
Gravitational portals with nonminimal couplings
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We consider the effects of nonminimal couplings to curvature of the form ξSS2R for three types of
scalars: the Higgs boson, the inflaton, and a scalar dark matter candidate. We compute the abundance of
dark matter produced by these nonminimal couplings to gravity and compare to similar results with
minimal couplings. We also compute the contribution to the radiation bath during reheating. The main
effect is a potential augmentation of the maximum temperature during reheating. A model independent
limit of Oð1012Þ GeV is obtained. For couplings ξS ≳Oð1Þ, these dominate over minimal gravitational
interactions.
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I. INTRODUCTION

Promoting a field theory Lagrangian from a Lorentz-
invariant one to a generally covariant one necessarily leads
to an interaction between the fields of the theory and the
gravitational field. In the case of a scalar field, S, the natural
generalization of this minimal interaction scenario is to
introduce a nonminimal coupling term of the form

∝ ξSS2R: ð1Þ

Here R is the Ricci scalar and ξS is a nonminimal coupling
constant. This nonminimal coupling to gravity proved to be
useful in many applications to cosmology. Examples
include Higgs inflation [1,2], where S is associated with
the Higgs field degree of freedom h—the only scalar degree
of freedom in the Standard Model, preheating [3], where S
is associated with the inflaton field ϕ, and nonperturbative
production of dark matter [4], where S represents the scalar
dark matter particle X.
In the general case, when the fields ϕ, h, and X are all

different, the question arises as to what extent they must
interact with each other in order to successfully reheat the

Universe and generate the right amount of dark matter.
Recent studies have shown that interactions via gravity
alone, to which the fields are coupled minimally, is enough
for these purposes. Indeed, the perturbative gravitational
production of dark matter through graviton exchange
can play a dominant role during reheating with processes
involving the inflaton [5–7] as well as thermal bath
particles [6,8]. Further, the minimal gravitational coupling
can lead to the completion of the reheating process for
certain types of the inflationary potential, VðϕÞ ∼ ϕk with
k > 2 [6,9]. Thus, gravity is strong enough to mediate per-
turbative channels of reheating and dark matter production.
The purpose of this work is to study how the inclusion of

the nonminimal coupling terms of the form (1) affect the
gravitational production of dark matter and radiation during
reheating. Note that the presence of these terms is unavoid-
able: if there were no such couplings at tree level, they
would still be generated by quantum corrections [10]. We
study particle production in the processes hh → XX,
ϕϕ → hh, and ϕϕ → XX, which are induced by the non-
minimal couplings. Here ϕ represents the inflaton back-
ground oscillating around its minimum after the end of
inflation [11]. Since the scalar fields couple directly to the
curvature scalar R, the oscillating background causes the
effective masses of the fields to change nonadiabatically
and leads to particle production. This regime of particle
creation has been considered in several different contexts,
including gravitational production of scalar [12,13], fer-
mion [14], and vector dark matter [15].
Our main interest is to compare the (dark) matter

production channels induced by the nonminimal couplings
with the production via the s-channel graviton exchange
that sets minimal possible production rates. We will see for
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which values of the couplings the rates are enhanced, and
what are the consequences on the dark matter density or the
temperature attained during reheating. Throughout the
work we adopt the Starobinsky inflationary potential
[16], although our results are largely independent of the
particular form of the potential. As for the potentials for the
fields h and X, we take them to be renormalizable
polynomials. We also assume no direct interaction between
ϕ, h, and X.
Working in the perturbative regime implies that the

nonminimal couplings must satisfy jξSj ≪ M2
P=hSi2, where

hSi is the vacuum expectation value of S ¼ ϕ; h; X. The
value of ξh is constrained from collider experiments as
jξhj ≲ 1015 [17].1 Furthermore, the lower bound on ξh
comes from the fact that the Standard Model electroweak
vacuum may not be absolutely stable [18]. To prevent the
vacuum decay due to quantum fluctuations during inflation
[19], the effective mass of the Higgs field induced by the
nonminimal coupling must be large enough; this gives ξh ≳
10−1 [20,21] (see also [22]).2

The paper is organized as follows: The framework for
our computation is presented in Sec. II. We discuss
nonminimal gravitational couplings of the inflaton, the
Higgs boson, and a dark matter scalar in detail. We
calculate the dark matter production rates either from
scattering in the thermal bath or from oscillations in the
inflaton condensate. We compare similar processes
obtained from the minimal gravitational particle produc-
tion. We choose the Starobinsky model of inflation and
discuss the reheating epoch when the inflaton begins
oscillating. In Sec. III we discuss the resulting abundance
of dark matter produced from the thermal bath and directly
from scattering of the inflaton condensate. We also com-
pute the effects of the nonminimal couplings on the
maximum temperature attained during reheating. We then
compare different processes in Sec. IV, before summarizing
our results in Sec. V.

II. THE FRAMEWORK

A. Scalar-gravity Lagrangian

The theory we consider comprises three scalar fields
nonminimally coupled to gravity: the inflaton ϕ, the
Higgs field3 H, for which we adopt the unitary gauge,
H ¼ ð0; hÞT= ffiffiffi

2
p

, and the dark matter candidate X. The
relevant part of the action takes the form4

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
M2

P

2
Ω2R̃þ Lϕ þ Lh þ LX

�
ð2Þ

with the conformal factor Ω2 given by

Ω2 ≡ 1þ ξϕϕ
2

M2
P
þ ξhh2

M2
P
þ ξXX2

M2
P
: ð3Þ

Here MP ¼ 2.4 × 1018 GeV is the reduced Planck mass,
and the tilde used in Eq. (2) indicates that the theory is
considered in the Jordan frame. For the scalar field
Lagrangians we have

LS ¼
1

2
g̃μν∂μS∂νS − VS; S ¼ ϕ; h; X: ð4Þ

Next, we specify the scalar field potentials. For a model
of inflation, we choose the well-motivated Starobinsky
model for which [16]

Vϕ ¼ 3

4
m2

ϕM
2
Pð1 − e−

ffiffi
2
3

p
ϕ

MPÞ2: ð5Þ

In what follows, we work in the perturbative regime with
ϕ ≪ MP; hence the potential is approximated as

Vϕ ≃
1

2
m2

ϕϕ
2: ð6Þ

The inflaton mass, mϕ, is fixed by the amplitude of scalar
perturbations inferred from cosmic microwave background
(CMB) measurements [23]; for the potential (5) this gives
mϕ ¼ 3 × 1013 GeV [24].
The potential for the Higgs field is taken as follows:

