ATLAS measurements of CP-violation and rare decay processes with beauty mesons

> Lake Louise Winter Institute 2022 Alberta, Canada, 20 to 26 February 2022

Tomáš Jakoubek on behalf of the ATLAS Collaboration

Weizmann Institute of Science tomas.jakoubek@cern.ch

Introduction B-physics at ATLAS

- ATLAS Run 2: 139 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV collected in 2015-2018 (Run 1: 25 fb⁻¹ at 7 and 8 TeV).
- Producing 2.5M $b\bar{b}$ pairs/second, B_s , B_c , Λ_b , etc. available.
- Focus mostly on final states with muons, fully reconstructable.
- Typical trigger: low-p_T di-muons at low invariant mass, using information from tracker and muon detectors. Rate up to ~ 200 Hz.
- In 2018, a di-electron high-level trigger (HLT) implemented and being analysed now.

LLW | 2022

CPV in $B_s^0 \rightarrow J/\psi\phi$: Introduction Eur. Phys. J. C 81 (2021) 342

Decay $B_s^0 \rightarrow J/\psi \phi$ is expected to be sensitive to new physics (NP) contributions to CP-violation.

- Neutral B_s^0 meson can oscillate into its antiparticle $\overline{B_s^0}$ (and vice versa).
- The oscillation frequency is characterized by the mass difference Δm_s of the heavy (B_H) and light (B_L) mass eigenstates.
- In the absence of CP violation, the B_H state would correspond to the CP-odd state and the B_L to the CP-even state.
- *CP* violation in interference of mixing and decay: the common final state is reached via two different decay chains:

CPV in $B^0_s \rightarrow J/\psi\phi$: Measurement Eur. Phys. J. C 81 (2021) 342

- *CP*-violating phase is defined as the weak phase difference between the $B_s^0 \overline{B_s^0}$ mixing amplitude and the $b \to c\overline{c}s$ decay amplitude.
- In the Standard Model (SM) it can be related to the CKM matrix $\phi_s \simeq -2\beta_s = -2 \arg\left(-\frac{V_{es}V_{eb}^*}{V_{es}V_{eb}^*}\right)$ and then $\phi_s = -0.03696^{+0.00072}_{-0.00082}$ rad can be predicted [1].
- Any sizeable deviation from this value would be a sign of beyond SM physics.
- $B_s^0 \rightarrow J/\psi\phi$: pseudoscalar to vector-vector final state \rightarrow admixture of *CP*-odd (*L* = 1) and *CP*-even (*L* = 0, 2) states. Distinguishable through time-dependent angular analysis.
- Non-resonant S-wave decay $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi f_0$ both contribute to the final state:
 - \blacksquare can't be identified in the measured data, but can significantly bias measurement of ϕ_s ,
 - thus they have to be included in the differential decay rate (due to interference with the signal decay) and treated by the fit.

CPV in $B^0_s \rightarrow J/\psi\phi$: OS Tagging Eur. Phys. J. C 81 (2021) 342

- Knowledge of the initial flavour can improve any *CP*-violation measurement.
- **Muon/electron tagging**: semi-leptonic decay of B ($b \rightarrow \mu/e$ transition); momentum weighed charge of lepton and tracks in the cone $\Delta R < 0.5$ around the leading lepton $Q_{\ell} = \frac{\sum_{i}^{N_{tracks}} q_i p_{\tau_i}^{\kappa}}{\sum_{i}^{N_{tracks}} p_{\tau_i}^{\kappa}}$ (constant $\kappa = 1.1$).
- b-jet-charge tagging: used if the additional muon/electron is absent; momentum-weighted track-charge in jet.
- Self-tagging $B^{\pm} \rightarrow J/\psi K^{\pm}$ channel used for calibration and performance estimation.

Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]	
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009	
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004	
Low-p _T muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006	
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006	
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01	

LLW| 2022

CPV in $B_s^0 \rightarrow J/\psi\phi$: UML Fit Eur. Phys. J. C 81 (2021) 342

- Unbinned maximum likelihood (UML) fit performed to extract parameters of interest.
- Decay observables: mass, time, angles. Conditional observables: per-candidate tagging and mass/time resolutions (p_T(B) dependent).

$$\ln \mathcal{L} = \sum_{i=1}^{N} \left\{ w_i \cdot \ln \left(f_{\mathsf{sig}} \cdot \mathcal{F}_{\mathsf{sig}} + f_{\mathsf{sig}} \cdot f_{B^0_d} \cdot \mathcal{F}_{B^0_d} + f_{\mathsf{sig}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b} + (1 - f_{\mathsf{sig}}(1 + f_{B^0_d} + f_{\Lambda_b})) \cdot \mathcal{F}_{\mathsf{bck}} \right) \right\}.$$

- Fixed parameters: $\Delta m_s = PDG$, no direct *CP*-violation assumed.
- Trigger causing decay time inefficiency, modelled in MC.
- Ratio plots include both stat. and syst. uncertainties; deviations within $2\sigma \Rightarrow$ total uncertainties cover any discrepancy between data and fit model.

