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String and 5-brane junctions are shown to succinctly classify all known 8d N = 1 string vacua.

This requires an extension of the description for ordinary [p, q]-7-branes to consistently include

O7+-planes, which then naturally encodes the dynamics of spn gauge algebras, including their

p-form center symmetries. Central to this analysis are loop junctions, i.e., strings/5-branes

which encircle stacks of 7-branes and O7+’s. Loop junctions further signal the appearance of

affine symmetries of emergent 9d descriptions at the 8d moduli space’s boundaries. Such limits

reproduce all 9d string vacua, including the two disconnected rank (1,1) moduli components.
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1 Introduction

Supergravity theories in a large number of dimensions form an ideal laboratory to investigate

the manifestation of quantum gravitational consistency conditions in the low-energy limit of

string theory. In particular, they provide a concrete class of models which corroborates the

conjecture of “string universality”, or “string lamppost principle”, stating that all consistent

(super)gravity theories arise from string theory.

Formulating and sharpening the relevant conditions on consistent effective theories of quan-

tum gravity are at the heart of the Swampland Program [1, 2]. Arguably, among the best

motivated of these constraints is that quantum gravity theories should have no exact global

symmetries. This statement can also be applied to higher-form global symmetries, such as

1-form center symmetries of non-Abelian gauge sectors. The condition demands that these

symmetries are either gauged or broken. However, if they are to be gauged, one needs to de-

mand the absence of obstructions/anomalies to turning on the gauge fields of these generalized

symmetries. This absence of anomalies of center 1-form symmetries can lead to severe restric-

tions on the global topology of the allowed gauge groups in supersymmetric theories [3, 4].

Similarly, the absence of global symmetries requires certain topological invariants called bor-

dism groups to be trivial [5], once more leading to powerful constraints, in particular on

the total rank of the gauge symmetry, of consistent supergravity theories in more than six

dimensions [6, 7].

Being confronted with the set of supergravity models that pass the above consistency tests,

the remaining question is whether all of these can be realized in string theory. To answer this

we therefore need good control of the realization of the global form of the gauge groups, i.e.,

the fate of the center 1-form symmetries in string theory constructions. In the present work

we focus on compactifications to eight and nine dimensions (8d and 9d) with 16 supercharges

(i.e., N = 1).

A powerful approach that successfully utilizes the machinery of geometry is F-theory [8],

which ties the algebraic and arithmetic properties of elliptic K3-surfaces to 8d gauge theories

with ADE gauge algebras of total rank (2,18).1 In this context, the global gauge group

structure is encoded in the Mordell–Weil group of rational sections of the elliptic fibration

[9–11]. Under M-/F-theory duality, this can be phrased in terms of gauging and breaking

higher-form symmetries [12], that is reflected geometrically in the gluing of torsional homology

cycles in local patches containing the non-Abelian gauge dynamics [13].2 Moreover, through

suitable deformations that correspond to infinite distance points in the 8d moduli space, the

F-theory geometry also classifies 9d N = 1 string vacua with gauge rank (1,17) [27, 28]. This

1Throughout this work, we collect the number a of independent gravi-photons, and the maximal non-Abelian
gauge rank r into a pair (a, r), which we often refer to as the (total) gauge rank. At generic values of moduli,
the gauge algebra is hence u(1)a+r.

2The investigation of generalized symmetries within the geometric engineering framework has received broad
attention in recent literature [14–17,3, 4, 18–21,13,22–26].
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is consistent with the dual heterotic description, where the 9d moduli space — described via

the rank (1,17) Narain lattice — is contained in that of the 8d moduli space, with a rank

(2,18) Narain lattice description (see [29] for a recent comprehensive study).

However, the dictionary between geometry and physics is less understood in the presence

of so-called frozen singularities [30–33]. While these are known to be the necessary ingredient

for an F-theory description of sp gauge algebras on the 8d N = 1 moduli branches of gauge

ranks (2,10) and (2,2), the characterization of, e.g., the gauge group topology is no longer

purely geometric (i.e., given by the Mordell–Weil group) [34]. Likewise, it is not immediately

clear how to identify decompactification limits on these moduli spaces. On the other hand,

advances in the Swampland program [35] strongly suggest, that all 8d N = 1 vacua should

have a characterization in terms of an elliptically-fibered K3.

As we will demonstrate in this work, string junctions provide a unified framework that

encompasses all these features. In this description, the underlying elliptic K3 is encoded in

the configuration of [p, q]-7-branes of type IIB string theory, whose [p, q]-type are in one-to-

one correspondence to elliptic singularities characterized by an SL(2,Z)-monodromy M[p,q].

The junctions are then (p, q)-strings or -5-branes stretched between the 7-branes. In their

original formulation [36–38] that is equivalent to F-theory without frozen singularities, junc-

tions describe the 8d gauge dynamics with ADE gauge algebras,3 as well as their higher-form

symmetries [13]. To account for a junction description of all 8d N = 1 vacua, we extend the

discussion to include O7+-planes, which are the IIB avatars of frozen singularities, and have

the same monodromy as an elliptic D8 singularity [30–32].

A concept that will be key to this work are so-called fractional null junctions, which

are certain fractional (and hence, unphysical) ( pq )-charges encircling all 7-branes, i.e., loop

junctions. In the absence of O7+-planes, these are known to be equivalent to Mordell–Weil

torsion of the underlying elliptic K3 [48,49]. To correctly account for the electric and magnetic

center symmetries and the gauge group topology for the sp gauge symmetries that arise in

the presence of O7+, it turns out to be instrumental to study separately (p, q)-strings and

-5-branes. The key difference is, while any integer number of 5-branes can end on an O7+, the

number of string-prongs there must be even. Indeed, with this modification, we find that the

junction description of 8d vacua with one O7+ is equivalent to so-called CHL vacua [50, 51]

of rank (2,10), including the characterization of the global gauge group structure [34, 52].

Moreover, it is straightforward to include two O7+-planes, thereby giving a junction-esque

classification of 8d string vacua with gauge rank (2,2) including their gauge group topology,

for which there is no known heterotic or CHL string description.

In addition, we also propose a junction description for decompactification limits to 9d

including O7+-planes. Parallel to the 9d uplifts of the rank (2,18) setting [27,28] (see also [53]

for a related discussion of 10d uplifts of 9d heterotic vacua), we identify the corresponding

3String junctions have been also used to construct lower-dimensional theories, see [39–47].
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infinite distance limits with O7+-planes by the emergence of loop junctions that affinize the

8d gauge algebra. Again, the subtle differences from having modified boundary conditions for

strings and 5-branes can be cross-checked with the momentum lattice description of the CHL

string for uplifting 8d rank (2,10) theories to 9d rank (1,9) theories. Like in 8d, the junction

description naturally encodes the gauge group topology of 9d vacua. For the rank (2,2)
theories without a momentum lattice analog, the 9d theories with rank (1,1) that result from

the junction description live on two disconnected moduli branches that are only connected

through an S1-reduction to 8d, which matches other stringy constructions [54]. This further

establishes junctions as a complimentary framework to sharpen aspects of the Swampland

Distance conjecture [2] in string compactifications.

The rest of the paper is organized as follows. After reviewing the junction framework

with ordinary [p, q]-7-branes in Section 2, we discuss, in Section 3, the modified boundary

conditions for strings and 5-branes on an O7+-plane that give rise to the correct higher-form

symmetries of sp gauge algebras in 8d. In Section 4, we then describe global 8d models by

“gluing” together local patches with 7-brane stacks involving O7+-planes. A particular focus

will be on the gauge group topology that is encoded in the fractional null junctions. We

then examine, in Section 5, the infinite distance limits described via 7-branes and junctions

that correspond to 9d N = 1 vacua, for which we will also determine the global gauge group

structure. The appendices contain some technical aspects, as well as the full list of gauge group

topologies for all 8d vacua with maximally-enhanced non-Abelian symmetries in Appendix C.

2 String and 5-brane junctions

String junctions provide an efficient way to classify electrically charged states with respect to

gauge symmetries localized on 7-brane stacks in type IIB string theory. Therefore, they also

contain information about the electric 1-form center symmetries and the global realization

of the 8d gauge group [48, 49, 13]. The magnetically dual perspective is provided by 5-brane

webs, which can also be described by junctions [55–58].

In this section we recall some properties of string and 5-brane junctions in the presence

of a general [p, q]-7-brane stack. This provides a local construction of the charged states.

Importantly, the charge under the center symmetry is related to the appearance of certain

fractional junctions, the extended weight junctions, that determine the global properties of the

model [13]. We then generalize the discussion of string and 5-brane junctions to backgrounds

containing O7+-planes, whose geometric interpretation in F-theory is more challenging [32,33].

With the help of string junctions we can successfully extract the correct properties of these

configurations and identify the electric center symmetries also for symplectic gauge groups.

This analysis is repeated with 5-brane junctions, which, as opposed to the ADE algebras

realized without O7+’s, have a subtle distinction from string junctions that is precisely needed
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to correctly account for the magnetic center symmetry.

2.1 Basics of [p,q]-7-branes and junctions

In this section we will recall the basics of the junction description for 8d N = 1 dynamics from

type IIB compactifications [36,38]. The key players are spacetime filling [p, q]-7-branes X[p,q],

which we will denote with square brackets. A single 7-brane must have coprime p and q. In the

plane perpendicular to its worldvolume, X[p,q] induces a singularity in the axio-dilaton profile

τ = C0 + ie−φ, composed of the RR 0-form C0 and the dilaton field φ, which is characterized

by an SL(2,Z) monodromy

M[p,q] =
⎛
⎝

1 + pq −p2

q2 1 − pq
⎞
⎠
∈ SL(2,Z) , (2.1)

which acts on τ by a Möbius transformation, and in the doublet representation,

(B2
C2

) ↦M[p,q] (B2
C2

) , (2.2)

on the NSNS- and RR-2-form fields (B2,C2). This monodromy can be captured by a branch

cut in the perpendicular plane that emanates form the 7-brane. In the following it will

prove useful to introduce conventions for some special 7-branes, that will later appear in the

construction of non-Abelian gauge algebras

A = X[1,0] ∶ M[1,0] =
⎛
⎝

1 −1

0 1

⎞
⎠
,

B = X[1,−1] ∶ M[1,−1] =
⎛
⎝

0 −1

1 2

⎞
⎠
,

C = X[1,1] ∶ M[1,1] =
⎛
⎝

2 −1

1 0

⎞
⎠
,

N = X[0,1] ∶ M[0,1] =
⎛
⎝

1 0

1 1

⎞
⎠
.

(2.3)

In a local model, where the perpendicular plane is non-compact (i.e., is R2 = C ∋ z), it is

customary to extend the branch cuts all downwards (meeting at z = −i∞, without crossing each

other before). Starting from a configuration describing a certain 8d vacuum, we can obtain

another one on the same 8d N = 1 moduli space by moving the 7-branes. When X[p1,q1]

crosses the branch cut of X[p2,q2] from the left to right, the [p, q]-type changes according to:

X[p1,q1]ÐÐÐÐ→
X[p2,q2] →X[p2,q2]X[p1+D⋅p2, q1+D⋅q2] , (2.4)

where D ≡ det ( p1 p2
q1 q2 ), and the arrow indicating the branch-cut-crossing 7-brane. Likewise,

5



when it crosses from right to left, one has

X[p2,q2]X[p1,q1]←ÐÐÐÐ
→X[p1+D⋅p2, q1+D⋅q2]X[p2,q2] . (2.5)

For any concrete configuration, we can arrange the 7-branes along a horizontal axis, and

denote them as X[p1,q1]X[p2,q2] ... by labelling from left to right. The SL(2,Z) monodromy

around any (connected) part of this chain is the product of the individual monodromies of

the encircled branes from right to left. To obtain a valid global configuration (i.e., where the

perpendicular plane is P1) describing an 8d N = 1 supergravity model, tadpole cancellation

requires exactly 24 [p, q]-7-branes, whose overall monodromy must be the identity. Note that,

while their relative [p, q]-types are pivotal for distinguishing different physical configurations,

an overall SL(2,Z) ∋ g transformation,

[ piqi ] ↦ g [ piqi ] , M[pi,qi] ↦ gM[pi,qi]g
−1 for all i , (2.6)

does not matter physically for a model (local or global) described by a collection of 7-branes

X[pi,qi].

BPS-particles in 8d arise from (p, q)-strings — a bound state of p fundamental and q

D-strings with electric charge ( pq ) under (B2
C2

) — anchored on the 7-branes of the same [p, q]-
type, and extending as a directed line into the perpendicular plane. Their magnetically dual

objects, which are four-dimensional in 8d, are given by (p, q)-5-branes — a bound state of

p NS5- and q D5-branes with magnetic charge ( pq ) under (B2
C2

) — that share four common

spatial directions as the 7-brane and also project to lines in the perpendicular plane. Since

strings and 5-branes can fuse and split, so long as the overall ( pq )-charge is conserved at every

vertex, they form junctions, see left of Figure 1. Note that, by flipping the direction on any

prong, its ( pq )-charge acquires a minus sign.4

As charged objects of the 2-form fields (B2,C2), strings and 5-branes also experience

SL(2,Z) monodromies as they are transported around 7-branes. This action can be repre-

sented in the perpendicular plane, after choosing the branch cuts, by an analogous transfor-

mation

( rs ) → ( r′
s′
) =M[p,q] ( rs ) = ( rs ) + (qr − ps) ( pq ) (2.7)

on the ( rs )-charges of a junction-prong as it crosses the branch cut of a [p, q]-7-brane, see

middle of Figure 1. Finally, in analogy to Hanany–Witten transitions [59], the same junction

can be expressed, by moving the branch-cut-crossing prong across the 7-brane, as a junction

with an additional prong on the 7-brane, see right of Figure 1.

4To make contact with the F-theory description of type IIB, note that (directed) junctions can be interpreted
as (oriented) 2-cycles in an elliptic K3, on which M2- and M5-branes can be wrapped, which are the objects
dual to strings and 5-branes under M-/F-theory duality. See, e.g., [13] for details of this correspondence.
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X[p,q]

Figure 1: Strings and 5-branes, which are represented as lines in the perpendicular plane, form
junctions, where the ( pq )-charge at each vertex is conserved (left). In the presence of 7-branes,
they undergo monodromy transformations (2.7) when they cross a branch cut (middle). By
a Hanany–Witten transition, the same junction can be represented as having a prong on the
7-brane (right).

To have non-Abelian gauge dynamics in 8d, we have to collide 7-branes to form stacks.

Strings that stretch between different constituents of a stack then become light and form

massless W-bosons of the enhanced gauge symmetry. In terms of the 7-brane types (2.3),

ADE-gauge algebras are realized when the following stacks form5:

Lie algebra brane constituents monodromy

sun An
⎛
⎝

1 −n
0 1

⎞
⎠

so2n AnBC
⎛
⎝
−1 n − 4

0 −1

⎞
⎠

en≥1 An−1BC2
⎛
⎝
−2 2n − 9

−1 n − 5

⎞
⎠

ẽn≥0 AnX[2,−1]C
⎛
⎝
−3 3n − 11

−1 n − 4

⎞
⎠

(2.8)

where we have used exponents to group the same type of branes that are appear consecutively.

The overall monodromy of a 7-brane stack is the product of the individual branes from right

to left; e.g., Mso2n =M[1,1]M[1,−1]M
n
[1,0]. The realizations of the exceptional algebras are phys-

ically equivalent, i.e., equal up to 7-brane moves inside the stack and SL(2,Z) conjugations,

for n ≥ 2,6 while e1 ≅ su2 and ẽ1 ≅ u(1); finally, the ẽ0 configuration corresponds to a trivial

gauge algebra. There are additional strongly coupled versions of the Lie algebra sun with

n ∈ {2,3} of the form An+1C. In the remaining part of this section, we will focus mainly

on the “standard” cases sun, so2n and en≥6, while ẽn will be relevant in Section 5. Of course

5We have chosen a particular SL(2,Z)-frame that is common in the literature, but any SL(2,Z)-conjugated
configuration would obviously give the same gauge algebra.

6We use the standard identifications e2 ≅ su2 ⊕ u(1), e3 ≅ su3 ⊕ su2, e4 ≅ su5, e5 ≅ so10.
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there is a beautiful relation between the 7-branes stacks above with their induced SL(2,Z)
monodromies, and the classification of singularities in elliptic fibrations by Kodaira, which is

central in F-theory (see [60,61] for recent reviews and additional references). In the following,

we will focus solely on the junction perspective.

2.2 The junction lattice

In the following, we give an abstract definition of junctions as lines in the plane perpendicular

to the 7-branes satisfying the axioms above. In principle, one has to specify if they represent

(p, q)-strings or 5-brane webs to attach physical meaning to them.

Consider the junctions formed by a single prong extending from one 7-brane X[p,q], which

we denote with a lower case letter as x[p,q], and sometimes call a unit junction. In analogy to

the different types defined in (2.3), there are then also junctions

a , b , c , n . (2.9)

Since a general string or 5-brane junction takes the form of a linear combination of the indi-

vidual prongs, the set of all physical junctions (strings or 5-branes) on a 7-brane configuration,

X[p1,q1]X[p2,q2]⋯X[pi,qi]⋯, form a Z-module,

Jphys = {j = ∑
i

aix[pi,qi] ∣a
i ∈ Z} . (2.10)

One important physical invariant is the net, or asymptotic ( pq )-charge of a junction j, given

by ( pq )asymp = ∑i ai (
pi
qi ).

One further defines a symmetric bi-linear pairing (., .) on this module as follows. For the

basis junction x[pi,qi] (note that the ordering of the 7-branes is important), one defines7

(x[pi,qi],x[pj ,qj]) = (x[pj ,qj],x[pi,qi]) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 , if i = j
1
2 det ( pi pjqi qj ) , if X[pi,qi] is on the left of X[pj ,qj] .

(2.11)

By linearly extending to the module Jphys, we endow it with a lattice structure, which will be

called the (physical) junction lattice. For example, consider an arrangement of only A, B and

C branes which are ordered “alphabetically”,

A1⋯Aα⋯B1⋯Bβ⋯C1⋯Cγ . (2.12)

7Here, we simply present the rules as stated in [38]. It can be shown that they agree with the geometric
intersection pairing for the elliptic K3 of the dual F-theory description.
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For this 7-brane configuration, we have

(aα,aα′) = −δα,α′ , (bβ,bβ′) = −δβ,β′ , (cγ ,cγ′) = −δγ,γ′ ,

(aα,bβ) = −1
2 , (aα,cγ) = 1

2 , (bβ,cγ) = 1 .
(2.13)

An important property of the pairing (2.11) is that it is invariant under 7-brane motions.

That is, given a fixed set of 7-branes X[pi,qi], the lattice (Jphys, (⋅, ⋅)) changes only up to a

unimodular transformation (i.e., change of basis) when we move the 7-branes. To see this

it suffices to consider a two-branes configuration X[p1,q1]X[p2,q2] with Jphys = {a1x[p1,q1] +
a2x[p2,q2]}, for which the pairing matrix is ( −1 D/2

D/2 −1
), with D = det ( p1 p2

q1 q2 ). After moving

X[p1,q1] across the branch cut to the right, as in (2.4) (the other direction, (2.5), works

analogously), the configuration X[p2,q2]X[p1+Dp2,q1+Dq2] ≡ XlXr has the lattice

Jphys = {alxl + arxr} , with (xi,xj) = ( −1 −
D
2

−
D
2 −1

) = (( −D 1
1 0 )

−1)
T
( −1

D
2

D
2 −1

)( −D 1
1 0 )

−1
. (2.14)

The unimodular transformation ( −D 1
1 0 ) precisely traces how the original unit prongs {x[pi,qi]}

are expressed in terms of the new basis {xl,xr} after the 7-brane transition (2.4),

x[p1,q1] → −Dxl + xr , x[p2,q2] → xl . (2.15)

Loop junctions and their self-pairings

A junction type that will be particularly important to our discussions are loop junctions. These

are formed by encircling a collection of 7-branes with an ( rs )-charge, that undergoes SL(2,Z)
transformations as it crosses their branch cuts. As a convention for nomenclature, we use the

( rs )-charge it starts out with to label the loop junction `(r,s), even if its (p, q)-type changes

after it comes back, see Figure 2. If the overall monodromy of the encircled stack is M , then

such a loop has asymptotic charge ( pq ) = (M−1) ( rs ). For two loops, `(r,s) and `(u,v), encircling

the same 7-branes, one clearly has `(r,s) + `(u,v) = `(r+u,s+v). In principle, any such loop can

be turned into the standard basis 2.10 with prongs on 7-branes by pulling the loop across the

encircled 7-branes via a Hanany–Witten transition, which allows to compute pairings involving

loop junctions. However, since the loop does not touch the encircled 7-branes, but only sees

their overall monodromy, the self-pairing of a loop should be computable just with this data.

To do so, first consider the junction j = x[p,q] + x[r,s] as depicted on the left of Figure 3.

According to (2.11), we have

(j, j) = (x[p,q],x[p,q]) + (x[r,s],x[r,s]) + 2(x[p,q],x[r,s]) = −2 + det
⎛
⎝
p r

q s

⎞
⎠
. (2.16)

As pointed out in [38], this result can also be interpreted as the sum of the contributions

from the two end points of the 7-branes (each contribution −1), and the contribution of the
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Figure 2: A loop junction `(r,s) around a collection of 7-branes with overall monodromy M .

The asymptotic charge ( pq ) = ( r′
s′
) − ( rs ) = (M − 1) ( rs ) is in general non-zero.

3-pronged vertex. The latter must therefore be

det
⎛
⎝
p r

q s

⎞
⎠
= ps − rq = det

⎛
⎝
r −(p + r)
s −(q + s)

⎞
⎠
= det

⎛
⎝
−(p + r) p

−(q + s) q

⎞
⎠
, (2.17)

i.e., the determinant of two of the three ( pq )-charge vectors, arranged in their counter-clockwise

ordering (and all prongs either ingoing or outgoing).

<latexit sha1_base64="ZpY01qcp6Z92zZ1eavMUnJDheGM=">AAAB8HicdVDLSgMxFM3UV62vqks3wSK4kGE6rW3dFd24rGAfMh1KJs20oUlmSDJCGfoVblwo4tbPceffmGkrqOiBC4dz7uXee4KYUaUd58PKrayurW/kNwtb2zu7e8X9g46KEolJG0cskr0AKcKoIG1NNSO9WBLEA0a6weQq87v3RCoaiVs9jYnP0UjQkGKkjXTXG6SePFP+bFAsOfZFo+aeu9CxHafuVmoZcetVtwLLRslQAku0BsX3/jDCCSdCY4aU8spOrP0USU0xI7NCP1EkRniCRsQzVCBOlJ/OD57BE6MMYRhJU0LDufp9IkVcqSkPTCdHeqx+e5n4l+clOmz4KRVxoonAi0VhwqCOYPY9HFJJsGZTQxCW1NwK8RhJhLXJqGBC+PoU/k86rl2u2dWbaql5uYwjD47AMTgFZVAHTXANWqANMODgATyBZ0taj9aL9bpozVnLmUPwA9bbJw1ikJk=</latexit>

X[r,s]
<latexit sha1_base64="WZoYizkbhXiM2KeWRKzyHIdNImE=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMkynta27ohuXFexDpkPJpJk2NMmMSUYoQ7/CjQtF3Po57vwbM20FFT1w4XDOvdx7TxAzqrTjfFhLyyura+u5jfzm1vbObmFvv62iRGLSwhGLZDdAijAqSEtTzUg3lgTxgJFOML7M/M49kYpG4kZPYuJzNBQ0pBhpI912+6kXn975036h6Njn9ap75kLHdpyaW65mxK1V3DIsGSVDESzQ7Bfee4MIJ5wIjRlSyis5sfZTJDXFjEzzvUSRGOExGhLPUIE4UX46O3gKj40ygGEkTQkNZ+r3iRRxpSY8MJ0c6ZH67WXiX56X6LDup1TEiSYCzxeFCYM6gtn3cEAlwZpNDEFYUnMrxCMkEdYmo7wJ4etT+D9pu3apaleuK8XGxSKOHDgER+AElEANNMAVaIIWwICDB/AEni1pPVov1uu8dclazByAH7DePgEHRpCV</latexit>

X[p,q]

<latexit sha1_base64="8XPOwaZyGaAImmBMct3kUfFmQX0=">AAACDXicbVBNS8NAEN34WetX1KOXxSp4KokU7bHgxWMF+wFNKZvNpF262cTdjVhC/4AX/4oXD4p49e7Nf+O2DaKtDwYe780wM89POFPacb6speWV1bX1wkZxc2t7Z9fe22+qOJUUGjTmsWz7RAFnAhqaaQ7tRAKJfA4tf3g58Vt3IBWLxY0eJdCNSF+wkFGijdSzjz0f+kxkSUS0ZPdjnGDPw7fYAxH8iD275JSdKfAicXNSQjnqPfvTC2KaRiA05USpjuskupsRqRnlMC56qYKE0CHpQ8dQQSJQ3Wz6zRifGCXAYSxNCY2n6u+JjERKjSLfdJr7Bmrem4j/eZ1Uh9VuxkSSahB0tihMOdYxnkSDAyaBaj4yhFDJzK2YDogkVJsAiyYEd/7lRdI8K7vn5cp1pVSr5nEU0CE6QqfIRReohq5QHTUQRQ/oCb2gV+vRerberPdZ65KVzxygP7A+vgHyCJwZ</latexit>✓
p
q