Vh ¼
1

2
m2

hh
2 þ 1

4
λhh4: ð7Þ

Here mh and λh are the Higgs mass and quartic coupling,
correspondingly. Note that both parameters undergo the
renormalization group (RG) running. In what follows we
take a weak scale mass, which is a good approximation at
the time of reheating, and our results are insensitive to λh.
Finally, the dark matter potential is simply given by

VX ¼ 1

2
m2

XX
2: ð8Þ

To study the reheating in the theory (2), it is convenient
to remove the nonminimal couplings by performing the
redefinition of the metric field. Leaving the details to
Appendix A, we write the action (2) in the Einstein frame,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

P

2
Rþ 1

2
Kijgμν∂μSi∂νSj

−
Vϕ þ Vh þ VX

Ω4

�
: ð9Þ

1Note that in the case of Higgs inflation, ξh is fixed from CMB
measurements [1].

2This estimate assumes no new physics interfering with the RG
running of the Higgs self-coupling constant until inflationary
energy scales.

3We consider the Higgs boson as a surrogate for any additional
scalars with Standard Model couplings.

4The metric signature is chosen as ðþ;−;−;−Þ.
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Here the indices i, j enumerate the fields ϕ; h; X, and the
kinetic function is given by

Kij ¼ 6
∂ logΩ
∂Si

∂ logΩ
∂Sj þ δij

Ω2
: ð10Þ

Note that the scalar field kinetic term is not canonical. In
general, it is impossible to make a field redefinition that
would bring it to the canonical form, unless all three
nonminimal couplings vanish.5 For the theory (9) to be
well-defined, the kinetic function (10) must be positive
definite. Computing the eigenvalues, one arrives at the
condition

Ω2 > 0; ð11Þ

which is satisfied automatically for positive values of the
couplings. Note that the negative couplings are also
allowed for certain scalar field magnitudes.
In what follows, we will be interested in the small-field

limit

jξϕjϕ2

M2
P

;
jξhjh2
M2

P
;

jξXjX2

M2
P

≪ 1: ð12Þ

We can expand the kinetic and potential terms in the action
(9) in powers of M−2

P . We obtain a canonical kinetic term
for the scalar fields and deduce the leading-order inter-
actions induced by the nonminimal couplings. The latter
can be brought to the form

Lnonmin: ¼ −σξhXh2X2 − σξϕXϕ
2X2 − σξϕhϕ

2h2; ð13Þ

where the σξij are functions of the couplings ξi and ξj, the
masses mi and mj, and the Mandelstam variables; see
Appendix A for details.
The small-field approximation (12) implies the boundffiffiffiffiffiffiffijξSj

p ≲MP=hSi with S ¼ ϕ; h; X. Since the inflaton value
at the end of inflation is ϕend ∼MP and afterwards
hϕ2i ∼ a−3, where a is the cosmological scale factor, then
jξϕj≲ ða=aendÞ3. In particular, at the onset of inflaton
oscillations

jξϕj≲ 1: ð14Þ

Note that since our calculations involve the effective
couplings σξϕX (σξϕh), which depend on both ξϕ and ξX
(ξh), the relatively small value of jξϕj can, in principle, be
compensated by a large value of the other couplings.

In Fig. 1, we show the scattering processes obtained from
the Lagrangian (13). These contribute to reheating (when h
is in the final state) and dark matter production (when X is
in the final state).
Finally, in evaluating the cosmological parameters, it is

important to stay within the validity of the low-energy
theory. The cutoff of the theory can be estimated as (see,
e.g., [25])

Λ ∼
MP

maxijξij
: ð15Þ

In particular, the temperature of reheating must not
exceed Λ.

B. Graviton exchange

Let us first consider the case of vanishing ξϕ;h;X, i.e., the
case of the minimal coupling of the scalar fields to gravity
[5,6,13,26–29]. It was argued in [5,6] that the interaction
between the dark and visible sectors induced by gravity
leads to unavoidable contributions to reheating and dark
matter production, in the thermal bath or via the scattering
of the inflaton condensate, through the graviton exchange
processes shown in Fig. 2. It is therefore important to
compare the minimal gravitational particle production to
similar processes obtained from the Lagrangian in Eq. (13)
with nonminimal couplings.

FIG. 1. Feynman diagram for the four-point interactions be-
tween the inflaton ϕ, the dark matter scalar candidate X, and the
Higgs boson h, given by the Lagrangian (13).

FIG. 2. Feynman diagram for the (dark) matter production
through the gravitational scattering of the inflaton or the Higgs
boson from the thermal bath.

5Such a redefinition exists if the three-dimensional manifold
spanned by the fields ϕ, h, and X is flat. One can show that it is
not the case if at least one of the couplings is nonzero.
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To study the universal gravitational interactions in
minimally coupled gravity, we expand the spacetime metric
around flat space using gμν ≃ ημν þ 2hμν=MP, where hμν is
the canonically normalized perturbation. The gravitational
interactions are characterized by the following Lagrangian:

Lmin : ¼ −
1

MP
hμνðTμν

h þ Tμν
ϕ þ Tμν

X Þ; ð16Þ

where the stress-energy tensor is given by

Tμν
S ¼ ∂μS∂νS − gμν

�
1

2
∂αS∂αS − VS

�
: ð17Þ

Note that in this work, we consider only the Higgs field in
the visible sector. Generalization to the complete spectrum
of the Standard Model is straightforward, and we leave it
for future work.
For models with minimally coupled gravity, the proc-

esses ϕ=hðp1Þ þ ϕ=hðp2Þ → h=Xðp3Þ þ h=Xðp4Þ can be
parametrized by

M00 ∝ M0
μνΠμνρσM0

ρσ; ð18Þ

where the graviton propagator for the canonically normal-
ized field hμν with exchange momentum k ¼ p1 þ p2 is
given by

ΠμνρσðkÞ ¼ ημρηνσ þ ημσηνρ − ημνηρσ

2k2
; ð19Þ

and the partial amplitude, M0
μν, is given by

M0
μν ¼

1

2
½p1μp2ν þ p1νp2μ − ημνp1 · p2 − ημνV 00

S�; ð20Þ

with the analogous expression for the final state in terms of
outgoing momenta p3;4 and the final state potential. In
Fig. 2 we show the s-channel graviton exchange scattering
obtained from the Lagrangian (16) for the production of
dark matter from either the Higgs field or the inflaton
condensate as well as the reheating process (the production
of Higgs bosons from the inflaton condensate).