CPV in $B_s^0 \rightarrow J/\psi\phi$: Results Eur. Phys. J. C 81 (2021) 342

Likelihood fit determined two solutions for the strong phases, but no effect on the result.

- Weak phase ϕ_s as well as decay width difference $\Delta \Gamma_s$ compatible with SM.
- Dominant systematics on ϕ_s measurement from tagging.
- Statistical (BLUE) combination with Run 1 result.

CPV in $B^0_s \rightarrow J/\psi\phi$: Comparison Eur. Phys. J. C 81 (2021) 342

- ATLAS: Still 60 fb⁻¹ of 2018 data to be added.
- HFLAV average for PDG 2021: $\phi_s = -0.050 \pm 0.019$ rad.

Study of the rare decays of B_s^0 and B^0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector

$\mathsf{B}^0_{(\mathsf{s})} o \mu\mu$: Introduction JHEP 04 (2019) 098

- Flavour-changing neutral-current processes highly suppressed in the SM, $B^0_{(s)} \rightarrow \mu^+ \mu^-$ also helicity suppressed $\rightarrow B \sim 10^{-9}$.
- NP can significantly contribute, modifying the branching ratio.
- 36.2 fb⁻¹ dataset of 2015-2016 data taking, but effectively 26.3 fb⁻¹ for $B^0_{(s)} \rightarrow \mu\mu$.
- $L_{xy} > 0$ and $m \in (4.0, 8.5)$ GeV requested at HLT.
- $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$ measurement relative to $\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$; $f_{u,d,s}$ are hadronisation probabilities of a *b*-quark:

$$\mathcal{B}(B^{0}_{(s)} \to \mu^{+}\mu^{-}) = N_{d(s)} \cdot \frac{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})}{N_{J/\psi K^{\pm}} \cdot \frac{\epsilon_{\mu^{+}\mu^{-}}}{\epsilon_{J/\psi K^{\pm}}}} \cdot \frac{f_{u}}{f_{d(s)}}.$$

- $\blacksquare B^0_s {\rightarrow} J/\psi \phi \text{ as a control channel}.$
- Blinded signal di-muon invariant mass region (5166, 5526) MeV.
 BDT based background suppression, trained on sidebands data.
 Yields N_{d(s)} and N_{J/ψK±} obtained from UML fits to the mass spectra.
 - Relative reconstruction efficiencies estimated from corrected MC.

B⁰_(s) → $\mu\mu$: Backgrounds JHEP 04 (2019) 098

- Partially reconstructed *b*-hadron decays:
 - Same Vertex: $B^0
 ightarrow \mu \mu X$ decays.
 - Same Side: $b \to c\mu X \to s(d)\mu X'$.
 - Semileptonic decay with misidentified hadron.
- Peaking backgrounds:
 - $B^0 \rightarrow h^+ h^-$, both hadrons misidentified as muons.
 - Used tight muon criteria. Only 2.7 ± 1.3 events!
 - Simulated and fixed in the mass fit.
- Continuum background:
 - Combinatorics of muon and uncorrelated hadron decays.
 - Reduced by BDT classifier. Linear shape constrained in the mass fit across BDT bins.

$B^0_{(s)} \rightarrow \mu\mu$: BDT and signal extraction JHEP 04 (2019) 098

- Signal region divided into four BDT bins with constant signal efficiency.
- 15 BDT variables (kinematics, isolation, *B*-vertex separation from PV).
- Validated on $B^{\pm}
 ightarrow J/\psi K^{\pm}$ and $B^0_s
 ightarrow J/\psi \phi$ channels.
- Simultaneous UML fit to di-muon mass distributions in the four BDT bins to extract $B^0_{(s)} \rightarrow \mu\mu$ yields.
- Signal model from MC, two double Gaussians, centred on B⁰_(s) masses.

Unconstrained yields: $N_s = 80 \pm 22$ and $N_d = -12 \pm 20$. SM expectation: $N_s = 91$ and $N_d = 10$. Run 1 + Run 2 (2015+2016) combined measurement compatible with SM at 2.4 σ . Statistic uncertainties dominate.

Contours obtained using Neyman construction.

