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Universitat de Barcelona, Mart́ı i Franquès 1, E-08028 Barcelona, Spain

ö Department of Physics and Astronomy, University of Waterloo,

Waterloo, Ontario, Canada, N2L 3G1

Ü Instituto de F́ısica, Pontificia Universidad Católica de Valparáıso,

Casilla 4059, Valparáıso, Chile

Abstract

Generalized quasi-topological gravities (GQTGs) are higher-curvature extensions of Einstein
gravity in D-dimensions. Their defining properties include possessing second-order linearized
equations of motion around maximally symmetric backgrounds as well as non-hairy general-
izations of Schwarzschild’s black hole characterized by a single function, f(r) ≡ −gtt = g−1

rr ,
which satisfies a second-order differential equation. In arXiv:1909.07983 GQTGs were shown
to exist at all orders in curvature and for general D. In this paper we prove that, in fact, n− 1
inequivalent classes of order-n GQTGs exist for D ≥ 5. Amongst these, we show that one —and
only one— type of densities is of the Quasi-topological kind, namely, such that the equation
for f(r) is algebraic. Our arguments do not work for D = 4, in which case there seems to
be a single unique GQT density at each order which is not of the Quasi-topological kind. We
compute the thermodynamic charges of the most general D-dimensional order-n GQTG, verify
that they satisfy the first law and provide evidence that they can be entirely written in terms
of the embedding function which determines the maximally symmetric vacua of the theory.
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1 Introduction

Higher-curvature theories of gravity play an important role in theoretical physics. On one hand,
higher derivatives seem necessary to obtain a consistent quantum description of gravity. For exam-
ple, string theory and effective field theory approaches predict an infinite tower of higher-curvature
corrections to the usual Einstein-Hilbert action [1–5], while other approaches introduce a finite
number of higher-curvature terms to restore certain desirable properties, e.g., renormalizability [6–
8]. On the other hand, studying higher-curvature theories can provide insight on the special or
universal properties of gravitational theory. This program has been especially fruitful in the holo-
graphic context, where deformations of the gravitational theory correspond to deformations of the
dual CFT. In this way, it has been possible to provide evidence for universal relationships that hold
within holography and beyond [9–19].

In this work we are specifically interested in the structural aspects of a class of theories known
as generalized quasi-topological gravities (GQTGs). Schematically, we write the action of these
theories as

S =
1

16πG

∫
dDx

√
|g|

[
(D − 1)(D − 2)

L2
+R+

∑
n=2

∑
in

L2(n−1)µ
(n)
in
R(n)
in

]
, (1)

where R(n)
in

are densities constructed from n Riemann tensors and the metric, the µin are dimen-
sionless couplings, L is some length scale, and in is an index running over all independent GQTG
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invariants of order n. For this action, the field equations can be expressed as

Eab = Pa
cdeRbcde −

1

2
gabL − 2∇c∇dPacdb = 0 , with P abcd ≡ ∂L

∂Rabcd
, (2)

where L is the Lagrangian of the theory. For a general theory polynomial in curvature tensors,
it is clear that the field equations can contain forth-order derivatives of the metric. The defining
property of GQTGs is that they allow for spherically symmetric solutions of the Schwarzschild-
like form characterized by a single function i.e., with gttgrr = −1, where f(r) satisfies at most a
second-order equation.. Then, the static spherically symmetric black holes of the theory have the
form

ds2f = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , (3)

with f(r) satisfying an equation that contains at most second derivatives.

GQTGs can be further subdivided into different classes depending on the character of the
field equations on spherically symmetric and other backgrounds. The most important subclass
being Lovelock gravity [20, 21], for which the equations on spherically symmetric backgrounds are
algebraic in the metric function f(r), and second-order for any metric. Lovelock gravities are also
the most constrained. Besides Einstein gravity, there exists no Lovelock theory in D = 4, and
in general a Lovelock theory of order n in curvature is non-trivial only when D ≥ 2n + 1. A
second subclass of the GQTG family are quasi-topological gravities [22–26]. For quasi-topological
gravities, the field equations for spherically symmetric black holes are algebraic, as for Lovelock
theory. However, on general backgrounds the equations of motion will be fourth-order. Quasi-
toplogical gravities are less constrained in the sense that they exist in any spacetime dimension
D ≥ 5 for any order in curvature cubic or higher, as explicitly constructed in [27]. These possibilities
do not fully exhaust the space of possible theories, and there exist remaining GQTGs for which
the field equations for spherically symmetric black holes is a second-order differential equation for
f(r) [28–32] —these theories can exist even in D = 4.

GQTGs have by now been the subject of quite intensive investigation, e.g., [16, 18, 25, 28–
87], and many of the interesting properties of these theories are now well-understood. Here we
summarize some particularly relevant ones:

1. When linearized around any maximally symmetric background, their equations are identical
to the Einstein gravity ones, up to a redefinition of the Newton constant —in other words,
they only propagate the usual transverse and traceless graviton in the vacuum [25, 28–33].

2. They possess non-hairy black hole solutions fully characterized by their ADM mass/energy
and whose thermodynamic properties can be obtained from an algebraic system of equations.

3. Although the defining property pertains to static spherically symmetric black holes, certain
subsets of GQTGs allow for reduction of order in the field equations for other metrics, such
as Taub-NUT/Bolt [39], slowly-rotating black holes [59, 83], near extremal black holes [50],
and cosmological solutions [43–45, 72].

4. In the context of gravitational effective field theory, any higher-curvature theory can be
mapped, via field redefinition, into some GQTG [27, 52].
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5. We can consider arbitrary linear combinations of GQTG densities and the corresponding
properties hold, which means, in particular, that GQTG theories have a well-defined and
continuous Einstein gravity limit, corresponding to setting all higher-curvature couplings to
zero.

6. Extensions away from pure metric theories, including scalars or vector fields, while preserving
the main properties are possible [65, 77, 87].

Our purpose here is to complete the study of structural aspects of GQTGs. In [27] we proved
existence of GQTGs at all orders of curvature and in all dimensions D ≥ 4. In this manuscript,
we will address how many distinct/inequivalent GQTGs exist at each order in curvature and in
each dimension. The organization of the manuscript is as follows. We begin in Section 2 by
reviewing in more detail the defining properties of GQTGs and introducing notation that will be
used throughout. Then, in Section 3, we provide a simple argument that gives an upper bound
on the number of possible distinct GQTGs. We then refine this upper bound into an exact result,
showing that at order n in curvature there are n− 1 distinct GQTGs, provided D > 4, while there
is a single unique family provided D = 4. In Section 4 we compute the thermodynamic charges for
any possible GQTG, and verify that they satisfy the first law. Intriguingly, we find good evidence
that the thermodynamics for GQTGs can be written entirely in terms of the embedding function
for the given family of theories, which determines the maximally symmetric vacua of the theory.
We collect a number of useful results and expressions in the appendix.

2 Generalized quasi-topological gravities

We start in this section with a quick review of the defining properties of GQTGs and some notation.
Our discussion here closely follows that of [27]. We also introduce the notion of inequivalent GQTG
densities which will be important for the rest of the paper. Roughly speaking, we will say that two
GQTG densities of a fixed curvature order n are inequivalent if they give rise to different equations
for the metric function f(r).

2.1 Definitions

A general static and spherically symmetric (SSS) metric can be written in terms of two undeter-
mined functions N(r) and f(r) as

ds2N,f = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , (4)

where dΩ2
(D−2) is the metric of the (D−2)-dimensional round sphere. Essentially all our discussion

extends straightforwardly to the cases in which the horizon is planar or hyperbolic instead. The
formulas below will include those as well, the different cases being parametrized by a constant k
taking values k = 1, 0,−1 for spherical, planar and hyperbolic horizons respectively.

For a given curvature invariant of order n, R(n), we define LN,f and SN,f as the effective
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Lagrangian and on-shell action which result from evaluating
√
|g|R(n) in the ansatz (4)

LN,f ≡ N(r)rD−2R(n)

∣∣
N,f

, SN,f ≡ Ω(D−2)

∫
dt

∫
drLN,f , (5)

where we integrated over the angular directions, Ω(D−2) ≡ 2π
D−1
2 /Γ[D−12 ]. We will define Lf ≡ L1,f

and Sf ≡ S1,f , namely, the expressions obtained from setting N = 1 in LN,f . Now, solving the full
nonlinear equations of motion for a metric of the form (4) can be shown to be equivalent to solving
the Euler-Lagrange equations of SN,f associated to N(r) and f(r) [33, 88, 89], namely,

Eab
∣∣∣
N,f
≡ 1√

|g|
δS

δgab

∣∣∣∣∣
N,f

= 0 ⇔
δSN,f
δN

=
δSN,f
δf

= 0 . (6)

We say that R(n) is a GQTG density if the Euler-Lagrange equation of. f(r) associated to Lf
vanishes identically, i.e., if

δSf
δf

= 0 , ∀ f(r) . (7)

This is the same as asking Lf to be a total derivative,

Lf = T ′0 , (8)

for some function T0(r, f(r), f ′(r)).