C. Production rates

In this work, we consider three processes:
(A) The production of dark matter from the scattering of

thermal Higgs bosons (assuming reheating is pro-
duced by inflaton decay). In this case, the dark
matter is populated via a freeze-in mechanism
throughout the reheating period.

(B) The production of dark matter from direct excita-
tions of the inflaton condensate. This process, which
can be viewed as gravitational inflaton scattering, is
independent of the presence of a thermal bath.

(C) The creation of a radiative bath at the start of
reheating arising from the Higgs boson production
through gravitational inflaton scattering. Since such
a process is unavoidable in minimally coupled
gravity, it is interesting to know when such a process
becomes dominant in models with nonminimal
couplings ξi.

The thermal dark matter production rate RðTÞ for the
process hh → XX can be calculated from6 [30]

RðTÞ ¼ 2×Nh

1024π6

Z
f1f2E1dE1E2dE2dcosθ12

Z
jMj2dΩ13;

ð21Þ

where Ei is the energy of particle i ¼ 1, 2, and θ13 and θ12
are the angles formed by momenta p1;3 and p1;2, res-
pectively. Nh ¼ 4 is the number of internal degrees of
freedom for one complex Higgs doublet, jMj2 is the matrix
amplitude squared with all symmetry factors included. This
accounts for the explicit factor of 2 in the numerator of
Eq. (21). The thermal distribution function of the incoming
Higgs particles is given by the Bose-Einstein distribution

fi ¼
1

eEi=T − 1
: ð22Þ

The rate for minimal gravitational interactions from
Eq. (16) was derived in [6,31]. The rate we use here differs
in two respects. As noted earlier, we only include Higgs
scalars in the initial state, whereas in [6,31] all Standard
Model particle initial states were included. Second, we
keep terms depending on the dark matter mass which had
not previously been taken into account. This allows us to
consider dark matter masses approaching the inflaton mass
and/or the reheating temperature.
For minimal (nonminimal) gravitational interactions, we

find that the thermal dark matter production rate can be
expressed as

RT;ðξÞ
X ðTÞ ¼ βðξÞ1

T8

M4
P
þ βðξÞ2

m2
XT

6

M4
P

þ βðξÞ3

m4
XT

4

M4
P

; ð23Þ

where the coefficients βðξÞ1;2;3 are given in Appendix B by
Eqs. (B8)–(B10) [Eqs. (B4)–(B6)]. The ratio of the non-
minimal to minimal rate is shown in Fig. 3. However, we
note that when ξi ∼Oð1Þ both rates are comparable and
interference effects become significant. The full coeffi-
cients β1;2;3 including interference are given by Eqs. (B11)–
(B13) from Appendix B. We leave the comparison of the

6We include the symmetry factors associated with identical
initial and final states in the definition of jMj2, and a factor of 2 is
explicitly included in the definition of the rate to account for the
production of two identical particles.
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effects on dark matter production from the two rates for the
next section.
The rate for dark matter produced from inflaton oscil-

lations of the inflaton condensate for a potential of the form
V ¼ λϕk were considered in detail in [6,32]. The time-
dependent inflaton can be written as ϕðtÞ ¼ ϕ0ðtÞPðtÞ,
where ϕ0ðtÞ is the time-dependent amplitude that includes
the effects of redshift and PðtÞ describes the periodicity of
the oscillation. The dark matter production rate is calcu-
lated by writing the potential in terms of the Fourier modes
of the oscillations [6,32–34]

VðϕÞ ¼ Vðϕ0Þ
X∞
n¼−∞

Pk
ne−inωt ¼ ρϕ

X∞
n¼−∞

Pk
ne−inωt: ð24Þ

For k ¼ 2 (the only case considered here), the frequency of
oscillation is simply ω ¼ mϕ.
The rate generated by nonminimal couplings can readily

be calculated using the Lagrangian (13), which leads to

Rϕ;ξ
X ¼ 2 × σξ2ϕX

π

ρ2ϕ
m4

ϕ

Σk
0; ð25Þ

where

Σk
0 ¼

X∞
n¼1

jPk
nj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X

E2
n

s
; ð26Þ

and En ¼ nω is the energy of the nth inflaton oscillation
mode. For k ¼ 2, only the second Fourier mode in the sum
contributes, with

P jP2
nj2 ¼ 1

16
. Thus, the rate becomes

Rϕ;ξ
X ¼ 2 × σξ2ϕX

16π

ρ2ϕ
m4

ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
X

m2
ϕ

s
; ð27Þ

where ρϕ is the energy density of the inflaton and the

interaction term σξϕX is given in Appendix A by Eq. (A5).
It was shown in [5] that the dark matter production rate

through the exchange of a graviton, computed from the
partial amplitude (18), is

Rϕ
X ¼ 2 × ρ2ϕ

256πM4
P

�
1þ m2

X

2m2
ϕ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
X

m2
ϕ

s
; ð28Þ

which can be written in the same form as (27) by defining
an effective coupling σϕX,

σϕX ¼ −
m2

ϕ

4M2
P

�
1þ m2

X

2m2
ϕ

�
: ð29Þ

A comparison of the nonminimal to minimal rates for the
production of dark matter from inflaton scattering is shown
in Fig. 4.
For the production of Higgs bosons through inflaton

condensate scattering, we follow a similar procedure, and
from the Lagrangian (13) we find

Rϕ;ξ
h ≃ Nh

2 × σξ2ϕh
16π

ρ2ϕ
m4

ϕ

; ð30Þ

where we assumed thatmh ≪ mϕ, Nh ¼ 4 is the number of
internal degrees of freedom for one complex Higgs doublet,
and σξϕh is given in Appendix A by Eq. (A6).
On the other hand, it was argued in [6] that the scattering

ϕϕ → hh through the graviton exchange can also be
parametrized by an effective coupling

Lh ¼ −σϕhϕ2h2; ð31Þ

with

σϕh ¼ −
m2

ϕ

4M2
P
; ð32Þ

and the rate Rϕ
h is given by the analogous expression to (30)

with σξϕh replaced by σϕh.