$B^0_{(s)} \rightarrow \mu\mu$: LHC Combination ATLAS-CONF-2020-049

- ATLAS, CMS and LHCb results.
- Combination from binned 2D profile likelihoods.
- Independent systematics, except for the ratio of fragmentation fractions $\frac{f_d}{f}$.

	LHC	SM [<mark>2</mark>]
$\mathcal{B}(B^0_s o \mu \mu) \; [10^{-9}]$	$2.69^{+0.37}_{-0.35}$	3.66 ± 0.14
$\mathcal{B}(B^0 \to \mu \mu) [10^{-10}] \Big $	$<$ 1.9 at 95% CL	1.03 ± 0.05

Summary

- ATLAS has produced very impressive and competitive results in *B*-physics.
- Working on the updates to the mentioned analyses to full Run 2 statistics, plus:
 - CPV measurement: releasing Δm_s and direct-CP λ , improvements in tagging, fit model, etc.
 - $B^0_{(s)} \to \mu\mu$: including $B^0_s \to \mu\mu$ lifetime analysis.
- More public results on ATLAS B-physics TWiki page

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults !

THANK YOU!

BACKUP

עכוז ויצבן לעדע WEIZMANN INSTITUTE O

LLW| 2022

T. Jakoubek: ATLAS measurements of CP-violation and rare decay processes with beauty mesons

13/12

CPV in $\mathsf{B}^0_{\mathsf{s}}{ o}\mathsf{J}/\psi\phi$: Results Eur. Phys. J. C 81 (2021) 342

- Likelihood fit determined two solutions for the strong phases $\delta_{||}$ and δ_{\perp} .
- Origin an approximate symmetry in the signal PDF:

$$\{\delta_{\parallel}, \ \delta_{\perp}, \ \delta_{\mathsf{S}}\} \to \{2(\pi - \delta_{\parallel}), \ \delta_{\perp} + (\pi - \delta_{\parallel}), \ \delta_{\perp} - \delta_{\mathsf{S}} + (\pi - \delta_{\parallel})\}.$$

This transformation is proportional to $\pi - \delta_{\parallel}$, which from our data is equal to about 0.21.

 $-2\Delta \ln(L)$ between the two solutions is to 0.03, favouring (a) but without ruling out (b). Only a minor effect on all the variables.

	Value	Stat.	Syst.	$-\frac{3.8}{-2\Delta \ln(L)} = 2.30$
ϕ_{s} [rad]	-0.081	0.041	0.022	$\sqrt{5} = 13 \text{ TeV} 80.5 \text{ fb}^{-1} = -2\Delta \ln(L) = 6.18$
ΔΓ _s [ps ^{−1}]	0.0607	0.0047	0.0043	$3.62\Delta \ln(L) = 11.83$
Γ s [ps ⁻¹]	0.6687	0.0015	0.0022	Solution (a)
$ A_{\parallel}(0) ^2$	0.2213	0.0019	0.0023	3.4
$ A_0(0) ^2$	0.5131	0.0013	0.0038	
$ A_{S}(0) ^{2}$	0.0321	0.0033	0.0046	3.2
$\delta_{\perp} - \delta_{\boldsymbol{s}}$ [rad]	-0.25	0.05	0.04	
δ_{\perp} [rad]	3.12	0.11	0.06	3
	2.91	0.11	0.06	Solution (b)
δ_{\parallel} [rad]	3.35	0.05	0.09	2.8
	2.94	0.05	0.09	
				2.0 2.0 3 3.2 3.4 3.0 δ.[rad]

Ignoring detector effects, the distribution for the time and angles is given by the differential decay rate

$$\frac{\mathrm{d}^4 \Gamma}{\mathrm{d} t \,\mathrm{d} \Omega} = \sum_{k=1}^{10} \mathcal{O}^{(k)}(t) g^{(k)}(\theta_T, \psi_T, \phi_T). \tag{1}$$

Prospects of CPV Measurements (Upgraded ATLAS, HL-LHC, [3])

מכון ויצמן למוע

LLW| 2022

REFERENCES

LLW| 2022

17/12

References

- J. Charles et al., Current status of the standard model CKM fit and constraints on ΔF = 2 new physics, Phys. Rev. D 91 (2015) no.7, 073007, numbers updated using the results from the 2019 values in https://ckmfitter.in2p3.fr/www/results/plots_summer19/ckm_res_summer19.html.
- [2] M. Beneke, C. Bobeth and R. Szafron, Power-enhanced leading-logarithmic QED corrections to $B_q \rightarrow \mu^+ \mu^-$, JHEP 10 (2019), 232.
- [3] ATLAS and CMS Collaborations, Report on the Physics at the HL-LHC and Perspectives for the HE-LHC, arXiv:1902.10229 [hep-ex].

