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Abstract A significant challenge in the tagging of boosted
objects via machine-learning technology is the prohibitive
computational cost associated with training sophisticated
models. Nevertheless, the universality of QCD suggests that a
large amount of the information learnt in the training is com-
mon to different physical signals and experimental setups.
In this article, we explore the use of transfer learning tech-
niques to develop fast and data-efficient jet taggers that lever-
age such universality. We consider the graph neural networks
LundNet and ParticleNet, and introduce two prescrip-
tions to transfer an existing tagger into a new signal based
either on fine-tuning all the weights of a model or alterna-
tively on freezing a fraction of them. In the case of W -boson
and top-quark tagging, we find that one can obtain reliable
taggers using an order of magnitude less data with a corre-
sponding speed-up of the training process. Moreover, while
keeping the size of the training data set fixed, we observe
a speed-up of the training by up to a factor of three. This
offers a promising avenue to facilitate the use of such tools
in collider physics experiments.

1 Introduction

The tagging of energetic heavy particles through machine
learning methods is one of the key technical challenges at
the Large Hadron Collider. Such identification techniques are
used to search for new-physics signatures (see e.g. Refs. [1–
8]), or to study the properties of Standard Model particles [9],
notably to identify boosted electroweak bosons [10–13], the
Higgs boson [14–21], or to assign jet flavour [22–38]. The
most challenging scenario is the one in which such heavy
objects decay into hadronic jets, in which case the ability
to identify them from the decay products is seriously chal-
lenged by the overwhelming background arising from QCD
jets. Provided one has a robust theoretical control over such
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background processes, the use of pattern-recognition meth-
ods from computer science can help construct novel tag-
gers with a significantly improved performance with respect
to analytic discriminants (see e.g. Refs. [39–41] for recent
reviews).

A large variety of methods has been proposed in recent
years, achieving a remarkable performance in discriminat-
ing signal from background in different experimental mea-
surements. These are based on several types of techniques,
which span from the use of theory-motivated observables
such as energy-flow polynomials [42], convolutional neu-
ral networks [10] and graph networks [43] that use four-
momenta as input variables. Among the more recent tools,
LundNet [44] combines the performance of the state of the
art graph networks with theory-motivated kinematic input
variables, namely the Lund jet plane [45] of emissions within
a jet [46].

In the application of machine learning technology to jet
tagging, a first challenge is represented by the robust assess-
ment of the theoretical uncertainty in a given model. This is
dominated by the dependence of the model’s ability to dis-
criminate a given signal from the QCD background on the
underlying simulation that is used in the training. A precise
control over these effects demands the development of more
accurate event generators, a task that is receiving significant
attention in the literature (see e.g. Refs. [47–60] and refer-
ences therein for some recent developments). A second out-
standing challenge is reducing the high computational cost
of training sophisticated models, which besides the genera-
tion of large samples of events also usually requires running
on GPUs for several days. In consequence, the training of
such taggers requires computational resources not always in
the reach of their potential users. Moreover, the models are
highly dependent on the experimental signal (e.g. W vs. top-
quark tagging) as well as on the choice of experimental cuts
which makes the training of a tagger for specific experimen-
tal needs from scratch highly inefficient. The physical picture
suggests, however, that most of the information learnt by a
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tagger is related to the description of the QCD splittings that
occur within a jet, which simply encode universal properties
of QCD rather than features that depend on the underlying
experimental signal. It has been demonstrated multiple times
in the past that early layers of a deep convolutional network
extract general features from the data, and can thus be poten-
tially reused for new tasks [61]. In the present short article
we examine the latter aspect of jet tagging, and we tackle the
problem by applying inductive transfer learning techniques
[62] to leverage an existing model for a new application to a
different experimental signature. As a result, we will discuss
the construction of computationally efficient jet taggers that
can achieve high performance also when trained on a small
fraction of the original data set, with a significant reduction
in the computational complexity associated with the train-
ing. The article is structured as follows. In Sect. 2 we briefly
review the graph neural network LundNet that we adopt
for our studies, and discuss the underlying description of jets
in terms of Lund jet plane declusterings. In Sect. 3 we then
introduce two transfer-learning procedures that allow one to
train a new signal starting from an existing model trained on a
different tagging problem. These techniques are then applied
to the problem of top tagging in Sect. 4, where we study in
detail the performance of transfer learning between top tag-
gers with different transverse-momentum cuts and from a W
tagger to a top tagger. Subsequently, we present an analysis
of the computational advantages of transfer learning proce-
dures over training new models from scratch. In Sect. 5 we
discuss our conclusions.