FIG. 3. Contours of the ratio of the dark matter production rates
from the thermal bath based on nonminimal gravitational
interactions to those based on minimal interactions. The ratio
is displayed in the ðξh; ξXÞ plane. Note that as discussed in the
Introduction, negative values of ξh may require new physics (such
as supersymmetry) to stabilize the Higgs vacuum.
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The full four-point coupling, of course, is given by the
sum σξϕh=X þ σϕh=X. However, except for values where the

two are similar, which occurs when 12ξ2 þ 5ξ ≃ 1
2
(assum-

ing mX ≪ mϕ and taking ξi to be equal to ξ), either the
minimal or the nonminimal contribution dominates. Thus,
for the most part, we will consider separately the minimal
and nonminimal contributions. Note that for two values of ξ
(ξ ∼ −1=2 and 1=12) destructive interference could occur
causing the entire rate to vanish (at the tree level).

III. PARTICLE PRODUCTION WITH A
NONMINIMAL COUPLING

Given the rates Rj
i calculated in the previous section, we

compute the evolution for the gravitational (minimal and
nonminimal) contribution to the reheating processes and the
dark matter density for the three reactions outlined above.

A. hh → XX

The gravitational scattering of thermal Higgs bosons
leads to the production of massive scalar dark matter
particles X. The dark matter number density nX can be
calculated from the classical Boltzmann equation

dnX
dt

þ 3HnX ¼ RT
X; ð33Þ

where H ¼ _a
a is the Hubble parameter and the right-hand

side of the equation represents the dark matter production

rate. It is more practical to rewrite the above equation in
terms of the scale factor a rather than the parameters t or T.
We proceed by introducing the comoving number

density YX ¼ na3 and rewriting the Boltzmann equation as

dYX

da
¼ a2RT

XðaÞ
HðaÞ : ð34Þ

Since the production rate (23) is a function of the temper-
ature of the thermal bath, it is necessary to determine the
relation between T and a in order to solve the Boltzmann
equation as a function of the scale factor a. For the
Starobinsky potential in Eq. (5), at the end of inflation,
the inflaton starts oscillating about a quadratic minimum,
and we find the following energy conservation equations7:

dρϕ
dt

þ 3Hρϕ ¼ −Γϕρϕ; ð35Þ

dρR
dt

þ 4HρR ¼ Γϕρϕ; ð36Þ

where ρϕ and ρR are the energy density of the inflaton and
radiation, respectively; Γϕ is the inflaton decay rate; and for
a quadratic minimum, we are able to set the equation of

state parameter wϕ ¼ Pϕ

ρϕ
≃ 0. We will assume that reheating

occurs due to an effective inflaton coupling to the Standard
Model fermions, given by the interaction Lagrangian

Ly
ϕ−SM ¼ −yϕf̄f; ð37Þ

where y is a Yukawa-like coupling, f is a Standard Model
fermion, and the inflaton decay rate is

Γϕ ¼ y2

8π
mϕ: ð38Þ

If we solve the Friedmann equations (35) and (36), we
find [6,32,36]

ρϕðaÞ ¼ ρend

�
aend
a

�
3

ð39Þ

and

ρRðaÞ ¼ ρRH

�
aRH
a

�3
2 1 − ðaenda Þ52
1 − ðaendaRH

Þ52 ; ð40Þ

where aend is the scale factor at the end of inflation, ρend ≡
ρϕðaendÞ is the inflaton energy density at the end of inflation
when there is no radiation present, aRH is the scale factor at

FIG. 4. Contours of the ratio of the dark matter production rates
from oscillations in the inflaton condensate based on nonminimal
gravitational interactions to those based on minimal interactions.
The ratio is displayed in the ðξϕ; ξXÞ plane.

7For the inflaton scattering with VðϕÞ ∼ ϕk, where k > 2, see
[8,9,32,35–38].
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reheating, and ρRH ≡ ρRðaRHÞ ¼ ρϕðaRHÞ is the energy
density at reheating. We note that these equations are
strictly valid for aend ≪ a ≪ aRH and the end of inflation
occurs when ä ¼ 0 which corresponds to ρend ¼ 3

2
VðϕendÞ.

For the Starobinsky potential, ρend ≃ 0.175m2
ϕM

2
P [39].

The radiation energy density can be parametrized as

ρR ¼ gTπ2

30
T4 ≡ αT4; ð41Þ

where gT is the number of relativistic degrees of freedom at
the temperature T. The maximum temperature is attained
when the radiation energy density reaches its peak at
ρRðamaxÞ ¼ αT4

max. It was shown in [36] that the ratio of
amax to aend is given by

amax

aend
¼

�
8

3

�2
5

≃ 1.48: ð42Þ

Using Eq. (40) we can then express the production rate
from gravitational scattering of thermal particles (23) as a
function of the scale factor a

RT;ðξÞ
X ðaÞ ≃ βðξÞ1

ρ2RH
α2M4

P

�
aRH
a

�
3
"
1 − ðaenda Þ52
1 − ðaendaRH

Þ52

#
2

; ð43Þ

where we assumed that mX ≪ mϕ; T, and thus neglected

the terms βðξÞ2;3. If we use H ≃
ffiffiffiffiffiffiffiffi
ρϕðaÞ

pffiffi
3

p
MP

, which is valid for

a ≪ aRH, we can rewrite Eq. (34) as

dYξ
X

da
¼

ffiffiffi
3

p
MPffiffiffiffiffiffiffiffi
ρRH

p a2
�

a
aRH

�3
2

RT;ðξÞ
X ðaÞ: ð44Þ

We find that the solution to this equation is

nT;ξX ðaRHÞ ¼
2βξ1ffiffiffi
3

p
α2M3

P

ρ3=2RH

ð1− ðaend=aRHÞ52Þ2

×

�
1þ 3

�
aend
aRH

�5
2

−
25

7

�
aend
aRH

�3
2

−
3

7

�
aend
aRH

�
5
�
;

ð45Þ

where we integrated Eq. (44) in the interval aend <
a < aRH.
The relic abundance is given by [40]

ΩXh2 ¼ 1.6 × 108
g0
gRH

nðTRHÞ
T3
RH

mX

1 GeV
; ð46Þ

and if we combine it with Eq. (45), we obtain

ΩT;ðξÞ
X h2¼2

3
ΩðξÞ

k

�
1þ3

�
ρRH
ρend

�5
6

−
25

7

�
ρRH
ρend

�1
2

−
3

7

�
ρRH
ρend

�5
3

�
;

ð47Þ

with

ΩðξÞ
k ¼ 1.6 × 108

g0
gRH

βðξÞ1

ffiffiffi
3

pffiffiffi
α

p mX

1 GeV
T3
RH

M3
P

�
1 −

�
ρRH
ρend

�5
6

�−2
;

ð48Þ

where g0 ¼ 43=11 and we use the Standard Model
value gRH ¼ 427=4.
We observe that ΩT;ξ

X ∝ βξ1T
3
RH. Therefore large values of

the couplings ξh and ξX would require a decrease in the
reheating temperature. In Sec. IV we compare the scatter-
ing rates and the dark matter abundances with the mini-
mally coupled case.

