 𝑆, that contains vertex 𝑣
7: cluster𝑣′ ← cluster from 𝑆, that contains vertex 𝑣′

8: if len(cluster𝑣) > min𝑐𝑙 AND len(cluster𝑣′) > min𝑐𝑙 then
9: create new cluster cluster𝑣𝑣′
10: set cluster𝑣 and cluster𝑣 to be children of cluster𝑣𝑣′
11: add cluster𝑣𝑣′ to 𝑆, add cluster𝑣𝑣′ to 𝐷
12: delete cluster𝑣 and cluster𝑣′ from 𝑆

13: end if
14: if len(cluster𝑣) > min𝑐𝑙 AND len(cluster𝑣′) < min𝑐𝑙 then
15: append vertices from cluster𝑣′ to cluster𝑣
16: delete cluster𝑣′ from 𝑆

17: end if
18: if len(cluster𝑣) < min𝑐𝑙 AND len(cluster𝑣′) > min𝑐𝑙 then
19: append vertices from cluster𝑣 to cluster𝑣′
20: delete cluster𝑣 from 𝑆

21: end if
22: if len(cluster𝑣) < min𝑐𝑙 AND len(cluster𝑣′) < min𝑐𝑙 then
23: create new cluster cluster𝑣𝑣′
24: add cluster𝑣𝑣′ to 𝑆
25: if len(cluster𝑣𝑣′) > min𝑐𝑙 then
26: add cluster𝑣𝑣′ to 𝐷
27: end if
28: delete cluster𝑣 and cluster𝑣′ from 𝑆

29: end if
30: end for
31: For each cluster in 𝐷 calculate stability
32: Recursively prune 𝐷 from bottom to top
33: Return 𝐷

– 12 –

4.4 Clusters classification

To assess the quality of the EM showers separation, we define recovered, broken, lost, and stuck
showers as follows:

· a shower is considered to be recovered if one cluster contains more than 90% of its tracklets and
it is not broken or lost;

· a shower is considered to be broken if the ratio of sizes of the largest cluster, i.e. the cluster
containing the maximum number of tracklets, to the second largest cluster less than 2;

· a shower is considered to be lost if less than 10% of its tracklets are within all clusters;

· a shower is considered to be stuck if it does not fall into any of the above-listed categories
(Figure ??).

We estimate the recovered shower’s characteristics (decay position of the initial particle and its
momentum) by analysing the associated cluster with > 90% of tracklets. Because these definitions
are based on the Monte-Carlo ground truth information, to use our pipeline on real data, we also
need a classifier to decide if the cluster produced by the clustering algorithm is recovered or not.

To separate recovered showers from other types of clusters, we use an XGBoost Classifier [43].
Figure 12 shows a cone constructed as follows: the vertex corresponds to the estimated position of
the initial particle, the axis corresponds to the estimated direction of the particle (see section 4.5 for
a definition). Classifier takes three input variables: the numbers of tracklets in a cone with radii of
10mrad, 30mrad, and 50mrad. Themodel predicts the probability that the shower is recovered. We
have used an XGBoost classifier because tree algorithms provide the best performance for tabular
data.

Estimated particle
position

α

Figure 12: Cone construction for the recovered
shower. Cone apex is the estimated particle po-
sition, and cone direction is the estimated parti-
cle direction.

4.5 Kinematic reconstruction

After the reconstruction of the EM showers, we analyze the physical properties of the successfully
reconstructed showers. Figure 13 summarizes successive steps of showers reconstruction, followed
by the assessment of the particles’ position, direction and energy.

– 13 –

Graph
Construction

Edge
Classification Clusterization Recovered showers

classification
Physical parameters

reconstruction

Input: X, Y, Z, θx, θy Graph Graph, wi Clusters Clusters associated with
recovers showers

N = 1

N = 200

N = 50

N = 50 — 300

Recovered

Not recovered

Estimated initial
particle parameters:

coordinates and
directions θinit

x , θinit
y

Estimated shower
energy

y = 0,1
wi

Output:

4 graph
configurations:
N showers per

brick

Probability of edges
connecting tracklets

of one shower
Clusters Classified clusters: Estimated parameters:

θinit
x , θinit

y , Etrue

xinit, yinit, zinit,

wi

Figure 13: Overall pipeline of the experiments.

The initial particles coordinates (𝑥init, 𝑦init, 𝑧init) are estimated from the median position of the
first three tracklets in the cluster along the z axis. The directions 𝜃init𝑥 and 𝜃init𝑦 are inferred by fitting
𝑧𝑖 = 𝜃init𝑥 𝑥𝑖 + const and 𝑧𝑖 = 𝜃init𝑦 𝑦𝑖 + const to the first 20 tracklets along the 𝑧 axis. We estimate
the accuracy of the initial particle coordinates and direction reconstruction by computing the mean
absolute error between the true and reconstructed values.