2 Graph neural networks in the Lund plane

The Lund jet plane [46] is a useful theoretical framework to
represent the internal kinematics of a jet by means of Lund
diagrams [45]. To define it, one starts by constructing the
Cambridge–Aachen [63,64] clustering sequence using the
constituents of the jet, which carries out a sequential pair-
wise recombination of the two proto-jets with the small-
est angular separation in rapidity-azimuth. One maps this
clustering sequence to a tree of Lund declusterings, each of
which encodes the kinematic properties of the correspond-
ing clustering step. Each declustering pi → pa, pb can be
parametrised in terms of the following set of variables:

Δ ≡ Δab, kt ≡ pTbΔab, m2 ≡ (pa + pb)
2,

z ≡ pTb
pTa+ pTb

, ψ ≡ tan−1 yb−ya
φb−φa

, (1)

where pa , pb are the post-branching momenta with their
transverse momenta ordered such that pTb < pTa , Δab =√

(ya − yb)2 + (φa − φb)2 (with y and φ denoting the rapid-
ity and azimuth, respectively),ψ is an azimuthal angle around

Fig. 1 A graphic representation of the Lund plane for the radiation
within a jet. The blue triangle represents the primary Lund plane, with
secondary and tertiary Lund planes shown in red and orange, respec-
tively

the subjet axis, and z is the transverse momentum fraction of
the branching. The construction of the Lund jet plane can be
schematically understood with the help of Fig. 1. The (pri-
mary) Lund plane associated with the initial proto-jet repre-
sents a two-dimensional parametrisation of the phase space
available to further radiation from it. This is indicated by the
large (blue) triangle in the ln kt −ln 1/Δ plane in Fig. 1. Each
subsequent primary emission along the hard branch of the
tree is shown in red, and it forms a new leaf of the Lund plane,
from which secondary emissions will be radiated, indicated
by orange leaves. The procedure iterates through all branches
of the clustering history, leading to a complete representation
of the jet’s substructure. In particular, the structure of the pri-
mary Lund jet plane can be computed accurately with per-
turbative methods [65] and measured experimentally [66].

LundNet [67] is a graph neural network which takes the
Lund jet plane as input to train efficient and robust jet tag-
gers. The resulting taggers outperform tools with low-level
inputs [67] and are relatively resilient to non-perturbative
and detector effects given an appropriate choice of cuts in
the Lund plane. The jet is mapped into a graph whose nodes
represent the declustering steps of the Cambridge–Aachen
history, parametrised in terms of tuples T (i) containing the
kinematic variables defined in Eq. (1). In particular, one can
define two versions of the LundNet network based on the
dimensionality of the input tuple, defined as follows:

LundNet3 : T (i) = {k(i)
t ,Δ(i), z(i)} , (2)

LundNet5 : T (i) = {k(i)
t ,Δ(i), z(i),m(i), ψ(i)} . (3)
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The edges of the graph correspond to the structure of the
Cambridge–Aachen tree.

The LundNet5 network contains more kinematic infor-
mation for each declustering node, and therefore results in
a higher tagging efficiency. Conversely, the LundNet3 net-
work has been shown to be more resilient to non-perturbative
and detector effects [67], while having an efficiency similar
to state-of-the-art taggers.

The core of the graph architecture relies on an EdgeConv
operation [68], which applies a multi-layer perceptron (MLP)
to produce a learned edge feature, using combined features
of node pairs along each edge as input. This shared MLP
consists of two layers, each with a dense network, batch nor-
malisation [69] and ReLU activation [70]. This is followed
by an aggregation step which takes an element-wise aver-
age of the learned edge features along the edges. The model
also includes a shortcut connection [71]. The same MLP is
applied to each node, updating all node features while keep-
ing the structure of the graph itself unchanged. The Lund-
Net architecture consists of six successive EdgeConv blocks,
with the number of channels for each MLP pair in the block
given by (32, 32), (32, 32), (64, 64), (64, 64), (128, 128) and
(128, 128). Their final output is concatenated, and processed
by a MLP with 384 channels, to which a global average pool-
ing is applied to extract information from all nodes in the
graph. This is followed by a fully connected layer with 256
units and a dropout layer with rate 10%. A final softmax
output provides the result of the classification. This model is
implemented with the Deep Graph Library 0.5.3 [72] and the
PyTorch 1.7.1 [73] backend, using an Adam optimiser [74] to
minimise the cross entropy loss. The LundNet architecture is
summarised in Fig. 2a. Training is performed for 30 epochs
using an initial learning rate of 0.001, which is lowered by a
factor 10 after the 10th and 20th epochs.