◆ <latexit sha1_base64="78Uh9umBeVL1b/YTXeAqwfUCJro=">AAACDXicbVBNS8NAEN3Ur1q/oh69LFbBU0mkaI8FLx4r2A9oStlsJu3SzSbsbsQS+ge8+Fe8eFDEq3dv/hu3bRBtfTDweG+GmXl+wpnSjvNlFVZW19Y3ipulre2d3T17/6Cl4lRSaNKYx7LjEwWcCWhqpjl0Egkk8jm0/dHV1G/fgVQsFrd6nEAvIgPBQkaJNlLfPvF8GDCRJRHRkt1PsMSehxX2QAQ/Yt8uOxVnBrxM3JyUUY5G3/70gpimEQhNOVGq6zqJ7mVEakY5TEpeqiAhdEQG0DVUkAhUL5t9M8GnRglwGEtTQuOZ+nsiI5FS48g3nea+oVr0puJ/XjfVYa2XMZGkGgSdLwpTjnWMp9HggEmgmo8NIVQycyumQyIJ1SbAkgnBXXx5mbTOK+5FpXpTLddreRxFdISO0Rly0SWqo2vUQE1E0QN6Qi/o1Xq0nq03633eWrDymUP0B9bHN/hanB0=</latexit>✓
r
s

◆

<latexit sha1_base64="cJjxmgr2e3BG2+tcmf/BxoJlDTM=">AAACHXicbVDLSgMxFM3UV62vUZdugkWoiGVGinZZcOOygn1AZyiZ9LYNzWTGJCOWoT/ixl9x40IRF27EvzF9INp6IXDuOeeSe08Qc6a043xZmaXlldW17HpuY3Nre8fe3aurKJEUajTikWwGRAFnAmqaaQ7NWAIJAw6NYHA51ht3IBWLxI0exuCHpCdYl1GiDdW2S14APSbSOCRasvsRPsWFGJ9geYw9b9zcmkaZBkTnx9S2807RmRReBO4M5NGsqm37w+tENAlBaMqJUi3XibWfEqkZ5TDKeYmCmNAB6UHLQEFCUH46uW6EjwzTwd1Imic0nrC/J1ISKjUMA+M0+/XVvDYm/9Naie6W/ZSJONEg6PSjbsKxjvA4KtxhEqjmQwMIlczsimmfSEK1CTRnQnDnT14E9bOie14sXZfylfIsjiw6QIeogFx0gSroClVRDVH0gJ7QC3q1Hq1n6816n1oz1mxmH/0p6/MbhHmfsA==</latexit>✓
�(p + r)
�(q + s)

◆

<latexit sha1_base64="WZoYizkbhXiM2KeWRKzyHIdNImE=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMkynta27ohuXFexDpkPJpJk2NMmMSUYoQ7/CjQtF3Po57vwbM20FFT1w4XDOvdx7TxAzqrTjfFhLyyura+u5jfzm1vbObmFvv62iRGLSwhGLZDdAijAqSEtTzUg3lgTxgJFOML7M/M49kYpG4kZPYuJzNBQ0pBhpI912+6kXn975036h6Njn9ap75kLHdpyaW65mxK1V3DIsGSVDESzQ7Bfee4MIJ5wIjRlSyis5sfZTJDXFjEzzvUSRGOExGhLPUIE4UX46O3gKj40ygGEkTQkNZ+r3iRRxpSY8MJ0c6ZH67WXiX56X6LDup1TEiSYCzxeFCYM6gtn3cEAlwZpNDEFYUnMrxCMkEdYmo7wJ4etT+D9pu3apaleuK8XGxSKOHDgER+AElEANNMAVaIIWwICDB/AEni1pPVov1uu8dclazByAH7DePgEHRpCV</latexit>

X[p,q]

<latexit sha1_base64="8XPOwaZyGaAImmBMct3kUfFmQX0=">AAACDXicbVBNS8NAEN34WetX1KOXxSp4KokU7bHgxWMF+wFNKZvNpF262cTdjVhC/4AX/4oXD4p49e7Nf+O2DaKtDwYe780wM89POFPacb6speWV1bX1wkZxc2t7Z9fe22+qOJUUGjTmsWz7RAFnAhqaaQ7tRAKJfA4tf3g58Vt3IBWLxY0eJdCNSF+wkFGijdSzjz0f+kxkSUS0ZPdjnGDPw7fYAxH8iD275JSdKfAicXNSQjnqPfvTC2KaRiA05USpjuskupsRqRnlMC56qYKE0CHpQ8dQQSJQ3Wz6zRifGCXAYSxNCY2n6u+JjERKjSLfdJr7Bmrem4j/eZ1Uh9VuxkSSahB0tihMOdYxnkSDAyaBaj4yhFDJzK2YDogkVJsAiyYEd/7lRdI8K7vn5cp1pVSr5nEU0CE6QqfIRReohq5QHTUQRQ/oCb2gV+vRerberPdZ65KVzxygP7A+vgHyCJwZ</latexit>✓
p
q

◆

<latexit sha1_base64="MyJn/lpxg8zBIlvl8Q7U8Dtbd/s=">AAAB7HicdVDLSgMxFL1TX7W+qi7dBIvgapiZ1rbuim5cVrAPaIeSSTNtaCYzJBmhlH6DGxeKuPWD3Pk3ZtoKKnogcDjnHnLvCRLOlHacDyu3tr6xuZXfLuzs7u0fFA+P2ipOJaEtEvNYdgOsKGeCtjTTnHYTSXEUcNoJJteZ37mnUrFY3OlpQv0IjwQLGcHaSK3+MNZqUCw59mW96l14yLEdp+aVqxnxahWvjFyjZCjBCs1B8d3kSBpRoQnHSvVcJ9H+DEvNCKfzQj9VNMFkgke0Z6jAEVX+bLHsHJ0ZZYjCWJonNFqo3xMzHCk1jQIzGWE9Vr+9TPzL66U6rPszJpJUU0GWH4UpRzpG2eVoyCQlmk8NwUQysysiYywx0aafginh61L0P2l7tlu1K7eVUuNqVUceTuAUzsGFGjTgBprQAgIMHuAJni1hPVov1utyNGetMsfwA9bbJ1dOjw8=</latexit>. . .

<latexit sha1_base64="Mch3dUblHuvArwgVktirQXdsC3s=">AAACDHicbVDLSgMxFL1TX7W+qi7dBIvgqsyI+NgV3LisYB/QKSWT3rahmcyQZMQy9APc+CtuXCji1g9w59+YtoNo64HA4Zxzyb0niAXXxnW/nNzS8srqWn69sLG5tb1T3N2r6yhRDGssEpFqBlSj4BJrhhuBzVghDQOBjWB4NfEbd6g0j+StGcXYDmlf8h5n1FipUyz5Afa5TOOQGsXvx0QR3yfaR9n90WzKLbtTkEXiZaQEGaqd4qffjVgSojRMUK1bnhubdkqV4UzguOAnGmPKhrSPLUslDVG30+kxY3JklS7pRco+achU/T2R0lDrURjYpN1voOe9ifif10pM76KdchknBiWbfdRLBDERmTRDulwhM2JkCWWK210JG1BFmbH9FWwJ3vzJi6R+UvbOyqc3p6XKZVZHHg7gEI7Bg3OowDVUoQYMHuAJXuDVeXSenTfnfRbNOdnMPvyB8/ENmOWb9A==</latexit>✓
r
s

◆ <latexit sha1_base64="08Cs7w5cjqvKXu1VWh7DuXikAAY=">AAACFHicbZDLSsNAFIYn9VbrLerSzWARhEJJpHjZFdy4rGAv0JQymZy2QyeTODMRS+hDuPFV3LhQxK0Ld76N0zaIth4Y+Pj/c5hzfj/mTGnH+bJyS8srq2v59cLG5tb2jr2711BRIinUacQj2fKJAs4E1DXTHFqxBBL6HJr+8HLiN+9AKhaJGz2KoROSvmA9Rok2UtcueT70mUjjkGjJ7sdY4hKOsedhZeDWAxH8eF276JSdaeFFcDMooqxqXfvTCyKahCA05USptuvEupMSqRnlMC54iYKY0CHpQ9ugICGoTjo9aoyPjBLgXiTNExpP1d8TKQmVGoW+6TT7DdS8NxH/89qJ7p13UibiRIOgs496Ccc6wpOEcMAkUM1HBgiVzOyK6YBIQrXJsWBCcOdPXoTGSdk9LVeuK8XqRRZHHh2gQ3SMXHSGqugK1VAdUfSAntALerUerWfrzXqfteasbGYf/Snr4xu5w537</latexit>✓
r + p
s + q

◆

Figure 3: The self-pairing of a 3-pronged junction (left) can be separated into contributions
from the ends on 7-branes and the vertex, see (2.16). When there are no prongs ending on
7-branes, such as for loop juncions (right), the only contribution is that of the vertex.

This logic can now be easily applied to compute self-pairings of loop junctions. Since such

a junction has no endpoints on 7-branes, the only contribution to the self-pairing must come

from the 3-pronged vertex. For the junction `(r,s) in Figure 2, this contribution evaluates to

10



(after accounting for the signs necessary to have all prongs in- or outgoing)

(`(r,s), `(r,s)) = det
⎛
⎝
p r

q s

⎞
⎠
= −det

⎛
⎝
r r′

s s′
⎞
⎠
. (2.18)

As a consistency check, consider a loop junction `(r,s) around a single [p, q]-7-brane such that

the asymptotic charge is ( pq ) (see right of Figure 3), i.e.,

(M[p,q] − 1) ( rs ) = (qr − ps) ( ps )
!= ( pq ) ⇔ (qr − ps) != 1 , (2.19)

which always has a solution for (r, s) since the labels of a single X[p,q] must be coprime. Then,

the self-pairing is (`(r,s), `(r,s)) = det ( p rq s ) = ps − qr = −1 = (x[p,q],x[p,q]). This was expected,

since by construction, this loop is equivalent, by a Hanany–Witten transition, to the unit

junction x[p,q].

(Co-)weight lattices from junctions

For a single brane stack of ADE type (2.8), the physical junctions without asymptotic charges

are generated by

sun ∶ αi = ai − ai+1 , i ∈ {1, . . . , n − 1} ,

so2n ∶ αi = ai − ai+1 , i ∈ {1, . . . , n − 1} , αn = an−1 + an − b − c ,

en ∶ αi = ai − ai+1 , i ∈ {1, . . . , n − 2} , αn−1 = an−2 + an−1 − b − c1 , αn = c1 − c2 ,

(2.20)

where we have indexed 7-branes and their associated unit junctions of the same [p, q]-type.

Computing their mutual bi-linear pairing of αi one finds

(αi,αj) = Aij , (2.21)

with Aij the negative Cartan matrix. Indeed, strings represented by the junctions above are

associated to the W-bosons which lead to the enhanced gauge symmetry on the 7-brane stack.

We will call them root junctions for obvious reasons, and they span the root junction lattice

of the ADE algebra Λr ⊂ Jphys.

In complete analogy to representation theory (save for a minus sign for the pairing), the

bi-linear pairing allows the definition of the coroot junctions, whose span is the coroot junction

lattice Λcr, as follows

α∨i =
2

−(αi,αi)
αi . (2.22)

Since for ADE algebras all roots have length-square 2, these coincide with the root junctions.

However, physically, these should be thought of as the magnetically dual states, and hence

arise from 5-brane webs represented by the junctions. We can therefore also identify the
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pairing between two junctions, where one represents a string and the other a 5-brane, as the

Dirac-pairing between electric and magnetic operators of the 8d gauge theory.

One further defines the weight junctions wi, which are dual to the coroot junctions with

respect to (., .) (or, more precisely, its Q-linear extension),

(wi,α
∨

j ) = −δij . (2.23)

They span the weight junction lattice Λw, and correspond to the electric states of the gauge

symmetry if they represent a string. Similarly, one defines the coweight junctions w∨

i and

their lattice Λcw via

(w∨

i ,αj) = −δij , (2.24)

which, when representing a 5-brane, is a magnetic state.

Note that the (co-)weights and (co-)roots are in a very real sense localized degrees of

freedom. For any additional 7-brane X[r,s] that is added to the system, we can explicitly

compute from (2.20) that (x[r,s],α
(∨)

j ) = 0. Therefore, any junction that has no prong on the

7-brane stack represents an uncharged state under the gauge symmetry on that stack.

For ADE algebras the coweights and weights again agree, and there the distinction between

string and 5-brane junctions is only of formal nature. However, it will become important once

we include O7+-planes. Before that, we have to introduce the concept of so-called extended

(co-)weight junctions [38].

2.3 Extended (co-)weights and higher-form center symmetries

In general, the (co-)weight junctions,

w∨

i = ∑
j

(−A−1)ijαj , wi = ∑
j

(−Ã−1)ijα∨j , (2.25)

with Ãij = (α∨i ,α∨j ), will have fractional coefficients in front of the unit prongs x[pi,qi]. This

implies that they are not physical junctions on their own. However, they can be made physical

by adding certain other fractional junctions with non-zero asymptotic ( pq )-charges, resulting

in an integer (i.e., physical) junction with a prong that extends away from the 7-brane stack.

Equivalently, it formalizes the intuition that non-adjoint matter states (carrying weights that

are not roots) on a 7-brane stack arise from open strings that have ends on other 7-branes

(possibly at infinity).

As a simple example, consider g = su2, realized on an A1A2-stack. While the (co-)weight

junction w(∨) = 1
2(a1 − a2) without any asymptotic (p, q)-charge is non-physical, we can con-

sider the unit string junctions a1 or a2, each of which carries an asymptotic ( pq ) = ( 1
0 ) charge.

From (a1,α
∨) = (a1,a1 − a2) = −(a2,a1 − a2) = −1, we expect these (string) junctions to be

12



Figure 4: Construction of extended weight junctions. Since the ( rs )-charges that appear in
the loop are in general fractional, the prongs ending on the 7-branes after pulling the loop
across also have fractional coefficients.

fundamental matter of the su2. Note that we can formally write

a1 = 1
2(a1 + a2) +w , a2 = 1

2(a1 + a2) −w . (2.26)

Because 1
2(a1 + a2) ≡ ω has asymptotic charge ( 1

0 ), and satisfies (ω,α) = 0, we can interpret

the above rewriting as separating the su2 gauge charges of the unit junctions, captured by

the summand proportional to w, from the asymptotic SL(2,Z)-charges, captured by ω. By

linearity, this separation can be done for any physical junction j = n1a1 + n2a2. For su2, the

state corresponding to j = sw+ kω ∈ Jphys is a weight of an spin-s/2 representation, which has

charge s mod 2 under the Z2-center. It is easy to see in this case, the physicality condition,

i.e., for j to have integer number of prongs on the 7-branes, relates s ≡ k mod 2. Therefore,

the coefficient of any physical junction in front of ω provides an equivalent way to encode the

center charge of that corresponding state. This line of argument can be generalized to any

ADE-stack [38].

First, notice that, by a Hanany–Witten transition, ω = `(0,−1/2) is a loop junction around

the A1A2 stack. For a general stack with monodromy M , one defines ω, which are called

extended weight junctions, as the generators of all loop junctions `(r,s) (with possibly fractional

(r, s)) encircling the stack that have integer asymptotic ( pq )-charge, i.e.,

(M − 1) ( rs ) ∈ Z2 . (2.27)

For the ADE algebras realized via the stacks as given in (2.8), a standard basis for these are

denoted ωp,q with asymptotic charges

ωp ∶ ( pq )asymp = ( 1
0 ) , ωq ∶ ( pq )asymp = ( 0

1 ) . (2.28)

13



For sun stacks, (M−1) has only rank 1, so there is only one generator, ωp with asymptotic ( 1
0 )

charge. Due to the generally fractional (r, s)-prong that crosses the branch cuts, the prongs

that end on the constituent branes of the stack are also fractional after a Hanany–Witten

transition, see Figure 4. Explicitly, the extended weight junctions and their pairings are given

by8

sun (An) ∶ ωp = `(0,−1/n) = 1
n

n

∑
i=1

ai , (ωp,ωp) = − 1
n ,

so2n (AnBC) ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ωp = `(−1/2,0) = 1
2(b + c) ,

ωq = `(1−n/4,−1/2) = 1
2(∑i ai − b + c − nωp) ,

(ωα,ωβ) =
⎛
⎝

0 0

0 n
4 − 1

⎞
⎠
αβ

,

e6 (A5BC2) ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ωp = `(0,1/3) = −1
3 ∑

5
i=1 ai + 4

3b + 2
3 ∑

2
i=1 ci ,

ωq = `(−1,−1) = ∑5
i=1 ai − 3b −∑2

i=1 ci ,
(ωα,ωβ) =

⎛
⎝

1
3 −1

2

−1
2 1

⎞
⎠
αβ

,

e7 (A6BC2) ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ωp = `(1/2,1/2) = −1
2 ∑

6
i=1 ai + 2b +∑2

i=1 ci ,

ωq = `(−5/2,−3/2) = 3
2 ∑

6
i=1 ai − 5b − 2∑2

i=1 ci ,
(ωα,ωβ) =

⎛
⎝

1
2 −1

−1 5
2

⎞
⎠
αβ

,

e8 (A7BC2) ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ωp = `(2,1) = −∑7
i=1 ai + 4b + 2∑2

i=1 ci ,

ωq = `(−7,−3) = 3∑7
i=1 ai − 11b − 5∑2

i=1 ci ,
(ωα,ωβ) =

⎛
⎝

1 −5
2

−5
2 7

⎞
⎠
αβ

.

(2.29)

All physical junctions associated to a 7-brane stack, i.e., junctions with prongs of only integer

( pq )-charge, can be written uniquely in terms of a linear combination of weight and extended

weight junctions

j = ∑
i

aiwi + apωp + aqωq , ai, ap, aq ∈ Z . (2.30)

Physically, this means that a physical (p, q)-string/-5-brane is fully characterized by its asymp-

totic electric/magnetic ( pq )-charge under (B2,C2), and the weight/coweight charges under the

7-brane gauge algebras.

In turn, it can be verified that every possible weight junction w = ∑i aiwi (ai ∈ Z) of the

gauge algebra g can be completed into a physical junction by the addition of an integer linear

combination je = apωp + aqωq of extended weights [38]. Such integer linear combination is not

unique and is determined only up to multiples npωp+nqωq which have integer charges for each

prong. This non-uniqueness can be understood as the fact that je is determined by the charge

of w under the center Z(G̃) of the simply-connected group G̃ associated to g. Intuitively,

this is expected because the charge under the center of a specific state w is encoded in its

prefactors of the weight basis wi, which in turn introduces fractional prongs that can only be

cancelled by the extended weights. Analogously to how weights can be screened by the W-

8Note that we can infer (ωp,ωq) from the self-pairing of ωp +ωq = `(rp,sp) + `(rq,sq) = `(rp+rq,sp+sq), which
can be computed from the contribution of the single 3-pronged vertex, as in Figure 3.
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bosons for observers “at infinity”, there are multiples of specific asymptotic ( pq )-charges that

can be added and subtracted without affecting the local gauge dynamics on the 7-branes.9

The precise connection between higher-form symmetries and extended weights have been

described in [13]. Formally, we can define the lattice,

Jext = {je = apωp + aqωq ∣ap, aq ∈ Z} , (2.31)

whose elements are arbitrary integer linear combinations of extended weights that may be frac-

tional. Then, the screening arguments for the center symmetries, together with the junction

characterization of gauge degrees of freedom, translates into:

Z(G̃ADE) =
weights

roots
= coweights

coroots
= Jext

Jphys ∩ Jext
, (2.32)

where (Jphys∩Jext) denotes extended weight junctions that are themselves physical, i.e., do not

contain fractional prongs. Note that, since ω○ = `(r○,s○) are loop junctions of the form depicted

on the left of Figure 4, (Jphys ∩ Jext) are precisely the loops `(r,s) = np`(rp,sp) + nq`(rq ,sq) with

integer (r, s). Concretely, in terms of the extended weights summarized in (2.29), one finds

g Jext/(Jphys ∩ Jext)

sun
{apωp}
(nωp)

≅ {ap mod n} ≅ Zn

so4n
{apωp + aqωq}
(2ωp,2ωq)

≅ {(ap mod 2, aq mod 2)} ≅ Z2 ⊕Z2

so4n+2
{apωp + aqωq}

(2ωp,4ωq,ωp + 2ωq)
≅ {2ap + aq mod 4} ≅ Z4

e6
{apωp + aqωq}

(3ωp,ωq)
≅ {ap mod 3} ≅ Z3

e7
{apωp + aqωq}

(2ωp,2ωq,ωp +ωq)
≅ {ap + aq mod 2} ≅ Z2

(2.33)

In the language of higher-form symmetries (see also [13]), a physical string/5-brane junction

j = ∑i aiwi + apωp + aqωq carries an electric/magnetic Z(G̃) 1-form/5-form symmetry charge

prescribed by (2.33).

3 Junctions on O7+ and center symmetries of sp dynamcis

So far, we have reviewed the junction framework for ordinary [p, q]-7-branes, which succinctly

encode the 8d N = 1 gauge dynamics with simply-laced gauge algebras. However, field theo-

9Describing the gauge dynamics by F-theory on a non-compact K3, this is reflected by the homology of the
asymptotic boundary exhibiting discrete torsion, associated to the fact that np × (A-cycle) + nq × (B-cycle) on
the generic torus fiber shrinks at the singularity [13].
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retically, one can also have spn algebras. In the type IIB string constructions these are linked

to the presence of O7+-planes, which was not considered systematically within the junction

framework previously. Therefore, we need to generalize the above analysis.

First, we note that the O7+-plane, unlike the the O7−-plane, does not split, at finite

string coupling, into constituents represented by ordinary [p, q]-7-branes. Therefore, we will

represent it by a single, albeit special, 7-brane. The monodromy generated by one O7+-plane

is in the same SL(2,Z) conjugacy class as a 7-brane stack with g = so16. In the following local

analysis, we use the same presentation as in (2.8),

MO7+ =
⎛
⎝
−1 4

0 −1

⎞
⎠
. (3.1)

There are multiple ways of arguing for this physically. The prevalent interpretation of an O7+

in recent literature [30, 31] is as the remnant of “freezing” the so16 gauge dynamics on an

ordinary 7-brane stack, see also [32,33].

However, even after two decades, the freezing operation remains somewhat mysterious.

In particular, a geometric derivation of its effect on higher-form symmetries in the M-theory

frame [15, 16] appears to be challenging. However, as we will argue now, one can obtain a

complete picture, at least in the IIB duality frame, of the mechanism using junctions. The

key distinction to [p, q]-branes is that the physicality condition for prongs that end on an O7+

differ between strings and 5-branes.

From the perturbative IIB picture, only pairs of fundamental strings can end on an O7+

[62], which one can see in a perturbative picture via Chan–Paton factors. Via various dualities

it can also be argued that only an even number of D-strings can end on the O7+-plane,

see [62, 63]. Thus, the physical string junctions emanating from the O7+-plane have ( pq )-
charge restricted by p, q ∈ 2Z. In contrast, (p, q)-5-branes can end with any integer number

on O7+. This is relevant, e.g., in the construction of 5d SCFTs via 5-brane webs [64]. Hence,

a prong of a physical 5-brane junction can end with arbitrary integer ( pq )-charge on an O7+.

As we will see momentarily, these conditions naturally give rise to a consistent description of

spn gauge algebras, including their center symmetries, from the junction lattice. Moreover,

once we have set up the notation in Section 4, we can derive these conditions independently

in global models with one O7+-plane that realize 8d rank (2,10), by appealing to the dual

description of these models via the CHL-string (see Appendix A).

It is worthwhile to compare the boundary conditions for strings and 5-branes on O7+ with

the unfrozen so16-stack. First, since both generate the same monodromy, the loop junctions

that generate all integer asymptotic ( pq )-charges in the presence of a single O7+ are the same

as for an so16 stack (2.29),

ωO7+

p = `(−1/2,0) , ωO7+

q = `(−1,−1/2) . (3.2)
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We will call these the extended weight junctions of the O7+, even though a single O7+ (unlike

its unfrozen cousin) has no gauge dynamics, and hence no root or weight lattice to begin with.

By collapsing the loop or, equivalently, performing a Hanany–Witten transition across the

orientifold plane, these extended weight junctions have a ( 1
0 ) and a ( 0

1 ) prong, respectively, on

the O7+. The set of junctions ending/emanating from one O7+, which is entirely characterized

by its total ( pq ) = ( apaq )-charge, can therefore be written as

j = apωO7+

p + aq ωO7+

q , ap, aq ∈ Z . (3.3)

Physical string junctions must then have (ap, aq) ≡ (0 mod 2,0 mod 2), which agrees with the

physicality condition for junctions on an so16-stack that has no (unscreenable) gauge charge,

see (2.33). Equivalently, any string loop `(r,s) that encircles the O7+ is physical if and only if

r and s are both integer. In contrast, a physical 5-brane junction with odd (ap, aq), which can

end on an O7+, would not be admissible on an so16-stack without picking up (unscreenable)

gauge charge. In particular, this means that physical 5-brane loops `(r,s) around the O7+

could have half-integer valued r and s.