The equation satisfied by f(r) for a given GQTG density can be obtained from the variation of
LN,f with respect to N(r) as

δSN,f
δN

∣∣∣∣
N=1

= 0 ⇔ equation of f(r) . (9)

As explained in [32], whenever eq. (8) holds, the effective Lagrangian LN,f takes the form

LN,f = NT ′0 +N ′T1 +N ′′T2 +O(N ′2/N) , (10)

where T1, T2 are functions of f(r) and its derivatives, and O(N ′2/N) is a sum of terms all of which
are at least quadratic in derivatives of N(r). Integrating by parts it follows that

SN,f = Ω(D−2)

∫
dt

∫
dr
[
N
(
T0 − T1 + T ′2

)′
+O(N ′2/N)

]
. (11)

So it is possible to write all terms involving one power of N(r) or its derivatives as a product of
N(r) and a total derivative which depends on f(r) alone. Now, it follows straightforwardly that
condition (9) equates that total derivative to zero. Integrating it once one we are left with [32]

FR(n)
≡ T0 − T1 + T ′2 = C , (12)

where C is an integration constant related to the ADM mass of the solution [90–93]. In particular,
for spherical horizons, the precise relation reads

C =
M

Ω(D−2)
. (13)
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Hence, given some linear combination of GQTG densities, obtaining the equation satisfied by the
metric function f(r) amounts to evaluating LN,f as defined in eq. (5) and then identifying the
functions Ti=0,1,2 from eq. (10). The equation is then given by (12).1

As argued in [32], the integrated equation is at most second-order in derivatives of f(r). In fact,
there are two possibilities as far as the number of derivatives of f(r) are involved: i) theories whose
integrated equation involves f ′(r) and f ′′(r); ii) theories whose integrated equation exclusively
involves f(r), so the equation is algebraic instead of differential. We shall call theories of the
former class “genuine” GQTG densities. Theories of the latter class are called Quasi-topological
gravities, and they include Einstein and Lovelock theories as subcases.

Now, a natural question is: given a fixed spacetime dimension D and a curvature order n, are
the integrated equations corresponding to different genuine GQTG densities {RI(n), R

II
(n), . . . R

in
(n)}

proportional to each other —i.e., are the functional dependences on r, f(r), f ′(r) and f ′′(r) of the
equations identical— for the various densities? If not, how many inequivalent contributions to the
equation of f(r) are there at a given order in curvature? Analogous questions can be asked fixing D
and n for theories belonging to the Quasi-topological class. Given two genuine GQTG densities of
order n, we will say they are “inequivalent” (as far as SSS solutions are concerned) if the quotient
of their integrated equations is not a constant,

RI(n) inequivalent from RII(n) ⇔
FRI

(n)
(r, f(r), f ′(r), f ′′(r))

FRII
(n)

(r, f(r), f ′(r), f ′′(r))
6= constant . (14)

Otherwise we will say they are “equivalent”. Given two Quasi-topological gravities of order n, we
would perform an analogous definition,

ZI(n) inequivalent from ZII(n) ⇔
FZI

(n)
(r, f(r))

FZII
(n)

(r, f(r))
6= constant . (15)

but we will show later that, in fact, all Quasi-topological gravities of a given order are equivalent.
That will not be the case for genuine GQTGs, in whose case we will prove that there exist (n− 2)
inequivalent densities for D ≥ 5.2

3 How many types of GQTGs are there?

In this section we prove that there exist exactly (n− 2) inequivalent genuine GQTG densities and
a single inequivalent Quasi-topological one at a given curvature order n in D ≥ 5. In D = 4 there
are no Quasi-topological theories and we argue that our proof for the existence of (n− 2) genuine
GQTG densities fails in that case, illustrating the fact that a single genuine GQTG density exists
in D = 4 for n ≥ 3.

1Sometimes we will refer to this equation as the “integrated equation” of f(r) to emphasize the fact that it follows
from integrating once (on r) the only non-vanishing component of the actual equations of motion of the theory
evaluated on the single-function SSS ansatz.

2The existence of multiple types of GQTG densities was first pointed out in [18], where two inequivalent quintic
densities were explicitly constructed in D = 6.
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3.1 At most (n+ 1) order-n densities

Let us start our study by putting an upper bound on the possible number of inequivalent GQTG
densities existing at a given curvature order n. As argued in [94], evaluated on a metric of the form
(3), the Riemann tensor can be written as

Rabcd

∣∣∣
f

= 2
[
−AT [a

[c T
b]
d] + 2BT

[a
[c σ

b]
d] + ψσ

[a
[cσ

b]
d]

]
, (16)

where σba and T ba are projectors on the angular and (t,r) directions, respectively.3 On the other
hand, the dependence on the radial coordinate appears exclusively through the three functions A,
B and ψ, which read

A ≡ f ′′(r)

2
, B ≡ −f

′(r)

2r
, ψ ≡ k − f(r)

r2
, (17)

where k = 1, 0,−1 for spherical, planar and hyperbolic horizons respectively.

Now, GQTG densities are built from contractions of the metric and the Riemann tensor, so any
order-n density of that type will become some polynomial of these objects when evaluated on (3),
namely,

S
∣∣
f

=
n∑
l=0

l∑
k=0

ck,lB
lψl−kAn−l , (18)

for some constants ck,l. The idea is now to determine the most general constants ck,l consistent
with the GQTG requirement, which asks rD−2S|f to be a total derivative, i.e.,

rD−2S|f = T ′0(r) . (19)

Note that imposing this condition on eq. (18) and finding the compatible values of ck,l does not
guarantee that the corresponding GQTG densities actually exist, as this does not provide an explicit
construction of covariant curvature densities. Doing this does impose, nonetheless, a necessary
condition which all actual densities must satisfy. Given a GQTG density, S, it is useful to define
the object τ(r) through the relation

T0 ≡ rD−1τ , so that S
∣∣
f

=
1

rD−2
d

dr

[
rD−1τ(r)

]
. (20)

In a sense, τ(r) is the fundamental building block as long as on-shell GQTG densities are concerned.
Observe that since ∑

i

αiSi
∣∣
f

=
1

rD−2
d

dr

[
rD−1

∑
i

αiτ(i)(r)

]
, (21)

linear combinations of the τ(i) give rise to linear combinations of GQTG densities in an obvious
way.

Now, imposing (19) on densities of the form eq. (18), we find that there are (n+1) independent
possible densities at a given order n. In terms of the τ(r), the possibilities turn out to be simply
given by τ = τ(n,j), where we defined

τ(n,j) ≡ ψn−jBj , where j = 0, 1, . . . , n . (22)

3These satisfy T b
aT

c
b = T c

a , σb
aσ

c
b = σc

a, σb
aT

c
b = 0, δabT

b
a = 2, δab σ

b
a = (D − 2), δab = T a

b + σa
b .
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The corresponding putative on-shell densities read4

S(n,j) ≡
1

rD−2
d

dr

[
rD−1τ(n,j)

]
, j = 0, 1, . . . , n . (23)

Observe that the resulting possibilities are such that A only appears either to the power 1 or to
the power 0 when expanding S(n,j), which is like restricting the sum in l appearing in (18) to
l = {n − 1, n}. It follows that any GQTG density in any number of dimensions and at any order
in curvature must necessarily be expressible as a linear combination of the above densities when
evaluated on the single-function SSS ansatz, namely

S|f =
1

rD−2
d

dr

rD−1 n∑
j=0

α(n,j)τ(n,j)(r)

 , (24)

for certain constants α(n,j).

Using the methods developed in [27] —cf. section 5 of that work— it is possible to compute
the field equations for the putative theory (24) despite the fact that a covariant form of the action
is not known. The integrated equation for the metric function f(r) corresponding to a putative
density S(n,j) is given, in the notation of eq. (12), by5

F(n,j) =
(−1)j+1

2j+1
rD−2+j−2n(k − f)n−j−1(f ′)j−2× (25)[

f ′
[
j(D − 1 + j − 2n)(k − f)f − (j − 1)r(k + (n− j − 1)f)f ′

]
+ j(j − 1)r(k − f)ff ′′

]
.