We use linear regression to reconstruct the energy because, in general, the response of the
electromagnetic calorimeter is linear w.r.t. the energy of the incoming particle [44]. However, a
linear dependency of the true energy is corrupted with a high level of noise. Thus, we estimate the
energy of the shower with a linear regression trained with the Huber loss [45] to be more robust to
outliers. As a predictor, we use the number tracklets in the recovered shower (𝑁𝑡𝑟):

𝐸rec = 𝑝0 + 𝑝1𝑁tr (4.8)

We assess the quality of energy reconstruction for recovered showers with energy resolution
defined as the standard deviation of the difference between the true and reconstructed energy divided
by the true energy.

5 Experiments and results

For all experiments, we split the dataset into ten folds. Six folds are used as a train, three folds as
a validation, and one fold as a test. First, we use the train part of the dataset to fit the network and
perform a hyperparameter search for clusterization on it. Next, we use the validation part of the
dataset for (1) early stopping during the network training, (2) fitting the clusters classifier, (3) fitting

– 14 –

linear regression for energy reconstruction. Finally, we use the test part of the dataset to assess the
performance of the whole pipeline (figure 13).

After that, we “rotate” the dataset (i.e. shift ten folds of the dataset with the offset of one) and
repeat experiments. We “rotate” the dataset ten times so that every part is used as a test only once.
The average and standard deviation over these ten measurements are reported in the plots and tables
below.

5.1 Architecture evaluation

For the ablation study, to show that the EmulsionConv layer indeed improves edge classification
performance in comparison with EdgeConv, we compare six architectures: (1) 8 layers of Emul-
sionConv (“pure emulsion”), (2) 8 layers of EdgeConv (“pure edge 8”), (3) 56 layers of EdgeConv
(“pure edge 56”), (4) 4 layer of EmulsionConv and 4 layers of EdgeConv (“mix equal”), (5) 3 layer
of EmulsionConv and 5 layers of EdgeConv (“mix edge”), (6) 5 layer of EmulsionConv and 3 layers
of EdgeConv (“mix emulsion”).

We use ROC-AUC (area under the receiver operating characteristic curve, eq. 5.1) metric [46]
as a proxy metric to validate different architectures, because it measures the quality of ranking, i.e.
ensures that probabilities for edges that connect tracklets from different showers are lower than the
probabilities for edges that connect tracklets from the same shower. These probabilities are used
as edge weights in section 4.3; thus, the ROC-AUC metric indirectly measures the quality of the
downstream clusterization.

ROC − AUC =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝐻 [𝑦𝑖 − 𝑦 𝑗]𝐻 [𝑤𝑖 − 𝑤 𝑗]∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝐻 [𝑦𝑖 − 𝑦 𝑗]

, (5.1)

where 𝐻 is the heaviside function, 𝑦 ∈ {0, 1} is a binary label, and 𝑤 ∈ [0, 1] is the edge
probability predicted by the model.

We train neural networks for 4000 epochs with early stopping with a patience parameter of
100. For optimization we use the Adam algorithm [47] with a learning rate of 10−3.

As one can see from figure 14, the best results are achieved with networks either composed of
a mix of EmulsionConv and EdgeConv or purely composed of EmulsionConv. Whereas the quality
of networks entirely composed of only EdgeConv layers shows a statistically significant lower
performance. Moreover, stacking 56 EdgeConv layers to increase receptive field and expressiveness
of the network does not improve the results. We suggest that it may be due to the overfitting caused by
a significant increase in the number of parameters, oversmoothing [48], or vanishing gradients [49].
The combination of EmulsionConv and EdgeConv has higher stability during training and a higher
value of validation ROC-AUC (figure 14). We scrutinize the ROC-AUC score on the validation
part of the dataset to assess the possible degradation of quality with the increase of the multiplicity
(figure 15). We observe a mild, approximately linear degradation of the network ability to classify
edges. For the experiments in the next sections, we are going to use three best networks: (1) 3
layer of EmulsionConv and 5 layers of EdgeConv (“mix emulsion”) (“mix edge”), (2) 4 layer of
EmulsionConv and 4 layers of EdgeConv (“mix equal”), (3) 5 layer of EmulsionConv and 3 layers
of EdgeConv (“mix emulsion”).

– 15 –

500 1000 1500 2000 2500 3000 3500 4000
Epochs

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Va
lid

at
io

n
R

O
C

-A
U

C

Pure edge 8
Pure emulsion
Pure edge 56
Equal mix
Mix emulsion
Mix edge

Figure 14: 10-folds cross-validation training curves for six networks.

50 100 150 200 250 300
Number of showers in a brick

0.90

0.92

0.94

0.96

0.98

RO
C-

AU
C

sc
or

e

Figure 15: ROC-AUC per brick for the real-
istic case of the variable number of showers.