To fully incorporate O7+’s in the junction framework, we also need to define the bi-linear

pairing. It is hard to come up with a rule for prongs ending on the O7+ by appealing to

any geometric counterpart in a dual M-/F-theory picture, because of the presence of frozen

singularities there. However, since the extended weights can be viewed as loops which is only

sensitive to the induced SL(2,Z) monodromy M , but not the “microscopics” of a 7-brane

stack, one would naturally expect that the pairing of such junctions is insensitive to whether

M is sourced by an O7+, or an so16 stack. Following the discussion around Figure 3, we

can therefore directly compute (rather than define, which would require further justifications)

from the loop junction representation:

(ωO7+

p ,ωO7+

p ) = 0 , (ωO7+

q ,ωO7+

q ) = 1 , (ωO7+

p ,ωO7+

q ) = 0 . (3.4)

Considering O7+-planes together with general [r, s]-7-branes (which we assume to be on the

left of the O7+), one further finds

(ωO7+

p ,x[r,s]) = − s2 , (ωO7+

q ,x[r,s]) = r
2 . (3.5)

sp gauge algebras and their higher-form symmetries from junctions

From the perturbative IIB picture, it is well-known that we can generate 8d spn gauge dy-

namics on a 7-brane stack formed by n A-branes on top of one O7+. This 7-brane stack, of
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the form AnO7+, has the same monodromy as an so16+2n stack:

Mspn =MAnO7+ =
⎛
⎝
−1 4 + n
0 −1

⎞
⎠
. (3.6)

This allows us to straightforwardly define the extended weight junctions, as loops `(r,s) around

the entire stack (including the O7+) such that an asymptotic ( 1
0 )- (for ωp) or ( 0

1 )-charge (for

ωq) remains. Then, after performing the suitable Hanany–Witten transitions, we find

ωspn
p = `(−1/2,0) = ωO7+

p , ωspn
q = `(−1−n/4,−1/2) = 1

2

n

∑
i=1

ai − n
2ω

O7+

p +ωO7+

q . (3.7)

Since Mspn = Mso16+2n , the loop junctions look identical to those of so16+2n. Hence, with

Jext = {apωspn
p + aqωspn

q ∣ ap, aq ∈ Z}, the physicality condition on linear combinations of

extended junctions is captured by

Jext/(Jext ∩ Jphys, strings) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{(ap mod 2, aq mod 2)} ≅ Z2 ×Z2 , n even ,

{2ap + aq mod 4} ≅ Z4 , n odd .
(3.8)

On the other hand, for 5-brane junctions, we have

Jext/(Jext ∩ Jphys, 5-branes) = {aq mod 2} ≅ Z2 . (3.9)

Comparing to the discussion around (2.33), one might be tempted to identify Z(Sp(n))electric =
Z2 ×Z2 or Z4, and Z(Sp(n))magnetic = Z2, which is clearly not correct.

To rectify this, we must instead consider in detail the role of the extended weights as

completing weights and coweights into physical strings and 5-branes, respectively. In analogy

to the ADE-stacks, we first construct the spn roots αi as string junctions with no asymptotic

( pq )-charge, that stretch between the constituents of this stack. A basis for such junctions are

αi = ai − ai+1 , i ∈ {1, . . . , n − 1} , αn = 2an − 2ωO7+

p , (3.10)

see also Figure 5. With this and the bi-linear pairings in (3.4), one straightforwardly verifies

(αn,αn) = −4 , (αi,αn) = 2 δi,n−1 , (αi,αj) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2 , i = j ,
1 , ∣i − j∣ = 1 ,

0 , else ,

1 ≤ i, j ≤ n − 1 , (3.11)

which precisely reproduces the negative of the Cartan matrix of an spn algebra. In particular,

we see that, while the short roots (those with length squared 2) arise from single-pronged

strings between the A-branes, just as for ADE-algebras, the long root αn is only a generator

due to the evenness condition for strings ending on the O7+.
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Figure 5: Root junctions of sp algebra (the double arrow denotes the factor of 2 required by
evenness on O7+).

As a non-simply-laced algebra, sp has different coroots than roots:

α∨i =
2αi

−(αi,αi)
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αi , 1 ≤ i ≤ n − 1 ,

1
2αn = an −ωO7+

p , i = n .
(3.12)

Since these are the magnetic objects in a gauge theory context, they arise from 5-brane

junctions, which, consistent with the boundary conditions, can have a single prong on the

O7+ that is needed to form the short coroot α∨n with length squared 1.

The distinction between strings and 5-branes are of course also important for the weights

and coweights. The weight junctions are obtained as dual to the coroot junctions. Defining

the matrix Ãij = (α∨i ,α∨j ), these can be written as

wi = ( − Ã−1)
ij
α∨j = ∑

j

min{i, j}α∨j =
n−1

∑
j=1

min{i, j}αj + 1
2min{i, n}αn . (3.13)

Similarly, one obtains the coweight junctions as duals of the root junctions. With the negative

Cartan matrix A = (αi, αj) one has

w∨

i = ( −A−1)
ij
αj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑n−1
j=1 min{i, j}α∨j + iα∨n , i < n ,

∑nj=1
j
2 α

∨

j , i = n ,
(3.14)

expressed as fractional linear combinations of coroots.

In terms of the junctions, the electric center symmetry,

Z(Sp(n)) = weights/roots ≅
{k2αn}
(αn)

≅ Z2, (3.15)

is precisely generated by multiples of 1
2αn = an−ωO7+

p , which is unphysical as a string junction

because of the odd prong on the O7+. To obtain a physical junction with the same spn gauge

charge, we must therefore add linear combinations of the extended weights (3.7) with integer

prongs on A, and odd numbers of prong of ( pq ) = ( 1
0 )-charge on the O7+. For even n, this

requirement is met by apω
spn
p +aqωspn

q with ap ≡ 1 mod 2 and aq ≡ 0 mod 2, whereas for odd n,

we need 2ap+aq ≡ 2 mod 4. Each of these generate a Z2-subgroup of the putative center (3.8),

which is the correct presentation of Z(Sp(n))
electric

≅ Z(Sp(n)). The mismatch from (3.8)

is because not all integer linear combinations of extended weight junctions can be completed
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into a physical string junction with an spn weight. For the magnetic center symmetry,

Hom(Z(Sp(n)),Z) ≅ Z(Sp(n)) = coweights/coroots ≅ {kw∨

n}
coroots

, (3.16)

the unphysical 5-brane coweight junctions come from the half-integer valued prongs in

w∨

n =
n

∑
i=1

i
2α

∨

i = 1
2

n

∑
i=1

ai − n
2ω

O7+

p = ωspn
q −ωO7+

q , (3.17)

which can be made physical by adding apω
spn
p + aqωspn

q with aq ≡ 1 mod 2.

In summary, for a physical string junction that ends on an spn stack, which can be uniquely

decomposed as

j = ∑
i

aiwi + apωspn
p + aqωspn

q (3.18)

in terms of the extended weights (3.7) and weight junctions (3.13), the Z2 charge of the

corresponding state under the electric center symmetry is

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ap mod 2 , n even,

ap + 1
2a

q mod 2 , n odd (then aq must be even).
(3.19)

For a physical 5-brane junction, decomposed into extended weights and coweights (3.14),

j = ∑
i

aiw∨

i + apωspn
p + aqωspn

q , (3.20)

its magnetic Z2-center charge is

aq mod 2 . (3.21)

This completes the list of local building blocks of simple gauge algebras that can be com-

bined into a global model describing 8d supergravity. As we will discuss now, the consistent

combination of the individual brane stacks then determines the global structure of the gauge

dynamics in these models.

4 8d string vacua and their global structure from junctions

In this section, we combine the above local descriptions of simple gauge algebras into a compact

setting, to classify all 8d N = 1 string vacua using junctions. These vacua fall into three

moduli branches, which have gauge rank (2,18), (2,10), and (2,2), respectively. As shown

in [35], the gauge symmetries of the effective supergravity descriptions can be classified by

the SL(2,Z) monodromies assoiated with each simple gauge factor, with a few additional

consistency conditions. In theories of rank (2,18), which enjoy a description as F-theory on
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an elliptically-fibered K3 surface, these restrictions are met by 24 [p, q]-7-branes with trivial

total monodromy [65–67]. Via the freezing procedure [30, 32, 33], one can further obtain all

rank (2,10) or (2,2) vacua, if one replaces any rank (2,18) 7-brane configuration with one

or two so16+2n stacks with the corresponding frozen spn algebra that contains an O7+ [35].

Based on this, junctions provide a unified description of the gauge dynamics, in particular,

the gauge group topology, for all these vacua.

Before we dive into the details, let us give a schematic description of this approach. For a

given 7-brane configuration (with or without O7+) in a global model, the set of characters or

cocharacters (i.e., a sublattice of the weight or coweight lattice that is occupied by dynamical

states) correspond to physical (string or 5-brane) junctions that have zero asymptotic ( pq )-
charge. Since the ( pq )-charge of a prong ending on a stack is entirely captured by extended

weight junctions, which in turn encodes the center charge of the (co-)characters represented

by the junction, enumerating all linear combinations of extended weights from different stacks

that add up to zero ( pq )asymp also enumerates the center charge of all dynamical gauge charges.

In particular, computing the center charges of all string junctions that have no u(1)-charges

determines Z(G), and those of 5-brane junctions determine π1(G) ≅ Z, where G = G̃/Z is the

physically realized non-Abelian gauge group, with simply-connected cover G̃.

For the rank (2,18) branch, the information about Z has been shown to be conveniently

encoded in so-called fractional null junctions [49], which are certain fractional multiples of

physical loop junctions `N
(r,s) around all 7-branes (with trivial total monodromy). As we will

see, this correspondence continues in realizations of rank (2,10) with one O7+-plane, and rank

(2,2) theories with two O7+’s. While for rank (2,10), we can crosscheck the results with

those obtained from a dual CHL string description [52, 34], the junction description provides

a prediction for the gauge group topology of rank (2,2) vacua which are inaccessible via the

heterotic/CHL string. To illustrate the procedure we will explicitly work out an example for

each of the three branches of the 8d moduli space.

4.1 Gauge group topology from global null junctions

The construction of supersymmetric 8d theories with a dynamical gravity sector and rank

(2,18− 8k) gauge sector requires the identification of a set of (24− 10k) [p, q]-7-branes and k

O7+-planes with vanishing overall monodromy. These configurations can then be placed on a

P1 which compactifies the underlying type IIB theory from ten to eight dimensions10.

Following the conventions laid out in the previous section, we arrange the 7-branes along a

horizontal axis in the perpendicular plane (which is now a compact P1), and enumerate (from

the left to right) the ordinary [p, q]-7-branes and the O7+’s separately. Within the vector

space of all possible junctions (which carries a pairing given by simply linearly-extending the

10The number of branes in the setup can also be understood as the demand that their cumulative gravitational
backreaction in terms of the induced deficit angle adds up to 4π as appropriate for the 2-sphere S2

∼ P1.
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rules (2.11) and (3.4)),

J =
⎧⎪⎪⎨⎪⎪⎩

24−10k

∑
i=1

aix[pi,qi] +
k

∑
j=1

(bjωO7+j
p + b̃jωO7+j

q ) ∣ ai, bj , b̃j ∈ Q
⎫⎪⎪⎬⎪⎪⎭
, (4.1)

string junctions giving rise to the electrically charged states must have integral number of

prongs on 7-branes, with “integrality” on the O7+ being defined as having even number of

prongs. Analogously, magnetically charged states are described by physical 5-branes with inte-

gral number of prongs on all 7-branes, including the O7+’s. However, since the 7-branes move

on a compact P1, physical junctions must have vanishing asymptotic ( pq )-charge, i.e., have no

open ends. This means that the physical string / 5-brane junction lattice, corresponding to

dynamical electric / magnetic states of the 8d supergravity theory, is

Jel
phys =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j = ∑24−10k
i=1 ai x[pi,qi] +∑

k
j=1 (2bj ω

O7+j
p + 2b̃j ω

O7+j
q ) ,

with ai, bj , b̃j ∈ Z , ∑i aipi +∑j 2bj = 0 , ∑i aiqi +∑j 2b̃j = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

Jmag
phys =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j = ∑24−10k
i=1 ai x[pi,qi] +∑

k
j=1 (bj ω

O7+j
p + b̃j ωO7+j

q ) ,

with ai, bj , b̃j ∈ Z , ∑i aipi +∑j bj = 0 , ∑i aiqi +∑j b̃j = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

(4.2)

Obviously, these lattices are of rank 24 − 10k − 2 = 22 − 10k.

Furthermore, by Hanany–Witten transitions, different elements in these lattices can rep-

resent the same physical junction. Equivalently, we can add arbitrary multiples of so-called

(global) integer null junctions,

J
N,el/mag
int = {δN

(r,s) ∈ J
el/mag
phys ∣ δN

(r,s) = `(r,s) loops around all 7-branes} , (4.3)

where it is understood that, a priori, there are different integral null junctions for strings and

5-branes. Because of the compactness, such a loop can be shrunk to a point “on the other side”

of the P1 without crossing any 7-branes, and thus are physically trivial. However, they would

appear as a non-trivial element in Jphys after pulling them through the 7-branes, which must

therefore be modded out before we can identify the junction lattice with the physical charge

lattice. Note that, by construction, δN
(r,s) ∈ J

N
int has trivial pairing with any other δN ∈ JNint,

as well as no asymptotic ( pq )-charge (since they encircle a configuration with trivial overall

monodromy). Moreover, (δN
(r,s), j) = 0 for all δN

(r,s) ∈ J
N
int if and only if j has zero asymptotic

charge [38]. Hence, δN
(r,s) ∈ J

N
int has trivial pairing with all physical junctions, explaining the

prefix “null”. As a notational convention, we shall denote any loop junctions `(r,s) with no

asymptotic charge by δ(r,s).

This allows us now to identify the (co-)character lattice Λc (Λcc), the lattice of all electri-
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cally (magnetically) charged states present in the supergravity theory, as

Λc ≅ Jel
phys/J

N,el
int , Λcc ≅ Jmag

phys/J
N,mag
int , (4.4)

which are rank 20 − 8k lattices. Since we mod out a sublattice which is null, the junction

pairing on (4.1) induces a non-degenerate pairing on these lattices, whose signature can be

shown to be (2,18 − 8k). For [je] ∈ Λc and [jm] ∈ Λcc with representatives je, jm ∈ Jel/mag
phys ,

integrality of the Dirac pairing requires (je, jm) ∈ Z. Moreover, the Completeness Hypothesis

for quantum gravity implies that the two lattices are dual to each other, Λc = (Λcc)∗, i.e., for

any [je] there is a [jm] such that (je, jm) = 1 and vice versa. This can be explicitly checked,

as we will discuss later.

Now suppose that the 7-branes give rise to the full 8d gauge algebra

g =⊕
σ
gσ ⊕ u(1)⊕rA , with rA = 20 − 8k −∑

a

rank(ga) . (4.5)

Since for each 7-brane stack with gauge factor gσ, we have (co-)weight junctions w
(∨)

σ;iσ
, iσ =

1, ..., rank(gσ), we can uniquely (up to global null junctions) decompose11

je (m) = ∑
σ

⎛
⎝∑iσ

aiσσ w
(∨)

σ;iσ
+ apσωσp + aqσωσq

⎞
⎠
+∑

s

bsxs ∈ Jel (mag)
phys , (4.6)

where s labels the remaining 7-branes (including potential O7+’s) that are not part of the

non-Abelian stacks, on which the prongs must be integral, bs ∈ Z (or satisfy the corresponding

integrality condition on O7+’s). Since gauge charges under gσ are carried by the (co-)weights

w
(∨)

σ;iσ
, the states with only Abelian charges live in the subspace orthogonal to the (co-)weights,

J
el/mag
A ∶= {PA(je(m)) ∣ je(m) ∈ J

el (mag)
phys }

phys
≡ {∑

σ

(apσωσp + aqσωσq ) +∑
s

bsxs} ∩ Jel/mag
phys , (4.7)

where PA is the projection onto the orthogonal complement of the non-Abelian (co-)weights.

In particular, since global null junctions have zero pairing with all physical junctions, we have

J
N,el/mag
int ⊂ Jel/mag

A .

Because the overall ( pq ) charge of any physical junction must be zero, only specific linear

combinations of extended weights, and therefore, only (co-)weights of gσ with specific center

charges, can be completed into a physical junction in (4.6) with the available singlet branes.

If the resulting string junctions give rise to representations that are all invariant under a

subgroup Z of the center, then the gauge group has some non-trivial global structure.

11Note that each stack σ can appear with a monodromy that is conjugated by gσ ∈ SL(2,Z) compared to the
“standard frame” (2.8) or (3.6) chosen in the previous section, so that the extended weights have (p, q)-charges
gσ ( 1

0 ) for ωσp and gσ ( 0
1 ) for ωσq , respectively.
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More precisely, the most general global gauge group structure is

G = [∏σ G̃σ/Z] ×U(1)rA
Z ′ , (4.8)

where G̃σ is the simply-connected realization of the gauge algebra gσ. The finite group Z
embeds into the overall center ∏σ Z(G̃σ) of the non-Abelian factors with trivial map to the

Abelian groups, whereas Z ′ does have a non-trivial map into the Abelian sector. We will now

explain how to extract these discrete groups from junctions.

We first focus on the factor Z, which demands that electric states can appear only in

certain irreducible representations under ∏σ G̃σ that are invariant under Z. Equivalently,

this can be understood as the existence of magnetic states [jnA
m ] ∈ Λcc charged only under the

non-Abelian gauge factors, which via the Dirac pairing condition (je, jnA
m ) ∈ Z enforces the

absence of electric states that are not invariant under Z ⊂ ∏σ Z(G̃σ). Decomposing such a

junction,

jnA
m = ∑

σ

⎛
⎝∑iσ

aiσσ w∨

σ;iσ + a
p
σω

σ
p + aqσωσq

⎞
⎠
+∑

s

bsxs ∈ Jmag
phys , (4.9)

the assumption that this junction is only charged under the non-Abelian factors implies that

the Abelian part,

∑
σ

(apσωσp + aqσωσq ) +∑
s

bsxs ∈ Jmag
A ⊗Q , (4.10)

has also zero pairing with every junction in Jmag
A . However, this is only possible if it is

proportional to a linear combination of global integer null junction with rational coefficients,

i.e.,

PA(jnA
m ) = ∑

σ

(apσωσp + aqσωσq ) +∑
s

bsxs = bmδN(rm,sm)
, δN

(rm,sm)
∈ JN,mag

int , bm ∈ Q . (4.11)

Considering such decompositions for all 5-brane junctions jnA
m ∈ Jmag

phys with no Abelian

charge, one obtains the lattice

JN,mag
frac =

⎧⎪⎪⎨⎪⎪⎩
bmδ

N
(rm,sm)

∣ jnA
m = ∑

σ
∑
iσ

aiσσ w∨

σ;iσ + bmδ
N
(rm,sm)

∈ Jmag
phys

⎫⎪⎪⎬⎪⎪⎭
⊃ JN,mag

int , (4.12)

of what is called (global) fractional null junctions [48, 49]. Let us further denote the smallest

positive integer nm such that nmbmδ
N
(rm,sm)

∈ JN,mag
int . Since the prongs on Xs are already

integral, due to the physicality of jnA
m , nm is also the smallest positive integer such that

nm(apσωσp + a
q
σω

σ
q ) ∈ Jσphys, 5-branes is physical on every non-Abelian stack σ. At the same

time, according to the discussions around (2.33) and (3.21), the coefficients (apσ, aqσ) specify
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an element

zm = (zσ) ∈ ∏
σ

Jσext

Jσphys ∩ Jσext

≅∏
σ

Z(G̃σ) . (4.13)

Since the set of all such zm generate the discrete factor Z in (4.8), we find

Z ≅
JN,mag

frac

JN,mag
int

. (4.14)

The main advantage of this formula is that we can conveniently compute JN,mag
frac from

pulling the two generators δNa of JN,mag
int across all 7-brane stacks, which yields

δNa = ∑
σ

(cpa;σω
σ
p + cqa;σω

σ
q ) +∑

s

ca;sxs ∈ Jmag
phys . (4.15)

Then JN,mag
frac is generated by Q-linear combinations,

λ1δ
N
1 + λ2δ

N
2 = ∑

σ

((λ1c
p
1;σ + λ2c

p
2;σ)ω

σ
p + (λ1c

q
1;σ + λ2c

q
2;σ)ω

σ
q ) +∑

s

(λ1c1;s + λ2c2;s)xs , (4.16)

such that (λ1c
p
1;σ + λ2c

p
2;σ), (λ1c

q
1;σ + λ2c

q
2;σ) are integer, and (λ1c1;s + λ2c2;s) satisfies the

physicality condition on Xs. As advertised, this procedure applies indiscriminately to config-

urations with or without O7+-planes, as long as the integrality conditions on O7+’s and spn

stacks follow the prescription in Section 3.

The second discrete factor Z ′ ⊂ ∏σ Z(G̃σ) ×U(1)rA in (4.8) correlates the representations

under the non-Abelian factors ∏σ G̃σ of electric states to their u(1) charges, such that their

transformation under ∏σ Z(G̃σ) is compensated by a Z ′ subgroup in U(1)rA . Analogously as

above, this subgroup can be viewed as being enforced by the presence of magnetic states, now

with non-trivial U(1)-charges, and hence have a junction representation [jm] ∈ Λcc with

Jmag
phys ∋ jm = ∑

σ

⎛
⎝∑iσ

aiσσ w∨

σ;iσ + a
p
σω

σ
p + aqσωσq

⎞
⎠
+∑

s

bsxs = ∑
σ
∑
iσ

aiσσ w∨

σ;iσ + jA,m , (4.17)

where jA,m = PA(jm) ∈ JA ⊗ Q is no longer a null junction. Nevertheless, as the mismatch of

jA,m from being a physical junction is still determined by the coefficients (apσ, aqσ), we have

Z ′ =
PA (Jmag

phys)
Jmag
A

. (4.18)

Intuitively, this measures the “fractionality” of the u(1)-charges of all magnetic objects (living

in Jmag
phys) with respect to the charges of those that are uncharged under any non-Abelian

symmetry (and hence live in Jmag
A ). Note that, since PA(JNint) = JNint, the null junctions do not

affect these quotients.
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4.2 Duality to heterotic and CHL descriptions

Theories of rank (2,18) and (2,10) have a dual construction in terms of the heterotic and CHL

string, respectively, which provides a crosscheck for the junction description. In both cases,

electrically charged states are identified as elements from a momentum lattice for perturbative

string excitations. For the heterotic string the momentum lattice is the so-called Narain

lattice [68]:

ΛNarain = (−E8) ⊕ (−E8) ⊕U ⊕U , (4.19)

with (−E8) the negative of the E8 root lattice and U the hyperpolic lattice defined by the

bi-linear form

U ∶
⎛
⎝

0 1

1 0

⎞
⎠
. (4.20)

The CHL string is determined by the Mikhailov lattice [69]

ΛMikhailov = (−D8) ⊕U ⊕U = (−E8) ⊕U ⊕U(2) , (4.21)

with the negative Spin(16) root lattice (−D8). Here, U(x) denotes a lattice of rank two with

bi-linear form (4.20) multiplied by x.

Following the notation of [13], we will denote them collectively as ΛS . Then, if the duality

holds, we expect ΛS = Λc. Equivalently, points in the dual momentum lattice12 correspond

to physical magnetically charged states and therefore must be associated to 5-brane junctions

(modulo null junctions) in Λcc. The non-Abelian gauge factors are then specified by an em-

bedding of the corresponding (negative) root lattice into ΛS ; the coroot lattice then naturally

embeds in the dual lattice Λ∗

S . It is worth noting that the computation of the gauge group

topologies from this data [29, 52, 13] is in a sense complimentary to the junctions approach

outlined above. While in both scenarios, the setting is fully characterized by the non-Abelian

gauge algebras (by specifying either the 7-brane stacks or the embedding of the (co-)root lat-

tices), the gauge group is concisely encoded in the projection of the full physical lattice onto

the Abelian junctions (see (4.14) and (4.18)), the methods in [29, 52, 13] extract the gauge

group from the projection onto the (co-)root lattice.

To corroborate the equivalence of the two approaches, we describe in the following the

precise identification of the momentum lattices with string junctions on 7-brane configurations

with zero or one O7+-plane.

12Note that Λ∗

Narain = ΛNarain is self-dual while Λ∗

Mikhailov ≠ ΛMikhailov is not.
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Narain lattice from junctions

To construct the Narain lattice (4.19) from junctions, it is easiest to find a 7-brane configu-

ration in which the two (−E8) factors are manifest via the root junctions on two e8 7-brane

stacks, and make use of the fact that the lattice structure does not change as we move 7-branes.

Each of these e8 stacks contains ten 7-branes, leaving a remaining four branes to specify the

compact type IIB background. A convenient configuration of this sort has been presented in

Section 7 of [70], and takes the form

A(A7BCC)X[3,1]A
′(A7BCC)′X′

[3,1] , (4.22)

up to possible SL(2,Z) conjugations. In fact, the above configuration has two identical parts,

consisting of A(A7BCC)X[3,1], each having a trivial SL(2,Z) monodromy.13 In addition, by

pushing the twelve branes onto a single stack, one enhances the symmetry to the so-called

double loop algebra ê9, whose significance we will explain further in Section 5. In an F-

theory description, one may interpret this configuration as a stable degeneration limit of the

elliptically-fibered K3 into two dP9 surfaces.

Note that for e8, whose extended weights (2.29) are physical, roots and weights junctions

agree, so the span of all physical string prongs on each e8 stack (with decomposition as in

(2.30)) contains two copies of the (−E8)-lattice. Next we need to find the factor U ⊕U in the

orthogonal complement of the e8 root lattices. A convenient set of generators for these two

hyperbolic lattices can be expressed as14

U ∶ (δ(1,0) ,δ(1,0) + x[3,1] − x′
[3,1]) ,

U ∶ (δ(3,1) ,δ(3,1) − a + a′) .
(4.23)

Here δ(r,s) = `(r,s) denotes a (r, s)-string loop around one A(A7BCC)X[3,1] configuration,

which has no asymptotic charge since this stack has no overall monodromy. Its orthogonality

to the e8 root lattice is evident from the fact that this junction has no prongs on any of the two

stacks. Note that, as is evident from Figure 6, such a loop automatically encircles the other

A(A7BCC)X[3,1] configuration. Using Hanany–Witten transition one can rewrite them in

terms of integer strings ending on the brane constituents in the interior (say, on the left in

Figure 6), e.g.,

δ(1,0) = 3ωe8
p +ωe8

q − x[3,1] ,

δ(3,1) = −a +ωe8
p ,

(4.24)

or equivalently for the primed stack.

13Note however that the Spin cover of the monodromy is non-trivial and given by (−1)F ∈ Mp(2,Z), see
e.g. [71–73].

14This is the same result as in [70] (see their Figure 8).
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Figure 6: String junction lattice for rank (2,18) theories.

