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Abstract

Since the discovery of the Higgs boson, testing the many possible extensions to the Standard
Model has become a key challenge in particle physics. This paper discusses a new method
for predicting the compatibility of new physics theories with existing experimental data
from particle colliders. Using machine learning, the technique obtained comparable results
to previous methods (>90% precision and recall) with only a fraction of their computing
resources (<10%). This makes it possible to test models that were impossible to probe
before, and allows for large-scale testing of new physics theories.
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1 Introduction

The Standard Model of particle physics is the best description of the building blocks of the universe
we have so far. Decades of scrutiny at particle colliders have demonstrated its unprecedented
agreement with experimental data. However, it has some major shortcomings: it is unable to
account for a variety of observed phenomena, such as neutrino oscillations [1, 2], the presence
of dark matter [3] and dark energy [4], or the asymmetry in the quantities of matter and anti-
matter [5]. These deficiencies suggest that there must exist physics beyond the Standard Model
(BSM). In the last few decades, many theories have emerged in an attempt to account for these
deficiencies.

The discovery of the Higgs boson [6–10] completed the search for all the particles predicted
by the Standard Model, which had guided experiments so far. Now, for the first time in fifty years,
there is no single guiding theory that can motivate new experiments and discoveries. This poses
a problem to the field of particle physics: because of the large number of candidate theories to
replace the Standard Model, it is unviable to test all of them exhaustively through direct searches
at collider experiments. The analyses that need to be designed to do so can take years, and are
only suitable for testing a few theories at a time. In addition, they only probe specific values of
the parameters of the model, such as the width or mass of their new particles, or the strength of
the interaction between them. Extrapolating the results between different regions of parameter
space is not always possible.

However, there is a silver lining. The Large Hadron Collider (LHC) [11] data set is one of
the largest in scientific history, and is expected to become ten times larger over the next two
decades. Hundreds of measurements have already been made in a wide variety of final states.
New tools [12] can harness the power of these measurements to efficiently discard those theories
that are incompatible with past observations. Even though historic measurements were primar-
ily aimed at understanding Standard Model processes, they implicitly contain information about
potential contributions from physics beyond the Standard Model.

Indeed, the addition of new particles and particle interactions in BSM theories often causes
deviations from the predictions of the Standard Model in well-measured processes, especially at
the energies above the electroweak symmetry-breaking scale currently being probed at the LHC.
If the candidate theory were an appropriate model of the process, deviations at these scales would
have been detected in past observations, given the large amounts of experimental evidence we
have. The CLs technique [13] can be used to quantify the incompatibility between a theory and
the observed data. By convention, 68% and 95% confidence level (CL) exclusions are considered.

Deviations can also occur at different scales or processes for which we have little or no exper-
imental results; therefore, their corresponding candidate theories cannot be discarded yet given
our current pool of measurements. However, as the pools from the LHC and other sources con-
tinue to grow, more theories will be testable using this method, reducing the number of candidate
theories. This shift in paradigm, from a theory-driven approach to a data-driven approach, will
become increasingly important for testing new candidate theories at scale, so that the right models
can be targeted in direct searches, and more discoveries can be made.

To achieve this goal, the CONTUR project [12, 14] has formalised a methodology for testing a
wide array of candidate new-physics models. It simulates model behaviour by generating events
using Monte Carlo methods, and compares these results with hundreds of differential cross-section
measurements from ATLAS [15], CMS [16] and LHCb [17]. The method applies to arbitrarily
complex models, and yields comparable results to direct searches, so long as measurements of
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relevant final states have been preserved in RIVET routines [18] and made public by the LHC
experiments.

While CONTUR obtains results in a few days, which might take years to produce through di-
rect searches, the approach is not computationally viable when attempting to probe the entire
parameter space of a given model. The computational complexity scales exponentially with the
number of parameters; even a coarse scan with 10 points along each axis becomes unfeasible for
models with more than four parameters, and many well-known new-physics models have many
more parameters than that. The pMSSM [19], for instance, has 19.

However, not all regions of parameter space are of interest. The goal is to identify the bound-
aries in the parameter space that separate excluded from non-excluded regions; by convention,
the contour lines of 68% and 95% confidence levels, while sampling as few points as possible.
It therefore suffices to classify every point in the parameter space into one of 0-68%, 68-95% or
95-100% regions.