0.855 0.860 0.865 0.870 0.875 0.880
Recovered showers

0.165

0.170

0.175

0.180

0.185

0.190

E
ne

rg
y

R
es

ol
ut

io
n

threshold=0.2
threshold=0.4
threshold=0.6
threshold=0.8

Figure 16: Fraction of recovered showers and en-
ergy resolution trade-off for the “mix edge” net-
work for various values of the threshold.

5.2 Clusterization

We optimize the hyperparameters of the EWSCAM algorithm by a grid search by maximizing the
percentage of recovered showers. We use the training part of the dataset that we also used for
GNN training to find the clustering hyperparameters. The optimal values for minimum samples
core (k), threshold, and minimum cluster size (min𝑐𝑙) are 2, 0.6, and 30 (figure 16, see appendix B
for more information on grid search results), respectively. The quality metrics for EWSCAM and
HDBSSCAN are reported in Table 1; EWSCAM recovers up to 87% of EM showers, depending
on the GNN architecture used. These results take into account variability introduced by different

– 16 –

random seeds used for network initialization and dataset shuffling. In our case, where there is a
high number of overlapping showers per brick, we highlight the recovered showers metric as the
most relevant one.

Table 1: Comparison of the performance of the clustering algorithms reported using 10-fold
cross-validation on the dataset composed of 50-300 showers per brick.

EWSCAM HDBSCAN

Metric
Network Mix Emulsion Equal Mix Mix Edge Mix Edge

Recovered Showers, % 85.98 ± 3.46 85.97 ± 3.06 86.55 ± 2.21 69.18 ± 5.99
Stuck Showers, % 10.38 ± 4.38 10.53 ± 3.71 9.76 ± 2.74 16.49 ± 9.06
Broken Showers, % 3.19 ± 0.95 3.17 ± 0.73 3.24 ± 0.73 14.18 ± 4.23
Lost Showers, % 0.45 ± 0.29 0.32 ± 0.17 0.44 ± 0.34 0.15 ± 0.31

For Recovered Showers Only
𝑀𝐴𝐸𝑥 , 𝜇𝑚 154.01 ± 12.77 153.72 ± 12.13 154.63 ± 13.80 146.81 ± 13.95
𝑀𝐴𝐸𝑦 , 𝜇𝑚 151.06 ± 10.21 147.01 ± 12.95 156.47 ± 13.16 147.01 ± 12.95
𝑀𝐴𝐸𝑧 , 𝜇𝑚 802.55 ± 50.39 809.87 ± 73.17 823.49 ± 74.28 724.76 ± 58.80
𝑀𝐴𝐸𝜃𝑥 ,×10−4 85.46 ± 4.48 87.04 ± 3.37 86.4 ± 3.81 87.8 ± 4.43
𝑀𝐴𝐸𝜃𝑦 ,×10−4 85.7 ± 3.83 86.8 ± 3.30 86.50 ± 4.71 87.80 ± 6.05

5.3 Classification of clusters

For binary classification of the clusters, we train an XGBoost classifier with 300 trees and maxdepth
of 9 on the validation part of the data and evaluate on the test part. Figures 17 and 18 show the
averages and standard deviations for receiver operating characteristic (ROC) and precision-recall
(Pr-R) curves on the 10-fold cross-validation. ROC curve illustrates the diagnostic capabilities of
the binary classifier by plotting the true positive rate (TPR) versus the false positive rate (FPR) at
various threshold settings. The precision-recall curve shows the trade-off between precision and
recall, i.e. TPR, for different thresholds. The area under the ROC curve (ROC-AUC) and average
precision score (PR-AUC) are equal to 80% and 96%, correspondingly.

5.4 Energy reconstruction

We estimate particle energy as a function of the number of tracklets associated with the shower
using Huber regression (figure 19). The regressor is trained on the validation part of the data and
evaluated on the test part of the data. We also estimate 95% confidence intervals for coefficients:
𝑝0 = 0.52±0.02 [GeV], 𝑝1 = 0.0346±0.0001 [GeV]. We tried to capture nonlinear dependence by
fitting gradient boosting. However, we did not observe statistically significant quality improvement,
so we decided to use a more robust and interpretable linear model.

We estimate energy resolution as a function of energy by splitting all showers, sorted by true
energy, into ten baskets with an equal number of showers in each. For each basket, we fit a Gaussian

– 17 –

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC-AUC = 0.810 ± 0.005

Figure 17: 10-fold cross validated receiver op-
erating characteristic curve. Shaded region cor-
responds to 1𝜎 confidence intervals.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PR-AUC = 0.957 ± 0.003

Figure 18: 10-fold cross validated precision-
recall curve. Shaded region corresponds to 1𝜎
confidence intervals.