Observe that this simplifies considerably both for j = 0 and j = 1. In those cases the dependence
on f ′ and f ′′ disappears and one finds algebraic equations for f(r),

F(n,0) = −r
D−1−2n

2
(k − f)n−1[k + (n− 1)f ] , F(n,1) =

(D − 2n)rD−1−2n

4
(k − f)n−1f . (26)

An obvious question at this point is: which of these possible densities actually corresponds to the
Einstein-Hilbert one, if any. In that case we have n = 1, and the two possible densities and their
integrated equations of motion read, respectively,

S(1,0) = − 1

r2
[
(D − 3)(f − k) + rf ′

]
, F(1,0) = −r

D−3k

2
, (27)

S(1,1) = − 1

2r2
[
(D − 2)rf ′ + r2f ′′

]
, F(1,1) =

(D − 2)rD−3f

4
. (28)

Now, the corresponding expressions for the Einstein-Hilbert action (i.e., for a density given by the
Ricci scalar SEH ≡ R) read

SEH|f = − 1

r2
[
(D − 2)(D − 3)(f − k) + 2(D − 2)rf ′ + r2f ′′

]
, FEH = −(D−2)(f−k)rD−3 . (29)

4Note that for the objects S(n,j) we omit the |f . By this we mean that we literally define S(n,j) to be the expression
that appears in the right-hand side. Actual densities evaluated on the single-function SSS ansatz will reduce to linear
combinations of the S(n,j).

5So, for a linear combination of densities, the equation would read
∑

j α(n,j)F(j) = C where C is an integration
constant related to the mass of the solution.
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Hence, none of the putative densities coincides with the Einstein-Hilbert one. Rather, it is a linear
combination of the two which does, namely,

SEH|f = (D − 2)S(1,0) + 2S(1,1) . (30)

Even though our approach has selected two possible independent densities susceptible of giving
rise to GQTG densities at linear order in curvature, there (obviously) exists a unique possibility
corresponding to an actual density, given by the Ricci scalar, which therefore is given by a linear
combination of the two. While the n = 1 case is somewhat special, this already illustrates the
fact that our upper bound of (n + 1) densities at order n is not tight and can be improved. For
higher n, the only known examples of densities which give rise to algebraic integrated equations for
f(r) are Lovelock and Quasi-topological gravities. From our perspective, at a given order n in D
dimensions, all available Lovelock and Quasi-topological gravities for such n and D are “equivalent”
as far as the equation of f(r) is concerned, which means that they should correspond to a fixed
linear combination of S(n,0) and S(n,1). In the next subsections we argue that, indeed, the bound of
(n+ 1) densities can be lowered to at most (n− 1) GQTG densities of order n ≥ 2. While amongst
the (n+ 1) candidates identified here there are two which produce algebraic equations, we will see
that only a linear combination of the two survives, precisely corresponding to the known Lovelock
and Quasi-topological case. The additional putative (n − 2) densities would give rise to distinct
second-order differential equations for f(r).

3.2 At most (n− 1) order-n densities

In order to lower our upper bound on the number of available GQTG densities existing at a
given order, we can impose some further conditions on our candidate on-shell densities S(n,j).
The first condition comes from imposing that the equations of motion associated to them admit
maximally symmetric solutions. When evaluated on such backgrounds, the equations of motion of
actual higher-curvature densities reduce to an algebraic equation which involves the cosmological
constant, the curvature scale of the background (e.g., the AdS radius) as well as the higher-curvature
couplings. More precisely, consider a gravitational Lagrangian consisting of a linear combination
of generic higher-curvature densities of the form given in eq. (1). The result for the equations of
motion when evaluated for

f(r) =
r2

L2
?

+ k , (31)

which corresponds to pure AdSD with radius L?, is given by

rD−1

16πG

[
(D − 2)

L2
− (D − 2)

L2
?

+
∑
n=2

∑
in

L2(n−1)

L2n
?

µ
(n)
in
a
(n)
in

]
= 0 , (32)

for certain constants a
(n)
in

. Interestingly, as we will see below, this same equation which determines
the vacua, also appears to play a key role in the thermodynamics of black holes in the theory.
Naturally, the solution for Einstein gravity is simply L2 = L2

?, which relates the action scale to the
AdS radius in the usual way.

Now, what happens when we consider the integrated equations of a linear combination of
candidate on-shell GQTG densities, each contributing as in eq. (25), on such a background? It
turns out that the result

∑
j α(n,j)F(n,j) contains two different kinds of terms, one which goes with
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a power of rD−1, and one which goes with a power of rD−3. As we have seen, actual densities
contribute with a single power of the type rD−1, so we must impose that the second kind of term
is absent for our putative densities. Removing such a piece amounts to imposing the condition

n∑
j=0

α(n,j)(2n−Dj) = 0 . (33)

Hence, we learn that not all the candidate densities can be independent and we reduce the number
from (n+ 1) to n.

There is another condition we can easily impose on our candidate densities. As explained in
the first section, GQTG densities have second-order linearized equations around general maximally
symmetric backgrounds. This is in contradistinction to most higher-curvature gravities, whose
linearized equations involve up to four derivatives of the metric —see e.g., [95] for general formulas.
Suppose then that we consider a small radial perturbation on AdS space such that the metric
function becomes

f(r) =
r2

L2
?

+ k + εh(r) , (34)

where ε � 1. Now, observe that in our general discussion, the integrated equation of motion
for a GQTG density, FSn , has been integrated once (on r) with respect to the actual equations
of motion of the corresponding density. Hence, the fact that the actual (linearized) equations
of motion for GQTG densities are second order for any perturbation on a maximally symmetric
background implies that the integrated equations cannot contain terms involving h′′(r) (or more
derivatives) at leading order in ε. If they did, the actual linearized equations would involve terms
of the form ∼ εh′′′(r), in contradiction with the linearized second-order behavior. With this in
mind, our strategy now is to insert eq. (34) in a linear combination of integrated equations for our
candidate on-shell densities (25) and impose that no terms involving h′′(r) appear at leading order
in ε. By doing so, we find an additional (remarkably simple) condition, which reads

n∑
j=0

α(n,j)j(j − 1) = 0 . (35)

Imposing it further reduces the number of independent densities from n to (n − 1). Hence, we
conclude that in D dimensions there exist at most (n− 1) inequivalent GQTG theories of order n.
Later in subsection 3.4 we will prove that in fact there exist exactly (n− 1) inequivalent densities
for D ≥ 5. There are many possible ways to choose a basis of on-shell densities so that eq. (33) and
eq. (35) are implemented. For instance, we may choose for the τ(r) functions defined in eq. (20)

τQT
{n} ≡+ (2n−D)τ(n,0) − 2nτ(n,1) , (36)

τGQT
{n,j} ≡+ (j + 1)(Dj − 4n)τ(n,j+1) (37)

+
[
2D(1− j2)− 4n(1− 2j)

]
τ(n,j) + j[D(j + 1)− 4n]τ(n,j−1) ,

with j = 2, . . . , n − 1, where we isolated the QT class combination in the first line —see next
subsection.

Naturally, constructing actual covariant densities of each of the classes is a non-trivial problem
on its own. Explicit formulas for order-n GQTG densities in arbitrary dimensions D ≥ 4 as well
as for order-n QT densities in D ≥ 5 were presented in [27]. However, these cases only exhausted
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2 of the (n− 1) classes which we show to exist for D ≥ 5 in the present paper (one of the genuine
GQTG types and the Quasi-topological one). In Appendix A we present explicit formulas for the
(n− 2) different types of GQTG densities for n = 4, 5, 6 in D = 5 and D = 6.

3.3 Uniqueness of Quasi-topological densities

As mentioned above, Quasi-topological densities are a subclass of GQTGs characterized by having
an algebraic (as opposed to second-order differential) integrated equation of motion for the metric
function f(r) [22–26]. Theories of that kind are required to satisfy an additional condition besides
(7), namely [27] [

D − 2

r

∂

∂f ′′
+

d

dr

∂

∂f ′′
+

(D − 3)

2

∂

∂f ′
+
r

2

d

dr

∂

∂f ′
− r ∂

∂f

]
Z|f = 0 , (38)

which is equivalent to enforcing that the term ∇dPacdb from the field equations vanishes on a static
spherically symmetric metric ansatz. Imposing this condition on a general linear combination of
our canditate densities (24) severely constrains the values of the αj , and we find that τQT

{n} as defined

in eq. (36) is in fact the only possibility. Hence, we learn that the only combination of putative
densities compatible with the Quati-topological condition is given by

Z(n)|f =
1

rD−2
d

dr

[
rD−1

(
(2n−D)τ(n,0) − 2nτ(n,1)

)]
. (39)

Now, Quasi-topological gravities with precisely this structure were shown to exist in [27] at all
orders in n and for all D ≥ 5. Therefore, we conclude that the only possible on-shell structure of a
Quasi-topological density is given by (39). There are no additional inequivalent Quasi-topological
densities besides the known ones: if a given higher-curvature density possesses second-order lin-
earized equations around maximally symmetric backgrounds and admits black hole solutions sat-
isfying gttgrr = −1 and such that the equation for f(r) is algebraic, then, the equation which
determines such a function is uniquely determined to be

FZn =
(D − 2n)

2
rD−2n−1(k − f)n . (40)

This naturally includes the subcases of Einstein and Lovelock gravities.