B. ϕϕ → XX

Another mode of dark matter production is through the
scattering of the inflaton itself. Whereas the graviton
exchange channel was treated with care in [5,6], in the
case of nonminimal coupling it suffices to replace RT;ξ

X in
Eq. (44) with the production rate (27),

dYξ
X

da
¼

ffiffiffi
3

p
MPffiffiffiffiffiffiffiffi
ρRH

p a2
�

a
aRH

�3
2

Rϕ;ξ
X ðaÞ; ð49Þ

and to integrate between aend and aRH, which leads to

nϕ;ξX ðaRHÞ ¼
σξ2ϕXρ

3=2
RHMP

4
ffiffiffi
3

p
πm4

ϕ

��
aRH
aend

�3
2

− 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
X

m2
ϕ

s
: ð50Þ

For aRH ≫ aend, using Eq. (39) we can express nϕ;ξX as a
function of ρend:

nϕ;ξX ðaRHÞ ≃
σξ2ϕXρRH

ffiffiffiffiffiffiffiffi
ρend

p
MP

4
ffiffiffi
3

p
πm4

ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
X

m2
ϕ

s
; ð51Þ

and we find

Ωϕ;ξ
X h2

0.12
≃
1.3 × 107σξ2ϕXρ

1=4
RHM

2
P

m3
ϕ

mX

1 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
X

m2
ϕ

s
; ð52Þ

where we assumed the Starobinsky value for ρend. The
analogous expression for models with minimally coupled
gravity is found by replacing σξϕX → σϕX.
Up to this point we have assumed that the radiation is

produced via the direct inflaton decay to a fermion pair. In
the next subsection we discuss an unavoidable radiation
production channel when the inflaton condensate scattering
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produces Higgs bosons in models with minimal and non-
minimal coupling to gravity.

C. ϕϕ → hh

Gravitational processes that produce dark matter can also
populate the thermal bath in the same way. Even if this
Planck-suppressed production mechanism does not domi-
nate throughout the entire reheating process, it was shown
in [6] that for TRH ≲ 109 GeV it is graviton exchange that
dominates the production of the thermal bath at the very
beginning of the reheating, when ρϕ ∼ ρend. In fact, it was
shown that the maximal temperature reached, Tmax (which
can be considered as an absolute lower bound on Tmax), is
Tmax ∼ 1012 GeV. It is therefore natural to determine the
value of the couplings (ξϕ, ξh), for which nonminimal
gravitational processes generate the thermal bath at early
times, and the maximal temperature which can be attained
by these processes.
Following the discussion in the previous subsection, to

compute the radiation energy density produced by gravi-
tational couplings we implement the rate Rϕ;ξ

h (30) into the
Friedmann equation (36),

dρR
dt

þ 4HρR ≃ Nh

σξ2ϕh
8π

ρ2ϕ
m3

ϕ

; ð53Þ

where we took into account that each scattering corre-
sponds to an energy transfer of 2mϕ.

8 The solution to this
equation is

ρR ¼ Nh

ffiffiffi
3

p
σξ2ϕh
4π

ρ3=2endMP

m3
ϕ

��
aend
a

�
4

−
�
aend
a

�9
2

�
: ð54Þ

Note that the dependence on the scale factor a is very
different from that found in Eq. (40) due to inflaton decay.
Indeed, the Higgs bosons produced by gravitational scat-
tering (minimal as well as nonminimal) are redshifted to a
greater extent because of the high dependence of the rate on
their energy due to the form of the energy-momentum
tensor T0

μν. Since ρR ∝ a−4 in Eq. (54) (at large a) and
ρϕ ∝ a−3 in Eq. (39), reheating through this process does
not occur (i.e., ρR never comes to dominate the total energy
at late times) and inflaton decay is necessary.9

However, as in the case of the reheating from the inflaton
decay, the energy density in Eq. (54) exhibits a maximum
when a ¼ amax ¼ ð81=64Þaend. The maximum radiation
density is then

ρξmax ≃ Nh

σξ2ϕh

12
ffiffiffi
3

p
π

ρ3=2endMP

m3
ϕ

�
8

9

�
8

; ð55Þ

and from this expression we find that the maximum tem-
perature produced by gravitational interactions is given by

Tξ
max ≃ 6.5 × 1011

� jσξϕhj
10−11

�1
2

GeV

≃ 1.8 × 1012
ffiffiffiffiffi
jξj

p
ðj5þ 12ξjÞ12

�
mϕ

3 × 1013 GeV

�
GeV;

ð56Þ

where we took ξϕ ¼ ξh ¼ ξ in the last equality. The
analogous expression for models with minimally coupled
gravity is found by replacing σξϕh → σϕh.
To compare the maximum temperature obtained by

nonminimal interactions with respect to minimal gravita-
tional interactions, we can rewrite Eq. (56) (now including
minimal interactions in Tξ

max) as

Tξ
max ≃ 1.3 × 1012

�jσξϕh þ σϕhj
σϕh

�1
2

GeV: ð57Þ

The value of ξ for which the maximum temperature
generated by the nonminimal coupling surpasses the one
from graviton exchange is shown in Fig. 5 and is deter-
mined using

FIG. 5. The maximum temperature during reheating generated
separately by minimal and nonminimal gravitational scattering of
Higgs bosons in the thermal bath.

8Or equivalently that each Higgs quanta carries an energy mϕ.
9This conclusion is avoided if the inflaton potential about

minimum is approximated by ϕk with a higher power of
k > 4 [6,9].