0 100 200 300 400 500 600
Number of tracklets

0

5

10

15

20

25

E
ne

rg
y

of
 e

le
ct

ro
n

[G
eV

]

Figure 19: Visualization of the linear regression for energy reconstruction.

distribution for Δ𝐸/𝐸 and plot the mean energy of the basket versus 𝜎𝐸

𝐸
(figure 20). We also fit

energy resolution as a function of energy using the following relationship:

𝜎𝐸

𝐸
= 𝐴 + 𝐵

√
𝐸

(5.2)

As we can see, with the increase of ground truth energy, resolution steadily improves as we
would expect. Energy resolution for the network with 4 layers of EmulsionConv and 4 layers of
EdgeConv is equal to 𝜎𝐸

𝐸
= (0.095 ± 0.005) + (0.134±0.011)√

𝐸
.

6 Conclusion and perspectives

We propose the first-ever algorithm that can reconstruct multiple showers in ECC brick. Our key
contribution is a new layer type that can be used in end-to-end graph deep learning pipelines.

– 18 –

0 5 10 15 20 25 30
Etrue [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

E/E

Mix edge, (0.097±0.005) + (0.132±0.010)
E

Mix emulsion, (0.104±0.006) + (0.120±0.012)
E

Equal mix, (0.095±0.005) + (0.134±0.011)
E

OPERA results, (0.28 ± 0.09) + (0.09±0.04)
E

Figure 20: Energy resolution as a function of true energy. The solid line corresponds to fitted
parameterized energy resolution.

We observe a statistically significant performance boost in comparison with the state-of-the-art
EdgeConv layer [36] for the same number of graph convolution blocks on the problem of showers
semantic segmentation on the dataset generated with FairSHIP software [34]. Furthermore, exper-
iments have shown that the algorithm can detect up to 87% of showers with an achieved energy
resolution of 𝜎𝐸

𝐸
= (0.095 ± 0.005) + (0.134±0.011)√

𝐸
. These results are obtained for the clusters that

contain more than 90% of tracklets of the original showers (also called in the paper “recovered
showers”). Thus, varying this definition, we can simultaneously change the percentage of recov-
ered showers and energy resolution. For future work, it is of interest to investigate other possible
definitions for the “recovered showers”, considering physical constraints on the required efficiency
of the reconstruction and energy resolution.

Currents results in terms of energy resolution are on par with prior works on EM showers
reconstruction while outperforming them in two key aspects:

• it is capable of solving shower semantic segmentation problem and separating showers in
cases of overlaps;

• it does not use any prior information on showers origin, which simplifies the analysis pipeline
and reduces the costs of experimental setup by, for example, allowing neglecting Changeable
Sheets that were used in OPERA [18] to estimate shower origin position.

We believe that our approach can be of interest for other physical experiments that use sam-
pling calorimeters or detectors that have similar data representation, i.e. 3D point clouds. One
of the principal test benches for the proposed EM showers reconstruction algorithm could be the
SND@LHC [50]. SND@LHC is a proposed, compact and self-contained experiment for measure-

– 19 –

ments with neutrinos produced at the Large Hadron Collider in the as yet unexplored region of
pseudo-rapidity 7.2 < 𝜂 < 8.6.

We speculate that those possible uses are not limited to the sampling calorimeters and can be
used to analyse tracklets data from Time Projection Chamber [51], and Silicon Tracker [52]. In
[53], authors successfully apply hits classification by graph edges labelling for neutrino physics
experiments in Liquid Argon Time Projection Chamber detectors. In [54], GNN is used to track
particles and extract tracklets parameters. Our algorithm solves a more general form of a multiple
showers reconstruction problem. For future work, we are going to investigate usage perspectives
for other detector types.

Acknowledgments

Wewould like to express our appreciation to Giovanni De Lellis, Denis Derkach and Fedor Ratnikov
for the invaluable comments and support.

The reported study utilized the supercomputer resources of the National Research University
Higher School of Economics. The research leading to these results has received funding from the
Russian Science Foundation under grant agreement n◦ 19-71-30020.

A Tracklet pairs energy and likeliness estimates

The energy and likeliness features are estimated with Molière’s formulas of multiple scatter-
ing [55]. The formulas of multiple scattering states that for tracklets pairs with the parame-
ters 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝜃𝑥𝑖 = arctan(𝜃𝑥𝑖), 𝜃𝑦𝑖 = arctan(𝜃𝑦𝑖), where 𝑖 = 1, 2, difference in the spatial angle

(Δ𝜃 =

((
Δ𝜃𝑥

)2 − (
Δ𝜃𝑦

)2)1/2) and change in Z coordinate (Δ𝑧) could be described by the following
distribution:

𝑃(Δ𝑧,Δ𝜃) = 2Δ𝜃
〈𝜃2〉

exp
(
−Δ𝜃

2

〈𝜃2〉

)
, 〈𝜃2〉 = 𝜃2𝑠Δ𝑧 =

(
𝐸𝑠

𝛽𝐸

)2
Δ𝑧

𝑋0
, (A.1)

where Es = 21MeV - critical energy, X0 = 5000 mm - radiation length [56], 𝛽 - relative to the
speed of light object velocity.