3.4 Exactly (n− 1) order-n densities

Let us finally proceed to prove that there exist exactly (n − 1) inequivalent GQTG densities of
order n in dimensions higher than four.

Consider the following combination of “on-shell densities”

S(k)p =

p∑
i=0

α
(k)
p,i S(p,i) , k = 1, . . . , kp ≡ max (1, p− 1) , (41)
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where the S(p,i) are defined in eq. (23) and where we assume the constants α
(k)
p,i to satisfy the

constraints found in subsection 3.2, namely,

p∑
j=0

α
(k)
p,j (2p−Dj) = 0 ,

p∑
j=0

α
(k)
p,j j(j − 1) = 0 . (42)

At each curvature order p, there are kp linearly independent solutions and the index k labels each
of them.

Now, let us assume that for p = 1, 2, . . . , n we have proven that all of these on-shell densities
correspond to the evaluation of actual higher-curvature densities on the single-function SSS ansatz.

Namely, there exists a set of Lagrangians R(k)
p such that

R(k)
p

∣∣∣
f

= S(k)p , p = 1, . . . n , k = 1, . . . , kp . (43)

With this in mind, let us now consider an order-(n+ 1) density built from a general linear combi-
nation of products of all these lower-order densities, i.e.,

R̃n+1 =

n∑
m=1

km∑
k=1

kn+1−m∑
k′=1

Cm,k,k′R(k)
m R

(k′)
n+1−m , (44)

where we introduced the constants Cm,k,k′ .

We can ask now: is it possible to generate n inequivalent GQTGs of order (n+ 1) in this way?
In order to answer this question, let us evaluate R̃n+1 on the single-function SSS ansatz and try to
obtain all the possible on-shell GQTGs structures. The evaluation yields

R̃n+1

∣∣∣
f

=
n∑

m=1

km∑
k=1

kn+1−m∑
k′=1

m∑
i=0

n+1−m∑
j=0

α
(k)
m,iα

(k′)
n+1−m,jCm,k,k′S(m,i)S(n+1−m,j) (45)

=

n∑
m=1

m∑
i=0

n+1−m∑
j=0

C̃m,i,jS(m,i)S(n+1−m,j) , (46)

where we defined

C̃m,i,j ≡
km∑
k=1

kn+1−m∑
k′=1

α
(k)
m,iα

(k′)
n+1−m,jCm,k,k′ . (47)

Now, since we are summing over all the α
(k)
n,j satisfying (42) and Cm,k,k′ is an arbitrary tensor,

note that this equality is equivalent to demanding that C̃m,i,j is an arbitrary tensor satisfying the
following constraints

n+1−m∑
j=0

C̃m,i,j [2(n+ 1−m)−Dj] = 0 ,
n+1−m∑
j=0

C̃m,i,jj(j − 1) = 0 , (48)

m∑
i=0

C̃m,i,j(2m−Di) = 0 ,

m∑
i=0

C̃m,i,ji(i− 1) = 0 . (49)

In this way, we do not need to make reference to the α
(k)
n,j anymore.
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Next, it is convenient to rearrange the sum in the following form, in terms of the index l ≡ i+j,

R̃n+1

∣∣∣
f

=
n∑

m=1

n+1∑
l=0

min(l,n+1−m)∑
j=max(l−m,0)

C̃m,l−j,jS(m,l−j)S(n+1−m,j) (50)

=
n+1∑
l=0

n∑
m=1

n+1−m∑
j=0

θ(l − j)θ(j +m− l)C̃m,l−j,jS(m,l−j)S(n+1−m,j) , (51)

where θ(x) ≡ 1 if x ≥ 0 and θ(x) ≡ 0 if x < 0. Observe that the effect of the theta functions is to
enforce that i ≥ 0 and i ≤ m, respectively, which in eq. (46) is explicit from the i sum. Expanding
the product S(m,l−j)S(n+1−m,j) we get the following expression,

R̃n+1

∣∣∣
f

=

n+1∑
l=0

n∑
m=1

n+1−m∑
j=0

θ(l − j)θ(j +m− l)C̃m,l−j,j

×
[
αl,m,jB

2+lψn−1−l + βl,m,jB
1+lψn−l + γl,m,jB

lψ1−l+n

+ σl,m,jrB
′Blψn−l + ζl,m,jrB

′Bl−1ψ1−l+n + ωl,m,jr
2
(
B′
)2
Bl−2ψ1−l+n

]
, (52)

where

αl,m,j ≡− 4(j − l +m)(−1 + j +m− n) , (53)

βl,m,j ≡− 2
[
1− 4j2 − 5l + 4m+D(−1 + l − n) + 4(l −m)(m− n) + n

+ 4j(1 + l − 2m+ n)
]
, (54)

γl,m,j ≡+ (−1 +D − 2j + 2l − 2m)(−3 +D + 2j + 2m− 2n) , (55)

σl,m,j ≡+ 2
[
2j2 − j(1 + 2l − 2m+ n) + l(1−m+ n)

]
, (56)

ζl,m,j ≡−
[
4j2 − l(−3 +D + 2m− 2n)− 2j(1 + 2l − 2m+ n)

]
, (57)

ωl,m,j ≡− j(j − l) . (58)

Finally, this can be recast as follows,

R̃n+1

∣∣∣
f

=

n+1∑
l=0

[
ΓlB

lψ1−l+n + ΥlrB
′Bl−1ψ1−l+n + Ωlr

2
(
B′
)2
Bl−2ψ1−l+n

]
,

where

Γl ≡
n∑

m=1

n+1−m∑
j=0

[
θ(l − 2− j)θ(j +m− l + 2)C̃m,l−2−j,jαl−2,m,j

+ θ(l − 1− j)θ(j +m− l + 1)C̃m,l−1−j,jβl−1,m,j + θ(l − j)θ(j +m− l)C̃m,l−j,jγl,m,j

]
, (59)

Υl ≡
n∑

m=1

n+1−m∑
j=0

[
θ(l − 1− j)θ(j +m− l + 1)C̃m,l−1−j,jσl−1,m,j

+ θ(l − j)θ(j +m− l)C̃m,l−j,jζl,m,j

]
, (60)

12



Ωl ≡
n∑

m=1

n+1−m∑
j=0

θ(l − j)θ(j +m− l)C̃m,l−j,jωl,m,j . (61)

Now, in order for this to be a GQTG we must have

R̃n+1

∣∣∣
f

= S(k)n+1 =
n+1∑
l=0

α
(k)
n+1,lS(n+1,l) (62)

=
n+1∑
l=0

α
(k)
n+1,lB

l−1ψn−l
(
lrψB′ +Bψ(D + 2l − 2n− 3)− 2B2(l − n− 1)

)
(63)

=

n+1∑
l=0

[
Blψn−l+1

(
α
(k)
n+1,l(D + 2l − 2n− 3)− α(k)

n+1,l−12(l − n− 2)
)

(64)

+ α
(k)
n+1,llrB

′Bl−1ψn−l+1

]
, (65)

for some coefficients α
(k)
n+1,l. Therefore, we have the equations

Γl =α
(k)
n+1,l(D + 2l − 2n− 3)− α(k)

n+1,l−12(l − n− 2) , (66)

Υl =lα
(k)
n+1,l , (67)

Ωl =0 , (68)

for l = 0, . . . , n+ 1. In addition, the coefficients α
(k)
n+1,l should satisfy the constraints

n+1∑
l=0

α
(k)
n+1,l(2n+ 2−Dl) = 0 ,

n+1∑
l=0

α
(k)
n+1,ll(l − 1) = 0 , (69)

but note that these must arise as consistency conditions in order for the system of equations to
have solutions. Then, the question is whether the system of equations for the tensor C̃m,i,j given by

Eqs. (48), (49), (66), (67), (68) has solutions for any value of the α
(k)
n+1,l satisfying the constraints

(69). If that is the case, then we have proven the existence of n different GQTGs at order n + 1
which, as we saw earlier, is the maximum possible number of GQTGs at that order.

