Displaced Vertex Search for Heavy Neutral Leptons with the ATLAS Detector

Dominique Trischuk

University of British Columbia

La Thuile 2022 — Young Scientist: Forum 4 March 11, 2022

Outline

ATLAS Displaced Vertex Search for Heavy Neutral Leptons (HNL)

- Signal model
- Discriminating variable: HNL mass
- Background estimation
- Results

 Best-known description of fundamental particles and their interactions (except gravity)

•Neutrino oscillations suggest $m_{\nu} > 0$

Non-zero neutrino mass is not included in SM

Dominique Trischuk

 Best-known description of fundamental particles and their interactions (except gravity)

•Neutrino oscillations suggest $m_{\nu} > 0$

Non-zero neutrino mass is not included in SM

Dominique Trischuk

SM Extension with 3 HNLs

 Introduce right-handed states known as heavy neutral leptons (HNL)

•Type-I seesaw mechanism explains light neutrino masses

Motivation For HNLs

1. Origin of neutrino masses • Type-I seesaw mechanism: $m_{\nu} \simeq \frac{v^2}{2} Y m_N^{-1} Y^T$

La Thuile 2022 — Young Scientist: Forum 4

Motivation For HNLs

1. Origin of neutrino masses • Type-I seesaw mechanism: $m_{\nu} \simeq \frac{v^2}{2} Y m_N^{-1} Y^T$

2. Matter-antimatter asymmetry of the universe

 Increase in charge-parity violation as a result of neutrino oscillations in the early universe

Motivation For HNLs

1. Origin of neutrino masses • Type-I seesaw mechanism: $m_{\nu} \simeq \frac{v^2}{2} Y m_N^{-1} Y^T$

3. Dark matter candidate

 Models with at least three HNLs can incorporate a keV-scale sterile neutrino

2. Matter-antimatter asymmetry of the universe

 Increase in charge-parity violation as a result of neutrino oscillations in the early universe

La Thuile 2022 – Young Scientist: Forum 4

Experimentally Relevant Observables

Mixing angle between SM $|U_{\alpha}|^2$ neutrino and HNL

 m_N HNL mass

 HNLs experience "weak-like" interactions controlled by dimensionless mixing angles ($|U_{\alpha}|^2$)

Experimental Picture

$$m_K = 0.49 \text{ GeV} \qquad m_B =$$

Displaced Heavy Neutral Leptons

Experimental HNL Signature:

Prompt lepton (used for trigger) Displaced vertex (DV) with 2 opposite charge leptons

Dominique Trischuk

HNL Mixing Scenarios

Mixing scenario benchmarks:

 <u>Simple model</u>: One HNL with single-flavour mixing (1SFH) **1.Muon-only** mixing $(|U_{\mu}|^2)$ More data! **2.Electron-only** mixing $(|U_{\rho}|^2)$ New!

 <u>Realistic scenario</u>: Two quasi-degenerate HNLs (2QDH) 3.Inverted hierarchy (IH) mixing $(|U|^2)$ New! 4.Normal hierarchy (NH) mixing ($|U|^2$) New!

two mixing benchmarks proposed by the LLP community

$$|U|^2 = \sum_{\alpha = \mu, e, \tau} |U_{\alpha}|^2$$

$$x_{\alpha} = |U_{\alpha}|^2 / |U|$$

ፓ ז ፓ

Discriminating Variable: HNL mass

mass and the flight direction of the HNL

La Thuile 2022 — Young Scientist: Forum 4

Backgrounds

- Dedicated event selections used to remove nonrandom backgrounds (e.g. heavy-flavour decays)
- Dominant background: random lepton crossings Random crossing probability is independent of the lepton charge
- Study data events in validation region (VR) that contains events with no prompt leptons

indicates random crossings dominate the background.