This accounts for a rank 20 sublattice (−E8)⊕2 ⊕ U⊕2 of the full string junction lattice

Jel
phys. The remaining two directions are spanned by the global null junctions JNint, for which

the canonical basis is

δN
(1,0) = −(3ω

e8
p +ωe8

q ) + x[3,1] − (3ωe′8
p +ωe′8

q ) + x′
[3,1] ,

δN
(0,1) = −a + 10ωe8

p + 3ωe8
q − 3x[3,1] − a′ + 10ω

e′8
p + 3ω

e′8
q − 3x′

[3,1] .
(4.25)

Since these have trivial pairing with all physical junctions, the lattice pairing of the above

generators (including the e8 roots and those of the U -lattices) desecend, without modification,

to the quotient

Λc =
Jel

phys

JN,el
int

=
(−E8)⊕2 ⊕U⊕2 ⊕ JN,el

int

JN,el
int

≅ ΛNarain . (4.26)

Since there are no O7+-planes, the 5-brane junction lattices are the same as their stringy

counterparts, so we immediately find

Λcc = Jmag
phys/J

N,mag
int ≅ Jel

phys/J
N,el
int ≅ ΛNarain = Λ∗

Narain . (4.27)

Mikhailov lattice from junctions

The Mikhailov lattice describing the momentum lattice for the 8d CHL string is obtained as

follows. We keep one of the ê9 configurations unchanged, which still leads to an (−E8) factor

in the string junction lattice. On the other side, we remove a C brane from the e8 stack, but

add to it the singlet A-brane, which leads to an so16 brane stack, which we then “freeze” into

an O7+-plane:

AE8X[3,1] = A(A7BCC)X[3,1] → (A8BC)CX[3,1] →O7+CX[3,1] . (4.28)
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The resulting complete 7-brane configuration,

O7+CX[3,1]A
′(A7BC2)X′

[3,1] , (4.29)

and is depicted in Figure 7. The total rank of the junction lattice is now 14.
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O7+

Figure 7: String junction lattice for rank (2,10) theories.

Inside the string junction lattice Jel
phys of this configuration, we now need to identify U ⊕

U(2) orthogonal to the e8 roots. Given the similarities to the rank (2,18) configuration, a

natural choice for the generators would be a variation of (4.23). While the first set exists

also for the frozen configuration, the second U -factor has a generator with a single a-prong,

which would become part of the O7+, and not be physical. Therefore, the set of generators

orthogonal to the E8 root lattce are

U ∶ (δ(1,0) ,δ(1,0) + x[3,1] − x′
[3,1]) ,

U(2) ∶ (δ(3,1) ,2δ(3,1) + 2ωO7+

p − 2a′) ,
(4.30)

where the second generator of U(2) is primitive because of the evenness condition for strings

ending on O7+. These have an equivalent representation with

δ(1,0) = 2ωO7+

p + c − x[3,1] ,

δ(3,1) = −2ωO7+

p − 2ωO7+

q + 2c .
(4.31)

After quotienting out the global null junctions JN,el
phys, with generators

δN
(1,0) = −2ωO7+

p − c + x[3,1] − (3ωe′8
p +ωe′8

q ) + x′
[3,1] ,

δN
(0,1) = 4ωO7+

p − 2ωO7+

q + 5c − 3x[3,1] − a′ + 10ω
e′8
p + 3ω

e′8
q − 3x′

[3,1] ,
(4.32)

one finds

Λc ≅ (−E8) ⊕U ⊕U(2) = ΛMikhailov . (4.33)
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In this case it is interesting to also analyze the 5-brane junctions that correspond to the dual

lattice. Here, it is important to remember that 5-branes have different physicality conditions,

which allow for an arbitrary integer number of them to end on the O7+-plane. This does not

affect the e8 root junctions, and the U -factor in (4.30), but does imply that δ(3,1) in (4.31) is

no longer a primitive 5-brane junction. Instead, it is a multiple of

1
2δ(3,1) = δ(3/2,1/2) = −ωO7+

p −ωO7+

q + c . (4.34)

This implies that the there is an overlattice of U(2) in (4.30) inside the physical 5-brane

junction lattice, given by

U(1
2) ∶ (1

2δ(3,1) ,δ(3,1) +ω
O7+

p − a′) . (4.35)

Note that the null junction lattice spanned by (4.32) remain primitive as a sublattice of Jmag
phys.

Therefore one has for the magnetic 5-brane junction lattice

Λcc = (−E8) ⊕U ⊕U(1
2) = Λ∗

Mikhailov , (4.36)

which precisely coincides with the dual of the Mikhailov lattice (4.21).

4.3 A rank (2,2) momentum lattice

8d rank (2,2) string vacua have no known constructions as T 2- or S1-reductions of the heterotic

or CHL string. However, using the junctions, we propose an analogue of a momentum lattice

description, which can be applied, in particular, to determine the gauge group topologies of

these theories. To this end, we start with a 7-brane configuration with two O7+’s, that we

obtain from further freezing an so16 stack on the primed side of (4.22). The overall brane

configuration is then given by

O7+CX[3,1]O7+
′
C′X′

[3,1] , (4.37)

and is depicted in Figure 8.

The string junction lattice in this case has rank 6, whose non-null directions are isomorphic

to

U ⊕U(2) . (4.38)

The explicit generators in terms of physical string junctions are given by

U ∶ (δ(1,0) ,δ(1,0) + x[3,1] − x′
[3,1]) ,

U(2) ∶ (δ(3,1) ,2δ(3,1) + 2ωO7+

p − 2ωO7+′

p ) ,
(4.39)
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Figure 8: String junction lattice for rank (2,2) theories.

where the loop junctions satisfy the same relation as in (4.31). The string null junctions JN,el
phys

have generators

δN
(1,0) = −2ωO7+

p − c + x[3,1] − 2ωO7+′

p − c′ + x′
[3,1] ,

δN
(0,1) = 4ωO7+

p − 2ωO7+

q + 5c − 3x[3,1] + 4ωO7+′

p − 2ωO7+′

q + 5c′ − 3x′
[3,1] .

(4.40)

The full physical string junction lattice is therefore Jel
phys = U ⊕U(2) ⊕ JN,el

phys.

As for the rank (10,2) case above, we find that for 5-branes the U(2) turns into a U(1
2), i.e.,

Jmag
phys = U ⊕U(1

2)⊕J
N,mag
phys . A novel modification that will affect the gauge group computation

is that also the null junctions are refined. Namely, the generators of JN,mag
phys are

1
2(δ

N
(1,0) + δ

N
(0,1)) = δ

N
(1/2,1/2) = ω

O7+

p −ωO7+

q + 2c − x[3,1] +ωO7+′

p −ωO7+′

q + 2c′ − x′
[3,1] ,

1
2(δ

N
(1,0) − δ

N
(0,1)) = δ

N
(1/2,−1/2)

= −3ωO7+

p +ωO7+

q − 3c − 2x[3,1] − 3ωO7+′

p +ωO7+′

q − 3c′ + 2x′
[3,1] .

(4.41)

In summary, after modding out the null junctions, we have

Λc = U ⊕U(2) , Λcc = U ⊕U(1
2) = Λ∗

c . (4.42)

4.4 Examples

Using the techniques outlined in Section 4.1, we can determine the brane configurations and

the resulting gauge group topologies for all 8d N = 1 string vacua. This is done explicitly for all

maximally-enhanced cases on each branch of the moduli space, as summarized in Appendix C.

In the following we demonstrate the general procedure in specific examples. For convenience,

we focus 8d theories that were discussed in [52, 34] from the perspective of the heterotic or

CHL momentum lattice. The generalization to rank (2,2) theories is, to our knowledge, the

first time in the literature the global gauge group topology has been computed for these string

vacua.
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4.4.1 A rank (2,18) example

The non-Abelian gauge algebra of the model is given by

g = so20 ⊕ su4 ⊕ su4 ⊕ su2 ⊕ su2 , (4.43)

which can be generated by the following brane configuration:

(A10BC)N4X4
[1,3]X

2
[2,5]C

2 . (4.44)

Note that for a consistent overall monodromy, the su algebras are not associated to a stack

of A-branes, but rather in some SL(2,Z) conjugated frame. Accordingly, the associated

extended weight junctions summarized in (2.29) need to be conjugated, and are given by

so20 (A10BC) ∶ ωp = 1
2(b + c) , ωq = 1

2

10

∑
i=1

ai − 3b − 2c ,

su4 (N4) ∶ ω(0,1) = 1
4

4

∑
i=1

ni ,

su4 (X4
[1,3]) ∶ ω(1,3) = 1

4

4

∑
i=1

x[1,3],i ,

su2 (X2
[2,5]) ∶ ω(2,5) = 1

2

2

∑
i=1

x[2,5],i ,

su2 (C2) ∶ ω(1,1) = 1
2

2

∑
i=1

ci ,

(4.45)

where ω(p,q) is the extended weight of the corresponding su-stack with asymptotic ( pq )-charge.

In terms of these extended weights the two linearly independent integer null junctions are given

by

δN
(1,0) = −2ωp − 4ω(0,1) + 4ω(1,3) − 2ω(2,5) + 2ω(1,1) ,

δN
(0,1) = 6ωp − 2ωq + 24ω(0,1) − 20ω(1,3) + 8ω(2,5) − 2ω(1,1) .

(4.46)

Notice how, in both junctions, the greatest common divisor of the coefficients is 2. Therefore,

the fractional null junctions are generated by

JN,mag
frac = {λN

(1,0) δ
N
(1,0) + λ

N
(0,1) δ

N
(0,1) ∣ λN

(1,0), λ
N
(0,1) ∈ 1

2Z} , (4.47)

and the global realization of the non-Abelian gauge group is determined by

Z = J
N
frac

JNint

=
{x2δ

N
(1,0) ∣ x ∈ Z}
(δN

(1,0)
)

×
{y2δ

N
(1,0) ∣ y ∈ Z}
(δN

(0,1)
)

≅ Z2 ×Z2 . (4.48)
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Moreover, the coefficients in front of the extended weights in 1
2δ

N determine, according to

(2.33), the generators of Z ⊂ Z(Spin(20)) ×Z(SU(4))2 ×Z(SU(2))2 to be

1
2δ

N
(1,0) ≃ (1,0; 2; 2; 1; 1) ∈ (Z2 ×Z2) ×Z4 ×Z4 ×Z2 ×Z2 ,

1
2δ

N
(0,1) ≃ (1,1; 0; 2; 0; 1) ∈ (Z2 ×Z2) ×Z4 ×Z4 ×Z2 ×Z2 .

(4.49)

Beyond the non-Abelian gauge factors, the theory contains two gravi-photons generating

two u(1) gauge factors. These arise from Abelian junctions (4.7) that are not null junctions,

which for the present model can be easily determined, from (4.45), to be linear combinations

of

u1 = 4(ω(0,1) +ω(1,3) −ω(2,5) +ω(1,1)) ≡ 4v1 ,

u2 = 4(ω(0,1) −ωq) ≡ 4v2 .
(4.50)

va, while themselves non-physical, can be made physical by adding coweight junctions, so

lie in PA(Jmag
phys). At the same time, there are no “finer” coweights to make fractions of va

physical, so va generate PA(Jmag
phys). Then, the Abelian quotient Z ′, according to (4.18), is

Z ′ =
PA(Jmag

phys)
Jmag
A

= {xv1 ∣ x ∈ Z}
(u1)

× {yv2 ∣ y ∈ Z}
(u2)

= Z4 ×Z4 . (4.51)

The generators of Z ′ are

v1 ≃ (0,0; 1; 1; 1; 1 ∣ eiπ/2; 1) ∈ (Z2 ×Z2) ×Z4 ×Z4 ×Z2 ×Z2 ×U(1)1 ×U(1)2 ,

v2 ≃ (0,1; 1; 0; 0; 0 ∣ 1; eiπ/2) ∈ (Z2 ×Z2) ×Z4 ×Z4 ×Z2 ×Z2 ×U(1)1 ×U(1)2 ,
(4.52)

where we have used a vertical line to separate the finite groups from the U(1)’s, whose trivial

element is 1.

Consequently, the global form of the gauge group is given by

[(Spin(20) × SU(2)2 × SU(4)2) / (Z2 ×Z2)] ×U(1)2

Z4 ×Z4
, (4.53)

in perfect agreement with the heterotic analysis in [34].

4.4.2 A rank (2,10) example

Since the brane configuration above already containes an so16 stack we can simply reinterpret

this as an O7+-plane, leading to the brane configuration

(A2O7+)N4X4
[1,3]X

2
[2,5]C

2 . (4.54)
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This setup has a non-Abelian gauge algebra given by

g = sp2 ⊕ su4 ⊕ su4 ⊕ su2 ⊕ su2 , (4.55)

leading to a model with rank (2,10) dual to a specific CHL background. Except for the sp

factor, the extended weights are the same as in (4.45). For the sp algebra one has

sp2 (A2O7+) ∶ ωp = ωO7+

p , ωq = 1
2(a1 + a2) −ωO7+

p +ωO7+

q . (4.56)

Formally, the global null junctions δN
(p,q) are the same as in (4.46), except that the ωp,q

appearing there are now the extended weight junctions of sp. Again, we can divide both by

2, obtaining the fractional 5-brane junctions

JN,mag
frac = {λN

(1,0) δ
N
(1,0) + λ

N
(0,1) δ

N
(0,1) ∣ λN

(1,0), λ
N
(0,1) ∈ 1

2Z} , (4.57)

implying Z ≅ Z2 ×Z2, with generators

1
2δ

N
(1,0) ≃ (0; 2; 2; 1; 1) ∈ Z2 ×Z4 ×Z4 ×Z2 ×Z2 = Z(Sp(2) × SU(4)2 × SU(2)2) ,

1
2δ

N
(0,1) ≃ (1; 0; 2; 0; 1) ∈ Z2 ×Z4 ×Z4 ×Z2 ×Z2 = Z(Sp(2) × SU(4)2 × SU(2)2) ,

(4.58)

where the entry for Z2 = Z(Sp(2)) is determined only by the coefficient in front of ωq, see

(3.21).

In a similar way, there are two u(1) generators that formally are the same as in (4.50).

Since (u1,v1) have no prongs on the sp stack, we get a Z4 factor in Z ′, with generator

v1 ≃ (0; 1; 1; 1; 1 ∣ eiπ/2; 1) ∈ Z2 ×Z2
4 ×Z2

2 ×U(1)1 ×U(1)2 . (4.59)

Moreover, since v2 has an order-4 prong that is not on the O7+, physicality conditions do not

change the fact that we obtain another Z4 factor in Z ′, now with generator

v2 ≃ (1; 1; 0; 0; 0 ∣ 1; eiπ/2) ∈ Z2 ×Z2
4 ×Z2

2 ×U(1)1 ×U(1)2 . (4.60)

To summarize, the global gauge group of this rank (2,10) model is

[(Sp(2) × SU(2)2 × SU(4)2) / (Z2 ×Z2)] ×U(1)2

Z4 ×Z4
, (4.61)

agreeing with the CHL result computed in [34].

4.4.3 A rank (2,2) example

The rank (2,2) moduli branch has six special points with non-Abelian symmetry enhancements

[35]. We have enumerated the 7-brane configurations for all of these, as well as the resulting
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gauge group topologies in Appendix C.4.

It turns out that there is only one whose non-Abelian gauge group is non-simply-connected.

For illustration, we consider this example in more detail. The brane configuration is

O7+O7+
′
B2C2 , (4.62)

where the monodromy of the O7+
′

is SL(2,Z) conjugated to be ( 7 16
−4 −9 ).15 Notice that, since

the extended weights of O7+ generate all ( pq )-charges, whose parity is invariant under SL(2,Z)
conjugation, we use the canonical basis ωO7+′

p,q for the O7+
′
, which have ( 1

0 ) and ( 0
1 ) prongs,

respectively.

The non-Abelian gauge algebra of (4.62) is su2 ⊕ su2, with extended weights

su2 (B2) ∶ ω(1,−1) ≡ ωb = 1
2(b1 + b2) ,

su2 (C2) ∶ ω(1,1) ≡ ωc = 1
2(c1 + c2) .

(4.63)

The physical 5-brane null junctions JN,mag
phys (see (4.41)) are then

δN
(1/2,1/2) = ω

O7+

p −ωO7+

q +ωO7+′

p −ωO7+′

q − 2ωb ,

δN
(1/2,−1/2)

= −3ωO7+

p +ωO7+

q − 7ωO7+′

p + 5ωO7+′

q + 8ωb + 2ωc ,
(4.64)

from which we find that the fractional null junctions JN,mag
frac is generated by

1
2
(δN

(1/2,1/2) + δ
N
(1/2,−1/2)

) = δN
(1/2,0) = −ω

O7+

p − 3ωO7+′

p + 2ωO7+′

q + 3ωb +ωc . (4.65)

It corresponds to the generator

(3 mod 2,1 mod 2) = (1,1) ∈ Z2 ×Z2 = Z(SU(2) × SU(2)) (4.66)

of Z = JN,mag
frac /JN,mag

phys = Z2.

Together with the null junctions, the Abelian junction lattice Jmag
A is generated by

u1 = 2v1 = 2( −ωO7+

p +ωO7+

q +ωb) , u2 = 2v2 = 2( −ωO7+

p −ωO7+

q +ωc) . (4.67)

Clearly, this leads to Z ′ = Z2 ×Z2, with generators

v1 ≃ (1; 0 ∣ − 1; 1)
v2 ≃ (0; 1 ∣ 1;−1)

⎫⎪⎪⎬⎪⎪⎭
∈ Z2 ×Z2 ×U(1)1 ×U(1)2 = Z(SU(2)B × SU(2)C ×U(1)1 ×U(1)2) .

(4.68)

15This can be viewed as freezing both so16 algebras of the rank (2,18) configuration
(A8BC)(X8

[2,−1]BX[3,−1])B
2C2.
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The full gauge group is thus

[SU(2) × SU(2)]/Z2 ×U(1)2

Z2 ×Z2
. (4.69)

5 9d vacua via affine 7-brane stacks

Recently, it was argued that one can recover any 9d N = 1 string vacuum with gauge rank

(1,17) from F-theory on a suitably degenerated K3 geometry that lies at infinite distance in

the complex structure moduli space [27,28]. As shown in these works, such decompactification

limits have a particularly convenient description in terms of [p, q]-7-branes and junctions that

realize affine algebras. In the following, we demonstrate how the methods from the previous

sections naturally apply also to these limiting configurations, and compute the 9d gauge group

topologies for rank (1,17) vacua.

Since the affinization is characterized entirely by the SL(2,Z) monodromy, a natural propo-

sition is that these configurations also describe 9d uplifts when we include O7+-planes. In-

deed, (after resolving an ambiguity by string dualities) this straightforwardly reproduces the

landscape of 9d rank (1,9) vacua [52], including their global gauge group structures. More-

over, applying the same reasoning to configurations with two O7+’s, we consistently find two

branches of 9d rank (1,1) vacua [54], which are only connected through circle-reductions to

8d.

The key ingredient that enters the description for all ranks are 7-brane stacks realizing an

affine Lie algebra êk, which we will now briefly recall.

As found in [74,75,70], the en and ẽn algebras can be enhanced to their affine versions, by

including a specific 7-brane on top:

Ên≥1 =An−1BC2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
En

X[3,1] = An−1BCBC ,

̂̃En≥0 =AnX[2,−1]C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ẽn

X[4,1] .
(5.1)

Note that for n ≥ 2, these are equivalent up to 7-brane moves and SL(2,Z) conjugations [75].

It is straightforward to check that, in this SL(2,Z)-frame, they have monodromy

M(Ên) =M(̂̃En) =
⎛
⎝

1 9 − n
0 1

⎞
⎠
. (5.2)

The hallmark of these stacks is the existence of a special loop junction δ(1,0) ≡ δ around them

(with no asymptotic charge), satisfying (δ,δ) = (δ,αi) = 0, with αi the root junctions of En
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or Ẽn. By a Hanany–Witten transition, one finds the equivalent presentation [70]

δÊ = x[3,1] − b − c1 − c2 = b2 + c2 − b1 − c1 , δ̂̃E
= x[4,1] − 2c − x[2,−1] . (5.3)

Representation theoretically, δ plays the role of the imaginary root required for the affiniza-

tion of en or ẽn. They generate an infinite dimensional Kac–Moody algebra with roots

{α+ kδ ∣k ∈ Z}, where α is any root of en or ẽn. When we seperate the affinizing X-branes in

(5.1) from the en or ẽn stacks, these junctions, as strings, give rise to BPS states with masses

proportional to k. In the affine limit, we thus obtain an infinite tower of massless BPS states.

Physically, string junctions of these type give rise to an infinite tower of massless BPS states.

A special extension exists for n = 8. Here, by adding an A-brane from the left to the Ê8 or
̂̃E8, the monodromy becomes 1 ≡M(Ê9) =M(̂̃E9). This would give rise to two independent

towers of massless BPS states from loops of ( 1
0 ) and ( 0

1 ) string junctions, which lead to the

double loop enhancement of e8. These special enhancements reflect a decompactification to

10d [27, 28]. For discussions of 9d vacua, we will not consider such double loop brane-stacks,

but the necessary constituent branes form one half of the rank (2,18) configuration (4.22)

that correspond geometrically to the singular fibers of a dP9 surface.

Among the various types of infinite distance limits of F-theory compactified on K3 surfaces,

those describing decompactification from 8d to 9d are captured by so-called Kulikov models

of type III.a [27, 28]. In these geometries, the complex structure moduli have been tuned

such that the K3 degenerates into a collection of intersecting elliptic and/or rational surfaces.

While we refer to those references for details, the relevant fact about these deformations is

that they correspond to brane motions which generate one or two 7-brane stacks carrying an

ên or ̂̃en algebra (with n ≤ 8). The tower of massless states from the imaginary root may then

be identified with the momentum states of a Kaluza–Klein (KK) tower on a circle whose size

becomes infinite at the infinite distance limit. In the case with two affine stacks, the individual

imaginary root junctions turn out to be identical in the global setting, consistent with having

just one KK-tower [28].

5.1 Global structure of 9d vacua of rank 17

As for the classification of 8d vacua, one can also categorize all brane configurations with

such affine stacks. Then, if the non-Abelian brane stacks correspond to the algebra h⊕ Ên or

h⊕Ên⊕Êm (where E = e or ẽ) for some finite semi-simple, simply-laced algebra h, the associated

non-Abelian gauge algebra in 9d is h⊕En or h⊕En⊕Em, respectively [27,28]. This reproduces,

e.g., all the maximally enhanced non-Abelian algebras (i.e., with rank 17) determined in the

dual heterotic frame [29].

To also analyze the gauge group topologies in this description, we need to examine the full

junction lattice, including the branes away from the affine stack. An important detail here
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is that the overall gauge rank reduces by 2 as we decompactify from 8d to 9d, corresponding

to the re-interpretation of the KK-states (which become massless) and the decoupling of the

winding states (which become infinitely heavy) as we increase the size of the compactification

circle. In the momentum lattice description of the 8d and 9d theories of rank (2,18) and

(1,17), respective, we have

Λhet
8d = Λhet

9d ⊕U ⇒ Λhet
9d ≅ Λhet

8d /U , (5.4)

with U the rank 2 hyperbolic lattice that is spanned by the KK and winding states. Since

the momentum lattice is equivalently described by junctions Jel
phys = J

mag
phys ≅ Λhet

8d ⊕ JNphys, with

the KK-tower being generated by the junction δ, there must exist another non-null junction

ε that generates this U factor with δ, i.e., satisfying

(δ, ε) = 1 , (δ,δ) = (ε, ε) = (δ, j) = (ε, j) = 0 , (5.5)

for j any (co-)weight or (co-)root junction, or a non-null generator of the Abelian junctions

JA. Such a ε-junction always exists, but the details depend on the specific configuration.

Since the junction lattice reproduces the 9d momentum lattice, it must also encode the

global structure of the gauge group. In particular, it allows us to use the intuition in terms of

fractional null junctions to re-derive the results of [29]. Let us demonstrate this for 9d models

with maximally enhanced non-Abelian symmetries, for which there are two classes of 8d brane

configurations [28].

In the first class, the non-Abelian algebra (with the place holder E = e or ẽ) is

g8d,∞ = su18−m−n ⊕ Êm ⊕ Ên ⇒ g9d = su18−m−n ⊕ Em ⊕ En, m,n ∈ {0,1,3, . . . ,8} , (5.6)

whose brane configurations (together with the U -lattice generators) are

m ≥ n ≥ 1 ∶ A18−m−n(

Êm³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Am−1X[n−10,1]X

2
[n−8,1]X[n−6,1])(

Ên³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
An−1BC2X[3,1]) ,

(δ, ε) = (δR
(1,0), (n − 5)δR

(1,0) + `
R
(0,1) + x[n−6,1] − x[3,1]) ,

(5.7a)

m = 1, n = 0 ∶ A17(

Ê1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X[10,−1]X

2
[8,−1]X[6,−1])(

̂̃E0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X[2,−1]CX[4,1]) ,

(δ, ε) = (δR
(1,0), −17ωA + x[10,−1] + 2x[4,1] − c) ,

(5.7b)

m > n = 0; m ≠ 1 ∶ A18−m(

̂̃Em≠1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
AmX[11,−1]X[8,−1]X[5,−1])(

̂̃E0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X[2,−1]CX[4,1]) ,

(δ, ε) = (δR
(1,0), −δR

(1,0) + x[5,−1] − 2x[2,−1] − c) .

(5.7c)

where δR and `R are loop junction that encircle counterclockwise around the second affine
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stack. Note that, because the ( 1
0 ) loop is mutually-local with respect to the A-branes, it is

evident that, by pulling δ(1,0) across these, one obtains a loop junction around the other affine

stack, showing explicitly that imaginary roots of each affine stack are identical.