The architecture of LundNet is based on a similar graph
neural network, ParticleNet [43], which also provides
excellent performance on LHC classification tasks, and we
will use it as one of the benchmarks in our study below in
comparison to LundNet.

3 Transfer learning

In this section we briefly discuss the application of trans-
fer learning techniques to the design of jet taggers. Transfer
learning aims at reusing pre-trained models on new prob-
lems, leveraging the knowledge obtained on a similar task to
improve the training of a new model, for example by using
some or all of the weights of an existing pre-trained neural
network as starting point.

Transfer learning has seen a wide range of applications,
notably in language processing and computer vision [75,76].
While earlier data-based approaches to transfer learning

(a) (b)

Fig. 2 A flowchart representing the LundNet architecture and the
transfer learning procedure employed in this article

focused on domain adaptation [77,78], there has been a surge
of interest in recent years in adapting deep learning models to
new tasks [61]. The two main avenues to achieve this goal is
either through the retraining of a deep neural network while
freezing the weights of its initial layers [79], or through the
fine-tuning of the model [80–82]. While most existing appli-
cations are based on convolutional or recurrent neural net-
works, the development of deep learning on graph structured
data has also seen advances in transfer learning applied on
graph neural networks [83,84].

In the context of machine learning applications to jet
physics, one could expect that different taggers rely on a
certain amount of information that is common to different
tasks. Concretely, the properties of QCD that define the radi-
ation pattern inside a boosted jet stemming from the QCD
background is largely identical within different taggers, and
further commonalities can be identified among signals with
a similar number of prongs produced by the resonance decay
inside a (fat) jet. This suggests that jet physics is an ideal
area for the application of transfer learning methods. On the
practical side, this would allow for the design of new mod-
els/taggers starting from a pre-existing one, not necessarily
trained on the same task. The main advantage of transfer
learning would then be the considerably reduced computa-
tional cost associated with the training of the new model,
which does not need to be built from scratch for every new
task.

A first important question is the extent to which a network
is transferable, i.e. whether the transferred model is capa-
ble of reaching a performance that is as close as possible to
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the fully trained model with just a fraction of the computing
resources. A general answer to this question requires a thor-
ough investigation of the features of a given network that are
connected to a higher transferability, and this goes beyond
the scope of this article. Here we instead take a first step in
this direction, and consider the two graph neural networks
which have been discussed in the previous section. Of these,
ParticleNet relies on the information carried by the full
four momenta of the jet constituents, whereas the LundNet
models essentially map the Cambridge/Aachen sequence of
a jet into its own Lund jet plane. The latter representation
encodes the kinematic information at each of the branchings
in the fragmentation process, which in turn is to a large extent
universal across taggers and depends mainly on the proper-
ties of QCD near the soft and/or collinear limits. A second
interesting property of the Lund jet plane is that QCD (back-
ground) jets roughly have a uniform density of emissions in
the Lund jet plane, and hence this structure can be learnt very
effectively by a neural network such as LundNet. Both of
the above properties are expected to facilitate transfer learn-
ing in that the input variables on which LundNet relies
already highlight universal properties of QCD jets and allow
the network to distinguish them from those of typical signal
jets stemming from the decay of a boosted heavy object. For
this reason, our expectation is that transfer learning reaches a
rather good performance in the context of this class of mod-
els. On the other hand, in the case of ParticleNet, the
model needs to learn the non-trivial mapping between the
information carried by the final-state four momenta used as
input, to the physical fragmentation process of the jet. This
ends up adding an additional layer of complexity in the train-
ing of the network, which is expected to be reflected in a lower
performance of the models trained via transfer learning.