The energy and likeliness estimates features are found by maximizing following likeliness
function:

𝑃(Δ𝑧,Δ𝜃)𝑄(Δ𝑧, 𝜃𝑥)𝑄(Δ𝑧, 𝜃𝑦)𝑆(Δ𝑧, 𝑥)𝑆(Δ𝑧, 𝑦) → max
𝐸

, (A.2)

where 𝑄, 𝑆 - changes in spatial angle projections (i.e., Δ𝜃𝑥 , Δ𝜃𝑦) and changes in spatial
deviation (Δ𝑥,Δ𝑦), correspondingly. 𝑄, 𝑆 follow Gaussian distribution.

– 20 –

Table 2: Recovered showers 10-folds cross-validation results on the test data parts in a dependence
on min samples core and threshold parameters.

Parameters Networks
min samples core threshold Mix Emulsion Equal Mix Mix Edge

2

0.2 0.853 ± 0.031 0.845 ± 0.031 0.862 ± 0.016
0.4 0.859 ± 0.035 0.853 ± 0.036 0.868 ± 0.020
0.6 0.859 ± 0.035 0.857 ± 0.036 0.868 ± 0.020
0.8 0.859 ± 0.035 0.857 ± 0.036 0.867 ± 0.020

3

0.2 0.848 ± 0.032 0.840 ± 0.033 0.862 ± 0.014
0.4 0.856 ± 0.038 0.854 ± 0.037 0.864 ± 0.019
0.6 0.856 ± 0.038 0.854 ± 0.037 0.867 ± 0.020
0.8 0.856 ± 0.038 0.854 ± 0.037 0.867 ± 0.020

4

0.2 0.844 ± 0.034 0.837 ± 0.033 0.857 ± 0.016
0.4 0.851 ± 0.038 0.851 ± 0.035 0.866 ± 0.019
0.6 0.852 ± 0.038 0.851 ± 0.036 0.866 ± 0.019
0.8 0.852 ± 0.038 0.852 ± 0.035 0.866 ± 0.019

5

0.2 0.843 ± 0.034 0.835 ± 0.036 0.854 ± 0.017
0.4 0.846 ± 0.036 0.848 ± 0.034 0.862 ± 0.017
0.6 0.847 ± 0.037 0.848 ± 0.034 0.862 ± 0.017
0.8 0.847 ± 0.037 0.848 ± 0.034 0.862 ± 0.017

B Grid search of optimal parameters

In tables 2, 3 we present the grid-search of the EWSCAM algorithm parameters. We show 10-fold
cross-validation results for three neural networks configurations: mix emulsion network, consisting
of 5 layers of EmulsionConv and 3 layers of EdgeConv, equal mix network, containing 4 Emulsion-
Conv and 4 EdgeConv layers, and mix edge network, that includes 3 layers of EmulsionConv and
5 layers of EdgeConv. The best parameters are shown in table 4.

C Different multiplicities

In this section, we report the performance of our algorithm applied for two datasets with fixed
multiplicity profiles: 50 showers per brick and 200 showers per brick. We also assess how the
performance changes when the network trained on one multiplicity profile is applied to the dataset
with a different multiplicity profile.

First, we train the “mix emulsion” network on the datasets with fixed and variable multiplicities
and evaluate this network on a dataset with a variable number of showers per brick (figure 21). As
one can notice, networks trained on datasets with fixed multiplicities perform worse on a dataset
with variable multiplicity profile; in other words, they overfit to a constant number of showers in a
brick.

– 21 –

Table 3: Average per brick energy resolution 10-folds cross-validation results on the test data parts
in a dependence on min samples core and threshold parameters.

Parameters Networks
min samples core threshold Mix Emulsion Equal Mix Mix Edge

2

0.2 0.182 ± 0.008 0.175 ± 0.008 0.176 ± 0.013
0.4 0.184 ± 0.009 0.178 ± 0.008 0.182 ± 0.011
0.6 0.185 ± 0.009 0.179 ± 0.009 0.183 ± 0.011
0.8 0.185 ± 0.009 0.179 ± 0.008 0.183 ± 0.011

3

0.2 0.184 ± 0.008 0.179 ± 0.008 0.179 ± 0.014
0.4 0.188 ± 0.009 0.183 ± 0.108 0.186 ± 0.011
0.6 0.188 ± 0.009 0.183 ± 0.008 0.187 ± 0.010
0.8 0.188 ± 0.009 0.183 ± 0.008 0.187 ± 0.010

4

0.2 0.186 ± 0.008 0.180 ± 0.007 0.182 ± 0.012
0.4 0.189 ± 0.009 0.185 ± 0.008 0.190 ± 0.009
0.6 0.189 ± 0.009 0.184 ± 0.008 0.190 ± 0.009
0.8 0.189 ± 0.009 0.184 ± 0.008 0.190 ± 0.009

5

0.2 0.188 ± 0.006 0.182 ± 0.007 0.183 ± 0.012
0.4 0.191 ± 0.009 0.186 ± 0.008 0.192 ± 0.008
0.6 0.191 ± 0.009 0.186 ± 0.007 0.192 ± 0.008
0.8 0.190 ± 0.009 0.186 ± 0.007 0.192 ± 0.008

Table 4: Resulting clustering parameters.