The second class has non-Abelian gauge algebras

g8d,∞ = so34−2k ⊕ Êk ⇒ g9d = so34−2k ⊕ Ek , 0 ≤ k ≤ 8, k ≠ 2 , (5.8)

whose brane configurations (and U -lattice generators) are

k = 1,3, . . . ,8 ∶ (

D17−k³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
A17−kX[k−10,1]X[k−8,1])X[k−8,1](

Êk³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ak−1BC2X

(1)
[3,1]

)X(2)
[3,1]

,

(δ, ε) = (δR
(1,0), δ

R
(1,0) + x

(1)
[3,1]

− x
(2)
[3,1]

)

(5.9a)

k = 0 ∶ (

D17³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
A17X[10,−1]X

(1)
[8,−1]

)X(2)
[8,−1]

(

̂̃E0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X[2,−1]CX[4,1])X[3,1] ,

(δ, ε) = (δR
(1,0), −2δR

(1,0) + x
(2)
[8,−1]

− 3x[2,−1] − 2x[1,1]) ,
(5.9b)

again, with the imaginary root junction δR
(1,0) being the ( 1

0 )-loop around the affine stack to

the right.

By separating the X-brane responsible for the affinization from each affine stack, we obtain

a genuine 8d configuration. For these configurations, we can apply the same procedure as in

the previous section, and construct the global fractional null junctions that encode to the

cocharacters of the 8d gauge symmetry. Since the affinization (5.4) mods out by physical

junctions that are orthogonal to the root lattices of the 9d gauge factors, it does not affect the

coefficients of global null junctions in front of the extended weights. Therefore, the fractional

null junctions are the same for the 8d configuration as for its affinized version.

As a concrete example, consider (5.9a) with k = 7, which in 9d gives rise to g9d = so20 ⊕ e7.

Separating the singlet brane responsible for the affinization,

(A10X[−3,1]X[−1,1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D′

10

)X[−1,1] (A6BC2

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
E7

)X
(1)
[3,1]

X
(2)
[3,1]

, (5.10)

we find the so20-stack to have monodromy ( −1 6
0 −1 ) in this SL(2,Z) frame, with extended

weight junctions ω′p,q carrying asymptotic ( pq )-charges as follows:

ω′p ∶ ( 1
0 ) , ω′q ∶ ( −2

1 ) . (5.11)

The two global null junctions δN
(1,0) and δN

(0,1) can be then expressed in terms of the extended
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weights ω′p,q of so20 and ωp,q of e7 as

δN
(1,0) = −2ω′p − x[−1,1] − 5ωp −ωq + x

(1)
[3,1]

+ x
(2)
[3,1]

,

δN
(0,1) = 2ω′p − 2ω′q + 5x[−1,1] + 17ωp + 3ωq + x

(1)
[3,1]

+ x
(2)
[3,1]

.
(5.12)

It is easy to see that the fractional null junctions are then multiples of

1
2(δ

N
(1,0) + δ

N
(0,1)) = −ω

′

q + 2x[−1,1] + 6ωp +ωq + x
(1)
[3,1]

+ x
(2)
[3,1]

. (5.13)

By (2.33), this corresponds to the central element

(0,1; 1) ∈ Z2
2 ×Z2 = Z(Spin(20) ×E7), (5.14)

which leads to the 9d non-Abelian gauge group [Spin(20) ×E7]/Z2.

To determine the full gauge group, including the gravi-photon U(1), we must first find the

non-null generator of the Abelian junction lattice that is orthogonal to the U -lattice spanned

by (δ, ε). In this example, it can be easily determined (by avoiding prongs on the e7 stack or

the X[3,1] branes),

u = 2v = 2(ω′p +ω′q − x[−1,1]) , (5.15)

which immediately gives Z ′ = Z2, with generator

v ≃ (1,1; 0 ∣ eiπ) ∈ Z(Spin(20) ×E7 ×U(1)) . (5.16)

Therefore, the 9d gauge group is

[Spin(20) ×E7]/Z2 ×U(1)
Z2

. (5.17)

By analogous computations, we compute the non-Abelian gauge groups of all models with

maximally enhanced non-Abelian symmetry (summarized in Table 1), which agree with results

from the heterotic picture [29].

5.2 9d CHL vacua via junctions

Having reproduced the maximal rank branch of the 9d moduli space, we would like to extend

the junction method also to rank-reduced theories. We start by matching the known circle

compactification of the 9d CHL string in terms of junctions in the presence of a single O7+-

plane, focusing again on the cases with maximal non-Abelian gauge rank.

A key assumption here is that the decompactification limit of 8d vacua, even in the presence

of O7+-planes, is characterized by the appearance of singularities in the axio-dilaton profile

that induce SL(2,Z) monodromy of affine type. Though we do not have a proof for this,
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(g9d, π1(G9d)) FNJ (g9d, π1(G9d)) FNJ

g8d,∞ = su18−m−n ⊕ êm ⊕ ên

(e8 ⊕ e8 ⊕ su2,−) - (e6 ⊕ su3 ⊕ su2 ⊕ su9,Z3) δN
(0,1)/3

(e8 ⊕ e7 ⊕ su3,−) - (e6 ⊕ su2 ⊕ su11,−) -

(e8 ⊕ e6 ⊕ su4,−) - (e6 ⊕ su12,Z3) δN
(0,1)/3

(e8 ⊕ so10 ⊕ su5,−) - (so10 ⊕ so10 ⊕ su8,Z4) δN
(1,1)/4

(e8 ⊕ su5 ⊕ su6,−) - (so10 ⊕ su5 ⊕ su9,−) -

(e8 ⊕ su3 ⊕ su2 ⊕ su7,−) - (so10 ⊕ su3 ⊕ su2 ⊕ su10,Z2) δN
(1,−1)/2

(e8 ⊕ su9 ⊕ su2,−) - (so10 ⊕ su2 ⊕ su12,Z4) δN
(1,1)/4

(e8 ⊕ su10,−) - (so10 ⊕ su13,−) -

(e7 ⊕ e7 ⊕ su4,Z2) δN
(1,1)/2 (su5 ⊕ su5 ⊕ su10,Z5) δN

(1,2)/5
(e7 ⊕ e6 ⊕ su5,−) - (su5 ⊕ su3 ⊕ su2 ⊕ su11,−) -

(e7 ⊕ so10 ⊕ su6,Z2) δN
(1,−1)/2 (su5 ⊕ su2 ⊕ su13,−) -

(e7 ⊕ su5 ⊕ su7,−) - (su5 ⊕ su14,−) -

(e7 ⊕ su3 ⊕ su2 ⊕ su8,Z2) δN
(1,1)/2 ((su3 ⊕ su2) ⊕ (su3 ⊕ su2) ⊕ su12,Z6) δN

(3,1)/6
(e7 ⊕ su2 ⊕ su10,Z2) δN

(1,1)/2 ((su3 ⊕ su2) ⊕ su2 ⊕ su14,Z2) δN
(1,−1)/2

(e7 ⊕ su11,−) - ((su3 ⊕ su2) ⊕ su15,Z3 δN
(0,1)/3

(e6 ⊕ e6 ⊕ su6,Z3) δN
(0,1)/3 (su2 ⊕ su2 ⊕ su16,Z4) δN

(1,−1)/4
(e6 ⊕ so10 ⊕ su7,−) - (su2 ⊕ su17,−) -

(e6 ⊕ su5 ⊕ su8,−) - (su18,Z3) δN
(1,1)/3

g8d,∞ = so34−2k ⊕ êk

(e8 ⊕ so18,−) - (su5 ⊕ so26,−) -

(e7 ⊕ so20,Z2) δN
(1,1)/2 ((su3 ⊕ su2) ⊕ so28,Z2) δN

(1,1)/2
(e6 ⊕ so22,−) - (su2 ⊕ so32,Z2) δN

(1,1)/2
(so10 ⊕ so24,Z2) δN

(1,1)/2 (so34,−) -

Table 1: Non-Abelian gauge group G9d of all maximally-enhanced 9d rank (1,17) string
vacua, seen as dimensional uplifts of 8d string junction vacua. The generator of π1(G9d) ≅ Z`
is represented as a fractional null junction (FNJ) δN

(p,q)/` = δ
N
(p/`,q/`).

we expect the identification of the resulting loop junctions as the only BPS-tower compatible

with decompactification to be valid also with O7+-planes, given that the loop can be thought

of as a (p, q)-string that is only sensitive to the monodromy, but not the details of the 7-

branes. Moreover, as we will see below, the results following this assumption agree with the

momentum lattice description for the 8d and 9d CHL string [69,52].

Analogous to the procedure in previous sections of describing the O7+ as freezing a so16

stack in an “ordinary” rank (2,18) setting, we therefore focus on those brane configurations

in (5.7) and (5.9), whose non-Abelian stack can host a so16. This is only possible if the
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configuration includes a Dn≥8 or Ê8 brane stack. While for (5.7), there is only one rank

(2,18) configuration, with g8d,∞ = su2 ⊕ ê8 ⊕ ê8, there is an ambiguity for the class (5.9), in

that we can naively embed the O7+ inside the ê8 or the so stack. However, inspecting the set

of allowed string and 5-brane junctions reveals a striking difference between the two options.

If we embed the O7+ inside the so-stack, the freezing of the so16 subalgebra and the

modified boundary conditions for the junctions do not affect the U lattice. This is made

explicit in (5.9), since δ and ε junctions only have prongs on the affine stack, which remains

unmodified. On the other hand, if we would embed the O7+ inside an Ê8, then the freezing

procedure restricts the set of allowed string junctions to be orthogonal to the so16 roots,

and have even prongs on the orientifold plane. As we will explain in detail in Appendix B,

the result is that we can no longer consistently define a U -lattice from the allowed junctions.

Instead, the evenness condition can at most accommodate a stretched hyperbolic lattice U(2).
Based on the dual CHL string description, we propose that only the embeddings with a

modified U lattice gives a consistent 9d uplift. Namely, unlike the maximal rank case, the

momentum lattice ΛCHL
8d ≅ (−E8) ⊕U ⊕U(2) of 8d CHL vacua is no longer self-dual, whereas

the corresponding 9d lattice ΛCHL
9d ≅ (−E8) ⊕ U is [69]. The additional U(2) in 8d arises

from the winding and KK-states of the CHL string, and must therefore be represented in

terms of the imaginary root junction around the affine stack, and another string junction that

emanates from it. If we embed the O7+ inside the D17−k stack of (5.9) instead, we would

have an unstretched U -lattice for winding and KK-states. Moreover, if we would naively

identify the would-be 9d gauge algebra with that of 8d (replacing the affine symmetry with

its non-affine version), this kind of embedding would lead to an sp algebra in 9d, which again

is not compatible with the CHL string. While these arguments provide strong evidence in

favor of the proposal, we leave a rigorous proof for future works, and discuss the resulting

characterization of 9d CHL vacua in terms of string junctions.

Let us start from the 8d rank (2,18) configuration (5.7a) with n = 8, which, if we moved

X[2,1] from Êm across the branch cut of Ên=8, becomes (5.9a) with k = 8. Using the brane

moves described in Appendix B, we can turn the Ê8 into an SL(2,Z)-conjugated E9 stack:

A10−m(

Êm³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Am−1X[−2,1]X

2
[0,1]X[2,1])

D′

8³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X8

[0,1]X[1,4]X[1,2] X[1,2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E′

9≅Ê8

. (5.18)

The Êm stack can be conjugated by g = ( 1 1
0 1 ) to obtain the standard form from Section 2. In

particular, this means that the standard extended weight junctions now carry asymptotic ( pq )
charge given as

ωem
p ∶ g−1 ( 1

0 ) = ( 1
0 ) , ωem

q ∶ g−1 ( 0
1 ) = ( −1

1 ) . (5.19)
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The D′

8 stack can be conjugated by g′ = ( 3 −1
1 0 ) to the standard representation, g′M(D′

8)g′
−1 =

M(A8BC). Introducing the O7+, i.e., X8
[0,1]X[1,4]X[1,2] → O7+

′
(where we use the prime to

denote the non-standard SL(2,Z)-frame), we obtain

A10−m(

Êm³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Am−1X[−2,1]X

2
[0,1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Em

X[2,1])O7+
′

X[1,2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼E′

9≅Ê8

. (5.20)

Compared to the standard presentations discussed in Section 2 (i.e., where the monodromy of

O7+ is M(O7+) = ( −1 4
0 −1 )), the O7+ monodromy in this SL(2,Z) frame is

M(O7+
′) = g′−1

M(O7+)g′ = ( −1 0
−4 −1 ) , (5.21)

and the standard extended weights ωO7+

p,q have asymptotic ( pq )-charges

ω′p ∶ g′
−1 ( 1

0 ) = ( 0
−1 ) , ω′q ∶ g′

−1 ( 0
1 ) = ( 1

3 ) , (5.22)

for which the pairing relations (3.4) hold. We can pull the imaginary root junction δ ≡ δR
(1,0)

across the branch-cuts, and obtain the equivalence

δ = 2(−ω′p −ω′q + x[1,2]) , (5.23)

which consistently has only even number of prongs on O7+
′
. Moreover, the pairings are

(ω′p,x[1,2]) = −(ωO7+

q ,x[1,2]) = 1
2 , and assert, together with (3.4), that (δ,δ) = 0. The ε-

junction from (5.7a) cannot be realized as a string junction in the presence of the O7+, because

it requires a net ( pq ) = ( 3
1 ) charge to end on O7+

′
X[1,2] (see Appendix B for details). Instead,

the prongs of any physical string junction on the O7+
′
X[1,2] stack must be

2λpω
′

p + 2λqω
′

q + λx[1,2] , λp,q, λ ∈ Z , (5.24)

which necessarily has even q-charge, as well as even pairing with δ. This means that, orthog-

onal to the su10−m ⊕ em weight junctions in (5.20), we must have a U(2) lattice, spanned by

string junctions δ and ε′ = −δ + 6ω′p + 4x[1,2] − 2x[2,1].

In the magnetically dual picture, any integer number of 5-brane prongs can end on O7+
′
.

In particular, 5-brane junctions corresponding to 1
2δ and 1

2ε
′ are then physical, and would

span a squeezed hyperbolic lattice U(1
2). This is consistent with the fact that in the 9d uplift

of CHL vacua, the momentum lattice “loses” a U(1
2) factor [69]:

(ΛCHL
8d )∗ ≅ (−E8) ⊕U ⊕U(1

2) , (ΛCHL
9d )∗ ≅ ΛCHL

9d ≅ (−E8) ⊕U . (5.25)

The remaining moduli available in 9d are then the deformations that move the 7-branes out-
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side the O7+
′
X[1,2] stack. The resulting maximal non-Abelian enhancements can be equally

characterized by an 8d configuration of type (5.7a) (with n = 8) or (5.9a) (with k = 8), but

with Ê8 frozen via the embedding of an O7+ described above (as summarized in Table 2).

The null junctions for (5.20) are

δN
(1,0) = −3ωem

p −ωem
q + x[2,1] − 2ω′p − 2ω′q + 2x[1,2] ,

δN
(0,1) = (m − 10)ωsu + (18 −m)ωem

p + 3ωem
q − 3x[2,1] + 4ω′p + 2ω′q − x[1,2] ,

(5.26)

from which one can straightforwardly determine the non-Abelian gauge group structure for

specific m. It so happens that they are all trivial in the maximally enhanced cases, which

agrees with the CHL-string computations [52].

gCHL
9d π1(G9d) g8d,∞ 8d brane config.

su10 0 su10 + ê8 (5.7c), n = 8

su9 ⊕ su2 0 su9 ⊕ ê1 ⊕ ê8 (5.7c), m = 1, n = 8

su7 ⊕ su2 ⊕ su3 0 su7 ⊕ ê3 ⊕ ê8 (5.7a), m = 3, n = 8

su6 ⊕ su5 0 su6 ⊕ ê4 ⊕ ê8 (5.7a), m = 4, n = 8

su5 ⊕ so10 0 su5 ⊕ ê5 ⊕ ê8 (5.7a), m = 5, n = 8

su4 ⊕ e6 0 su4 ⊕ ê6 ⊕ ê8 (5.7a), m = 6, n = 8

su3 ⊕ e7 0 su3 ⊕ ê7 ⊕ ê8 (5.7a), m = 7, n = 8

su2 ⊕ e8 0 su2 ⊕ ê8 ⊕ ê8 (5.7a), m = 8, n = 8

so18 0 so18 ⊕ ê8 (5.9a), k = 8

Table 2: Maximal non-Abelian enhancements on the 9d rank (1,9) moduli space that has a
dual description in terms of the CHL string, obtained from an affine 8d realization in which
an ê8 is frozen. Note that all cases have trivial non-Abelian gauge group topology π1(G9d).

5.3 Disconnected moduli branches for 9d rank (1,1) vacua

The description of 9d rank (1,9) theories presented above has a clear interpretation in terms of

“freezing”, i.e., introducing an O7+-plane into the 7-brane system that describes a rank (1,17)
theory. In parallel to the construction of 8d vacua discussed in Section 4, it then is natural to

propose that 9d rank (1,1) theories arise by a further freezing. Moreover, the duality to the

CHL string strongly suggests that, in 9d, the freezing process requires an ê8 affine algebra, in

which the e8 root junctions, as well as odd multiples of the winding-state-junction (i.e., ε) are

projected out. Therefore, from the maximally-enhanced cases in Table 2, only the second to

last (with brane configuration (5.20)), but not the last entry, can undergo a further freezing.

After repeating the brane motions discussed in Appendix B, now for the first affine stack
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in (5.20), the corresponding (doubly) frozen configuration looks like

AA (Õ7+X[1,−2]) (O7+
′
X[1,2]) , (5.27)

where the M(Õ7+) = ( 3 4
−4 −5 ) is the monodromy of the left O7+-plane in this SL(2,Z)-frame.

We obtain an enhanced g = su2 non-Abelian symmetry when the two A-branes are moved on

top of each other, which is the maximal enhancement we can have in 9d. In fact, if one could

separate the two X-branes from their corresponding O7+ (making the KK modes massive),

and move them next to each other, they would be locally-mutual, thus allowing for another

su2 enhancement — this would be nothing but the 8d rank (2,2) example (4.62) studied in

the previous section, which had an SU(2)2/Z2 non-Abelian gauge group. However, since for

the 9d uplift, one of them must be broken, the fractional null junction that generated this Z2

quotient no longer exists for the configuration (5.27). Hence, the 9d non-Abelian gauge group

must be SU(2).
It is suggestive that this doubly frozen, rank (1,1) moduli branch corresponds to M-

theory on a Klein-bottle [54]. Namely, starting from the rank (1,17) theories with heterotic

description, which is dual to M-theory on a cylinder, the first freezing led to CHL vacua in 9d,

which are equivalent to M-theory on a Möbius strip, or a cylinder with one cross-cap. Freezing

once more, i.e., adding another cross-cap on the other side, then produces a Klein-bottle.

However, as pointed out in [54], there is a second branch of 9d rank (1,1) moduli space

that is disconnected from M-theory on a Klein-bottle. That is, it cannot be realized as freezing

9d rank (1,9) models. However, since after an S1-reduction, the 8d rank (2,2) moduli space

is connected, there should exist a junction description for this 9d branch, as a suitable infinite

distance limit in which KK-states become light.

In fact, starting from the general 8d configuration with two O7+’s, depicted in Figure 8,

it is not hard to identify such potential limits. Starting from O7+CX[3,1] O7+CX[3,1], where

both O7’s now have the standard monodromy, we can either push the C-branes from the left

on top of the orientifolds,

(O7+C
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

affine

)X[3,1] (O7+C
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

affine

)X[3,1] , (5.28)

which is just a slightly rearranged version of (5.27), or we can generate a Ê1 = BCCX[3,1]

stack, by moving 7-branes as

O7+CX[3,1]
ÐÐÐ→

O7+CX[3,1] Ð→ O7+ CÐ→O7+BCX[3,1]

Ð→ O7+O7+X[3,−1]
ÐÐÐÐ→

BCX[3,1] Ð→ O7+O7+ (BCCX[3,1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Ê1

) . (5.29)

First, notice that one cannot transition between (5.28) and (5.29) without separating
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branes making up the affine stack. In other words, these configurations are connected only

via the 8d moduli space. Second, by the brane move CX[3,1]
←ÐÐÐ

→ BC inside the affine stack,

we find that Ê1 = BCCX[3,1] ≃ (BC)(BC) is the strong-coupling version of two O7−-planes

on top of each other. Therefore, (5.29) is T-dual to IIA on an interval with O8±’s at each

end, which further dualizes to the 9d Dabholkar–Park background in type IIB [76, 30]. This

is indeed the branch of 9d rank (1,1) moduli space that is disconnected from M-theory on a

Klein-bottle [54].

6 Conclusions and outlook

In this work, we have extended the framework of string junctions on [p, q]-7-branes [36–38] to

include O7+-planes. The key difference is the distinction between physical (p, q)-strings and

5-branes that can end on the O7+: while the latter can end with arbitrary integer ( pq )-charges

on the O7+, only even numbers of integer (p, q)-strings may do so. When applied to the

construction of 8d N = 1 gauge theories on stacks including both ordinary [p, q]-7-branes and

O7+’s, this modification consistently reproduces the root and coroot lattices of non-simply-

laced sp-algebras, as well as their electric 1-form- and magnetic 5-form center symmetries.

Furthermore, this provides a junction description for all 8d rank (2,10) string compactifica-

tions with a dual CHL-string description [52,13], including their gauge group topologies that

are succinctly characterized by loop junctions encircling all 7-branes. In addition, using junc-

tions, we find a previously unknown lattice description for 8d string vacua of rank (2,2), that

is analogous to the Narain lattice characterization of 8d and 9d heterotic/CHL vacua. This

establishes junctions as a unifying framework to describe gauge enhancements (including the

global gauge group structure) of all 8d string vacua.

Moreover, in synergy with Swampland ideas [27,28], we have discovered a full classification

of 9d N = 1 string vacua, including their global gauge group structures, by 7-brane configura-

tions with affine stacks characterized by loop junctions for their imaginary roots. Again, the

consistent inclusion of O7+-planes in the analysis of potential infinite distance limits on the

8d moduli space turns out to be vital to capture subtleties, such as the two components of

the 9d rank (1,1) moduli space that are connected only through an S1-reduction to 8d [54].

The 9d results motivate a string-independent classification of the 9d N = 1 supergrav-

ity landscape in a similar fashion to [35], where the 8d landscape was classified based on a

Swampland “translation” of the SL(2,Z) characterization of 7-branes and O7+-planes. While

perhaps unexpected from their direct constructions, our work shows that 9d string compactifi-

cations also admit a completely analogous characterization. Hence, it is suggestive that there

should also be a parallel story for the moduli space of 9d instantons that can be studied by

SL(2,Z) monodromies. In particular, such a bottom-up analysis could provide an explanation

independent of the CHL-string, for why the 9d analog of the freezing mechanism can only be
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performed with an Ê8, but not an Dn≥8 stack.

Another useful insight from the junction perspective is on the stringy origin of center

symmetries in 8d gauge theories with non-simply-laced algebra. Via dualities, it would be

interesting if one can use this insight to generalize the geometric engineering framework for

higher-form symmetries in M- and F-theory [15,16,34] to include frozen singularities. This may

have promising applications to the study of 6d SCFTs constructed on such singularities [33]

as well as lower dimensional SCFTs, obtained either from dimensionally reducing 6d theories,

or directly engineering them with junction techniques [41,43,45,46].
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A Deriving the evenness condition on O7+ via 8d CHL strings

In this appendix, we present a derivation of the evenness condition for string junctions the

O7+-plane in 8d rank (2,10) models. This proof utilizes the known equivalence between the

heterotic Narain lattice (4.19) and the junction lattice (modulo null junctions) on 24 ordinary

7-branes, and the construction ΛMikhailov ↪ ΛNarain of the Mikhailov lattice, describing states

of rank (2,10) vacua, as a sublattice [69], also known as “freezing” [52,77].

Assuming that the freezing mechanism in the IIB / 7-brane picture is a local operation,

D8 = A8BC → O7+, we show that the evenness condition discussed in Section 3 is the

necessary and sufficient condition for the string junction lattice on the O7+ and the unaffected

7-branes to agree with the Mikhailov lattice.

To this end, first recall that there is a particular so16 root lattice (−D8) ⊂ ΛNarain along

which one defines an orthogonal projection P [69] (see also [34]). Since P (D8) = 0, this

so16 is interpreted as projected out from, or “frozen” inside the heterotic model. Then,

ΛMikhailov ⊂ ΛNarain is the image of P inside ΛNarain, i.e.,

[j] ∈ ΛMikhailov ⇔∃[̂j] ∈ ΛNarain ∶ [j] = P ([̂j]) ∈ ΛNarain . (A.1)

This is a non-trivial condition on the choice of [̂j], since not all elements of ΛNarain map to

integer lattice points under P .

To make contact with the junction description, it is important to remember that any
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elemnt of the Narain lattice corresponds to an equivalence class of physical junctions modulo

null junctions. Therefore, we first identify ĵ ∈ Jel
phys as a physical string junction in a rank

(2,18) 7-brane configuration with a D8 stack. Now, as explained in Section 4.1, the junction

ĵ, prior to freezing, enjoys a decomposition into an integer linear combination,

ĵ =
8

∑
i=1

aiwi + apωso16
p + aqωso16

q + ĵ′′ , (A.2)

where ĵ′′ has no prongs on D8. This decomposition is unique only up to the addition of physical

null junctions δN
(p,q); however, because such junctions carry no physical charge, their prongs

on the D8 stack must induce no so16 center charges, which, according to (2.33), requires even

multiples of ωso16
p and ωso16

q . Hence, any representative ĵ of the equivalence class [̂j] modulo

null junctions takes the form

ĵ + δN =
8

∑
i=1

aiwi + (ap + 2np)ωso16
p + (aq + 2nq)ωso16

q + ĵ′ , (A.3)

for some junction ĵ′ that has no prongs on the D8.