In order to explore the transferability of the models
adopted in this article, we consider two different approaches
to inductive transfer learning. Our first transfer-learning
approach is a frozen-layer model. Here the weights of the
EdgeConv layers of LundNetorParticleNethave been
pre-trained on a separate jet sample and are kept fixed dur-
ing the retraining process. The final MLP layers are instead
reinitialised to random weights and retrained on a new sam-
ple to specialise the tagger to this new pattern recognition
task. This procedure is shown in Fig. 2b, and the training on
a new data set is performed with the same learning rate and
scheduler as the training for the original model. The second
approach is a fine-tuning of all the weights in the original
tagger. In this case, the learning rate is reduced by a factor
ten (or a factor three when transferring from a W to a top
tagger), and the tagger is retrained with the same number of
epochs and scheduler on a new data set.

The difference in performance between the transferred
models and those trained from scratch probes the ability
of a network to learn features that are common to different

tasks and therefore its suitability to the application of trans-
fer learning techniques. Moreover, the difference between the
frozen-layer and fine-tuning procedures probes how much of
the high-level information learnt by a network is extracted
from the initial layers, which provides insights on the extrap-
olating ability of each model.

4 Case study with top tagging

As a case study, we consider the application to top-quark
tagging at the LHC. We are interested in discriminating top-
quark jets with pT > 500 GeV against the QCD background.
We apply and analyse the properties of transfer learning for
four different models, LundNet3 and its transfer from a
top-tagger with pT > 2 TeV, LundNet5 and its transfer
from either a top-tagger with pT > 2 TeV or a W -boson tag-
ger with pT > 500 GeV, and finally ParticleNet and its
transfer from a top-tagger with pT > 2 TeV. All models pre-
sented in this section are trained with events generated using
Pythia 8.223 [85], considering jets defined according to the
anti-kt algorithm [86] with a jet radius R = 0.8 and rapidity
|y| < 2.5. Signal events are obtained from the simulation
of either WW or t t̄ production, with W bosons decaying
hadronically, while the background sample is obtained from
QCD dijet events. The signal and background training data
sets consist of 5 × 105 events each. Validation and testing is
done on data sets of 5×104 events for each of the signal and
background process.1

We start by discussing the reduction in computational
complexity that can be achieved through the use of transfer
learning techniques, and then provide a phenomenological
study of top tagging performance for each model.

4.1 Computational complexity of transferred models

As described in Sect. 3, we consider two transfer learning
approaches to retrain an existing jet tagger, a frozen layer
model and a fine-tuning model. In this section, we aim to
investigate the computational cost of both approaches. For
this we consider the construction of a top tagger for 500 GeV
jets, starting from a model trained on 2 TeV data. The train-
ing time was measured on a NVIDIA GeForce RTX 2080
Ti GPU, training a tagger on either 106 or 105 total top and
QCD jets with an equal number of signal and background
events. We measure the time required to train a LundNet5
and ParticleNet model,2 given in milliseconds per sam-
ple and epoch (which is identical for both the 106 and 105

samples) as well as the corresponding total training time

1 The data is available at https://github.com/JetsGame/data.
2 The training time for both LundNet5 and LundNet3 is almost
identical.
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Fig. 3 Validation accuracy as a function of the number of training
epochs

for both data sizes. These measurements are summarised in
Table 1. All models were trained for 30 epochs, regardless of
their convergence, shown in Fig. 3 for the full data sample.
The figure shows the convergence for the two sample cases
of LundNet5 (in blue) and ParticleNet (in orange).
The solid lines show the evolution for models trained from
scratch, the dashed lines refer to the fine-tuning transfer learn-
ing setup (trained using a ten-times smaller initial learning
rate of 10−4), and finally the dotted lines refer to the frozen-
layer transfer learning setup. One observes here that, in prac-
tice, the transferred models approach an optimum at a much
faster rate, with the fine-tuning setup converging sooner to
higher values of the validation accuracy. This implies that
such models could be trained for only a few epochs to fur-
ther reduce the computational cost.

The fine-tuning model does not provide any noticeable
speed-up in training time, as it requires the update of all the
weights in the network. However, as we will see in Sect. 4.2,
it can achieve comparable performance to a full model with
only a small fraction of the data. As such, if one uses a tenth
of the full data sample, this effectively provides a factor of
ten speed-up in training time. Moreover, as already pointed
out, the convergence of the model is significantly faster, and
requires only a few epochs to converge to an optimal solution,
hence providing an opportunity for further optimisation of the
training time.