Network
Parameters min samples core threshold

Mix emulsion 2 0.4
Mix equal 2 0.6
Mix edge 2 0.4

We also report recovered showers, stuck showers, broken showers, lost showers, and energy
resolution for each dataset applying networks trained on different multiplicity profiles (tables 5, 6, 7,
figures 22, 23, 24). The provided results are achieved with the minimal sample core and threshold
clustering parameters equal to 2 and 0.6, correspondingly.

– 22 –

0 50 100 150 200 250 300
Number of showers in a brick

0.88

0.90

0.92

0.94

0.96

0.98

1.00

RO
C-

AU
C

sc
or

e

Network trained on 50-300 showers per brick
Network trained on 200 showers per brick
Network trained on 50 showers per brick

Figure 21: ROC-AUCscores per brick. Networks are trained on datasetswith differentmultiplicities
and evaluated on a dataset with variable multiplicity 50-300.

Table 5: Comparison of the performance of the clustering algorithms reported using 3-fold cross-
validation on the dataset composed of 50-300 showers per brick if trained on a dataset with different
multiplicity.

Metric
Network 50 200 50-300

Recovered Showers, % 82.10 ± 2.46 82.20 ± 1.91 86.78 ± 2.15
Stuck Showers, % 14.86 ± 2.75 15.03 ± 2.21 2.19 ± 0.32
Broken Showers, % 2.68 ± 0.03 2.49 ± 0.37 4.03 ± 0.86
Lost Showers, % 0.36 ± 0.08 0.28 ± 0.07 0.36 ± 0.14

Table 6: Comparison of the performance of the clustering algorithms reported using 3-fold cross-
validation on the dataset composed of 50 showers per brick if trained on a dataset with different
multiplicity.

Metric
Network 50 200 50-300

Recovered Showers, % 86.00 ± 2.53 88.99 ± 0.68 91.52 ± 0.06
Stuck Showers, % 12.1 ± 2.25 9.05 ± 0.63 5.53 ± 0.23
Broken Showers, % 1.26 ± 0.19 1.25 ± 0.06 2.00 ± 0.32
Lost Showers, % 0.64 ± 0.16 0.71 ± 0.04 0.36 ± 0.08

– 23 –

0 5 10 15 20 25 30
Etrue [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

E/E
Dataset 50, (0.095 ± 0.006) + (0.129±0.011)

E

Dataset 200, (0.087 ± 0.005) + (0.142±0.009)
E

Dataset 50-300, (0.098 ± 0.004) + (0.129±0.009)
E

Figure 22: Energy resolution on the test dataset with 50-300 showers per brick depending on the
train dataset number of showers.

0 5 10 15 20 25 30
Etrue [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

E/E

Dataset 50, (0.040 ± 0.006) + (0.162±0.013)
E

Dataset 200, (0.029 ± 0.005) + (0.188±0.011)
E

Dataset 50-300, (0.031 ± 0.005) + (0.175±0.011)
E

Figure 23: Energy resolution on the test dataset with 50 showers per brick depending on the train
dataset number of showers.

– 24 –

Table 7: Comparison of the performance of the clustering algorithms reported using 3-fold cross-
validation on the dataset composed of 200 showers per brick if trained on a dataset with different
multiplicity.

Metric
Network 50 200 50-300

Recovered Showers, % 75.24 ± 0.89 78.48 ± 0.25 83.26 ± 2.17
Stuck Showers, % 21.93 ± 0.89 18.63 ± 0.13 13.08 ± 2.42
Broken Showers, % 1.43 ± 0.15 1.49 ± 0.11 2.19 ± 0.32
Lost Showers, % 1.40 ± 0.24 1.39 ± 0.08 1.47 ± 0.13

0 5 10 15 20 25 30
Etrue [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

E/E

Dataset 50, (0.029 ± 0.005) + (0.188±0.011)
E

Dataset 200, (0.085 ± 0.006) + (0.127±0.012)
E

Dataset 50-300, (0.090 ± 0.004) + (0.140±0.009)
E

Figure 24: Energy resolution on the test dataset with 200 showers per brick depending on the train
dataset number of showers.

– 25 –

References

[1] R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, JINST 4
(2009) P04018.

[2] L. Arrabito, D. Autiero, C. Bozza, S. Buontempo, Y. Caffari, L. Consiglio, M. Cozzi, N. D’Ambrosio,
G. De Lellis and M. De Serio, Electron/pion separation with an Emulsion Cloud Chamber by using a
Neural Network, Journal of Instrumentation 2 (2007) P02001.

[3] N. Agafonova et al., Final Results of the OPERA Experiment on 𝜈𝜏 Appearance in the CNGS Neutrino
Beam, PRL 120 (2018) 211801.