As this stack will be replaced with the O7+, the D8 root lattice defining the projection

in the momentum lattice description is identified with the root junction lattice of this stack.

The representative for P ([̂j]) is then

P (̂j) ∶= (ap + 2np)ωso16
p + (aq + 2nq)ωso16

q + ĵ′ , ap, np, aq, nq ∈ Z . (A.4)

Therefore, the condition P ([̂j]) ∈ ΛNarain translates into P (̂j) ∈ Jel
phys, i.e., its prongs on the D8

stack must satisfy the physicality conditions. Since, by construction, ĵ′ has no prongs on the

D8 stack, this means that ap, aq ∈ 2Z. As we identify the extended weights of so16 with those

of the O7+ after freezing (see Section 3), we conclude that the junction P (̂j) representing an

element of ΛMikhailov must have even ( pq )-charge.

Finally, it is straightforward to verify the condition for the magnetically dual 5-brane

junctions from the lattice description of the dual Mikhailov lattice, which in terms of the

above projection map is given by Λ∗

Mikhailov = P (ΛNarain) [69, 13]. Since the projection simply

removes the terms proportional to the so16 weights in (A.2) from any physical junction ĵ in

the rank (2,18) configuration, it is obvious that one ends up with any integer-valued ap, aq.

B Embedding O7+ into Ê8

In this appendix, we discuss the junctions resulting from embedding an O7+ into an Ê8

stack. First describe the embedding so16 ↪ ê8 in terms of 7-branes. To this end, we use the

equivalence Ê8 ≅ E9 of 7-brane stacks [74, 70], where E9 is conjugate to A8BC2, see (2.8).

In this presentation, it is straightforward to identify the so16 subalgebra as the D8 = A8BC
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part. By the “freezing” procedure, the E9 stack becomes an O7+C stack. Now, due to the

evenness condition discussed in Section 2, only a subset of string junctions that were allowed

to end on E9 prior to freezing are allowed in the presence of the O7+.

One such junction that we will focus on in the following is the ε-junction given in (5.9a).

This junction has a unit ( 3
1 )-prong on the X[3,1]-brane that affinizes the stack — however,

this is in the realization Ê8! To connect the two descriptions, we repeatedly use brane moves

(2.4) and (2.5), to obtain

Ê8 = A7BC2X[3,1] →A7BCBC

→ BX7
[0,1]CBC→ BCA7BC

→CX[3,1]A
7BC→CA7X[−4,1]BC→CA7BX[−1,−2]C

→CA7BCX[0,−1] →CA7BX[0,1]X[1,2] →CA7X[0,1]AX[1,2]

→X7
[0,1]CX[0,1]AX[1,2] →X8

[0,1]X[1,2]AX[1,2]

→X8
[0,1]X[1,4]X

(1)
[1,2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=D′

8

X
(2)
[1,2]

= E′

9 .

(B.1)

In each step, it is easy to track the changes of the prongs of the ε-junction that starts out with

a unit x[3,1]-prong, simply by requiring that the prongs on the two moving branes change in

such a way that the net ( pq )-charge remains invariant. For example, after the first step, we

have x[3,1] → b2 + 2c2. After the whole process, we end up with

x[3,1] → −x
(8)
[0,1]

− 2x[1,4] + 4x
(1)
[1,2]

+ x
(2)
[1,2]

. (B.2)

Since the first three summands end on the D′

8 stack, one can decompose their sum using

the extended weights of so16 and the weight junctions; the important thing to track here is

that the net ( pq )-charge of this part is ( 2
−1 ). However, after introducing the O7+, i.e., replace

D′

8 → O7+
′
, which removes the so16 weights, there is an odd q-charge emanating via this

junction from the orientifold, which is not allowed for a string junction. Indeed, it is easy

to check that any physical string junction leaving the Ê8 →O7+
′
X[1,2] stack must have even

q-charge. Therefore, only even multiples of ε are physical string junctions after freezing. On

the other hand, this prong, and therefore also ε would be acceptable as a 5-brane junction.

C All 8d supergravity vacua via [p,q]-7-branes

In this appendix, we give the full catalog of maximally-enhanced 7-brane configurations real-

izing 8d string vacua of maximal non-Abelian rank for all three classes of models, i.e. total

rank (2,18), (2,10), and (2,2). We further determine global structure of their non-Abelian

subgroup given by Z and the explicit realization of the fracrtional null junction.

49



Before we provide the classification we further describe a procedure that allows to incor-

porate the non-maximally-enhanced cases, with additional u(1) factors.

C.1 Non-maximally-enhanced cases

In principle, the process of obtaining the global gauge group topology for the non-maximally

enhanced cases is equivalent to what was described in the main text: First one obtains the

associated brane configuration, with which one has access to the discrete quotients Z via the

fractional null junctions as in 4.14 as well as Z ′ as in 4.18. Even though one cannot avoid

repeating the computations of Z and Z ′, one fortunately can take a shortcut of finding the

corresponding brane configurations (which is technically the most challenging step) by starting

from the maximally-enhanced setups and suitably splitting the brane stacks.

Here we stress that, given a single non-Abelian brane stack, all of the natural brane split-

tings corresponds to Higgs transition with W-boson vacuum expectation values that decrease

the rank by 1. Adjoint Higgsing that preserves the rank (such as e8 → so16), on the other

hand, are not guaranteed to admit a realization in a specific brane configuration. Even in

brane configurations where such adjoint Higgsings are possible, it would necessarily involve

not only the constituent branes in the stack but also some additional branes (E8 ≅ A7BC2

and D8 ≅ A8BC in the example). For this reason, we focus on the W-boson Higgsing, which

is guaranteed to have a straightforward brane realizations.

• Splitting suk: suk → suk′ ⊕ suk−k′ : Ak →Ak′ +Ak−k′

• Splitting spl: spl → sul′ ⊕ spl−l′ : AlO7+ →Al′ +Al−l′O7+

• Splitting so2m:

– so2m → sum: AmBC→Am +BC

– so2m → 2su2 ⊕ sum−2: AmBC ≃ Am−2N2C2 →Am−2 +N2 +C2

– so2m → su4 ⊕ sum−3: AmBC ≃ Am−2N2C2 ≃ Am−3C4X[3,2] →Am−3 +C4 +X[3,2]

– so2m → so2m′ ⊕ sum−m′ (4 ≤m′ ≤m − 1): AmBC→Am′

BC +Am−m′

• Splitting en:

– en → sun: An−1BC2 ≃ AnX[3,−1]N→An +X[3,−1] +N (see (2.12) of [75])

– en → so2n−2: An−1BC2 →An−1BC +C

– en → su2 ⊕ sun−1: An−1BC2 →An−1 +B +C2

– en → su2⊕su3⊕sun−3(≃ e3⊕sun−3): An−1BC2 →An−3+A2BC2 ≃ An−3+CA2C2 ≃
An−3 +N2C3 →An−3 +N2 +C3

– en → su5 ⊕ sun−4(≃ e4 ⊕ sun−4): An−1BC2 → An−4 +A3BC2 ≃ An−4 +X[1,2]C
5 →

An−4 +X[1,2] +C5
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– en → so10 ⊕ sun−5(≃ e5 ⊕ sun−5): An−1BC2 → An−5 +A4BC2 ≃ An−5 +C5AX[1,2]

(see (2.11) of [75]).

– en → en′ ⊕ sun−n′ (6 ≤ n′ ≤ n − 1): An−1BC2 →An−n′ +An′−1BC2

These splittings matches with the “substitution rules” as given in Table 2.2 of [78].
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C.2 No O7+

We give all possible brane configurations with rank (2,18) realizing maximally-enhanced non-Abelian gauge algebras. Our list reproduces the

mathematical classification of [78] of the ADE-singularities of elliptically-fibered K3 surfaces. This is an expected result, since the junctions

describe the same physics in a type IIB perspective. For each brane configuration, we give not only the non-Abelian fundamental group

π1(GnA) = Z but also its particular embedding into the center π1(GnA) ↪ Z(G̃) using string junctions, where G̃ is the simply-connected cover

of the no-Abelian gauge algebra GnA = G̃nA/Z.

Table 3: All 8d maximally-enhanced rank (2,18) brane configurations. For each entry, we present the brane configuration, the non-Abelian
gauge algebra gnA and Z = π1(GnA), generators of its associated fractional null junctions (FNJ), and the embedding π1(GnA) ↪ Z(G̃nA)
of the fundamental group into the center of the simply-connected cover G̃nA of the non-Abelian symmetry. For the last entry, the values
are ordered in alignment with the “brane configuration” column rather than the g column.

No. g π1(GnA) Brane Config. FNJ
π1(GnA) ↪ Z(G̃nA)
(Order via Brane Config.)

1 6su4 Z4 ×Z4 A4B4N4X4
[1,2]C

4X4
[2,1]

δN
(1,0)/4,

δN
(0,1)/4

(0,3,1,2,1,1),
(3,3,0,3,3,2)

2 2su2 ⊕ 4su5 Z5 A5N5X5
[1,4]X

2
[1,2]C

5X2
[3,1] δN

(3,1)/5 (4,3,1,0,2,0)
3 2su3 ⊕ 2su4 ⊕ 2su5 - A3N5X5

[1,4]X
3
[1,3]X

4
[1,2]C

4 - -

4 3su2 ⊕ 3su6 Z2 ×Z6 A6X6
[4,−3]N

2C6X2
[3,1]X

2
[9,2]

δN
(1,0)/2,

δN
(0,1)/6

(0,3,1,3,1,0),
(5,2,0,5,1,1)

5 4su3 ⊕ 2su6 Z3 ×Z3 B6N3C6A3X3
[3,−2]X

3
[4,−3]

δN
(1,0)/3,

δN
(0,1)/3

(4,1,2,0,1,0),
(4,0,4,2,0,2)

6 su4 ⊕ 3su6 Z6 A6X6
[4,−3]N

4X6
[1,3]X[3,7]X[3,1] δN

(3,1)/6 (5,5,2,2)

7 2su2 ⊕ 2su4 ⊕ 2su6 Z2 ×Z2 A6N2C4X6
[2,1]X

2
[5,2]X

4
[3,1]

δN
(1,0)/2,

δN
(0,1)/2

(0,1,2,3,0,2),
(3,0,2,0,1,2)

8 su2 ⊕ 2su3 ⊕ su4 ⊕ 2su6 Z6 A3N6X3
[1,2]C

4X6
[2,1]X

2
[5,2] δN

(1,4)/6 (1,1,2,2,5,0)
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9 2su5 ⊕ 2su6 - A6X5
[3,−1]X[5,−2]N

6X5
[1,3]X[2,5] - -

10 2su3 ⊕ su5 ⊕ 2su6 Z3 A3X5
[2,−1]N

6X[2,5]X
6
[1,2]X

3
[3,4] δN

(1,1)/3 (2,0,2,2,1)
11 su2 ⊕ su4 ⊕ su5 ⊕ 2su6 Z2 A5X[1,2]C

6X6
[2,1]X

2
[5,2]X

4
[3,1] δN

(1,0)/2 (0,3,3,0,2)
12 su2 ⊕ su3 ⊕ 2su4 ⊕ su5 ⊕ su6 Z2 A3N6X2

[1,3]X
5
[1,2]C

4X4
[2,1] δN

(1,0)/2 (0,3,1,0,2,2)

13 3su7 Z7 C7A7B7X[1,−2]X[2,3]X[11,13] δN
(3,1)/7 (2,6,3)

14 2su2 ⊕ 2su3 ⊕ 2su7 - A7N2C3X7
[3,1]X

2
[10,3]X

3
[7,2] - -

15 2su4 ⊕ 2su7 - A7B4N4X7
[1,2]X[2,3]X[4,1] - -

16 su3 ⊕ su5 ⊕ 2su7 - A7X[1,2]C
5X7

[3,1]X[10,3]X
3
[4,1] - -

17 2su2 ⊕ su3 ⊕ 2su5 ⊕ su7 - A5N3X7
[1,2]X

2
[2,3]C

5X2
[3,1] - -

18 su2 ⊕ su4 ⊕ 2su5 ⊕ su7 - A5X2
[2,−1]B

4N7X5
[1,3]X[2,5] - -

19 su3 ⊕ 2su4 ⊕ su5 ⊕ su7 - A3N5X[2,5]X
7
[1,2]C

4X4
[2,1] - -

20 su2 ⊕ 2su3 ⊕ su4 ⊕ su5 ⊕ su7 - A3X5
[2,−1]N

7X2
[1,3]X

4
[1,2]X

3
[3,4] - -

21 2su2 ⊕ 2su6 ⊕ su7 Z2 A7N2C6X2
[4,3]X[5,2]X

6
[3,1] δN

(1,0)/2 (0,1,3,1,3)
22 su2 ⊕ 2su4 ⊕ su6 ⊕ su7 Z2 A4B2N7X4

[1,4]X
6
[1,3]X[2,5] δN

(0,1)/2 (2,1,0,2,3)
23 su2 ⊕ su3 ⊕ su5 ⊕ su6 ⊕ su7 - A7X3

[4,−1]X
2
[3,−1]N

6X5
[1,3]X[2,5] - -

24 su4 ⊕ su5 ⊕ su6 ⊕ su7 - (A7X[3,−2]B
5)X[3,5]C

4X6
[2,1] - -

25 4su2 ⊕ 2su8 Z2 ×Z4 A8X2
[3,−1]X

8
[2,−1]B

2C2X2
[3,1]

δN
(1,0)/2,

δN
(1,1)/4

(0,1,4,1,1,1),
(2,0,2,1,0,1)

26a 2su3 ⊕ 2su8 - A8N3X3
[1,2]C

8X[3,2]X[4,1] - -

26b 2su3 ⊕ 2su8 Z2 A8BC3X8
[2,1]X[7,3]X

3
[3,1] δN

(1,1)/2 (4,0,4,0)
27 su2 ⊕ su4 ⊕ 2su8 Z8 A8B4N8C2X[7,3]X[5,1] δN

(5,1)/8 (7,1,5,1)

28 2su2 ⊕ 3su4 ⊕ su8 Z2 ×Z4 A4B4X2
[1,−2]N

8X2
[1,2]C

4
δN
(1,0)/4,

δN
(0,1)/2

(0,1,1,2,1,1),
(2,2,1,0,1,2)

29 su3 ⊕ 3su4 ⊕ su8 Z4 A3N8X[1,4]X
4
[1,2]C

4X4
[2,1] δN

(1,0)/4 (0,2,2,1,1)
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30 2su3 ⊕ su4 ⊕ su5 ⊕ su8 - A8N4X3
[1,3]X

5
[1,2]C

3X[4,1] - -

31 2su2 ⊕ su3 ⊕ su4 ⊕ su5 ⊕ su8 Z2 A5X2
[2,−1]B

4N8X3
[1,4]X

2
[1,3] δN

(1,0)/2 (0,1,2,4,0,1)
32 su2 ⊕ 2su6 ⊕ su8 Z2 A8B2X6

[1,−4]X[2,−9]N
6X[4,1] δN

(0,1)/2 (4,1,3,0)

33 3su2 ⊕ su4 ⊕ su6 ⊕ su8 Z2 ×Z2 A8N2C6X2
[4,3]X

2
[3,1]X

4
[4,1]

δN
(1,0)/2,

δN
(0,1)/2

(0,1,3,1,1,2),
(4,0,3,0,1,0)

34 su2 ⊕ su3 ⊕ su4 ⊕ su6 ⊕ su8 Z2 A6N2C4X8
[2,1]X[7,3]X

3
[3,1] δN

(1,1)/2 (3,1,0,4,0)
35 2su2 ⊕ su5 ⊕ su6 ⊕ su8 Z2 A6N2C5X8

[3,2]X[5,3]X
2
[3,1] δN

(1,1)/2 (3,1,0,4,0)
36 su3 ⊕ su5 ⊕ su6 ⊕ su8 - A3X[2,−3]X

6
[1,−2]N

8X5
[1,3]X[2,5] - -

37 su2 ⊕ 2su3 ⊕ su7 ⊕ su8 - A8N2C3X7
[3,1]X[10,3]X

3
[4,1] - -

38 2su2 ⊕ su4 ⊕ su7 ⊕ su8 Z2 A8B2X4
[1,−4]X

2
[1,−5]N

7X[4,1] δN
(1,0)/2 (4,1,2,1,0)

39 su3 ⊕ su4 ⊕ su7 ⊕ su8 - A3N7X[1,3]C
8X[4,3]X

4
[2,1] - -

40 su2 ⊕ su5 ⊕ su7 ⊕ su8 - A5X[1,2]C
7X8

[3,2]X[5,3]X
2
[3,1] - -

41 su6 ⊕ su7 ⊕ su8 - A7X[3,−1]B
8X[1,−2]X

6
[1,2]X[2,3] - -

42a 2su2 ⊕ 2su9 - (A9BC2)(X9
[3,1]X[13,4]X

2
[7,2]) - -

42b 2su2 ⊕ 2su9 Z3 A9X[3,−1]B
9X[3,−4]N

2X2
[3,1] δN

(1,1)/3 (3,0,0,0)
43 su2 ⊕ 3su3 ⊕ su4 ⊕ su9 Z3 A9N2C3X3

[5,1]X
3
[11,2]X

4
[6,1] δN

(0,1)/3 (3,0,2,1,1,0)
44 2su2 ⊕ 2su5 ⊕ su9 - A9X[11,−2]X

5
[5,−1]N

2C5X2
[3,2] - -

45 3su3 ⊕ su5 ⊕ su9 Z3 A3X5
[2,−1]N

9X[1,4]X
3
[1,2]X

3
[3,4] δN

(1,1)/3 (2,0,3,1,1)
46 su2 ⊕ su3 ⊕ su4 ⊕ su5 ⊕ su9 - A3X2

[1,−2]X
4
[1,−3]N

9X5
[1,3]X[2,5] - -

47 su2 ⊕ 2su3 ⊕ su6 ⊕ su9 Z3 A9X[3,−1]B
6N3C3X2

[3,1] δN
(0,1)/3 (6,4,0,2,0)

48 su3 ⊕ su4 ⊕ su6 ⊕ su9 Z3 A6X[3,−1]B
9X[3,−4]N

4X3
[1,2] δN

(0,1)/3 (4,6,0,2)
49 su2 ⊕ su5 ⊕ su6 ⊕ su9 - A9X2

[6,−1]X[4,−1]N
6X5

[1,3]X[2,5] - -

50 2su2 ⊕ su3 ⊕ su7 ⊕ su9 - A9X[1,2]C
7X2

[3,2]X
2
[4,1]X

3
[5,1] - -

51 su2 ⊕ su4 ⊕ su7 ⊕ su9 - A7N9X[1,7]X
4
[1,3]X

2
[1,2]X[4,1] - -
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52 su5 ⊕ su7 ⊕ su9 - A7X[7.−2]X
5
[3,−1]X[1,−2]N

9X[1,2] - -

53 su2 ⊕ su3 ⊕ su8 ⊕ su9 - A8B2X3
[1,−4]X[1,−6]N

9X[4,1] - -

54a 2su10 - A10X[6,−1]X[3,−1]N
10X[1,6]X[1,3] - -

54b 2su10 Z5 A10X[9,−2]X[2,−1]N
10X[2,9]X[1,2] δN

(1,2)/5 (6,2)
55 su2 ⊕ su3 ⊕ 2su4 ⊕ su10 Z2 A4B2X3

[1,−4]X[1,−6]N
10X4

[1,1] δN
(1,0)/2 (0,1,0,5,2)

56 2su2 ⊕ 2su3 ⊕ su4 ⊕ su10 Z2 A10N2C3X3
[3,1]X

2
[5,1]X

4
[6,1] δN

(1,1)/2 (5,1,0,0,0,2)
57 su2 ⊕ 2su5 ⊕ su10 Z5 A10X[9,−2]X

5
[4,−1]X[1,2]C

5X2
[3,1] δN

(1,2)/5 (6,1,4,0)
58 3su2 ⊕ su3 ⊕ su5 ⊕ su10 Z2 A10X2

[6,−1]X
3
[5,−1]N

2C5X2
[3,2] δN

(1,1)/2 (5,1,0,1,0,1)
59 2su2 ⊕ su4 ⊕ su5 ⊕ su10 Z2 A5X2

[2,−1]B
4N10X2

[1,6]X[1,4] δN
(1,0)/2 (0,1,2,5,0)

60 2su2 ⊕ su3 ⊕ su6 ⊕ su10 Z2 A10N2X2
[2,3]C

6X[8,5]X
3
[2,1] δN

(0,1)/2 (5,0,0,3,0)
61 su2 ⊕ su4 ⊕ su6 ⊕ su10 Z2 A4B2N6X[4,13]X

10
[1,3]X[2,5] δN

(0,1)/2 (2,1,0,5)
62a su5 ⊕ su6 ⊕ su10 - A10B6X[9,−11]X[2,−3]X[3,2]X

5
[2,1] - -

62b su5 ⊕ su6 ⊕ su10 Z2 A6X[2,−1]N
5X[4,13]X

10
[1,3]X[2,5] δN

(0,1)/2 (3,0,5)
63 3su2 ⊕ su7 ⊕ su10 Z2 A7X[5,−2]X

10
[2,−1]B

2C2X2
[3,1] δN

(1,0)/2 (0,5,1,1,1)
64 su2 ⊕ su3 ⊕ su7 ⊕ su10 - A10X[3,−1]NX7

[3,1]X
2
[10,3]X

3
[7,2] - -

65 su4 ⊕ su7 ⊕ su10 - A7N4C10X[3,2]X[7,3]X[5,1] - -

66 su3 ⊕ su8 ⊕ su10 - A3X[1,−2]N
8X[4,13]X

10
[1,3]X[2,5] - -

67 su2 ⊕ su9 ⊕ su10 - A9X[4,−1]X
2
[2,−1]N

10X[1,6]X[1,3] - -

68 su3 ⊕ 2su4 ⊕ su11 - A3N4X[2,3]C
11X[4,3]X

4
[2,1] - -

69 su2 ⊕ 2su3 ⊕ su4 ⊕ su11 - A11N3X4
[1,2]C

3X2
[4,1]X[6,1] - -

70 2su5 ⊕ su11 - A11X[3,−2]B
5X[3,5]X[2,1]X

5
[6,1] - -

71 2su3 ⊕ su5 ⊕ su11 - A3X[1,−3]X
3
[1,−5]N

11X5
[1,3]X[2,5] - -

72 2su2 ⊕ su3 ⊕ su5 ⊕ su11 - A11X[1,2]C
5X2

[3,1]X
2
[6,1]X

3
[7,1] - -

73 su2 ⊕ su4 ⊕ su5 ⊕ su11 - A4B2N11X[1,7]X
5
[1,3]X[2,5] - -
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74 su2 ⊕ su3 ⊕ su6 ⊕ su11 - X2
[2,1]X

3
[3,1]A

11B6X[9,−11]X[2,−3] - -

75 su4 ⊕ su6 ⊕ su11 - A11X[6,−1]X[3,−1]N
4X6

[1,2]X[2,3] - -

76 2su2 ⊕ su7 ⊕ su11 - A11X[1,2]C
7X2

[7,5]X
2
[2,1]X[7,1] - -

77 su3 ⊕ su7 ⊕ su11 - A11X[2,3]C
7X[10,7]X[8,5]X

3
[2,1] - -

78 su2 ⊕ su8 ⊕ su11 - A11X[1,2]C
8X2

[4,3]X[3,1]X[7,1] - -

79 su9 ⊕ su11 - A11X[3,−1]C
9X[3,2]X[7,3]X[5,1] - -

80 su2 ⊕ 3su3 ⊕ su12 Z3 X3
[2,1]A

12B3X2
[1,−2]C

3X[8,5] δN
(1,1)/3 (2,8,1,0,0)

81 3su2 ⊕ 2su3 ⊕ su12 Z6 A12X2
[6,−1]X

3
[5,−1]N

2C3X2
[3,1] δN

(3,1)/6 (10,1,2,1,1,0)
82 su2 ⊕ 2su4 ⊕ su12 Z4 A12N4X2

[1,3]C
4X[3,1]X[7,1] δN

(1,3)/4 (3,1,0,2)
83a 2su3 ⊕ su4 ⊕ su12 Z3 A12X[9,−1]X[6,−1]N

4X3
[1,3]X

3
[1,2] δN

(0,1)/3 (8,0,2,2)
83b 2su3 ⊕ su4 ⊕ su12 Z6 A12N3C4X[10,7]X[8,5]X

3
[2,1] δN

(4,1)/6 (10,2,2,1)
84a 2su2 ⊕ su3 ⊕ su4 ⊕ su12 Z2 A12X2

[6,−1]X
3
[5,−1]BC4X2

[2,1] δN
(1,1)/2 (6,1,0,0,1)

84b 2su2 ⊕ su3 ⊕ su4 ⊕ su12 Z4 A12N4X3
[1,3]X

2
[3,7]C

2X[7,1] δN
(1,3)/4 (3,1,0,1,1)

85 3su2 ⊕ su5 ⊕ su12 Z2 A12N2C5X2
[7,5]X

2
[2,1]X[7,1] δN

(1,1)/2 (6,1,0,0,1)
86 su2 ⊕ su3 ⊕ su5 ⊕ su12 - A5C2X[7,4]X

12
[2,1]X[7,3]X

3
[3,1] - -

87a 2su2 ⊕ su6 ⊕ su12 Z2 A12N2X2
[2,3]C

6X[3,1]X[7,1] δN
(1,1)/2 (6,1,1,0)

87b 2su2 ⊕ su6 ⊕ su12 Z6 A12N6X2
[1,4]X[4,13]X[2,5]C

2 δN
(4,1)/6 (10,4,1,1)