Conversely, the frozen-layer approach has the advantage
of reducing the computational cost of the retraining by limit-
ing the update of the weights to the final dense layers, while
keeping the EdgeConv blocks unchanged. This results in a
reduction of the training time by about a factor of three com-
pared to that of a full model on the same data sample. As for
the fine-tuning model, a further reduction can be achieved
by reducing the number of epochs and the size of the data
set. However, as will be discussed in Sect. 4.2, the frozen
layer model requires a larger data sample than the fine-tuning
approach to achieve comparable performance.

Table 1 Training time for different taggers. The time was measured
when running the models on an NVIDIA GeForce RTX 2080 Ti card.
Note that LundNet5 transferred from a top tagger with pT > 2 TeV,
when trained on a data set 10 times smaller, still performs better than
ParticleNet in terms of AUC (see Table 2) despite the time of
training being significantly reduced

Training
time
(ms/sample/
epoch)

Total
for 106

samples
(hh:mm:ss)

Total
for 105

samples
(hh:mm:ss)

LundNet5 0.46 03:48:15 00:22:43

LN5frozen 0.15 01:17:02 00:07:36

LN5finetuning 0.46 03:48:32 00:22:45

ParticleNet 3.60 30:09:44 02:59:17

PNfrozen 2.16 18:13:21 01:47:37

PNfinetuning 3.60 29:59:46 03:01:04

4.2 Performance of top taggers

We now study the performance of our top taggers, using
the area under the ROC curve (AUC) as an indicator of a
model’s performance, and summarise our results in Table 2.
For each model, we consider the AUCs corresponding to a
training from scratch (indicated by AUC in the table), trans-
fer learning with a fine-tuning setup (indicated by AUCFT),
and transfer learning with a frozen-layer setup (indicated by
AUCFR). For the above three options, we also consider the
values of the AUC obtained with 10% of the original training
data (denoted by AUC(10%) in Table 2). We find that, in the
case of LundNetmodels trained in the full data set, the fine-
tuning setup reproduces exactly the AUC of the model trained
from scratch. We also observe that the frozen option, despite
being considerably cheaper from a computational viewpoint,
leads to AUC values which are extremely close to those of
the above models, indicating that LundNet models are very
suitable for the application of transfer learning as discussed
in the previous section. We also consider the more demand-
ing transfer of a LundNet5 W tagger to a top tagger at
the same 500 GeV pT threshold. We can see from the AUC
values shown in Table 2 that while a moderate loss of perfor-
mance is found for the model trained on the reduced data set,
we still recover AUC values for the transferred top tagger
that are very close to the fully trained LundNet5 model,
and significantly better than most state-of-the-art taggers.

In the case of ParticleNet, the fine-tuning setup still
performs as well as the model trained from scratch while
the frozen setup leads to visibly smaller AUC values. As
expected, this indicates that ParticleNet is less suit-
able for the application of transfer learning. This is due to
the fact that it relies on low-level information, such as four
momenta, which makes it less easy to identify general prop-
erties of the kinematic pattern of QCD already in early layers
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Table 2 Benchmarks for top tagging with pT > 500 GeV. The differ-
ent columns show the AUC for the different transfer learning models
considered in the text, where FT denotes the fine-tuning option, FR

denotes the frozen-layer option, and the (10%) superscript refers to
results obtained with just one tenth of the original training data

AUC AUCFT AUCFR AUC(10%) AUC(10%)
FT AUC(10%)