This paper presents a method for approaching this classification problem with machine learn-
ing, which we have named the CONTUR ORACLE. In this method, a random forest [20] is trained it-
eratively using partial CONTUR scans to predict the exclusion status of each point in the parameter-
space, and new points are iteratively sampled using the uncertainty in these predictions—typically
those near the 68% and 95% confidence level contours. This is repeated until the desired levels
of accuracy and confidence are achieved.

First, we describe this methodology in detail, providing a motivation for the design choices.
Then, we showcase its performance for BSM models studied in past CONTUR publications, obtain-
ing consistent results with a fraction of the computational cost. We also apply the method to a
simplified Dark Matter model in five dimensions, with a scan granularity which would have been
impossible using only CONTUR. Finally, we discuss avenues for continuation and improvement of
this work, and the important role we expect that it will play in the future of particle physics.

2 Approach

This section explains the methodology of the ORACLE, including the active learning [21] algorithm,
the metrics used to evaluate its performance, the stopping conditions that determine when not to
continue sampling, and a discussion of the reasons behind the chosen machine learning method:
random forests. The ORACLE is implemented in the open source CONTUR library from version
2.2.0 onwards.

2.1 Motivation

The current CONTUR methodology [12, 14] obtains exclusion results for all the desired points in
a new-physics model’s parameter space by generating collider events using the Herwig Monte
Carlo event generator [22] with a Universal FeynRules Object [23], used to describe the BSM
model. Generated signal events are passed through the analysis logic of the preserved RIVET rou-
tines [18], and the resulting distributions are compared to the observed results for LHC analyses.
The compatibility of a new physics model with the observed data is evaluated using the CLs tech-
nique [13]. Finally, the 95% and 68% CL exclusion contours are drawn. It is worth noting here
that the power of the CONTUR method is intimately linked with the availability of RIVET routines
for measurements made at the LHC. At time of writing, RIVET routines exist for around 60%, 40%
and 7% of relevant ATLAS, CMS and LHCb measurements, respectively. This already represents
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over 250 measurements in a wide variety of center-of-mass energies and final states, but there are
still many key measurements which are not available. We encourage the LHC collaborations to
continue providing RIVET routines for their measurements.

The parameter points to scan are selected by specifying a resolution for each parameter, which
indicates the step size between points on the axis corresponding to that parameter. For each
parameter point in the resulting grid, typically 30 000 collider events are generated, each for
up to three beam energies (7, 8 and 13 TeV). The event-generation tasks for each point takes
approximately one hour, depending on the model under study, and are typically performed in
parallel in a high-performance computing (HPC) cluster. In a large grid, where many points are
well within or well outside the exclusion contours, this results in hundreds of hours of wasted
compute, even for a simple two-dimensional scan.

For a higher resolution of contour line, a larger grid should be generated, which scales with
O(nk), where k is the number of parameters and n is the number of points along each axis. A
higher resolution for the grid enables further restriction of the location of the contours, such
that a smaller fraction of the total grid must be sampled. Therefore, the sample space should be
adapted to the more localised uncertainties.

By iteratively and adaptively sampling the space, the most informative points can be requested
from CONTUR–those where we are most uncertain if the point is on one side or the other of an
exclusion contour. This uncertainty can be quantified using the entropy [24] of each point, as
outlined in Section 2.4. This technique is known as active learning [21]. As a result, the total
number of sampled points required is significantly reduced, and similar results are achieved. After
each iteration, the ORACLE is able to provide an improved prediction of the exclusion level for the
whole parameter space and achieves a fast convergence, as discussed in Section 3. An overview
of this workflow is given in Figure 1.

CONTUR ORACLE

Points with highest entropy

Exclusion confidence for requested points

USER
Predicted exclusion 

confidence for all points

Figure 1: High-level overview of the CONTUR ORACLE workflow. The standard CONTUR pro-
gramme is used to determine CLs exclusions for points in the parameter space. This information
is provided to the ORACLE module which trains a random forest classifier to make predictions of
the CLs exclusions for arbitrary points. Those points with the highest entropy—a measure of lack
of confidence of the classifier in its predictions—are then sampled by CONTUR and the process
is repeated until pre-defined stopping conditions are met. The CLs exclusions for a grid of points
in the parameter space are then returned to the user.