88 su3 ⊕ su6 ⊕ su12 Z3 A12N6X[1,4]X[4,7]X[5,8]C
3 δN

(1,1)/3 (8,2,0)
89 su2 ⊕ su7 ⊕ su12 - A7X[1,−4]N

12C2X[7,3]X[5,1] - -

90 2su2 ⊕ 2su3 ⊕ su13 - A13X2
[5,−1]X

3
[4,−1]N

2C3X[4,1] - -

91 su2 ⊕ su3 ⊕ su4 ⊕ su13 - A13X[6,−1]X[3,−1]N
3X2

[2,1]X
4
[3,1] - -

92 2su2 ⊕ su5 ⊕ su13 - X5
[6,1]A

13BC2X2
[3,1]X[11,2] - -

93 su3 ⊕ su5 ⊕ su13 - A13X[1,2]C
5X3

[3,1]X[5,1]X[9,1] - -

94 su2 ⊕ su6 ⊕ su13 - A13X[1,2]C
6X2

[5,3]X[3,1]X[9,1] - -

56



95 su7 ⊕ su13 - A13BX[1,3]C
7X[4,3]X[3,1] - -

96a su2 ⊕ 2su3 ⊕ su14 - A14X[3,−1]B
2C3X[8,5]X

3
[2,1] - -

96b su2 ⊕ 2su3 ⊕ su14 Z2 A14N2C3X3
[3,1]X[5,1]X[9,1] δN

(1,1)/2 (7,1,0,0)
97 3su2 ⊕ su3 ⊕ su14 Z2 X3

[6,1]X
2
[7,1]A

14BC2X2
[3,1] δN

(1,1)/2 (1,0,7,0,0)
98 2su2 ⊕ su4 ⊕ su14 Z2 A14N2C4X2

[5,3]X[3,1]X[9,1] δN
(1,1)/2 (7,1,0,0)

99 su3 ⊕ su4 ⊕ su14 - A14BX[1,3]C
4X[8,5]X

3
[2,1] - -

100a su2 ⊕ su5 ⊕ su14 - A14X[1,2]C
5X2

[3,1]X[6,1]X[9,1] - -

100b su2 ⊕ su5 ⊕ su14 Z2 A14X[2,−1]X
2
[1,−2]N

5X[2,1]X[6,1] δN
(0,1)/2 (7,1,0)

101 su6 ⊕ su14 - A14X[3,−1]B
6X[2,−3]X[2,1]X[5,1] - -

102 2su3 ⊕ su15 Z3 A15N3C3X[7,4]X[5,2]X[4,1]

103a 2su2 ⊕ su3 ⊕ su15 - A15N2C3X[4,1]X[9,1]X[11,2] - -

103b 2su2 ⊕ su3 ⊕ su15 Z3 A15N2C3X2
[3,1]X[6,1]X[9,1] δN

(0,1)/3 (10,0,2,0)
104 su2 ⊕ su4 ⊕ su15 - A15N2C4X[3,1]X[8,1]X[11,1] - -

105 su5 ⊕ su15 - A15B5X[2,−3]X[3,1]X[6,1]X[10,1] - -

106 3su2 ⊕ su16 Z4 A16BC2X2
[3,1]X

2
[5,1]X[7,1] δN

(3,1)/4 (12,1,0,1)
107a su2 ⊕ su3 ⊕ su16 - A16N2C3X[4,1]X[8,1]X[11,1] - -

107b su2 ⊕ su3 ⊕ su16 Z2 A16BC2X3
[3,1]X[5,1]X[9,1] δN

(1,1)/2 (8,0,0)
108 su4 ⊕ su16 Z4 A16C4X[9,7]X[7,5]X[5,3]X[3,1] δN

(1,1)/4 (12,2)

109 2su2 ⊕ su17 - A17BC2X2
[3,1]X[21,5]X[9,2] - -

110 su3 ⊕ su17 - C3A17X[13,−1]X[10,−1]X[5,−1]X[1,−1] - -

111a su2 ⊕ su18 - A18BC2X[4,1]X[8,1]X[11,1] - -

111b su2 ⊕ su18 Z3 A18X[3,−1]NX2
[3,1]X[6,1]X[9,1] δN

(0,1)/3 (12,0)

112 su19 - A19X[12,−1]X[7,−1]X[4,−1]X[0,1]X[4,1] - -

113 2su5 ⊕ 2so10 - A5(C5AX[1,2])X5
[3,1](X

5
[7,2]X[3,1]X[17,5]) - -
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114 su4 ⊕ 2su6 ⊕ so10 Z2 (A5BC)N6X[3,10]X
6
[1,3]X

4
[1,2] δN

(1,0)/2 (2,3,3,0)
115 2su5 ⊕ su6 ⊕ so10 - A5(C5AX[1,2])X6

[3,1]X[17,5]X
5
[7,2] - -

116 su2 ⊕ su4 ⊕ su5 ⊕ su6 ⊕ so10 Z2 (A5BC)N6X2
[2,7]X

5
[3,10]X

4
[1,3] δN

(1,0)/2 (2,3,1,2)
117 su2 ⊕ 2su7 ⊕ so10 - (A5BC)N7X[2,9]X

7
[1,4]X

2
[1,3] - -

118 2su3 ⊕ su4 ⊕ su7 ⊕ so10 - (A5BC)N7X3
[1,4]X

4
[2,7]X

3
[1,3] - -

119 su2 ⊕ su3 ⊕ su5 ⊕ su7 ⊕ so10 - A5(C5AX[1,2])X7
[3,1]X

2
[10,3]X

3
[7,2] - -

120 su3 ⊕ su6 ⊕ su7 ⊕ so10 - (A5BC)N7X[2,7]X
6
[1,3]X

3
[1,2] - -

121 su2 ⊕ su8 ⊕ 2so10 Z4 A8(X5
[3,−1]AX[7,−2])(C5AX[1,2])X2

[3,1] δN
(3,1)/4 (6,1,1,0)

122 su2 ⊕ su3 ⊕ su4 ⊕ su8 ⊕ so10 Z4 (A5BC)N8X4
[1,5]X

2
[1,4]X

3
[1,2] δN

(1,2)/4 (3,2,3,1,0)
123 2su2 ⊕ su5 ⊕ su8 ⊕ so10 Z2 (A5BC)N8X2

[1,5]X
5
[1,4]X

2
[1,3] δN

(1,0)/2 (2,4,1,0,1)
124 su9 ⊕ 2so10 - A9X[5,−1](X5

[2,−1]AX[5,−2])(C5AX[1,2]) - -

125 su2 ⊕ su5 ⊕ su9 ⊕ so10 - A5(C5AX[1,2])X9
[3,1]X[13,4]X

2
[7,2] - -

126 su6 ⊕ su9 ⊕ so10 - (A5BC)N6X[2,7]X
9
[1,3]X[2,5] - -

127 2su3 ⊕ su10 ⊕ so10 - (A5BC)N10X3
[1,7]X[1,5]X

3
[1,2] - -

128 2su2 ⊕ su3 ⊕ su10 ⊕ so10 Z2 (A10X2
[4,−1]X

3
[3,−1])(C

5AX[1,2])X2
[3,1] δN

(1,1)/2 (5,1,0,2,0)
129 su2 ⊕ su4 ⊕ su10 ⊕ so10 Z2 (A5BC)N10X2

[1,7]X
4
[1,6]X[1,4] δN

(1,0)/2 (2,5,1,0)
130 su5 ⊕ su10 ⊕ so10 - A10X[5,−2]X

5
[2,−1](C

5AX[1,2])X[4,1] - -

131 su2 ⊕ su3 ⊕ su11 ⊕ so10 - A11X2
[3,−1]X

3
[2,−1](C

5AX[1,2])X[4,1] - -

132 2su2 ⊕ su12 ⊕ so10 Z4 A12X[5,−1]X
2
[3,−1](C

5AX[1,2])X2
[3,1] δN

(3,1)/4 (9,1,1,0)
133 A2 ⊕ su12 ⊕ so10 Z2 (A5BC)N12X[1,8]X

3
[1,6]X[1,4] δN

(1,0)/2 (2,6,0)
134 su2 ⊕ su13 ⊕ so10 - A13X[4,−1]X

2
[2,−1](C

5AX[1,2])X[4,1] - -

135 su14 ⊕ so10 - (A14X[6,−1]X[3,−1])(C5AX[1,2])X[4,1] - -

136 3so12 Z2 ×Z2 (A6BC)(N6X[1,2]A)(C6AX[1,2])
δN
(1,0)/2,

δN
(0,1)/2

((1,1), (1,0), (1,0)),
((0,1), (1,1), (0,1))
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137 2su4 ⊕ 2so12 Z2 ×Z2 (A6BC)X4
[2,−1]B

4(X6
[1,−2]BX[3,−5])

δN
(1,0)/2,

δN
(0,1)/2

((1,1),2,2, (1,1)),
((0,1),0,2, (0,1))

138 2su3 ⊕ 2su5 ⊕ so12 - (A6BC)N5X3
[1,2]X

3
[2,3]C

5 - -

139 2su2 ⊕ 2su6 ⊕ so12 Z2 ×Z2 (A6BC)N6X2
[1,2]X

2
[3,4]C

6
δN
(1,0)/2,

δN
(0,1)/2

((1,1),3,0,0,3),
((0,1),0,1,1,3)

140 su2 ⊕ 2su4 ⊕ su6 ⊕ so12 Z2 ×Z2 (A6BC)N6X2
[1,3]X

4
[1,2]C

4
δN
(1,0)/2,

δN
(0,1)/2

((1,1),3,1,0,2),
((0,1),0,1,2,2)

141 su4 ⊕ su5 ⊕ su6 ⊕ so12 Z2 (A6BC)N5X[2,5]X
6
[1,2]C

4 δN
(0,1)/2 ((0,1),0,3,2)

142 2su7 ⊕ so12 - (A6BC)X[1,−3]N
7X7

[1,2]X[2,3] - -

143 su3 ⊕ su5 ⊕ su7 ⊕ so12 - (A6BC)X5
[4,−3]X[9,−7]B

7N3 - -

144 su2 ⊕ 2su3 ⊕ su8 ⊕ so12 Z2 (A6BC)N8X3
[1,5]X

2
[1,4]C

3 δN
(1,1)/2 ((1,0),4,0,1)

145 su3 ⊕ su4 ⊕ su8 ⊕ so12 Z2 (A6BC)N8X[1,4]X
3
[1,2]C

4 δN
(1,0)/2 ((1,1),4,0,2)

146 su2 ⊕ su5 ⊕ su8 ⊕ so12 Z2 (A6BC)X[1,−3]N
8X5

[1,3]X
2
[1,2] δN

(1,1)/2 ((1,0),4,0,1)
147 su5 ⊕ su9 ⊕ so12 - A9X[1,2]C

5(X6
[3,1]X[13,4]X[7,2])X[5,1] - -

148 su2 ⊕ su3 ⊕ su10 ⊕ so12 Z2 (A6BC)N10X2
[1,7]X

3
[1,6]X[1,2] δN

(1,0)/2 ((1,1),5,1,0)
149 su4 ⊕ su10 ⊕ so12 Z2 (A6BC)X[1,−3]N

10X4
[1,5]X[1,3] δN

(1,1)/2 ((1,0),5,0)
150 su3 ⊕ su11 ⊕ so12 - (A6BC)N11X[1,7]X[1,4]C

3 - -

151 su2 ⊕ su12 ⊕ so12 Z2 (A6BC)X[1,2]C
12X[5,4]X

2
[3,2] δN

(1,0)/2 ((1,1),6,0)
152 su13 ⊕ so12 - (A6BC)X[1,−3]X[1,−6]N

13X[1,2] - -

153 su3 ⊕ su6 ⊕ so10 ⊕ so12 Z2 A6X3
[3,−1](X

6
[2,−1]AX[5,−2])(C5AX[1,2]) δN

(1,1)/2 (3,0, (0,1),2)
154 su8 ⊕ so10 ⊕ so12 Z2 (C5AX[1,2])A8X[3,−1](B6AX[3,−2]) δN

(1,1)/2 (2,4, (1,1))

155 2su3 ⊕ 2so14 - (A7BC)(X7
[2,−1]X[3,−2]A)X3

[3,−2]B
3 - -

156 su3 ⊕ 3su4 ⊕ so14 Z4 (A7BC)B4X3
[1,−2]X

4
[1,−3]N

4 δN
(1,2)/4 (1,1,0,3,1)

157 su2 ⊕ su3 ⊕ 2su5 ⊕ so14 - (A7BC)B3N5X5
[1,3]X

2
[1,2] - -
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158 su3 ⊕ su4 ⊕ su7 ⊕ so14 - (A7BC)B3N7X4
[1,5]X[1,3] - -

159 su2 ⊕ su5 ⊕ su7 ⊕ so14 - A7X[1,2]C
5(X7

[3,1]X[13,4]X[7,2])X2
[4,1] - -

160 su6 ⊕ su7 ⊕ so14 - (A7BC)B7X[1,−2]X
6
[1,2]X[2,3] - -

161 2su2 ⊕ su3 ⊕ su8 ⊕ so14 Z2 A8N2C3(X7
[3,1]X[13,4]X[7,2])X2

[4,1] δN
(1,1)/2 (4,1,0,2,1)

162 su2 ⊕ su4 ⊕ su8 ⊕ so14 Z4 (A7BC)B4X2
[1,−2]N

8X[1,2] δN
(1,2)/4 (1,1,0,2)

163 2su2 ⊕ su10 ⊕ so14 Z2 (A7BC)X2
[3,2]X[7,4]X

10
[2,1]X

2
[3,1] δN

(1,0) (2,0,5,1)
164 su3 ⊕ su10 ⊕ so14 - (A7BC)B3X[1,−3]N

10X[1,2] - -

165 su2 ⊕ su11 ⊕ so14 - A11X[3,−1]N(X7
[3,1]X[13,4]X[7,2])X2

[4,1] - -

166 su12 ⊕ so14 Z4 (A7BC)X[1,2]X[5,6]C
12X[3,2] δN

(1,2)/4 (1,9)
167 su2 ⊕ su6 ⊕ so10 ⊕ so14 Z2 (C5AX[1,2])A6X2

[2,−1](B
7AX[3,−2]) δN

(1,1)/2 (2,3,1,2)
168 su6 ⊕ so12 ⊕ so14 Z2 (A6BC)(N7AX[1,−2])X6

[1,2]X[2,3] δN
(0,1)/2 ((0,1),2,3)

169 2su2 ⊕ 2so16 Z2 ×Z2 (A8BC)(X8
[2,−1]BX[3,−1])B2C2

δN
(0,1)/2,

δN
(1,1)/2

((1,0), (1,1),1,1),
((0,1), (0,1),0,0)

170 2su3 ⊕ 2su4 ⊕ so16 Z2 (A8BC)B3N4X4
[1,2]C

3 δN
(0,1)/2 ((1,0),0,2,2,0)

171 2su6 ⊕ so16 Z2 (A8BC)B6X[1,−2]C
6X[3,2] δN

(1,0)/2 ((1,1),3,3)

172 2su2 ⊕ su4 ⊕ su6 ⊕ so16 Z2 ×Z2 (A8BC)B4X2
[1,−2]N

6C2
δN
(0,1)/2,

δN
(1,1)/2

((1,0),2,1,0,1),
((0,1),0,1,3,0)

173 su2 ⊕ su5 ⊕ su6 ⊕ so16 Z2 (A8BC)B6X[2,−3]N
5C2 δN

(0,1)/2 ((1,0),3,0,1)
174 2su3 ⊕ su7 ⊕ so16 - (A8BC)B3N3C7X[3,2] - -

175 su2 ⊕ su3 ⊕ su8 ⊕ so16 Z2 (A8BC)B3X[1,−3]N
8C2 δN

(1,1)/2 ((0,1),0,4,0)
176 su2 ⊕ su10 ⊕ so16 Z2 (A8BC)X[1,2]C

10X[3,2]X
2
[3,1] δN

(1,0)/2 ((1,1),5,1)
177 2so10 ⊕ so16 Z2 (A8BC)(X5

[2,−1]X[1,−1]X[3,−1])(N5CB) δN
(0,1)/2 ((1,0),2,2)

178 su2 ⊕ su4 ⊕ so12 ⊕ so16 Z2 ×Z2 (A8BC)(X6
[2,−1]X[1,−1]X[3,−1])B4N2

δN
(0,1)/2,

δN
(1,1)/2

((1,0), (1,1),2,0),
((0,1), (1,0),0,1)
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179 2so18 - (A9BC)B(C9AX[1,2])X[3,2] - -

180 su2 ⊕ 2su3 ⊕ su5 ⊕ so18 - (A9BC)X5
[1,2]X

3
[5,9]X

2
[3,5]C

3 - -

181 su2 ⊕ su4 ⊕ su6 ⊕ so18 Z2 (A9BC)N6X4
[1,5]X

2
[2,9]X[1,2] δN

(1,0)/2 (2,3,2,1)
182 su5 ⊕ su6 ⊕ so18 - (A9BC)C(X6

[3,1]X[17,5]X
5
[7,2]) - -

183 su2 ⊕ su3 ⊕ su7 ⊕ so18 - (A9BC)CX7
[3,1]X

2
[10,3]X

3
[7,2] - -

184 2su2 ⊕ su8 ⊕ so18 Z2 (A9BC)N8X[1,4]X
2
[2,5]C

2 δN
(1,0)/2 (2,4,1,1)

185 su2 ⊕ su9 ⊕ so18 - (A9BC)CX9
[3,1]X[13,4]X

2
[7,2] - -

186 su10 ⊕ so18 - (A9BC)C(X10
[3,1]X[19,6]X[10,3]) - -

187 su5 ⊕ so10 ⊕ so18 - (A9BC)(X5
[2,−1]BX[3,−1])N5X[1,2] - -

188 2su2 ⊕ 2su4 ⊕ so20 Z2 ×Z2 (A10BC)N4X4
[1,3]X

2
[2,5]C

2
δN
(1,1)/2,

δN
(0,1)/2

((1,0),2,0,1,0),
((0,1),0,2,0,1)

189 2su5 ⊕ so20 - (A10BC)X[2,3]C
5X5

[5,1]X[16,3] - -

190 su2 ⊕ su4 ⊕ su5 ⊕ so20 Z2 (A10BC)N4X2
[1,2]C

5X[3,1] δN
(1,1)/2 ((1,0),2,1,0)

191 3su2 ⊕ su6 ⊕ so20 Z2 ×Z2 (A10BC)N6X2
[1,5]X

2
[1,3]C

2
δN
(1,1)/2,

δN
(0,1)/2

((1,0),3,0,0,0),
((0,1),0,1,1,1)

192 su4 ⊕ su6 ⊕ so20 Z2 (A10BC)BX[3,5]C
4X6

[2,1] δN
(1,1)/2 ((1,0),0,3)

193 su3 ⊕ su7 ⊕ so20 - (A10BC)(X[3,4]C
7X3

[2,1])X[5,1] - -

194 su9 ⊕ so20 - (A10BC)X[4,−1]X[1,−2]N
9X[1,3] - -

195 su2 ⊕ su3 ⊕ so10 ⊕ so20 Z2 (A10BC)(X5
[2,−1]BX[3,−1])N3C2 δN

(0,1)/2 ((0,1),2,0,1)
196 su3 ⊕ so12 ⊕ so20 Z2 (A10BC)(X6

[2,−1]BX[3,−1])B3C δN
(1,1)/2 ((1,0), (1,0),0)

197 su2 ⊕ so14 ⊕ so20 Z2 (A10BC)X2
[3,−1]N(X7

[2,1]X[1,1]X[5,3]) δN
(0,1)/2 ((0,1),1,2)

198 2su3 ⊕ su4 ⊕ so22 - (A11BC)(N4C3X3
[2,1])X[5,1] - -

199 su2 ⊕ su3 ⊕ su5 ⊕ so22 - (A11BC)X[2,3]C
5X2

[5,1]X
3
[6,1] - -

200 su3 ⊕ su6 ⊕ so22 - (A11BC)CX[9,2]X
6
[5,1]X

3
[6,1] - -
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201 su2 ⊕ su7 ⊕ so22 - (A11BC)C(X[11,2]X
7
[6,1])X

2
[13,2] - -

202 2su2 ⊕ 2su3 ⊕ so24 Z2 (A12BC)N3C2X2
[5,1]X

3
[6,1] δN

(0,1)/2 ((1,0),0,1,1,0)
203 su2 ⊕ su3 ⊕ su4 ⊕ so24 Z2 (A12BC)N2C4X3

[2,1]X[4,1] δN
(1,0)/2 ((1,0),0,2,0)

204 2su2 ⊕ su5 ⊕ so24 Z2 (A12BC)X[−4,1]C
2X5

[2,1]X
2
[5,2] δN

(0,1)/2 ((1,0),1,0,1)
205 su2 ⊕D5 ⊕ so24 Z2 (A12BC)(X5

[2,−1]X[1,−1]X[3,−1])N2X[2,1] δN
(0,1)/2 ((1,0),2,0)

206 so12 ⊕ so24 Z2 (A12BC)(X6
[2,−1]X[1,−1]X[3,−1])NX[4,1] δN

(0,1)/2 ((1,0), (1,1))
207 su2 ⊕ su5 ⊕ so26 - (A13BC)C(X[11,2]X

5
[6,1])X

2
[8,1] - -

208 su6 ⊕ so26 - (A13BC)BX[2,3]C
6X[3,1] - -

209 so10 ⊕ so26 - (A5BC)(N13AX[1,−2])X[2,15]X[1,6] - -

210 2su3 ⊕ so28 - (A14BC)X[2,−1]N
3C3X[3,1] - -

211 2su2 ⊕ su3 ⊕ so28 Z2 (A14BC)X[−4,1]C
2X3

[2,1]X
2
[4,1] δN

(0,1)/2 ((0,1),1,0,0)
212 su2 ⊕ su4 ⊕ so28 Z2 (A14BC)X[−4,1]X[2,1]X

4
[4,1]X

2
[9,2] δN

(0,1)/2 ((0,1),0,1)
213 su5 ⊕ so28 - (A14BC)CX[9,2]X

5
[5,1]X[8,1] - -

214 su2 ⊕ su3 ⊕ so30 - (A15BC)CX2
[5,1]X

3
[6,1]X[9,1] - -

215 2su2 ⊕ so32 Z2 (A16BC)X[4,−1]X[2,1]X
2
[4,1]X

2
[6,1] δN

(0,1)/2 ((1,0),0,0)
216 su3 ⊕ so32 Z2 (A16BC)X[4,−1]NX3

[2,1]X[4,1] δN
(0,1)/2 ((1,0),0)

217 su2 ⊕ so34 - (A17BC)X[5,−1]X[2,−1]C
2X[3,1] - -

218 so36 - (A18BC)CX[4,1]X[8,1]X[11,1] - -

219 3e6 Z3 (A5BC2)(A5BC2)(X5
[2,1]X[5,2]A

2) δN
(0,1)/3 (1,1,1)

220 2su4 ⊕ 2e6 - A4(A5BC2)X4
[3,1](X

5
[3,1]X[13,4]X

2
[7,2]) - -

221 su2 ⊕ su4 ⊕ 2su5 ⊕ e6 - A5X5
[2,−1]X

2
[3,−2]B

4(A5BC2) - -

222 su2 ⊕ su6 ⊕ 2e6 Z3 (A5X[2,1]X
2
[4,1])A

6(A5BC2)X2
[3,1] δN

(0,1)/3 (1,4,1,0)
223 su3 ⊕ 2su6 ⊕ e6 Z3 A6X3

[3,−1]X
6
[2,−1]X[3,−2](A5BC2) δN

(0,1)/3 (4,0,2,1)
224 2su3 ⊕ su4 ⊕ su6 ⊕ e6 Z3 A6X4

[3,−1]X
3
[2,−1]B

3(A5BC2) δN
(0,1)/3 (4,0,1,2,1)

62



225 su4 ⊕ su5 ⊕ su6 ⊕ e6 - A6X[1,2]C
5X4

[3,1](X
5
[3,1]X[13,4]X

2
[7,2]) - -

226 su7 ⊕ 2e6 - A7(A5X[3,−1]B
2)(A5BC2)X[4,1] - -

227 su2 ⊕ su3 ⊕ su4 ⊕ su7 ⊕ e6 - X4
[4,1]A

7X2
[2,−1](A

5BC2)X3
[3,1] - -

228 2su2 ⊕ su5 ⊕ su7 ⊕ e6 - A7X5
[4,−1]X

2
[3,−1]B

2(A5BC2) - -

229 su3 ⊕ su5 ⊕ su7 ⊕ e6 - A5X7
[2,−1]X[5,−3]B

3(A5BC2) - -

230 su2 ⊕ su6 ⊕ su7 ⊕ e6 - (A5BC2)A6X2
[2,−1]B

7X[1,−2] - -

231 su2 ⊕ su5 ⊕ su8 ⊕ e6 - (A5X[2,1]X
2
[4,1])A

8X[1,2]C
5X2

[3,1] - -

232 su6 ⊕ su8 ⊕ e6 - (A5BC2)A8X[3,−1]B
6X[1,−2] - -

233 2su3 ⊕ su9 ⊕ e6 Z3 (A5BC2)A9X[3,−1]B
3N3 δN

(0,1)/3 (1,6,2,0)
234 2su2 ⊕ su3 ⊕ su9 ⊕ e6 Z3 (A5X[2,1]X

2
[4,1])A

9N2C3X2
[3,1] δN

(0,1)/3 (1,6,0,2,0)
235 su2 ⊕ su4 ⊕ su9 ⊕ e6 - A9BC2X4

[3,1](X
5
[3,1]X[13,4]X

2
[7,2]) - -

236 su5 ⊕ su9 ⊕ e6 - A9X[3,−2]B
5(A5BC2)X[4,1] - -

237 su2 ⊕ su3 ⊕ su10 ⊕ e6 - A10X2
[2,−1]B

3(A5BC2)X[4,1] - -

238 su4 ⊕ su10 ⊕ e6 - A10X[3,−1]NX4
[3,1](X

5
[3,1]X[13,4]X

2
[7,2]) - -

239 2su2 ⊕ su11 ⊕ e6 - A11X2
[2,−1]X[4,−3](A5BC2)X2

[3,1] - -

240 su3 ⊕ su11 ⊕ e6 - (A5BC2)A11X[6,−1]X[2,−1]N
3 - -

241a su2 ⊕ su12 ⊕ e6 - A12X[3,−1]B
2(A5BC2)X[4,1] - -

241b su2 ⊕ su12 ⊕ e6 Z3 A12X[3,−1]X[3,−2](A5BC2)X2
[3,1] δN

(0,1)/3 (8,1,0)
242 su13 ⊕ e6 - A13X[5,−1]X[2,−1](A5BC2)X[4,1] - -

243 su4 ⊕ su5 ⊕ so10 ⊕ e6 - A5(C5AX[1,2])X4
[3,1](X

5
[3,1]X[13,4]X

2
[7,2]) - -

244 su2 ⊕ su7 ⊕ so10 ⊕ e6 - (A5X[2,1]X
2
[4,1])A

7(C5AX[1,2])X2
[3,1] - -

245 su8 ⊕ so10 ⊕ e6 - N8C(X5
[2,−1]BX[3,−1])(N5CB2) - -

246 so12 ⊕ 2e6 - (A5BC2)(C6AX[1,2])(X5
[2,1]X[5,2]A

2) - -

247 su3 ⊕ su5 ⊕ so12 ⊕ e6 - A5B3(N6AX[1,−2])(A5NX2
[2,1]) - -
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248 su7 ⊕ so12 ⊕ e6 - (A5NX2
[2,1])A