CLÉRY, MAMBRINI, OLIVE, SHKERIN, and VERNER PHYS. REV. D 105, 095042 (2022)

095042-8



ffiffiffiffiffiffiffiffiffiffi
jσξϕhj
jσϕhj

s
¼

ffiffiffiffiffiffiffiffi
2jξj

p
ðj5þ 12ξjÞ12 > 1; ð58Þ

which is satisfied when ξ > 1=12 or ξ < −1=2, as dis-
cussed earlier.
As noted above and discussed in [6], minimal (and

nonminimal) gravitational interactions for a quadratic
inflaton potential do not lead to the completion of the
reheating process, thus requiring additional inflaton inter-
actions for decay. Although radiation density produced in
scattering falls off faster than that from decay, at early time,
the radiation density may, in fact, dominate and determine
Tmax. To determine when the ϕϕ → hh process leads to the
maximum temperature, we rewrite Eq. (40) as

ρyR ¼
ffiffiffi
3

p
y2mϕM3

P

20π

�
ρend
M4

P

�1
2

��
aend
a

�3
2

−
�
aend
a

�
4
�
: ð59Þ

Using Eq. (42), we find that the maximum radiation density
produced by the inflaton decay is given by

ρymax ¼
ffiffiffi
3

p
y2mϕM3

P

32π

�
ρend
M4

P

�1
2

�
3

8

�3
5

: ð60Þ

The maximum temperature is therefore determined by
(nonminimal) gravitational interactions when

y2 ≲ Nh

8ρendσ
ξ2
ϕh

9m4
ϕ

�
8

9

�
8
�
8

3

�3
5 ð61Þ

or

y≲ 1.6σξϕh

ffiffiffiffiffiffiffiffi
ρend
m4

ϕ

s
≃ 5.4 × 104σξϕh

�
3 × 1013 GeV

mϕ

�
: ð62Þ

This leads to the following reheating temperature:

TRH ≲ 3.1 × 1019σξϕh

�
mϕ

3 × 1013 GeV

�
−1=2

GeV

≲ 2.4 × 109
�

mϕ

3 × 1013

�3
2

ξð5þ 12ξÞ GeV; ð63Þ

where TRH is given by [32]

ρϕðaRHÞ ¼ αT4
RH ¼ 12

25
Γ2
ϕM

2
P ¼ 3y4m2

ϕM
2
P

400π2
; ð64Þ

when the reheating temperature is determined by infla-
ton decay.
The primary effect of the gravitational scattering proc-

esses on reheating is the augmentation of Tmax for suffi-
ciently small inflaton decay coupling, y. This can be seen in
Fig. 6 where we show the evolution of the energy density of

radiation from scattering and decay as well as the energy
density of the inflaton as a function of a=aend for σ

ξ
ϕh ¼ 0

and σξϕh=σϕh ¼ 100, respectively.
As we saw in Eq. (58), minimal gravitational interactions

dominate over nonminimal interactions when σξϕh < σϕh or
when

12ξϕξh þ 3ξh þ 2ξϕ <
1

2
; ð65Þ

when we neglect contributions proportional to the Higgs
mass. In this case, the maximum temperature is determined
by gravitational interactions when y≲ 2.1 × 10−6 from
Eq. (62) using σϕh from Eq. (32). The evolution of the
energy densities in this case is shown in Fig. 6 with
y ¼ 10−8. However, as the energy density of radiation after
the maximum falls faster than ρϕ, reheating in the Universe
is determined by the inflaton decay. For a sufficiently small
coupling y, the energy density from the decay dominates
the radiation density at a > aint, where

aint
aend

≃
�
5σ2ϕhNhρend

y2m4
ϕ

�2=5

≃ 1.6

�
σϕhMP

ymϕ

�
4=5

: ð66Þ

FIG. 6. Evolution of the inflaton density (blue line) and the total
radiation density (red line), with radiation density produced from
inflaton decays (dashed orange line) and ϕϕ → hh scattering
processes ρσ;ξR (dotted green line) and ρσR (dash-dotted purple line)
with σξϕh=σϕh ¼ 100 (or ξϕ ¼ ξh ¼ ξ ≃ −2.3 or 1.8), as a
function of a=aend for a Yukawa-like coupling y ¼ 10−8 and
ρend ≃ 0.175m2

ϕM
2
P ≃ 9 × 1062 GeV4. The black dashed lines

correspond to the ratios aint=aend ≃ 150 and 6500, which agree
with Eq. (66). The numerical solutions are obtained from
Eqs. (35), (36), and (53).
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For σϕh ¼ 3.8 × 10−11,mϕ ¼ 3 × 1013 GeV, and y ¼ 10−8

we have aint ≈ 160aend, as seen in Fig. 6.
When Eq. (65) is not satisfied, nonminimal interactions

may dominate as shown in the bottom panel of Fig. 6, for
σξϕh ¼ 100σϕh and y ¼ 10−8. The crossover can be deter-

mined from Eq. (66) with the replacement σϕh → σξϕh. In
this example, aint ≈ 6500aend.

IV. RESULTS

We now turn to some general results that may be
obtained from the framework described above. Con-
cerning the gravitational production of dark matter from
the thermal bath, the difficulty of populating the Universe
via the exchange of a graviton was already known [6,31].
Summing the minimal and nonminimal contributions in
Eq. (47), we find for ρRH ≪ ρend

ΩT
X

0.12
≃ ½1þ 30fðξh; ξXÞ�

�
TRH

1014 GeV

�
3
�

mX

4.0 × 109 GeV

�
¼ ½1þ 120ξ2ð1þ 6ξþ 12ξ2Þ�

×

�
TRH

1014 GeV

�
3
�

mX

4.0 × 109 GeV

�
ð67Þ

with

fðξh; ξXÞ ¼ ξ2h þ 2ξhξX þ ξ2X þ 12ξhξXðξh þ ξX þ 4ξhξXÞ;

where we assumed ξh ¼ ξX ¼ ξ in the last equality, for
simplicity. It is clear that, if we set ξ ¼ 0, i.e., if we consider
only graviton exchange, the reheating temperature neces-
sary to obtain a reasonable density respecting the data [23]
is dangerously close to the mass of the inflaton, even for
extremely large dark matter masses. This problem had
already been raised in [31] and resolved in [5,6] by
considering the dark matter produced from the (minimal)
gravitational inflaton scattering.
On the other hand, from Eq. (67) we see that there is

another solution to this tension if one allows for non-
minimal gravitational couplings. Indeed, it is easy to see
that for values of ξi ≳ 0.1 [fðξh; ξXÞ≳ 1