2.2 Similar tools

Similar applications of machine learning and adaptive sampling can be found in other particle
physics re-interpretation tools: GAMBIT [25] uses adaptive sampling to identify viable regions
in BSM parameter space from astrophysical and particle-physics inputs; SModelS [26, 27] uses
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algorithmic techniques to identify new-physics models which are compatible with LHC exclusions
on simplified models; the Excursion project [28] uses Bayesian optimisation to attack the problem
of efficient scanning of parameter-space. These tools use direct searches as inputs, unlike CON-
TUR, which uses the bank of LHC model-independent cross-section measurements. The CONTUR

ORACLEintroduces a novel method for predicting the exclusion status of new-physics parameter
points, using random forests.

2.3 Training algorithm

An initial low-resolution scan is provided by CONTUR where the points are selected at random from
the grid. Each parameter point in the CONTUR scan has an associated CL value, a real number from
0 to 1. Since we are only interested in knowing to which category the parameter point belongs,
we convert this continuous variable to a discrete variable L, such that L = 0 for 0-68% CL, L = 1
for 68-95% CL, L = 2 for >95%.

In order to verify the accuracy of the predictions, a fraction of the points are selected at random
and kept aside in a testing pool. While the training pool is used to train the ORACLE, the testing
pool is used to monitor the performance of its predictions.

After training, the machine learning algorithm gives a probability for each exclusion category
for each point in the entire grid. The predicted category is simply the one with the highest proba-
bility, arg maxLi

p(L = Li). In each iteration, the next sample of points to be scanned by CONTUR

is selected based on which points would be most informative for the learning process, and which
will lead to the greatest reduction in uncertainty. There are several metrics which can be used to
quantify this, as discussed in Section 2.4. Other performance metrics are also calculated for the
testing and training pools, and determine the stopping conditions which dictate whether the OR-
ACLE should continue sampling or provide a final prediction. During benchmarking, the ORACLE

is tested against known CONTUR results, so these metrics are also obtained for the rest of the grid.
A summary of this procedure is provided in Figure 2.

The number of points selected in the first and subsequent iterations, the fraction of testing and
training points, as well as the stopping condition thresholds, as in Section 2.5, and the number
of trees in the random forest, are hyper-parameters which can be adjusted by the CONTUR user.
An analysis of the effect of the hyper-parameters in the accuracy and uncertainty of the results is
provided in Section 3.4.

2.4 Performance metrics

Three metrics are used to measure the performance of the ORACLE and determine when to cease
sampling. These are summarised in Table 1.

Metric Name Description

S Entropy Uncertainty of the prediction
P Precision Likelihood of an exclusion prediction being correct
R Recall Likelihood of an excluded point being detected

Table 1: Metrics utilised to determine the performance of the ORACLE

Different metrics can be used to quantify the uncertainty of a classifier at a given point in the
parameter space, such as the smallest margin uncertainty, the largest margin uncertainty, the least
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Categorise sampled points by 
exclusion confidence

Do predictions
pass accuracy and 

uncertainty 
thresholds?

Assign sampled points to 
training and testing pools

Train random forest using 
training pool

Predict categories for all 
points, sampled and otherwise

Compute accuracy and 
uncertainty for testing and 

training pools
Yes

Predicted 
exclusion 

confidence

No

Select points not yet sampled 
with highest entropy

Request new CONTUR scan

Initial CONTUR scan

Figure 2: A detailed cartoon of the CONTUR ORACLE workflow. From a grid of parameter points,
an initial subset is chosen at random and evaluated using the standard CONTUR programme.
The CONTUR results allow the points to be categorised into bins of CLs exclusion. The points are
then split randomly into training and testing pools: the training pool is used to train a random
forest classifier to predict the CLs exclusion bin of a given point. Predictions are then made for
all points in the initial grid. Those points which were assigned to the testing pool, for which the
true CLs exclusion bin are known, can be used to test the performance of the classifier. If the
performance does not reach a set of predefined conditions, the points with the highest entropy
(those for which the classifier is least certain of its predictions) are sent back to the CONTUR

programme so that the true CLs exclusion can be determined, and they can be included in the
next training. This process is repeated until the stopping conditions are met, and the predicted
CLs exclusion bins for the whole grid are made available to the user.

confidence uncertainty and the entropy. These metrics can be used to determine which point to
sample next by selecting those where the classifier is most uncertain. For the ORACLE, entropy
was chosen as a metric for uncertainty:

S = −
∑

l∈L
p (L = l) log3 [p (L = l)] (1)

given some probability distribution p(L), and classes L= {0,1, 2}, for a given point in parameter
space, as provided by the classifier after each training step. The logarithm in base 3 normalises
the range of the entropy to S ∈ [0,1] for three prediction classes. The entropy is maximal when
the probability distribution is uniform, that is p(L = l) = 1

3 for all l, and minimal when all of the
probability mass is in a single category, that is p(L = l) = 1 for some l and zero otherwise. To
determine when to cease sampling, an arithmetic mean can be computed for the entropy of the
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points in the testing or training pools.
Measuring the accuracy does not suffice to evaluate the performance of the algorithm. In data

sets where only a small fraction of the points are excluded, the algorithm could obtain a high
accuracy without detecting the true exclusions, and without providing reliable predictions. In
evaluating performance, one should therefore account for how reliable an exclusion prediction is
and how sensitive the algorithm is to detecting the underlying exclusions. These two metrics are
known as the precision (or positive predictive rate) and the recall (or sensitivity) respectively. For
binary classification problems, the precision, P, and recall, R, are defined as:

P =
TP

TP+ FP
, R=

TP
TP+ FN

(2)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of
false positives and FN is the number of false negatives.

Since this is a multi-class classification problem, these metrics have to be adapted for more
than two classes. We calculate the recall and precision for the 68% and 95% CL thresholds as
follows: The recall is the fraction of points which were predicted to have at least 68% CL (95%
CL) from the points with a true CL value in 68-95% (95-100%), and the precision is the fraction
of points whose true CL was at least 68% CL (95% CL) from the points with a CL predicted to lie
in 68-95% (95-100%).

2.5 Stopping conditions

After each iteration, once the random forest has been trained, the ORACLE produces predictions
for the exclusion status of the points in both the training and testing pools. If the entropy is
sufficiently low, and the precision and recall are sufficiently high for both the 95% and 68% CL
contours, a final prediction is given. Otherwise, the adaptive sampling continues. If the stopping
conditions are never met, the ORACLE gives a final result once it has sampled all the points.

The thresholds for these metrics are user-specified hyper-parameters of the model. The default
threshold for entropy is is around S = 0.2, for which approximately 95% of the probability mass is
in a certain prediction category. Similarly, the thresholds for the precision and recall are P = 0.90
and R= 0.90.

2.6 Choice of infrastructure

When selecting a machine learning architecture for the classification task, we considered several
possibilities. The main criterion for architecture choice was the ability to perform reliably us-
ing small data sets from the BSM theory to be probed, and obtaining equivalent results to a full
CONTUR scan.

Training a general model which could be applied to different BSM theories was attempted us-
ing neural networks, but this proved impractical due to the computational constraints imposed by
CONTUR on the number of examples, and the independence of the dynamics and phenomenology
of different BSM theories. This motivated the choice to train a classifier for each BSM theory, and
the following desiderata. The model should (a) take in continuous numerical features, and output
a categorical prediction with an associated probability distribution, and (b) produce interpretable
results, such that particle physicists are able to identify the effect of each model parameter on
predictions and verify that the predictions are consistent with the BSM theory studied.
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In addition, we are only interested in a specific class of functions that describe the exclusion
results. For each parameter point, there is often a dominant analysis pool that drives the exclu-
sion. Each analysis pool contains measurements from experiments with similar characteristics,
and is only valid for certain intervals of each parameter, as values outside those ranges lead to
phenomena not detectable in that class of measurement (see Fig. 3). Therefore, exclusion results
are uniform below and above a certain threshold or collection of thresholds, and the boundary
between these regions defines the desired hyper-surfaces.

Figure 3: Discontinuities in the dominant analysis pools from the Two Higgs-Doublet Dark Mat-
ter Model with Pseudoscalar Mediator. The solid and dashed white lines represent the true 68%
and 95% CL contours exctracted from CONTUR while the colours represent the “dominant ananl-
ysis pool”: type of analysis (in orthogonal pools of experiment, center-of-mass energy and final
state) which gave the best standalone exclusion. The fact that the dominant analysis pool shows
discontinuities, linked to the phenomenology of the model under study, which are closely linked
to the positions of the exclusion contours, shows that a classifier based on the parameters of a
model can be used to extract information such as the exclusion status of a model.