FR

LundNet3 (from top 2 TeV) 0.9820 0.9820 0.9816 0.9773 0.9802 0.9791

LundNet5 (from top 2 TeV) 0.9866 0.9865 0.9863 0.9826 0.9850 0.9845

LundNet5 (from W 500 GeV) – 0.9863 0.9858 – 0.9834 0.9832

ParticleNet (from top 2 TeV) 0.9826 0.9826 0.9793 0.9765 0.9795 0.9772

of the network. For models trained on 10% of the original
training data set, we observe that in the case of LundNet3
and LundNet5, the values of AUC obtained with trans-
fer learning models are hardly affected by the reduction in
sample size, and they still perform nearly as well as the orig-
inal models trained on the full data set. For ParticleNet
the performance of the models obtained through transfer
learning is instead closer to that of the model trained (from
scratch) on the reduced data set, in line with our expecta-
tion that this class of models is less transferable. We also
show the dependence of the AUC on the total (signal plus
background) size of the training data set in Fig. 4. The fig-
ure shows that transfer learning gives a significant advan-
tage for small sizes of the training data set. For example,
the retrained LundNet5 model with the fine-tuning setup
and 1.25 × 104 events for signal and background data sets
achieves AUC = 0.983, meaning that state-of-the-art perfor-
mance can be achieved using far smaller data sets than those
needed to train a network from scratch, with a considerable
speed-up of the process. Concretely, when retraining with
2.5 × 104 samples, the training time is almost two orders of
magnitude smaller than that needed to train a similarly per-
forming LundNet model from scratch. Importantly, the dif-
ference between the fully trained model and the fine-tuning
and frozen-layer transfer learning setups is rather moderate
in the case of LundNet5, which indicates that such class of
models have rather high transferability and they can easily be
retrained on a different task. In the case of ParticleNet,
we observe that the fine-tuning setup still produces AUC val-
ues higher than those of the model fully trained on smaller
data sets, although it does not reach the tagging accuracy
observed for LundNet5. Moreover, Fig. 4 also shows that
the performance of ParticleNet gets significantly worse
when using the frozen-layer setup, with the fully trained
model outperforming the transfer learning results already
for a training done on 105 events, while LundNet5 reaches
almost the asymptotic values of AUC for this data sample
(see also Table 2). Overall, this clearly shows that the use of
transfer learning provides a promising avenue to reduce the
amount of data required to train new taggers, with certain
classes of models such as LundNet being more suitable for
the application of these techniques. Whether it is possible to

Fig. 4 Area under the ROC curve as a function of the total signal and
background training data set size

define a metric quantifying a priori the ability of a model to
be transferred to a different task with reduced computational
resources than those needed for a full training, and how to
construct better taggers with such features remain interesting
open questions.

We now move on to study the ROC curves corresponding
to the different models in Fig. 5, showing the background
rejection 1/εQCD versus signal efficiency, εTop. A better per-
forming tagger has a corresponding ROC curve closer to the
top-right corner of the figure. The upper panel shows the ROC
corresponding to the models LundNet3, LundNet5 and
ParticleNet all trained from scratch for a top tagger with
pT > 500 GeV. We observe that, as expected, LundNet5
performs better than the other two models, which achieve a
very similar performance. This is due to the additional infor-
mation stored in the tuples associated with each node of the
graph (see Eq. (3)). The second panel of Fig. 5 shows the
ROC obtained with LundNet5 and different transfer learn-
ing options from a top tagger with pT > 2 TeV, divided by
the ROC of the model trained from scratch (shown in the
upper panel). The dashed blue line corresponds to the fine-
tuning setup in which all weights are re-trained on the new
task. This option clearly reproduces the performance of the
tagger trained from scratch, but as already observed before
it does not lead to any reduction of the computational com-
plexity associated with the training. The dotted blue line,
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instead, corresponds to the transfer learning obtained with
the frozen-layer setup which, as already observed in Table 2,
leads to a performance that is very close to that of the orig-
inal model, with an AUC less than a permille below the full
model, and background rejection at intermediate signal effi-
ciencies within 20% of the fully trained tagger. This perfor-
mance remains far better than most state-of-the-art jet tag-
gers, and orders of magnitude above analytic substructure
discriminants.

The remaining three panels in Fig. 5 show a similar com-
parison in the case of LundNet3 and ParticleNetmod-
els transferred from a top tagger with pT > 2 TeV, and
LundNet5 models transferred from a W -boson tagger with
pT > 500 GeV. For the fine-tuned W , the initial learning
rate is set to 3 × 10−4 to allow for a larger perturbation
of the pre-trained top model. All of the above four panels
also report, in red, the result obtained with a reduced train-
ing data set of 10% of the original size, i.e. 105 events, with
either the fine-tuning (dashed) or frozen-layer (dotted) setup.
For LundNet, the plot confirms the conclusions drawn from
the AUC study above, showing that these models (both for
LundNet3 and LundNet5) still reach the performance of
state-of-the-art taggers also in the transfer learning setups,
with the frozen-layer setup being only moderately less accu-
rate than the computationally more demanding fine-tuning.
While it is clearly easier to transfer a model from a similar
tagger trained on a different kinematic regime, we see that
transfer learning still reaches highly competitive ROC curves
also when the starting model is a W tagger, shown in the last
panel of Fig. 5, which demonstrates that the techniques stud-
ied in this article can be adopted across wide families of jet
taggers. As already observed, ParticleNet, shown in the
fourth panel of Fig. 5, performs less well under the transfer
learning setups, with a wider gap between the fine-tuning and
frozen-layer options.