30
], nonminimal

gravitational production dominates over graviton exchange.
In this case, it becomes easier to obtain the correct dark
matter density for more reasonable values of TRH and/or
mX. For example, for a common value ξ ¼ ξh ¼ ξX ¼ 1, a
temperature of TRH ∼ 1.2 × 1013 GeV, thus slightly below
the inflaton mass, is sufficient to produce an EeV dark
matter candidate, whereas for ξ ¼ 1000, TRH ∼ 1011 GeV
will saturate the relic density for a 2.6 TeV dark matter
mass. We show this result in Fig. 7 where we plot the
reheating temperature needed to satisfy the relic density
constraint as a function of mX for different values of ξ. For
each value of ξ, the relic density exceeds ΩXh2 ¼ 0.12
above the corresponding curve. As one can see, the line for

ξ ¼ 0 is in the upper corner of the figure at high values of
TRH and mX, and these drop significantly at higher values
of ξ.
As was shown in [5,6], another possibility to avoid the

necessity of high reheating temperatures and/or dark
matter masses is the production of matter from the
oscillations within the inflaton condensate when the
energy stored in the condensate is much larger than
the reheating temperature. A simple comparison between
Eqs. (47) and (52) shows that the production of dark
matter via inflaton scattering when ξi ≠ 0 generally
dominates over the production of dark matter from the
thermal bath:

Ωϕ;ξ
X

ΩT;ξ
X

≃ 34
ðσξϕXÞ2
βξ1

M5
P

T2
RHm

3
ϕ

≃ 185
MPmϕ

T2
RH

ð5þ 12ξÞ2
1þ 6ξþ 12ξ2

≫ 1; ð68Þ

where we took ξ ¼ ξϕ ¼ ξh ¼ ξX and mX ≪ mϕ in the
last equality. We are therefore able to state that the
relic density of dark matter generated by the nonmi-
nimal gravitational scattering of the inflaton is always
much more abundant than that produced by the ther-
mal bath.
Dark matter production from inflaton scattering via

minimal graviton exchange also dominates over minimal
gravitational thermal production [6]. This state of affairs is
anything but surprising. Indeed, the energy available in the
inflaton condensate at the onset of oscillations is much
greater than that available in the thermal bath during the
reheating process. As the scattering cross sections are
themselves highly dependent on the energies through the

FIG. 7. Region of parameter space respecting the relic density
constraint ΩXh2 ¼ 0.12 in the plane (mX,TRH) for different
values of ξ ¼ ξh ¼ ξX and ρend ≃ 0.175m2

ϕM
2
P in the case of

gravitational production from the thermal bath hh → XX. Both
minimal and nonminimal contributions are taken into account.
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energy-momentum tensor, it is quite normal that inflaton
scattering is the dominant process for both minimal and
nonminimal gravitational couplings.
Since inflaton scattering dominates in both the minimal

and the nonminimal gravitational interactions, we can
compare the two. We obtain

Ωϕ;ξ
X

Ωϕ
X

¼ σξ2ϕX
σ2ϕX

≃ 4ξ2ð5þ 12ξÞ2; ð69Þ

and we see again that nonminimal interactions dominate
when ξ > 1=12 or < −1=2.
We show in Fig. 8 the region of the parameter space in

the (mX, TRH) plane allowed by the relic density constraint,
adding all of the minimal and nonminimal gravitational
contributions, from inflaton scattering as well as Higgs
scattering from the thermal bath taking ξϕ ¼ ξh ¼ ξX ¼ ξ.
As expected, for ξ ¼ 0 we recover the result found in [6].
As one can see, the difficulty in the gravitational production
from the thermal bath is indeed alleviated as a reheating
temperature TRH ≃ 1011 GeV allows for the production of a
PeV scale dark matter candidate. If, in addition, we
introduce the nonminimal couplings ξ, the necessary
reheating temperature to fit the Planck data may be as
low as the electroweak scale for a GeV candidate if
ξ≳ 1000.
Finally, we note that given the dark matter mass and

reheating temperature (if that sector of beyond the Standard
Model physics were known), the contours in Fig. 8 allow us
to place an upper bound on the nonminimal couplings, ξ.
We can rewrite Eq. (52) as

ΩXh2

0.12
¼ 4.1 × 10−7

�
12ξ2 þ 5ξþ 1

2

�
2
�

TRH

1010 GeV

�

×

�
mX

1 GeV

��
mϕ

3 × 1013 GeV

�
; ð70Þ

when mX ≪ mϕ and ξ ¼ ξϕ ¼ ξX. Then, for example, if
mX ¼ 1 TeV, and TRH ¼ 109 GeV, we obtain an upper
limit of jξj≲ 4.

V. CONCLUSIONS

In this paper, we have generalized the minimal
gravitational interactions in the early universe, i.e., the
s-channel exchange of a graviton, to include nonminimal
couplings of all scalars to the Ricci curvature R. We
consider a scalar sector Si consisting of the inflaton
condensate ϕ, the Higgs field H, and a dark matter
candidate X, and we have analyzed the impact of
couplings of the type ξiS2i R on the reheating process
and dark matter production. The latter can be generated
by the thermal Higgs scattering or excitations of the
inflaton, through both minimal and nonminimal gravita-
tional couplings. Whereas the Higgs scattering through
the exchange of a graviton necessitates a very large
reheating temperature and/or dark matter mass in order to
fulfill Planck CMB constraints (TRH ≃ 1014 GeV with
mX ≃ 109 GeV), for ξ≳ 0.1, the nonminimal coupling
dominates the process and alleviates the tension. For
ξ ≃ 1000, a dark matter mass of ∼1 PeV with TRH ≃
1010 GeV will satisfy the constraint (see Fig. 7). However,
thermal production is not the sole source of dark matter
production through gravity. When we include the contribu-
tion (necessarily present) of the inflaton scattering, we
showed that the energy stored in the condensate at the end
of inflation compensates largely the reduced gravitational
Planck coupling. These processes yield the correct relic
abundance through minimal graviton exchange for a dark
matter mass of ∼108 GeV with TRH ≃ 1010 GeV, and the
constraint is satisfied for a dark matter mass of ∼100 GeV
and TRH ≳ 104 GeV if one adds nonminimal couplings of
the order ξ ≃ 100 as we show in Fig. 8. Gravitational inflaton
scattering also affects the reheating process, producing a
maximum temperature ≃1012 GeVwith minimal couplings,
reaching as large as Tξ

max ≃ 5jξjTmax ≃ 1014 GeV for ξ ¼
100 as one can see in Fig. 5. This result can be reexpressed as
an upper limit to jξj given values of mX and TRH.
We cannot overemphasize that all of our results are

unavoidable in the sense that they are purely gravitational
and do not rely on physics beyond the Standard Model.
The relic density of dark matter and the maximum
temperature of the thermal bath computed here should
be considered as lower bounds that should be imple-
mented in any extension of the Standard Model, whatever
is its nature.