Decision trees are a good choice for classifying the exclusion status of each point, as they
split the parameter space precisely according to the boundaries which best fit as hyper-surfaces.
However, single decision trees are very susceptible to overfitting, and are not able to provide a
metric of uncertainty of a prediction. This motivates the choice of random forests, a collection
of decision trees where each tree only has access to a random selection of features and entries
from the data set. The final prediction is produced by aggregating the predictions of individual
trees, with the probability for each category determined by the fraction of trees predicting that
category. Random forests are able to learn with relatively small data sets and model many features,
and are easily interpretable by inspecting the individual decision trees and aggregating the most
predictive features or conditions. The SCIKITLEARN [29] RandomForest class was used in the
implementation of the CONTUR ORACLE.
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3 Benchmarking

To gauge the performance of the ORACLE, a large multidimensional grid for several models was
processed by brute force, so that the true CLs value—as determined by CONTUR—was known at
each point. In each case, three or four of the parameters were varied, while the others were kept
constant or defined relative to the varied parameters. The full-grid precision, recall and entropy
values could therefore be tracked against the number of points sampled by the ORACLE algorithm.

3.1 Models used for benchmarking

The performance of the ORACLE was tested on three models which have been studied in past
CONTUR publications. Their main features are summarised below. The three models used in
the benchmarking process were chosen because they have very different structure, dynamics and
phenomenology, and therefore illustrate the ORACLE’s versatility.

Simplified Dark Matter Model with Vector Mediator A simplified model for dark matter (DM)
[30, 31] is used as a benchmark for the LHC collaborations to ease comparison of experimental
search results. In the version used for the ORACLE benchmark studies, it features a DM candidate
χ and an extra spin-1 particle Z ′, which mediates interactions between χ and SM particles. The
model used in this paper has 4 free parameters: the masses of the DM candidate and the medi-
ator (mχ and mZ ′), and the coupling strengths for the Z ′ with χ and the SM quarks (gχ and gq
respectively), which in this case are assumed to be the same for all quark generations. This model
was studied in the first CONTUR publication [14].

Two-Higgs Doublet Model with Pseudoscalar Mediator The two-Higgs doublet model with
pseudoscalar mediator (2HDM+a) [32, 33] is another benchmark for LHC DM searches. It en-
capsulates the simplest theoretically-consistent extension of the SM which involves DM and a
pseudoscalar mediator. In this model, four additional Higgs bosons are introduced (in addition
to the known 125 GeV neutral scalar Higgs boson h). These are denoted by H (a heavier version
of h), H± (the charged Higgs bosons) and A (pseudoscalar Higgs boson). Furthermore, there is
a DM candidate and a mediator pseudoscalar denoted by a. The masses of each of these six new
particles are parameters of the model. The coupling between the DM candidate and a is denoted
by g. Various mixing angles between these states are denoted by α, β and θ , and by conven-
tion the free parameters in the model as expressed as tanβ , sinθ and sin(β − α). Finally three
λ parameters denote the quartic couplings of the Higgs potential. This model was studied using
CONTUR in [34].

Vector-like Quark Model The vector-like quark (VLQ) model introduces four quark partners,
B−1/3, T2/3, X 5/3 and Y−4/3 which couple to the weak sector via vertices linking a VLQ, a SM
quark and a W , Z , or H boson (for B and T only, since X and Y cannot interact with W and Z
due to charge conservation). These particles may be arranged in various multiplets depending
on how the model is set up. The masses of these four VLQs are parameters of the model. We
use the phenomenological framework introduced in [35] where the couplings of the VLQs with
SM quarks and bosons are controlled by an overall coupling κ. Three parameters ξ control the
relative couplings to W , Z and H (the sum of the three ξ parameters should always be one).
Finally, several ζ parameters control which generation of SM quarks each VLQ can couple to. This
model was studied using CONTUR in [36].
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3.2 Benchmarking approach

For each model, three or four parameters were varied, while the others were fixed or defined as
functions of other parameters. The size of the grids for each model was 8 100, 7 260, 3 952 points
for the DM, 2HDM+a and VLQ models respectively. For each point in the grid, event generation
was performed at 7, 8 and 13 TeV, which tripled the number of event-generation jobs to be submit-
ted to the HPC cluster. For each job, 30 000 simulated signal events were generated. Each job took
on average between half an hour, for the 2HDM+a jobs, and nearly two hours, for the VLQ jobs.
The total number of wall-time hours required to process these grids was therefore of the order of
17 600 hr, 12 000 hr and 17 200 hr for the DM, 2HDM+a and VLQ models respectively. Creating
one-off data sets for benchmarking purposes is possible in some rare cases, but this approach does
not scale. The problem only worsens when incorporating even more parameters.