[4] W. M. Bonivento, The SHiP experiment at CERN, Journal of Physics: Conference Series 878 (2017)
1 012059.

[5] O. Lantwin, Search for new physics with the SHiP experiment at CERN, PoS EPS-HEP2017 304
(2017) 7 [hep-ex/1710.03277].

[6] S. Dmitrievsky, Status of the OPERA Neutrino Oscillation Experiment, Acta Physica Polonica B. 41
(2010)

[7] L. Arrabito et al., Hardware performance of a scanning system for high speed analysis of nuclear
emulsions, Nucl. Instrum. Meth. A568 (2006) 578–587, [physics/0604043].

[8] N. Armenise et al., High-speed particle tracking in nuclear emulsion by last-generation automatic
microscopes, Nucl. Instrum. Meth. A551 (2005) 261–270.

[9] R. Jacobsson et al., SHiP Experiment - Progress Report, CERN-SHiP-NOTE-2018-001 (2019), url:
https://cds.cern.ch/record/2650966?ln=en, accessed: 2021-09-12.

[10] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, A Comprehensive Survey on Graph Neural
Networks," in IEEE Transactions on Neural Networks and Learning Systems (2020) 2978386.

[11] K. Xu, W. Hu, J. Leskovec, St. Jegelka, How Powerful are Graph Neural Networks?, CoRR (2018)
[cs.LG/1810.006].

[12] J. Zhou, G. Cui,Zh. Zhang, Ch. Yang, Zh. Liu, L. Wang, Ch. Li, M. Sun , Graph Neural Networks: A
Review of Methods and Applications CoRR (2018) [cs.LG/1812.08434].

[13] HEP ML Community, A Living Review of Machine Learning for Particle Physics url:
https://iml-wg.github.io/HEPML-LivingReview/

[14] J. Duarte, J.-R. Vlimant, Graph Neural Networks for Particle Tracking and Reconstruction (2020)
[hep-ph/2012.01249].

[15] J. Shlomi, P. Battaglia, J.-R. Vlimant, Graph neural networks in particle physics, Machine Learning:
Science and Technology, Vol. 2, p. 021001 (2021).

[16] L. McInnes and J. Healy, Accelerated Hierarchical Density Clustering, 2017 IEEE International
Conference on Data Mining Workshops (ICDMW) (2017) pp. 33-42 [stat.ML/1705.07321].

[17] Ahdida, C., Akmete, A. et al. Sensitivity of the SHiP experiment to light dark matter, J. High Energ.
Phys. 2021, 199 (2021)

[18] B. Hosseini, Search for Tau Neutrinos in the 𝜏 −→ 𝑒 Decay Channel in the OPERA Experiment
(2015).

[19] M. De Luca, Electron identification in the Emulsion detector of SHiP experiment using machine
learning techniques (2021).

– 26 –

https://cds.cern.ch/record/2650966?ln=en
https://iml-wg.github.io/HEPML-LivingReview/

[20] A. Akmete et al., The active muon shield in the SHiP experiment, Journal of Instrumentation 12 (5)
(2017) P05011.

[21] K. Shpak, Separation of the overlapping electromagnetic showers in the cellular GAMS-type
calorimeters, International Workshop on Future Linear Collider (LCWS2017), (2018)
[physics.ins-det/].

[22] A.A. Lednev, Separation of the overlapping electromagnetic showers in the cellular GAMS type
calorimeters, IFVE-93-153, (1993).

[23] E. Trofimova, ketrint/em_showers_segmentation url: http://doi.org/10.5281/zenodo.5708308.

[24] CERN The Toolkit for Multivariate Data Analysis with ROOT (TMVA), CERN-OPEN-2007-007
[physics/0703039].

[25] A. Ustyuzhanin, S. Shirobokov, V. Belavin and A. Filatov,Machine-Learning techniques for
electromagnetic showers identification in OPERA datasets, ACAT 2017 conference proceedings
(2017).

[26] L. Oliveir, B. Nachmana, M. Paganini, Electromagnetic showers beyond shower shapes, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, Volume 951, (2020) [hep-ex/1806.05667].

[27] Y. Verma, S. Jena, Shower Identification in Calorimeter using Deep Learning, (2021)
[physics.data-an/2103.16247].

[28] A. Aurisano at al. A convolutional neural network neutrino event classifier, Journal of
Instrumentation 11 (09) (2016) [hep-ex/1604.01444]

[29] N. Choma et al., Track Seeding and Labelling with Embedded-space Graph Neural Networks (2020)
[physics.ins-det/2007.00149].

[30] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning
Research 12 (2011), pp. 25–2830.

[31] X. Ju et al., Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors
(2020) [physics.ins-det/2003.11603].

[32] A. Anokhina et al., Emulsion sheet doublets as interface trackers for the OPERA experiment, Journal
of Instrumentation (3) (2008) P07005.