The number of equations to be solved for fixed n —namely, the number of equations required
for establishing the existence of n densities of order (n+ 1)— and the number of unknowns (C̃m,i,j)
read, respectively

# equations =
12 + n(11 + 3n)

2
, # unknowns =

n(n+ 2)(n+ 7)

6
. (70)

The former is greater than the latter as long as n < 5.10421 and smaller for greater values of n.
Observe that while the number of equations grows as ∼ n2, the number of unknowns grows as
∼ n3. Here, the number of unknowns is the number of constants available to be fixed in order for
the GQTG conditions to be satisfied, and so having more unknowns than equations means that we
have more than enough freedom to impose all the conditions. Hence, as long as we are able to show
that the (n − 1) different classes of GQTG exist for n ≤ 6 using other methods, this result shows
that they will generally exist for n > 6. In practice, solving this system of equations explicitly
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for any n ≥ 6 and D is challenging, Nevertheless, the resolution for explicit values of n and D
is straightforward with the help of a computer algebra system. Doing this, we have checked that

there is a solution for any consistent value of the α
(k)
n+1,l in any D as long as n ≥ 6.6

In sum, our results here imply that, if (n− 1) inequivalent GQTGs exist for n = 1, . . . , 6, then,
(n − 1) inequivalent densities will exist for every order n ≥ 6. In Appendix A we have provided
explicit examples of all the inequivalent classes of GQTGs up to n = 6 for D = 5, 6, so this proves
that there are (n−1) inequivalent GQTGs at every order n ≥ 2 in those cases. The construction of
explicit n ≤ 6 densities of all the different classes for other values of D can be analogously performed
(although it requires some non-trivial computational effort in each case) so we are highly confident
that our results apply for general D ≥ 7 as well.

On the other hand, note that our argument here does not work in D = 4. Indeed, we have
found no evidence for the existence of additional inequivalent GQTGs (besides the one known prior
to this paper [27, 29, 30, 33]) up to order 6 in that case. This strongly suggests that in D = 4 there
is a single type of GQTG at every curvature order although a rigorous proof of this fact would
require some additional work.

4 Black Hole Thermodynamics

In this section we study thermodynamic aspects of GQTGs in an as general as possible fashion.
First we show that the first law of black hole mechanics is satisfied by the black hole solutions
of general GQTGs. Then, we will show that thermodynamic magnitudes of at least one class of
genuine GQTGs can be, similarly to the Lovelock and quasi-topological cases, expressed in terms of
the characteristic polynomial which embeds maximally symmetric backgrounds in the theory and
the on-shell Lagrangian.

4.1 The first law for general GQTGs

Here we wish to understand the first law of thermodynamics for all possible GQTGs. We will
begin by working directly with Eq. (25), without imposing the constraints on the couplings given
in Eqs. (33) and (35) at this time. The integrated field equations of the putative theory can be
written in the form

nmax∑
n=0

n∑
j=0

αn,jF(n,j) = −8πGM

ΩD−2
, (71)

where the parameter M is the black hole mass [90–93]. At a black hole horizon, where f(r+) = 0,
the above equation can be expanded to yield the following constraints:

M =
ΩD−2
16πG

nmax∑
n=0

n∑
j=0

αn,j(j − 1)kn−jrD−2n−1+ (−2πr+T )j , (72)

0 =

nmax∑
n=0

n∑
j=0

αn,j(D − 2n+ j − 1)kn−j(−2πr+T )jrD−2n−2+ . (73)

6In practice, we have checked this explicitly for n = 6 and general D and for n = 7, . . . , 20 in D = 5, 6, 7.
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where the temperature satisfies T = f ′(r+)/(4π). The first equation gives the black hole mass in
terms of the temperature T and the horizon radius r+, while the second provides a relationship
between T and r+.

The other ingredient we need is the black hole entropy. This should be computed according to
Wald’s formula [96, 97]

S = −2π

∫
H

dD−2x
√
hPab

cdεabεcd , (74)

where εab is the binormal to the horizon H. Using the technology introduced in [27], this can be
computed without knowledge of the covariant form of the Lagrangian. The key insight is that the
tensor Pab

cd can be computed from the on-shell Lagrangian and must take the form

P ab
cd

∣∣∣
f

= P1T
[a
[c T

b]
d] + P2T

[a
[c σ

b]
d] + P3σ

[a
[cσ

b]
d] , (75)

where

P1 ≡ −
∂R(n)|f
∂f ′′

, P2 ≡ −
r

D − 2

∂R(n)|f
∂f ′

, P3 ≡ −
r2

(D − 2)(D − 3)

∂R(n)|f
∂f

. (76)

For the case of the static and spherically symmetric black holes considered here, the horizon bi-
normal is given by εab = 2r[atb] with ra and tb the unit spacelike and timelike normal vectors. A
calculation then gives

S = −4πΩD−2r
D−2
+

[
∂L
∂f ′′

]
r=r+

=
ΩD−2

8G

nmax∑
n=0

n∑
j=0

αn,jjk
n−j(−2πr+T )j−1rD−2n+ . (77)

It is then straight-forward to show that the first law of thermodynamics

dM = TdS (78)

holds independent of any conditions placed on the couplings αn,j . This fact is somewhat surprising
because, as discussed earlier, it is only when certain constraints are obeyed by the couplings that
a genuine, covariant construction for the Lagrangian can be built based on curvature invariants.
However, these same constraints are unnecessary to obtain a valid first law.

Despite the fact that the coupling constraints are not necessary to obtain a valid first law, it is
still possible to understand them from a thermodynamic perspective. For this, the natural starting
point is the free energy, which reads

F =
ΩD−2
16πG

∑
n,j

αn,jk
n−j(−2πT )jrD−1−2n+j+ . (79)

From the free energy, the equation that relates the temperature and horizon radius can be obtained
according to

∂F

∂r+
= 0 , (80)

while the mass and entropy can then be verified to follow in the usual way. The constraints on the
couplings enforce the following conditions on the free energy:

F − T ∂F
∂T
− r+
D − 1

∂F

∂r+

∣∣∣∣∣
2πTr+=−k

= 0 , (81)
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∂2F

∂T 2

∣∣∣∣∣
2πTr+=−k

= 0 , (82)

where it is to be noted that the derivatives here are to be computed without assuming any rela-
tionship between r+ and T .

These expressions above, phrasing the coupling constraints in as properties of the free energy,
can be reinterpreted as statements about massless hyperbolic black holes. The static black hole
with metric function

f(r) = −1 +
r2

L2
?

(83)

is pure AdS space in a particular slicing. In terms of the parameters we have been using, this
corresponds to k = −1, r+ = L? and T = 1/(2πL?), therefore satisfying the condition 2πTr+ = −k.
In this language, as we will see explicitly below, the first of the two constraints on the free energy
actually ensures that the mass of this black hole vanishes. The second constraint on the free energy
does not have as direct of an interpretation in terms of the thermodynamic properties of this black
hole, but one could imagine it is a statement about fluctuations.

4.2 A unified picture of the thermodynamics?

Lovelock and quasi-topological gravities are, by comparison to alternatives, rather simple extensions
of general relativity, especially in the context of static, spherically symmetric black holes. Within
our parameterization, the coupling constants αn,j to achieve the on-shell Lagrangian for Lovelock
and quasi-topological theories amounts to the choice (36). For these theories, as has long been
known in the case of Lovelock [98–100], the field equations for a static, spherically symmetric black
hole take the form

M =
(D − 2)ΩD−2r

D−1

16πGL2
h(y) , y ≡ (f(r)− k)L2

r2
. (84)

The function h(x) appearing here is the same function that determines the vacua of the theory,
i.e., the field equations for the maximally symmetric solutions of the theory. This “embedding
function” or “characteristic polynomial” is related to the Lagrangian of the theory evaluated on a
maximally symmetric background [16, 95]

h(x) =
16πGL2

(D − 1)(D − 2)

[
L(x)− 2

D
xL′(x)

]
, (85)

where here x is related to the curvature of the maximally symmetric background according to

Rab
cd = −2x

L2
δc[aδ

d
b] , (86)

and L(x) corresponds to the Lagrangian of the theory evaluated for the curvature (86).

The fact that the field equations can be written in terms of the embedding function naturally
leads to some simple and universal expressions for black hole thermodynamics:

M =
(D − 2)ΩD−2r

D−1
+

16πGL2
h(y+) , y+ ≡ −

kL2

r2+
,
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S = −
4πΩD−2L

2rD−2+

D(D − 1)
L′(y+) . (87)

These relationships are expressed here in their simplest possible forms, but of course can be mas-
saged using the identity (85) and its derivatives, along with the constraint

0 = (D − 1)kh(y+)− 2y+(2πr+T + k)h′(y+) , (88)

which can be used to isolate for the temperature, if desired.

It is natural to wonder whether similar relationships hold for the more complicated generalized
quasi-topological theories, or whether this result for Lovelock and quasi-topological theories was an
artefact of their simplicity. Here we will provide evidence that this is indeed possible, though the
situation is more involved than the Lovelock and quasi-topological cases.