7B(C6AX[1,2]) - -

249 su2 ⊕ su5 ⊕ so14 ⊕ e6 - (A5NX2
[2,1])A

5N2(C7AX[1,2]) - -

250 so10 ⊕ so14 ⊕ e6 - (A5BC2)(A7BC)(N5AX[−1,2]) - -

251 su5 ⊕ so16 ⊕ e6 - (A5BC2)(A8BC)N5X[1,3] - -

252 su2 ⊕ su3 ⊕ so18 ⊕ e6 - (A5BC2)(A9BC)B2N3 - -

253 su4 ⊕ so18 ⊕ e6 - (A9BC)CX4
[3,1](X

5
[3,1]X[13,4]X

2
[7,2]) - -

254 su2 ⊕ so22 ⊕ e6 - (A5BC2)(A11BC)X[2,−1]N
2 - -

255 so24 ⊕ e6 - (A12BC2)(A5CX2
[3,1])X[6,1] - -

256 2su3 ⊕ 2e7 - A3(A6BC2)X3
[3,1](X

6
[3,1]X[13,4]X

2
[7,2]) - -

257 su2 ⊕ su4 ⊕ 2e7 Z2 A4(A6X[3,−1]B
2)(A6BC2)X2

[3,1] δN
(1,1)/2 (2,1,1,0)

258 su5 ⊕ 2e7 - A5(A6X[2,−1]N
2)(A6BC2)X[4,1] - -

259 su2 ⊕ 2su4 ⊕ su5 ⊕ e7 Z2 (A6BC2)A4B5X2
[1,−2]N

4 δN
(1,1)/2 (1,2,0,1,2)

260 2su3 ⊕ su4 ⊕ su5 ⊕ e7 - A5X4
[2,−1]B

3N3(A6BC2) - -

261 2su4 ⊕ su6 ⊕ e7 Z2 A4B4X[1,−3]N
6(A6BC2) δN

(1,1)/2 (2,0,3,1)
262 su2 ⊕ su3 ⊕ su4 ⊕ su6 ⊕ e7 Z2 X4

[4,1]A
6B2(A6BC2)X3

[3,1] δN
(1,1)/2 (2,3,1,0)

263 2su2 ⊕ su5 ⊕ su6 ⊕ e7 Z2 (A6BC2)A6X2
[2,−1]B

5N2 δN
(1,1)/2 (1,3,1,0,1)

264 su3 ⊕ su5 ⊕ su6 ⊕ e7 - A5X3
[2,−1]B

6X[1,−2](A6BC2) - -

265 su2 ⊕ 2su3 ⊕ su7 ⊕ e7 - A7N2C3X3
[3,1](X

6
[3,1]X[13,4]X

2
[7,2]) - -

266 su3 ⊕ su4 ⊕ su7 ⊕ e7 - A4B7X[2,−3]N
3(A6BC2) - -

267 su2 ⊕ su5 ⊕ su7 ⊕ e7 - (A6X[2,−1]N
2)A5X2

[2,−1]B
7X[1,−2] - -

268 su6 ⊕ su7 ⊕ e7 - (A6X[2,−1]N
2)A7X[3,−1]B

6X[1,−2] - -

269 2su3 ⊕ su8 ⊕ e7 - (A6BC2)X3
[3,1]X

3
[4,1]A

8X[2,−1] - -

270 2su2 ⊕ su3 ⊕ su8 ⊕ e7 Z2 A8X3
[3,−1]X

2
[2,−1](A

6BC2)X2
[3,1] δN

(1,1)/2 (4,0,1,1,0)
271 su2 ⊕ su4 ⊕ su8 ⊕ e7 Z2 (A6BC2)A8BX2

[1,2]C
4 δN

(1,1)/2 (1,4,1,0)

64



272 su5 ⊕ su8 ⊕ e7 - A8X[1,−2]N
5(A6BC2)X[4,1] - -

273 su2 ⊕ su3 ⊕ su9 ⊕ e7 - A9B2N3(A6BC2)X[4,1] - -

274 su4 ⊕ su9 ⊕ e7 - (A6BC2)A4X[1,−2]X[1,2]C
9 - -

275 2su2 ⊕ su10 ⊕ e7 - A10X[3,−1]B
2(A6BC2)X2

[3,1] - -

276a su3 ⊕ su10 ⊕ e7 - A10X[3,−1]NX3
[3,1](X

6
[3,1]X[13,4]X

2
[7,2]) - -

276b su3 ⊕ su10 ⊕ e7 Z2 (A6BC2)A10X[5,−1]BC3 δN
(1,1)/2 (1,5,0)

277 su2 ⊕ su11 ⊕ e7 - A11X[2,−1]N
2(A6BC2)X[4,1] - -

278 su12 ⊕ e7 - A12X[4,−1]B(A6BC2)X[4,1] - -

279 so8 ⊕ 2e7 Z2 (A6BC2)(A6BC2)(A4BC) δN
(1,1)/2 (1,1, (1,0))

280 su3 ⊕ su5 ⊕ so10 ⊕ e7 - A5(C5AX[1,2])X3
[3,1](X

6
[3,1]X[13,4]X

2
[7,2]) - -

281 su2 ⊕ su6 ⊕ so10 ⊕ e7 Z2 A6(B5AX[3,−2])(A6BC2)X2
[3,1] δN

(1,1)/2 (3,2,1,0)
282 su7 ⊕ so10 ⊕ e7 - A7(N5AX[1,−2])(A6BC2)X[4,1] - -

283 su3 ⊕ su4 ⊕ so12 ⊕ e7 Z2 A4B3(N6AX[1,−2])(A6BC2) δN
(1,1)/2 (2,0, (0,1),1)

284 su6 ⊕ so12 ⊕ e7 Z2 (A6BC2)A6B(C6AX[1,2]) δN
(1,1)/2 (1,3, (1,1))

285 so10 ⊕ so12 ⊕ e7 Z2 (A6BC2)(A6BC)(C5AX[1,2]) δN
(1,1)/2 (1, (1,0),2)

286 su2 ⊕ su4 ⊕ so14 ⊕ e7 Z2 (A6BC2)A4N2(C7AX[1,2]) δN
(1,1)/2 (1,2,1,2)

287 su5 ⊕ so14 ⊕ e7 - (A6X[2,−1]N
2)(A7BC)B5X[1,−2] - -

288 su2 ⊕ su3 ⊕ so16 ⊕ e7 Z2 (A6BC2)(A8BC)N2C3 δN
(1,1)/2 (1, (0,1),1,0)

289 su3 ⊕ so18 ⊕ e7 - (A9BC)CX3
[3,1](X

6
[3,1]X[13,4]X

2
[7,2]) - -

290 su2 ⊕ so20 ⊕ e7 Z2 (A10BC)B(A6BC2)X2
[3,1] δN

(1,1)/2 ((1,0),1,0)
291 so22 ⊕ e7 - (A11BC)C(A6NX2

[2,1])X[5,1] - -

292 su3 ⊕ su4 ⊕ e6 ⊕ e7 - A3(A6BC2)X4
[3,1](X

5
[3,1]X[13,4]X

2
[7,2]) - -

293 su2 ⊕ su5 ⊕ e6 ⊕ e7 - A5(A5X[3,−1]B
2)(A6BC2)X2

[3,1] - -

294 su6 ⊕ e6 ⊕ e7 - A6(A5X[2,−1]N
2)(A6BC2)X[4,1] - -
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295 so10 ⊕ e6 ⊕ e7 - (A6BC2)(X5
[2,1]AX[3,2])(X5

[3,1]X[7,2]A
2) - -

296 2su2 ⊕ 2e8 - A2(A7BC2)X2
[3,1](X

7
[3,1]X[13,4]X

2
[7,2]) - -

297 su3 ⊕ 2e8 - A3(A7BC2)(A7BC2)X[4,1] - -

298 2su3 ⊕ 2su4 ⊕ e8 - (A7BC2)A4N3X4
[1,2]C

3 - -

299 2su2 ⊕ 2su5 ⊕ e8 - (A7BC2)A5B2N5C2 - -

300 su2 ⊕ su3 ⊕ su4 ⊕ su5 ⊕ e8 - (A7BC2)A5X3
[2,−1]B

4N2 - -

301 2su6 ⊕ e8 - (A7BC2)A6BC6X[3,2] - -

302 su3 ⊕ su4 ⊕ su6 ⊕ e8 - A4B3N6X[1,2](A7BC2) - -

303 su2 ⊕ su5 ⊕ su6 ⊕ e8 - A6X[1,2]C
5X2

[3,1](X
7
[3,1]X[13,4]X

2
[7,2]) - -

304 2su3 ⊕ su7 ⊕ e8 - (A7BC2)A7BX3
[1,2]C

3 - -

305 2su2 ⊕ su3 ⊕ su7 ⊕ e8 - A8N2C3X2
[3,1](X

7
[3,1]X[13,4]X

2
[7,2]) - -

306 su2 ⊕ su4 ⊕ su7 ⊕ e8 - (A7BC2)A4N2C7X[3,2] - -

307 su5 ⊕ su7 ⊕ e8 - A7N5X[1,2](A7BC2)X[4,1] - -

308 su2 ⊕ su3 ⊕ su8 ⊕ e8 - A8N2C3(A7BC2)X[4,1] - -

309 2su2 ⊕ su9 ⊕ e8 - A9BC2X2
[3,1](X

7
[3,1]X[13,4]X

2
[7,2]) - -

310 su3 ⊕ su9 ⊕ e8 - (A7BC2)A3X[1,2]C
9X[3,2] - -

311 su2 ⊕ su10 ⊕ e8 - A10BC2(A7BC2)X[4,1] - -

312 su11 ⊕ e8 - A11X[3,1]N(A7BC2)X[4,1] - -

313 2so10 ⊕ e8 - (A7X[3,−1]B
2)(A5BC)(N5AX[1,−2]) - -

314 su2 ⊕ su5 ⊕ so10 ⊕ e8 - A5(C5AX[1,2])X2
[3,1](X

7
[3,1]X[13,4]X

2
[7,2]) - -

315 su6 ⊕ so10 ⊕ e8 - A6(C5AX[1,2])(A7BC2)X[4,1] - -

316 2su3 ⊕ so12 ⊕ e8 - A3N3(C6AX[1,2])(A7BC2) - -

317 su5 ⊕ so12 ⊕ e8 - (A7BC2)(A6BC)C5X[3,2] - -

318 su2 ⊕ su3 ⊕ so14 ⊕ e8 - (A7BC2)X2
[4,1]X

3
[5,1](A

7CX[3,1]) - -

319 su2 ⊕ so18 ⊕ e8 - (A9BC)CX2
[3,1](X

7
[3,1]X[13,4]X

2
[7,2]) - -
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320 so20 ⊕ e8 - (A10BC)C(A7BC2)X[4,1] - -

321 su2 ⊕ su4 ⊕ e6 ⊕ e8 - A2(A7BC2)X4
[3,1](X

5
[3,1]X[13,4]X

2
[7,2]) - -

322 su5 ⊕ e6 ⊕ e8 - (A7BC2)(A5BC2)X5
[2,1]X[5,2] - -

323 so8 ⊕ e6 ⊕ e8 - (A7X[2,−1]N
2)(A5BC2)(A4NX[2,1]) - -

324 su2 ⊕ su3 ⊕ e7 ⊕ e8 - A2(A7BC2)X3
[3,1](X

6
[3,1]X[13,4]X

2
[7,2]) - -

325 su4 ⊕ e7 ⊕ e8 - (A7BC2)(A6BC2)C4X[3,2] - -
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C.3 One O7+

We proceed in this part to give the full list to brane configurations with a single O7+ realizing maximally-enhanced 8d vacua of rank (2,10).
This list precisely matches our previous results in 8d CHL strings in Appendix B of [34]. For each such brane configuration, in addition to

giving all the information as provided in the previous table, we also refer to its particular “uplift” to rank (2,18), namely the rank (2,18)
configuration that one gets by unfreezing the AnO7+ stack into a An+8BC stack.

Table 4: All 8d maximally-enhanced rank (2,10) brane configurations, in similar convention as the above rank (2,18) catalog.

# #rk 20 ĝ (g) π1(GnA) Brane Config. FNJ π1(GnA) ↪ Z(G̃nA)
1 320 e8 ⊕ sp2/(so20) 0 (A2O7+)C(A7BC2)X[4,1] - -

2 319 e8 ⊕ sp1/(so18) ⊕ su2 0 (AO7+)CX2
[3,1](X

7
[3,1]X[13,4]X

2
[7,2]) - -

3 291 e7 ⊕ sp3/(so22) 0 (A3O7+)C(A6NX2
[2,1])X[5,1] - -

4 290 e7 ⊕ sp2/(so20) ⊕ su2 Z2 (A2O7+)B(A6BC2)X2
[3,1] δN

(1,1)/2 (1,1,0)
5 289 e7 ⊕ sp1/(so18) ⊕ su3 0 (AO7+)CX3

[3,1](X
6
[3,1]X[13,4]X

2
[7,2]) - -

6 288 (so16⊕)e7 ⊕ su3 ⊕ su2 Z2 (A6BC2)O7+N2C3 δN
(1,1)/2 (1,1,0)

7 255 e6 ⊕ sp4/(so24) 0 (A4O7+)(A5CX2
[3,1])X[6,1] - -

8 254 e6 ⊕ sp3/(so22) ⊕ su2 0 (A5BC2)(A3O7+)X[2,−1]N
2 - -

9 253 e6 ⊕ sp1/(so18) ⊕ su4 0 (AO7+)CX4
[3,1](X

5
[3,1]X[13,4]X

2
[7,2]) - -

10 252 e6 ⊕ sp1/(so18) ⊕ su3 ⊕ su2 0 (A5BC2)(AO7+)B2N3 - -

11 251 (so16⊕)e6 ⊕ su5 0 (A5BC2)O7+N5X[1,3] - -

12 218 sp10/(so36) 0 (A10O7+)CX[4,1]X[8,1]X[11,1] - -

13 217 sp9/(so34) ⊕ su2 0 (A9O7+)X[5,−1]X[2,−1]C
2X[3,1] - -

14 216 sp8/(so32) ⊕ su3 Z2 (A8O7+)X[−4,1]NX[4,1]X
3
[6,1] δN

(0,1)/2 (1,0)
15 215 sp8/(so32) ⊕ 2su2 Z2 (A8O7+)X[−4,1]X[2,1]X

2
[4,1]X

2
[6,1] δN

(0,1)/2 (1,0,0)
16 214 sp7/(so30) ⊕ su3 ⊕ su2 0 (A7O7+)CX2

[5,1]X
3
[6,1]X[9,1] - -

17 213 sp6/(so28) ⊕ su5 0 (A6O7+)CX[9,2]X
5
[5,1]X[8,1] - -
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18 212 sp6/(so28) ⊕ su4 ⊕ su2 Z2 (A6O7+)X[−4,1]X[2,1]X
4
[4,1]X

2
[9,2] δN

(0,1)/2 (1,0,1)
19 210 sp6/(so28) ⊕ 2su3 0 (A6O7+)X[2,−1]N

3C3X[3,1] - -

20 211 sp6/(so28) ⊕ su3 ⊕ 2su2 Z2 (A6O7+)X[−4,1]C
2X3

[2,1]X
2
[4,1] δN

(0,1)/2 (1,1,0,0)
21 209 sp5/(so26) ⊕ so10 0 (A5BC)(N13AX[1,−2])X[2,15]X[1,6] - -

22 208 sp5/(so26) ⊕ su6 0 (A5O7+)BX[2,3]C
6X[3,1] - -

23 207 sp5/(so26) ⊕ su5 ⊕ su2 0 (A5O7+)C(X[11,2]X
5
[6,1])X

2
[8,1] - -

24 206 sp4/(so24) ⊕ so12 Z2 (A4O7+)(X6
[2,−1]X[1,−1]X[3,−1])NX[4,1] δN

(0,1)/2 (1, (1,1))
25 205 sp4/(so24) ⊕ so10 ⊕ su2 Z2 (A4O7+)(X5

[2,−1]X[1,−1]X[3,−1])N2X[2,1] δN
(0,1)/2 (1,2,0)

26 204 sp4/(so24) ⊕ su5 ⊕ 2su2 Z2 (A4O7+)X[−4,1]C
2X5

[2,1]X
2
[5,2] δN

(0,1)/2 (1,1,0,1)
27 203 sp4/(so24) ⊕ su4 ⊕ su3 ⊕ su2 Z2 (A4O7+)N2C4X3

[2,1]X[4,1] δN
(0,1)/2 (1,0,2,0)

28 202 sp4/(so24) ⊕ 2su3 ⊕ 2su2 Z2 (A4O7+)N3C2X2
[5,1]X

3
[6,1] δN

(0,1)/2 ((1,0,1,1,0)
29 201 sp3/(so22) ⊕ su7 ⊕ su2 0 (A3O7+)C(X[11,2]X

7
[6,1])X

2
[13,2] - -

30 200 sp3/(so22) ⊕ su6 ⊕ su3 0 (A3O7+)CX[9,2]X
6
[5,1]X

3
[6,1] - -

31 199 sp3/(so22) ⊕ su5 ⊕ su3 ⊕ su2 0 (A3O7+)X[2,3]C
5X2

[5,1]X
3
[6,1] - -

32 198 sp3/(so22) ⊕ su4 ⊕ 2su3 0 (A3O7+)(N4C3X3
[2,1])X[5,1] - -

33 197 sp2/(so20) ⊕ so14 ⊕ su2 Z2 (A2O7+)X2
[3,−1]N(X7

[2,1]X[1,1]X[5,3]) δN
(0,1)/2 (1,1,2)

34 196 sp2/(so20) ⊕ so12 ⊕ su3 Z2 (A2O7+)(X6
[2,−1]X[1,−1]X[3,−1])B3C δN

(1,1)/2 (1, (1,0),0)
35 195 sp2/(so20) ⊕ so10 ⊕ su3 ⊕ su2 Z2 (A2O7+)(X5

[2,−1]X[1,−1]X[3,−1])N3C2 δN
(0,1)/2 (1,2,0,1)

36 194 sp2/(so20) ⊕ su9 0 (A2O7+)X[4,−1]X[1,−2]N
9X[1,3] - -

37 193 sp2/(so20) ⊕ su7 ⊕ su3 0 (A2O7+)(X[3,4]C
7X3

[2,1])X[5,1] - -

38 192 sp2/(so20) ⊕ su6 ⊕ su4 Z2 (A2O7+)BX[3,5]C
4X6

[2,1] δN
(1,1)/2 (1,0,3)

39 191 sp2/(so20) ⊕ su6 ⊕ 3su2 Z2 ×Z2 (A2O7+)N6X2
[1,5]X

2
[1,3]C

2
δN
(1,1)/2,

δN
(0,1)/2

(1,3,0,0,0),
(1,0,1,1,1)

40 189 sp2/(so20) ⊕ 2su5 0 (A2O7+)X[2,3]C
5X5

[5,1]X[16,3] - -
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41 190 sp2/(so20) ⊕ su5 ⊕ su4 ⊕ su2 Z2 (A2O7+)N4X2
[1,2]C

5X[3,1] δN
(1,1)/2 (1,0,2,1)

42 188 sp2/(so20) ⊕ 2su4 ⊕ 2su2 Z2 ×Z2 (A2O7+)N4X4
[1,3]X

2
[2,5]C

2
δN
(1,1)/2,

δN
(0,1)/2

(1,2,0,1,0),
(1,0,2,0,1)

43 179 sp1/(so18) ⊕ so18 0 (AO7+)B(C9AX[1,2])X[3,2] - -

44 187 sp1/(so18) ⊕ so10 ⊕ su5 0 (AO7+)(X5
[2,−1]BX[3,−1])N5X[1,2] - -

45 186 sp1/(so18) ⊕ su10 0 (AO7+)C(X10
[3,1]X[19,6]X[10,3]) - -

46 185 sp1/(so18) ⊕ su9 ⊕ su2 0 (AO7+)CX9
[3,1]X[13,4]X

2
[7,2] - -

47 184 sp1/(so18) ⊕ su8 ⊕ 2su2 Z2 (AO7+)N8X[1,4]X
2
[2,5]C

2 δN
(1,0)/2 (0,4,1,1)

48 183 sp1/(so18) ⊕ su7 ⊕ su3 ⊕ su2 0 (AO7+)CX7
[3,1]X

2
[10,3]X

3
[7,2] - -

49 182 sp1/(so18) ⊕ su6 ⊕ su5 0 (AO7+)C(X6
[3,1]X[17,5]X

5
[7,2]) - -

50 181 sp1/(so18) ⊕ su6 ⊕ su4 ⊕ su2 Z2 (AO7+)N6X4
[1,5]X

2
[2,9]X[1,2] δN

(1,0)/2 (0,3,2,1)
51 180 sp1/(so18) ⊕ su5 ⊕ 2su3 ⊕ su2 0 (AO7+)X5

[1,2]X
3
[5,9]X

2
[3,5]C

3 - -

52 169 (so16⊕)so16 ⊕ 2su2 Z2 ×Z2 O7+(X8
[2,−1]X[1,−1]X[3,−1])B2C2

δN
(0,1)/2,

δN
(1,1)/2

((1,1),1,1),
((0,1),0,0)

53 178 (so16⊕)so12 ⊕ su4 ⊕ su2 Z2 ×Z2 O7+(X6
[2,−1]X[1,−1]X[3,−1])B4N2

δN
(0,1)/2,

δN
(1,1)/2

((1,1),2,0),
((1,0),0,1)

54 177 (so16⊕)2so10 Z2 O7+(X5
[2,−1]X[1,−1]X[3,−1])(N5CB) δN

(0,1)/2 (2,2)
55 176 (so16⊕)su10 ⊕ su2 Z2 O7+X[1,2]C

10X[3,2]X
2
[3,1] δN

(1,0)/2 (5,1)
56 175 (so16⊕)su8 ⊕ su3 ⊕ su2 Z2 O7+B2X[1,−3]N

8C2 δN
(1,1)/2 (0,4,0)

57 174 (so16⊕)su7 ⊕ 2su3 0 O7+B3N3C7X[3,2] - -

58 171 (so16⊕)2su6 Z2 O7+B6X[1,−2]C
6X[3,2] δN

(1,0)/2 (3,3)
59 173 (so16⊕)su6 ⊕ su5 ⊕ su2 Z2 O7+B6X[2,−3]N

5C2 δN
(0,1)/2 (3,0,1)

60 172 (so16⊕)su6 ⊕ su4 ⊕ 2su2 Z2 ×Z2 O7+B4X2
[1,−2]N

6C2
δN
(0,1)/2,

δN
(1,1)/2

(2,1,0,1),
(0,1,3,0)
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61 170 (so16⊕)2su4 ⊕ 2su3 Z2 O7+B3N4X4
[1,2]C

3 δN
(0,1)/2 (0,2,2,0)

C.4 Two O7+’s

Finally, we give all six vacua in the rank (2,2) branch via brane configurations, this time no longer restricting to maximally-enhanced cases.

This is the first time that the global structure of such string vacua without a heterotic or CHL description has been computed.

# #rk12 #rk20 (g, Z)(2,18) Brane Config. FNJ π1(GnA) ↪ Z(G̃nA)

1 - - (2so16,Z2) O7+BO7+X[3,−1]BC - -

2 - - (2so16,−) O7+BCO7+
[[1,1],[0,1]]AX[1,2] - -

3 - - (2so16 ⊕ su2,Z2) O7+BO7+BC2 - -

4 52 169 (2so16 ⊕ 2su2,Z2 ×Z2) O7+O7+
[[2,−1],[1,0]]B

2C2 δN
(1,1)/2 (1,1)

5 - - (so18 ⊕ so16,−) AO7+B(C O7+
[[1,1],[0,1]])X[3,2] - -

6 43 179 (2so18,−) (A O7+)B(C O7+
[[1,1],[0,1]])X[3,2] - -

Table 5: All 6 vacua of 8d rank (2,2) with two O7+-planes, not limited to maximally-enhanced vacua. We give their rank (2,18) and rank (2,10)
uplift for the two maximally-enhanced vacua. Here the two O7+ could be mutually non-locally, and in this case the subscript [[p, q], [r, s]]
(with ps − qr = 1) stands for the SL(2,Z) transformation that ones need to transform a standard O7+ into a O7+

[[p,q],[r,s]].
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