[33] M. De Luca Electron identification in the Emulsion detector of SHiP experiment using machine
learning techniques (2021) url: https://cds.cern.ch/record/2750060, accessed:2021-09-14.

[34] GitHub, Inc. Fairship url: https://github.com/ShipSoft/FairShip, accessed: 2019-11-07.

[35] V. Belavin, E. Trofimova, Simulated EM showers data. Zenodo url:
https://doi.org/10.5281/zenodo.5570901 (2021) [Data set]

[36] Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein and J.M. Solomon, Dynamic Graph CNN for
Learning on Point Clouds, ACM Transactions on Graphics (TOG) 38 (2019), [cs.CV/1801.079].

[37] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, Focal Loss for Dense Object Detection,
Facebook AI Research (FAIR) (2018) [cs.CV/1708.02002v2].

[38] A. Araujo, W. Norris, J. Sim, Computing Receptive Fields of Convolutional Neural Networks, Distill
11 (2019).

[39] W. Luo, Y. Li, R. Urtasun, R. Zemel, Understanding the effective receptive field in deep convolutional
neural networks, Advances in neural information processing systems (2016) [cs.CV/1701.04128].

– 27 –

http://doi.org/10.5281/zenodo.5708308
https://cds.cern.ch/record/2750060
https://doi.org/10.5281/zenodo.5570901

[40] Z. Liu, Ch. Chen, L. Li et al., Geniepath: Graph neural networks with adaptive receptive paths,
Proceedings of the AAAI Conference on Artificial Intelligence 33 (2019) [cs.LG/1802.00910].

[41] G. Li, M. Muller, Al. Thabet, B. Ghanem, Deepgcns: Can GCNs go as deep as CNNs?, Proceedings
of the IEEE International Conference on Computer Vision (2019) [cs.CV/1904.03751].

[42] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem,
Proceedings of the American Mathematical Society. 7 (1) (1956) S0002-9939-1956-0078686-7.

[43] GitHub, Inc. XGBoost url: https://https://github.com/dmlc/xgboost, accessed: 2019-12-17.

[44] P.A. Zyla et al., Particle Data Group, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[45] P. J. Huber, Robust Estimation of a Location Parameter, Annals of Mathematical Statistics 35 (1)
(1964) p. 73–101 1177703732.

[46] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 26 (2006)
j.patrec.2005.10.010.

[47] P. Kingma Diederik, B. Jimmy, Adam: A Method for Stochastic Optimization (2014)
[cs.LG/1412.6980].

[48] L. Zhao and L. Akoglu, PairNorm: Tackling Oversmoothing in GNNs, Thirty-eighth International
Conference on Machine Learning (ICML2020) (2020).

[49] G. Li et al., DeepGCNs: Can GCNs Go as Deep as CNNs? (2019) [cs.CV/1904.03751].

[50] C. Ahdida, R. Albanese, A. Alexandrov et al., SND@LHC - Scattering and Neutrino Detector at the
LHC, CERN, Geneva, CERN-LHCC-2021-003. LHCC-P-016, (2021) url:
https://cds.cern.ch/record/2750060, accessed: 2021-03-13.

[51] R. Acciarri et al., Summary of the Second Workshop on Liquid Argon Time Projection Chamber
Research and Development in the United States, Journal of Instrumentation 10 (7) (2015)
[physics.ins-det/1504.05608].

[52] M. Tobin, The LHCb Silicon Tracker, Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment (2016), p. 174-180
j.nima.2005.03.113.

[53] J. Hewes et al., Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection
Chambers (2021) [hep-ex/1504.2103.06233].

[54] S. Thais, G. DeZoort, Instance Segmentation GNNs for One-Shot Conformal Tracking at the LHC
(2021) [cs.CV/2103.06509].

[55] H A. Bethe,Moliere’s Theory of Multiple Scattering (1953) p. 1256—1266 [hep-ph/1204.3675].

[56] De Angelis, A., Pimenta, M., Introduction to Particle and Astroparticle Physics, Undergraduate
Lecture Notes in Physics (2018) 978-3-319-78181-5

– 28 –

https://https://github.com/dmlc/xgboost
https://cds.cern.ch/record/2750060

	1 Introduction
	2 Related work
	3 Dataset description
	4 Reconstruction algorithm
	4.1 Graph construction
	4.2 Edge classification
	4.2.1 Graph convolution block
	4.2.2 Binary classification block
	4.2.3 Solving an issue of slow receptive field growth: EmulsionConv
	4.2.4 Summarised architecture

	4.3 Showers clusterization
	4.4 Clusters classification
	4.5 Kinematic reconstruction

	5 Experiments and results
	5.1 Architecture evaluation
	5.2 Clusterization
	5.3 Classification of clusters
	5.4 Energy reconstruction

	6 Conclusion and perspectives
	A Tracklet pairs energy and likeliness estimates
	B Grid search of optimal parameters
	C Different multiplicities