Consider the family of theories identified according to the following choices of couplings:

αn,n−j =
(D − 4)j−1n! [(n− j − 2)D − 4(n− 2)]

22j j! (n− j)! (n− 2)
αn,n . (89)

In general dimensions, this corresponds to the family of theories for which an explicit covariant
formulation was identified in [27]. These couplings satisfy the necessary constraints (33) and (35),
and in addition define a family of GQTG theories for which the free energy can be written as,

F = −
(D − 2)ΩD−2r

D−1
+

16πGL2
h(x+)−

4L2rD−3+

D2(D − 1)
[(D − 2)k + (D − 4)πr+T ]L′(x+) (90)

where

x+ ≡
8πTL2

r+D
− (D − 4)kL2

r2+D
. (91)

From this form of the free energy, the full thermodynamic properties for this class of theories can
be derived. We obtain for the mass and relationship between the temperature and horizon radius
the following two results:

M =
(D − 2)ΩD−2r

D−1
+

16πGL2
h(x+)−

(D − 2)ΩD−2r
D−3
+

4πGD
[2πr+T + k]h′(x+)

+
(D − 4)ΩD−2L

4rD−5+

D3(D − 1)
[2πr+T + k]2L′′(x+) , (92)

0 = (D − 1)(D − 2)h(x+)− 2(D − 2)2L2

r2+D
[2πr+T + k]h′(x+)

− 8(D − 4)L6

D3(D − 1)r4+
[2πr+T + k]2

(
16πGL′′(x+)

)
, (93)

while the entropy can be simply obtained from the above according to S = (M − F )/T .

It is a bit interesting that the thermodynamic properties of black holes can be encoded in
terms of the embedding function h(x) and the Lagrangian of the theory L(x) evaluated on an
auxiliary maximally symmetric vacuum spacetime with curvature given by x+/L

2. There is one
case where this result is somewhat natural, and this is the case of massless hyperbolic black holes
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where f = −1 + r2/L2
?. Of course, this choice of metric function amounts to a pure AdS space

in a particular slicing. One has k = −1, T = 1/(2πL?), and x+ = L2/L2
?. In this case, the only

non-trivial field equation demands that h(x+) = 0, which in turn demands that M = 0.

Next, note that considerable simplification occurs in D = 4. In this case, the situation reduces
to that first studied in [33]. In that case, the couplings are given by

αn,n−1 = − n

n− 2
αn,n , α2,j = 0 ∀j , and αn,j = 0 ∀j 6= n, n− 1 ,∀n ≥ 3 . (94)

The thermodynamic relations in this case simplify to

M =
ΩD−2r

3
+

8πGL2
h(x+)− ΩD−2r+

8πG
[2πr+T + k]h′(x+) , (95)

S =
ΩD−2kr+L

2

6T
L′(x+)− ΩD−2r+

8πGT
[2πr+T + k]h′(x+) , (96)

and the constraint that determines the temperature in terms of the horizon radius reads

0 =
−3r2+
L2

h(x+) + [2πr+T + k]h′(x+) . (97)

It seems likely that the thermodynamics of each family of GQTG can be obtained in this way,
though we will leave that full analysis for future work. Nonetheless, we can make a few general
remarks, based on the connection with massless hyperbolic black holes. For any given family of
GQTGs, the mass must have a term proportional to h(x) followed by a series of terms with powers
that vanish for the massless hyperbolic black hole. For example, the simplest possibility would be
(2πr+T + k) raised to various powers, multiplying derivatives of h and L. Similarly, the entropy
must have a term proportional to L′(x), followed by a series of terms that vanish for the massless
hyperbolic black hole, just as above. Lastly, the argument x must be a function of r+, T and k
that limits to L2/L2

? for the massless hyperbolic black hole. For example, allowing for a linear
dependence on the parameters, the most general option is the one-parameter family

x+ =
2πTL2β

r+
+

(β − 1)kL2

r2+
. (98)

This linear relationship recovers the result for Lovelock/quasi-topological gravity (with β = 0)
and the GQTG family we have presented above (with β = 4/D). Preliminary calculations have
suggested that other GQTG families may require a more complicated dependence than this.

5 Final comments

In this work, we have completed the structural analysis of generalized quasi-topological gravities,
proving that at order n in curvature there exist n − 1 distinct GQTGs provided D > 4. In the
case of D = 4, our results strongly suggest that there is a single (unique up to addition of trivial
densities) GQTG family corresponding to that identified in [33]. To achieve this, we first derived
an upper bound, based on the fact that an on-shell GQTG density must be a polynomial in the
three independent terms appearing in the Riemann curvature for a static, spherically symmetric
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background. This upper bound, which holds independent of any knowledge of the covariant form
of the densities, was then refined by demanding of the putative theories additional properties that
must hold for a true covariant density. Finally, we proved the refined estimate to be exact using
arguments based on recurrence formulas, like those introduced in [27]. In order for our argument
to hold, it is required that n − 1 densities exist for n = 2, 3, 4, 5, 6, which then implies existence
for all n > 6. Such n− 1 densities for the lowest curvature orders can be constructed explicitly for
D ≥ 5 but not for D = 4, in which case we have verified that there is always a unique density for
every n = 2, . . . , 6. The argument for higher n then fails for D = 4. While it could in principle
be possible that additional inequivalent densities exist in D = 4 for higher orders —and our
construction involving products of lower-order densities was not general enough to capture them—
we find this possibility highly unlikely.

In addition, we have provided a basic analysis of the thermodynamic properties of black holes
in all possible theories, confirming that the first law is satisfied. Perhaps the most interesting result
in this direction is the strong evidence that the thermodynamics of black holes in any GQTG may
be expressible in terms of the same function that determines the vacua of the theory, just like in
Lovelock and quasi-topological gravities. Why the thermodynamics of black holes in these theories
is encoded in the curvature of some axillary maximally symmetric space remains mysterious to
us, and may be worth further investigation. More pragmatically, such closed-form and universal
expressions provide a simple means by which the thermodynamics could be studied when an infinite
number of higher-curvature corrections are simultaneously included.

As a by-product, our work has identified (n−2) hitherto unknown families of GQTGs in D > 4.
Going forward, it would be interesting to understand how the properties of black hole solutions
differ between these different families, or whether there exist universal features, such as occurs in
D = 4 [33]. Moreover, the methods we have used to upper bound the number of distinct theories
may generalize to allow for a similar analysis to be carried out when there is non-minimal coupling
between gravity and matter fields.
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A Explicit covariant densities for n = 4, 5, 6 in D = 5, 6

In this appendix we present explicit GQT covariant densities of each of the (n− 2) existing types
for n = 4, 5, 6 in D = 5 and D = 6.

At quartic order, examples of representatives of the two inequivalent classes of GQT densities
in D = 5 are (we use Roman numbers to label the different types)

SI[D=5,n=4] = + 12RabcdR ef
ab R g h

c e Rdgfh + 3RabcdR e f
a c RbgdhR

g h
e f

− 6RabcdR e f
a c R

g h
e b Rfgdh − 9RabR h

c eaRdhfbR
cdef +RR c d

a b R
a b
e f R

e f
c d , (99)

SII[D=5,n=4] = + 4RabcdR ef
ab R gh

ce Rdfgh + 30RabcdR ef
ab R g h

c e Rdgfh

− 11RabcdR e f
a c R

g h
e b Rfgdh − 16RabR h

c eaRdhfbR
cdef −RabR h

cd aRefhbR
cdef

− 3RabR c d
a b RefhcR

efh
d + 3RabRcdRe f

a bRecfd +RabRcdRe f
a cRebfd , (100)

which evaluated on the single-function ansatz reduce to linear combinations of S(4,j)|f , as defined
in eq. (23), with

τ I[D=5,n=4] = 4τ(4,1) + 12τ(4,3) − 6τ(4,4) , (101)

τ II[D=5,n=4] = 6τ(4,2) − τ(4,4) , (102)

respectively. It is straightforward to check that both satisfy conditions eq. (33) and eq. (35). In
D = 6, we find

SI[D=6,n=4] = + 15RabcdR ef
ab R gh

ce Rdfgh + 20RabcdR ef
ab R g h

c e Rdgfh − 4RabcdR e f
a c RbgdhR

g h
e f

− 36RabcdR e f
a c R

g h
e b Rfgdh + 48RabR h

c eaRdhfbR
cdef − 8RabR h

cd aRefhbR
cdef

− 8RR c d
a b R

a b
e f R

e f
c d + 8RabRcdRe f

a cRebfd , (103)