FIG. 8. Region of parameter space respecting the relic density
constraint ΩXh2 ¼ 0.12 in the plane (mX,TRH) for different
values of ξϕ ¼ ξh ¼ ξX ¼ ξ and ρend ≃ 0.175m2

ϕM
2
P in the case

of production from gravitational inflaton scattering ϕϕ → XX.
Both minimal and nonminimal contributions are taken into
account.
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APPENDIX A: PARTICLE PRODUCTION WITH
A NONMINIMAL COUPLING

The full Jordan frame action we consider is given by
Eq. (2). The conformal transformation to the Einstein frame
is given by

gμν ¼ Ω2g̃μν; ðA1Þ

where gμν is the Einstein frame spacetime metric and the
conformal factor is expressed by Eq. (3). It can readily be
shown that the scalar curvature transforms as (see, e.g., [42])

R̃ ¼ Ω2½Rþ 6gμν∇μ∇ν lnΩ − 6gμνð∇μ lnΩÞð∇ν lnΩÞ�:
ðA2Þ

After eliminating the total divergence term, we find the
Einstein frame action (9).
To find the effective interaction terms we assume the

small field limit (12) and expand the conformal factors in
the Einstein frame action. We find the following effective
interaction Lagrangian:

Leff ¼ −
1

2

�
ξϕϕ

2

M2
P
þ ξXX2

M2
P

�
∂μh∂μh −

1

2

�
ξhh2

M2
P
þ ξXX2

M2
P

�
∂μϕ∂μϕ −

1

2

�
ξϕϕ

2

M2
P
þ ξhh2

M2
P

�
∂μX∂μX

þ 6ξhξXhX
M2

P
∂μh∂μX þ 6ξhξϕhϕ

M2
P

∂μh∂μϕþ 6ξϕξXϕX

M2
P

∂μϕ∂μX þm2
XX

2

�
ξϕϕ

2

M2
P
þ ξhh2

M2
P

�

þm2
ϕϕ

2M2
P

�
ξXX2

M2
P

þ ξhh2

M2
P

�
þm2

hh
2

�
ξϕϕ

2

M2
P
þ ξXX2

M2
P

�
; ðA3Þ

and we can rewrite the above Lagrangian in terms of the
effective couplings as Eq. (13), with

σξhX ¼ 1

4M2
P
½ξhð2m2

X þ sÞ þ ξXð2m2
h þ sÞ

þ ð12ξXξhðm2
h þm2

X − tÞÞ�; ðA4Þ

σξϕX ¼ 1

2M2
P
½ξϕm2

X þ 12ξϕξXm2
ϕþ 3ξXm2

ϕþ 2ξϕm2
ϕ�; ðA5Þ

σξϕh ¼
1

2M2
P
½ξϕm2

h þ 12ξϕξhm2
ϕ þ 3ξhm2

ϕ þ 2ξϕm2
ϕ�; ðA6Þ

where s and t are the Mandelstam variables. The latter
couplings assume an inflaton condensate in the initial state
rather than a thermal Higgs in the initial state accounting
for the lack of symmetry in the three couplings.

APPENDIX B: THERMAL PRODUCTION

In this Appendix we calculate the thermal dark matter
production rate RT;ξ

X ðTÞ arising from the effective four-point
interaction σhXh2X2, where σhX is given byEq. (A4).We also
calculate the production rateRT

XðTÞ for the thermal scattering
processes mediated by gravity alone, SMSM → X X, which
are unavoidable inmodelswith aminimal coupling to gravity
(ξϕ;h;X ¼ 0) [6,31], and compare the two results.

The production rate RT;ξ
X ðTÞ can be computed from

Eq. (21). The matrix element squared is given by

jM̄hX;ξj2 ¼ 4σξ2hX; ðB1Þ

where in the limit where the Higgs boson mass is neglected,
the Mandelstam variables s and t are given by

t ¼ s
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X

s

r
cos θ13 − 1

�
þm2

X; ðB2Þ
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s ¼ 2E1E2ð1 − cos θ12Þ: ðB3Þ
We find the following coefficients for Eq. (23):

βξ1 ¼
π3

2700
½ξ2h þ 2ξhξX þ ξ2X þ 12ξhξXðξh þ ξX þ 4ξhξXÞ�;

ðB4Þ

βξ2 ¼
ζð3Þ2ξh
2π5

½ξh þ ξX þ 6ξhξX − 12ξhξ
2
X�; ðB5Þ

βξ3 ¼
ξ2h

576π
: ðB6Þ

Similarly, using Eqs. (18)–(20), we find the matrix element
squared for minimally coupled gravity,

jMhXj2 ¼ 1

4M4
P

ðtðsþ tÞ − 2m2
Xtþm4

XÞ2
s2

; ðB7Þ

where we have neglected the Higgs field mass. We find the
coefficients:

β1 ¼
π3

81000
; ðB8Þ

β2 ¼ −
ζð3Þ2
30π5

; ðB9Þ

β3 ¼
1

4320π
: ðB10Þ

Note that when both contributions are kept, and we neglect
mh ≪ mX, the full coefficients (including interference) are
given by

βξ1 ¼
π3

81000
½30ξ2hð12ξXð4ξX þ 1Þ þ 1Þ

þ10ξhð6ξX þ 1Þ2 þ 10ξXð3ξX þ 1Þ þ 1�; ðB11Þ

βξ2 ¼ −
ζð3Þ2
60π5

½2þ 10ξX

þ5ξhð1þ 6ξX þ 6ξhð6ξXð2ξX − 1Þ − 1ÞÞ�; ðB12Þ

βξ3 ¼
1

8640π
½2þ 5ξhð32ξh − 2Þ�; ðB13Þ

which reduces to Eqs. (B8)–(B10) when all ξi ¼ 0.
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