Background Estimate

• Data-driven **object shuffling method** is used to estimate the background from random lepton crossings

•Basic idea:

- Take a prompt lepton from event with SS DV in signal region (SR)
- Shuffle with OS DVs from validation region (VR)
- •Significantly increases the available statistics (~x2,000)

Prompt Lepton

OS Displaced Vertex

Fit Model

•Global fit for the signal strength, background yields and nuisance parameters is performed

Results

•Fit results are consistent with **no significant excesses** in any of the six channels **No new physics!**

Limits For Muon-Only Mixing

Exclusion Limits Summary

 Limits span a challenging long-lived region of phase space Interpretations assuming various mixing scenarios provide constraints for theoretical predictions

La Thuile 2022 — Young Scientist: Forum 4

Summary

ATLAS Displaced Vertex Search for Heavy Neutral Leptons

No evidence for new physics
Brand new results for electron-only and multiflavour mixing scenarios
Improved limits in muon-only mixing scenarios

HNL Production and Decay

(a) Charged current decay $(\alpha - \beta \gamma)$

(b) Neutral current decay $(\alpha - \gamma \gamma)$

Signal Channels

Muon-only mixing

Electron-only mixing

Dominique Trischuk

prompt electron

Backgrounds

Non-random Backgrounds

- Dedicated selections use to remove non-random backgrounds
 - e.g. minimum requirements on the invariant mass of the DV ($m_{\rm DV}$) to reject heavy-flavour decays
- Dominant background: random lepton crossings

Random Background

Limit Summary Plots

Dirac-limit: 100% lepton number conserving (LNC)

Majorana-limit: 50% LNC / 50% lepton number violating (LNV)

Single-Flavour Mixing Limits

Muon-only mixing

 $|U_e|^2 : |U_\mu|^2 : |U_\tau|^2 = 0 : 1 : 0$

Electron-only mixing

$$|U_e|^2 : |U_\mu|^2 : |U_\tau|^2 = 1 : 0 : 0$$

La Thuile 2022 – Young Scientist: Forum 4

Limits For Muon-Only Mixing

•Limits on $|U|^2$ as a function of m_N extracted at the 95% confidence level:

 $m_{\rm DV}$ and $r_{\rm DV}$ cuts to remove metastable decays also removes sensitivity to short-lived low mass HNLs

Comparison with CMS Limits

Similar story for Dirac models.

<u>CMS-EXO-20-009</u>

HNL Decays

- Depending on the nature of the HNL, lepton number violating decays are possible
- ATLAS search considers both:
 - "Dirac-limit": 100% LNC
 - "Majorana-limit" 50% LNC / 50% LNV

Limits are provided for both scenarios.

La Thuile 2022 – Young Scientist: Forum 4

Analysis Selections

Level	Selection	Value
Pre-selection	Event cleaning	Standard ATLAS event cleaning
	Primary vertex	At least one with $p_{\rm T} > 500 {\rm ~MeV}$
	Trigger	At least one single muon
		or electron trigger
	Trigger-matched lepton	At least one Medium (μ)
		or LHMedium (e) lepton with $p_{\rm T} > 27 { m ~GeV}$
	Filter	At least one HNL filter
	Prompt lepton	At least one
	Trigger matched lepton	At least one
	Displaced lepton-only vertex	At least one
	Number of tracks in DV	2
	Fiducial volume	$4 \text{ mm} < L_{xy} < 300 \text{ mm}$
SR selection	DV charge	Opposite-sign tracks
	Prompt + disp. l charge	Opposite-sign leptons
		(For 1SFH models with only LNC decays)
	DV type	$ee, e\mu$ or $\mu\mu$ vertex
	Tri-lepton mass	$40~{\rm GeV} < m_{lll} < 90~{\rm GeV}$
	HNL mass	$m_{ m HNL} < 20 ~ m GeV$
	Cosmic muon veto	$\sqrt{(\Sigma\eta)^2 + (\pi - \Delta\phi)^2} > 0.05$
	Material veto	Applied for ee DVs only
	Heavy-flavour decay veto	$m_{_{ m DV}} > 5.5~{ m GeV}~(\mu\mu~{ m DVs})$ or
		$m_{_{ m DV}}$ - L_{xy} cut (ee or $e\mu$ DVs)
	Z mass veto	$m_{ll} < 80 \text{ GeV} \text{ or } m_{ll} > 100 \text{ GeV},$
		for same-flavour opposite-sign leptons

Heavy-Flavour Decay Background Veto

- Exploit DV mass $(m_{\rm DV})$ and DV radius $(r_{\rm DV})$ correlations Data events studied in the validation region (VR)
- Re-gain sensitivity to low DV mass HNLs ightarrow eµ and ee decays removed using $m_{\rm DV} - r_{\rm DV}$ correlation selection
 - Larger reconstruction efficiency for $\mu\mu$ DVs means that the $m_{\rm DV}-r_{\rm DV}$ correlation selection is not sufficient to remove remove heavy-flavour µµ decays

Dominique Trischuk