SII[D=6,n=4] =− 5RabcdR ef
ab R gh

ce Rdfgh − 28RabcdR ef
ab R g h

c e Rdgfh − 20RabcdR e f
a c RbgdhR

g h
e f

+ 52RabcdR e f
a c R

g h
e b Rfgdh − 16RabR h

c eaRdhfbR
cdef + 8RabR h

cd aRefhbR
cdef

− 8RabR c d
a b RefhcR

efh
d + 8RabRcdRe f

a bRecfd − 8RabRcdRe f
a cRebfd , (104)

and for those

τ I[D=6,n=4] = τ(4,4) − 2τ(4,3) − 2τ(4,1) . (105)

τ II[D=6,n=4] = τ(4,4) − 4τ(4,3) − 6τ(4,2). (106)

At quintic order, examples of the three inequivalent classes read

SI[D=5,n=5] = + 3235R5 − 28409R3Ra
bRb

a + 46980R2Ra
cRb

aRc
b − 93522RRa

dRb
aRc

bRd
c

+ 11928Ra
bRb

aRc
eRd

cRe
d + 98700RRb

aRd
bRe

cRac
de + 2870R3Rab

cdRcd
ab

+ 52080Ra
bRb

aRe
cRf

dRcd
ef − 151200RRc

aRd
bRab

efRef
cd

+ 137655RRb
aRc

bRad
efRef

cd − 5845RRa
bRb

aRcd
efRef

cd

− 23940Ra
bRb

aRd
cRce

fgRfg
de , (107)
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SII[D=5,n=5] = + 10505R5 − 98197R3Ra
bRb

a + 242460R2Ra
cRb

aRc
b − 362526RRa

dRb
aRc

bRd
c

+ 77784Ra
bRb

aRc
eRd

cRe
d + 77700RRb

aRd
bRe

cRac
de + 1120R3Rab

cdRcd
ab

+ 139440Ra
bRb

aRe
cRf

dRcd
ef − 173880RRc

aRd
bRab

efRef
cd

+ 194985RRb
aRc

bRad
efRef

cd + 12355RRa
bRb

aRcd
efRef

cd

− 104580Ra
bRb

aRd
cRce

fgRfg
de − 15120RRb

aRad
bcRce

fgRfg
de

− 3780RRb
aRac

fgRde
bcRfg

de + 11340Ra
bRb

aRcd
ghRef

cdRgh
ef , (108)

SIII[D=5,n=5] =− 108751900R5 + 1026499979R3Ra
bRb

a − 2724816480R2Ra
cRb

aRc
b

+ 3743976918RRa
dRb

aRc
bRd

c − 981715812Ra
bRb

aRc
eRd

cRe
d

+ 241948812RRb
aRd

bRe
cRac

de + 11124379R3Rab
cdRcd

ab

+ 2523150RRab
cd2Rcd

ab2 − 1472417016Ra
bRb

aRe
cRf

dRcd
ef

+ 442592640RRc
aRd

bRab
efRef

cd − 1009017009RRb
aRc

bRad
efRef

cd

− 199666439RRa
bRb

aRcd
efRef

cd + 1327705722Ra
bRb

aRd
cRce

fgRfg
de

− 7998480RRb
aRad

bcRce
fgRfg

de + 151439400RRb
aRac

fgRde
bcRfg

de

− 197676360Ra
bRb

aRcd
ghRef

cdRgh
ef + 35700000Rab

cdRcd
abRej

ghRfh
ijRgi

ef

+ 121836960Rb
aRad

bcRcf
deReg

hiRhi
fg − 89250Rab

cdRcd
abRef

ijRgh
efRij

gh , (109)

And for them

τ I[D=5,n=5] = +2τ(5,0) − τ(5,1) − 12τ(5,2) − 10τ(5,3) + 2τ(5,4) + 3τ(5,5) , (110)

τ II[D=5,n=5] = −5τ(5,0) + 4τ(5,1) + 18τ(5,2) + 4τ(5,3) − 5τ(5,4) , (111)

τ III[D=5,n=5] = +45τ(5,0) − 46τ(5,1) + 44(τ(5,3) − 3τ(5,2) . (112)

For D = 6, we find

SI[D=6,n=5] =− 123946191482880Ra
bRb

aRc
eRd

c Re
d + 1472406237369312Ra

dRb
aRc

b Rd
cR

− 1080277675306560Ra
cRb

aRc
b R2 + 162174148310040Ra

bRb
aR3

− 11444059832562 R5 + 1702982503075584Rb
aRd

bRe
cR Rac

de

+ 75220642409760R3Rab
cdRcd

ab + 12994390356246R
(
Rab

cdRcd
ab
)2

− 941724825600 Ra
bRb

aRe
cRf

dRcd
ef − 1826681030324352Rc

aRd
bRRab

ef Ref
cd

+ 1161324617394816Rb
aRc

bR Rad
efRef

cd − 402058236112056Ra
bRb

a RRcd
efRef

cd

+ 796036321619712Rb
aR Rad

bcRce
fgRfg

de

− 226245709813248 Rb
aRRac

fgRde
bcRfg

de

− 2713887813611520Rag
cdRbi

efRce
ab Rdj

ghRfh
ij

+ 5441837051289600Rag
cd Rbi

efRce
abRdh

ijRfj
gh

− 8516393811394560Rag
cdRbh

ijRce
ab Rdi

efRfj
gh

− 9075154990067712Raj
gh Rbd

ijRce
abRfg

cdRhi
ef , (113)

SII[D=6,n=5] =− 39481565540352000Ra
bRb

aRc
eRd

c Re
d + 496958473622415360Ra

dRb
aRc

b Rd
cR

− 366085018636185600Ra
cRb

a Rc
bR2 + 56771103624384000Ra

bRb
aR3
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− 4236457006581120R5 + 605739537316331520Rb
aRd

b Re
cRRac

de

+ 25066678861324800R3Rab
cd Rcd

ab + 2911274422692480R
(
Rab

cdRcd
ab
)2

− 9235519903334400Ra
bRb

a Re
cRf

dRcd
ef

− 654135376602562560 Rc
aRd

bRRab
efRef

cd

+ 384078592166215680Rb
aRc

bRRad
ef Ref

cd

− 128301089938030080Ra
bRb

aR Rcd
efRef

cd

+ 247957574993141760Rb
aR Rad

bcRce
fgRfg

de

− 54410152259543040 Rb
aRRac

fgRde
bcRfg

de

− 915942099386695680Rag
cdRbi

efRce
ab Rdj

ghRfh
ij

+ 1855713735622656000Rag
cd Rbi

efRce
abRdh

ijRfj
gh

− 2983978700100403200Rag
cdRbh

ijRce
ab Rdi

efRfj
gh

− 3268733794665431040Raj
gh Rbd

ijRce
abRfg

cdRhi
ef , (114)

SIII[D=6,n=5] =− 113245541360640Ra
bRb

aRc
eRd

c Re
d + 1060631652273264Ra

dRb
aRc

b Rd
cR

− 903602985933600Ra
cRb

aRc
b R2 + 127080097757820Ra

bRb
aR3 − 8955723921633R5

+ 1791407446201728Rb
aRd

bRe
cR Rac

de + 65583784852200R3Rab
cdRcd

ab

+ 17709732531387R
(
Rab

cdRcd
ab
)2

+ 3780034053120 Ra
bRb

aRe
cRf

dRcd
ef

− 2136457519124544Rc
aRd

bRRab
ef Ref

cd + 1548204355449792Rb
aRc

bRRad
efRef

cd

− 341027462136492Ra
bRb

a RRcd
efRef

cd + 601767492758784Rb
aR Rad

bcRce
fgRfg

de

− 195741719323776Rb
aRRac

fgRde
bcRfg

de

− 686045879580672Rag
cdRbi

efRce
ab Rdj

ghRfh
ij

− 409211547264000Rag
cd Rbi

efRce
abRdh

ijRfj
gh

− 4137732154183680Rag
cdRbh

ijRce
ab Rdi

efRfj
gh

− 8161945395342336Raj
gh Rbd

ijRce
abRfg

cdRhi
ef , (115)

and for them

τ I[D=6,n=5] = τ(5,5) − 10τ(5,2) , (116)

τ II[D=6,n=5] = τ(5,3) − 3τ(5,2) + τ(5,1) , (117)

τ III[D=6,n=5] = τ(5,4) − τ(5,3) − 3τ(5,2) . (118)

At order six we have four inequivalent GQT classes. Representatives in D = 5 are given by