In general, from Fig. 5 we conclude that the retrained mod-
els achieve performances which are extremely close to the
models trained from scratch, meaning that the output of Edge-
Conv operations is a representation of the data which can be
efficiently reused for other tasks. The benefits of transfer
learning then consist of a significantly shorter training time
and a smaller data set size required to converge on an effi-
cient tagger. All models in the above comparison have been
trained for 30 epochs. We stress once again that the computa-
tional cost can be reduced further by exploiting the fact that
transferred LundNet models converge to an optimum with
less epochs, as discussed above in Fig. 3.

5 Conclusions

In this article, we have explored the use of transfer learning
methods to train efficient jet taggers from existing models.

Fig. 5 QCD rejection vs. top tagging efficiency

With this, we aimed to investigate the ability of a neural
network to learn universal features of QCD and to transfer
them to a separate task. In practice, we have considered the
application of transfer learning to top tagging at different
transverse momentum thresholds and to the tagging of two-
and three-pronged boosted objects, e.g. W boson and top
quark decays. We studied two jet taggers constructed from
graph neural networks, LundNet and ParticleNet, and
conducted a detailed study of the performance of transferred
models as well as of the reduction in computational com-
plexity provided by transfer learning.

We have implemented two transfer-learning procedures.
The first one relies on fine-tuning all weights in a model by
retraining it on a new data sample with a lower learning rate,
while the second freezes the edge convolutions and retrains
solely the final dense layers of the network. In the case of
LundNet taggers, we find that the fine-tuning approach
requires a similar training time per epoch and sample as the
fully trained model, but converges to an almost optimal solu-
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tion after just a few epochs (compared to tens of epochs for
a full model) and requires only a small fraction of the data.
Concretely, a model can achieve nearly the same performance
using a third of the epochs and a tenth of the original training
sample, which leads to a dramatic speed-up of the training
process. On the other hand, the frozen-layer method provides
a further speed-up in training time by a factor three as only a
small fraction of the model weights are updated, but requires
a comparatively larger sample size to achieve a similar per-
formance to the fine-tuning approach.

For the two specific LundNet taggers considered
(LundNet3 and LundNet5, which differ in the dimension-
ality of the kinematic inputs associated with each node of the
graph), we observe that fine-tuning with a tenth of the data
achieves a background rejection moderately lower than that
of a fully trained model, with the transferred LundNet3
tagger recovering slightly more of the performance of the
baseline model. The frozen-layer approach performs com-
parably, although in both LundNet3 and LundNet5 it
achieves slightly lower background rejection for the same
training sample than the fine-tuning method.

The conclusions are somewhat different for
ParticleNet, where the frozen-layer method performs
noticeably worse than the fine-tuning approach, regardless
of the amount of data and number of epochs. Furthermore,
the background rejection that can be achieved with a reduced
data set is significantly smaller. We attribute this to the fact
that ParticleNet relies on kinematic information struc-
tured as the four momenta of the jet constituents, which
in turn makes it more challenging for the EdgeConv lay-
ers to extract general features about the jet fragmentation.
In comparison, LundNet uses kinematic information of the
sequential clustering steps of the Cambridge/Aachen algo-
rithm as input, which carries denser information about the
jet fragmentation dynamics. This is reflected in a larger gap
between the fine-tuning and frozen-layer approaches in the
ParticleNet case.

Our results show that transfer learning constitutes a
promising avenue to build computationally efficient and ver-
satile taggers with state-of-the-art performance. This opens
a wide array of possibilities for more wide-spread adoption
of machine learning jet-tagging technology for experimental
studies at colliders, such as the Large Hadron Collider and
future facilities. This article provides a first step towards this
goal, and motivates further investigations on the application
of these methods to particle phenomenology. In this context,
a number of interesting theoretical questions arise. As future
directions, it would be informative to study concrete metrics
of transferability of a network, and which features of the input
variables and choices in the architecture of a model can lead
to more transferable designs. Furthermore, it would be inter-
esting to study knowledge transfer in jet taggers from first

principles, and gain analytical insights into the behaviour of
transferred models [38,87].
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