SI[D=5,n=6] =− 73164000
(
RabR

ab
)3
− 1714893120RabR

abRc
eRd

cRe
dR

+ 1318812172RabR
abRc

dRd
cR2 + 271196208Ra

cRb
aRc

bR3

− 317404865RabR
abR4 + 18018062R6 + 300979224Rc

aRd
bR3Rab

cd

+ 248125440Rb
aRd

bRe
cR2Rac

de + 170805000
(
RefR

ef
)2
RabcdR

abcd

− 452092811RefR
efR2RabcdR

abcd + 74766829R4RabcdR
abcd
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− 139080000RefR
ef
(
RabcdR

abcd
)2

+ 38179125R2
(
RabcdR

abcd
)2

+ 35080000
(
RabcdR

abcd
)3
− 2244499440RabR

abRe
cRf

dRRcd
ef

− 445474968Rb
aR3Rac

deRde
bc − 87720000

(
Ra

c
b
dRc

e
d
fRe

a
f
b
)2

+ 84746910R3Rab
efRcd

abRef
cd + 2407239480RabR

abRd
cRRce

fgRfg
de

− 88583040Rb
aR2Rad

bcRce
fgRfg

de − 410141550RabR
abRRcd

ghRef
cdRgh

ef

+ 564422400Rb
aRRad

bcRcf
deReg

hiRhi
fg

− 61305000RRabcdR
abcdRef

ijRgh
efRij

gh

+ 727920000RdeRabcdR
abc

eRg
i
h
jRi

k
j
lRk

g
l
h

− 578160000Rab
cdRcd

efRef
abRg

i
h
jRi

k
j
lRk

g
l
h , (119)

SII[D=5,n=6] =− 137140000
(
RabR

ab
)3
− 1947491520RabR

abRc
eRd

cRe
dR

+ 1751816692RabR
abRc

dRd
cR2 + 329051088Ra

cRb
aRc

bR3

− 432438015RabR
abR4 + 25289682R6 + 400229864Rc

aRd
bR3Rab

cd

+ 165181440Rb
aRd

bRe
cR2Rac

de + 272619000
(
RefR

ef
)2
RabcdR

abcd

− 609591221RefR
efR2RabcdR

abcd + 100315219R4RabcdR
abcd

− 173400000RefR
ef
(
RabcdR

abcd
)2

+ 46512875R2
(
RabcdR

abcd
)2

+ 35600000
(
RabcdR

abcd
)3
− 2869300240RabR

abRe
cRf

dRRcd
ef

− 484473448Rb
aR3Rac

deRde
bc − 31320000

(
Ra

c
b
dRc

e
d
fRe

a
f
b
)2

+ 55581410R3Rab
efRcd

abRef
cd + 2452251080RabR

abRd
cRRce

fgRfg
de

+ 118104960Rb
aR2Rad

bcRce
fgRfg

de − 242892050RabR
abRRcd

ghRef
cdRgh

ef

+ 425990400Rb
aRRad

bcRcf
deReg

hiRhi
fg

− 77575000RRabcdR
abcdRef

ijRgh
efRij

gh

+ 2129040000RdeRabcdR
abc

eRg
i
h
jRi

k
j
lRk

g
l
h

− 909840000Rab
cdRcd

efRef
abRg

i
h
jRi

k
j
lRk

g
l
h , (120)

SIII[D=5,n=6] =− 859300000
(
RabR

ab
)3
− 25179802560RabR

abRc
eRd

cRe
dR

+ 19703296676RabR
abRc

dRd
cR2 + 4227840144Ra

cRb
aRc

bR3

− 4975158595RabR
abR4 + 291039066R6 + 5123673672Rc

aRd
bR3Rab

cd

+ 1331589120Rb
aRd

bRe
cR2Rac

de + 2222415000
(
RefR

ef
)2
RabcdR

abcd

− 6346768033RefR
efR2RabcdR

abcd + 1019618087R4RabcdR
abcd

− 1819320000RefR
ef
(
RabcdR

abcd
)2

+ 513207375R2
(
RabcdR

abcd
)2

+ 450800000
(
RabcdR

abcd
)3
− 33156269520RabR

abRe
cRf

dRRcd
ef
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− 6081896904Rb
aR3Rac

deRde
bc + 4158600000

(
Ra

c
b
dRc

e
d
fRe

a
f
b
)2

+ 1060299930R3Rab
efRcd

abRef
cd + 34472700840RabR

abRd
cRRce

fgRfg
de

− 834145920Rb
aR2Rad

bcRce
fgRfg

de − 5503384650RabR
abRRcd

ghRef
cdRgh

ef

+ 6734419200Rb
aRRad

bcRcf
deReg

hiRhi
fg

− 809475000RRabcdR
abcdRef

ijRgh
efRij

gh

+ 15109200000RdeRabcdR
abc

eRg
i
h
jRi

k
j
lRk

g
l
h

− 9162000000Rab
cdRcd

efRef
abRg

i
h
jRi

k
j
lRk

g
l
h , (121)

SIV[D=5,n=6] = + 31500000
(
RabR

ab
)3
− 4028310720RabR

abRc
eRd

cRe
dR

+ 2252042612RabR
abRc

dRd
cR2 + 683314128Ra

cRb
aRc

bR3

− 555694015RabR
abR4 + 27464642R6 + 877183464Rc

aRd
bR3Rab

cd

− 96706560Rb
aRd

bRe
cR2Rac

de + 163995000
(
RefR

ef
)2
RabcdR

abcd

− 407173621RefR
efR2RabcdR

abcd + 62048819R4RabcdR
abcd

− 292440000RefR
ef
(
RabcdR

abcd
)2

+ 28222875R2
(
RabcdR

abcd
)2

+ 97600000
(
RabcdR

abcd
)3
− 4629108240RabR

abRe
cRf

dRRcd
ef

− 1045548648Rb
aR3Rac

deRde
bc + 2409000000

(
Ra

c
b
dRc

e
d
fRe

a
f
b
)2

+ 280021410R3Rab
efRcd

abRef
cd + 6317083080RabR

abRd
cRRce

fgRfg
de

− 655655040Rb
aR2Rad

bcRce
fgRfg

de − 1401052050RabR
abRRcd

ghRef
cdRgh

ef

+ 664070400Rb
aRRad

bcRcf
deReg

hiRhi
fg − 46575000RRabcdR

abcdRef
ijRgh

efRij
gh

+ 1414800000RdeRabcdR
abc

eRg
i
h
jRi

k
j
lRk

g
l
h

− 1832400000Rab
cdRcd

efRef
abRg

i
h
jRi

k
j
lRk

g
l
h . (122)

And the corresponding τ(r) are given by

τ I[D=5,n=6] = +τ(6,0) + 12τ(6,5) − 8τ(6,6) , (123)

τ II[D=5,n=6] = −5τ(6,2) − 16τ(6,5) + 11τ(6,6) , (124)

τ III[D=5,n=6] = −5τ(6,3) − 3τ(6,5) + 3τ(6,6) , (125)

τ IV[D=5,n=6] = +15τ(6,4) − 2(6τ(6,5) − τ(6,6)) . (126)

For D = 6 we find

SI[D=6,n=6] =− 14096679060821760Ra
bRb

cRc
dRd

e Re
fRf

a

+ 14852647970900544Rc
eRd

c Re
dRi

jRj
iR

− 5617985150718012
(
Ri

jRj
i
)2
R2 − 1124843605416416Ra

c Rb
aRc

bR3

+ 1005726172300248RabR
abR4 − 29156254184830R6

− 1438756007591232Rc
aRd

bR3 Rab
cd + 2380028275859520R2Rb

aRd
b Re

cRac
de

+ 1254308457170736RefR
efR2 RabcdR

abcd − 168004022190642R4Rab
cdRcd

ab
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+ 3230088574927500Ri
jRj

i
(
Rab

cd Rcd
ab
)2
− 607399901908371R2

(
Rab

cdRcd
ab
)2

+ 721416483693312Re
cRf

d Ri
jRj

iRRcd
ef + 1133891404354368 Rb

aR3Rac
deRde

bc

− 682346981951712R3 Rab
efRcd

abRef
cd + 9376966635379200Rab RcdRi

jRj
iRecfdR

e
a
f
b

− 8990642116684800RabRi
jRj

i Ra
c
b
dRefgcR

efg
d

− 6299359808303232 Rd
cRi

jRj
iRRce

fgRfg
de

+ 1901604108792960Rb
aR2Rad

bcRce
fg Rfg

de

+ 3847116811602240Ri
jRj

iR Rcd
ghRef

cdRgh
ef
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and for them

τ I[D=6,n=6] = τ(6,6) − 15τ(6,2) + 4τ(6,1) , (131)
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τ II[D=6,n=6] = τ(6,5) − 10τ(6,2) + 3τ(6,1) , (132)

τ III[D=6,n=6] = τ(6,4) − 6τ(6,2) + 2τ(6,1) , (133)

τ IV[D=6,n=6] = τ(6,3) − 3τ(6,2) + τ(6,1) . (134)
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