To perform the benchmarking studies, the CONTUR ORACLE was modified to retrieve the CLs
information for a given point from the aforementioned brute-force grids, instead of sending the
job to a batch farm. The other aspects of the workflow stayed the same, and the default hyper-
parameter values were used. No stopping conditions were applied, so that the performance of the
ORACLE could be studied all the way up to use of the full data set.

3.3 Benchmarking results

The results of the study are presented in Figure 4 showing precision, recall and entropy at each
iteration. To visualise the size of statistical uncertainties due to the random splitting of test and
training samples, after the nominal training the splitting and training were repeated 30 times for
each iteration, with the mean and standard deviation shown on the figure.

The behaviour of the ORACLE is remarkably similar for all models, despite the very different
phenomenologies which they represent. In all three cases, the precision and recall are above 90%
even with the initial sampling of points, both when evaluated on the testing pool and the full grid,
and for both 68% and 95% CL exclusion predictions. The full-grid precision and recall increase at
each iteration, while the testing pool precision and recall suffer small dips before steadily rising.
This is explained by the fact that the sampling algorithm deliberately selects the points where the
predictions have the highest entropy: in other words, the ones where it is hardest to correctly
predict the result. There is therefore a lag time before the testing pool performance improves
again.

The entropy for all three models also follows a similar trend. The full-grid entropy steadily
decreases (this makes sense since this is the figure of merit for the adaptive sampling), while the
entropy of the testing pool peaks in the first few iterations before dropping steadily. This can
be explained by the fact that with little data, the ORACLE initially can be quite confident in its
incorrect predictions, before revising them as more points are added.

In all three models, after sampling only one fifth of the points in the grid, the ORACLE was
able to achieve a full-grid precision and recall of at least 99%. The performance of the ORACLE

against a simple interpolation algorithm, in terms of recall, is shown for the 2HDM+a model in
Figure 5, showing the gains from the machine-learning assisted adaptive sampling compared to
simply interpolating between results.

An illustration of the convergence of the ORACLE for the 2HDM+a model is shown in Figure 6,
in a slice of the parameter grid described above. The figure shows how the ORACLE’s predictions
converge towards the standard CONTUR results, and matches them perfectly after only 5 iterations,
with 1 500 of the total 8 100 points sampled.
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Figure 4: Performance metrics of the CONTUR ORACLE as a function of fraction of the full-grid
points used, for the 95% and 68% CL contours. Given the random nature of the initial sampling,
30 simulations were run; the grey clouds represent the standard deviation. “Full grid” refers
to the classifier performance when tested against the “true” exclusion for all the points in the
grid (not normally available to the ORACLE unless the full grid was sampled).“Testing” refers to
results comparing only to points in the testing pool.
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Figure 5: Recall of the CONTUR ORACLE compared to the recall of a simple linear interpolation
from a random sample of the same number of points, for the 95% and 68% CL contour of the
2HDM+a model. The ORACLE achieves immediate near-perfect recall, while almost 80% of the
parameter points are required for equivalent interpolation results. The grey clouds represent the
standard deviation of the 30 simulations.

3.4 Effect of hyper-parameters

Using the simplified DM model, the effect of the choice of hyper-parameters on the ORACLE’s
performance was investigated. There are three major hyper-parameters available to modify: the
number of trees in the random forest, the number of points per iteration (effectively, the batch
size for the adaptive sampling) and the fraction of points used for the test sample. The default
values for these hyper-parameters in the ORACLE are 300 trees, 300 points per iteration and 1

4
of the pool used for testing. The same methodology as in Section 3 is used, but with a range of
different values of these hyper-parameters. It was found that the performance of the ORACLE does
not depend strongly on the exact choice of hyper-parameters.

Batch sizes between 150 points and 900 points were tested, representing iterations of between
2% and 11% of the overall grid size. The full-grid precision and recall converge to high values
faster for low batch sizes, as expected, since there are more opportunities to select difficult points
before reaching high fractions of the data set. The entropy of the full grid also drops faster for
smaller batch sizes. In reality, there is a trade-off to be made between small batch sizes and
the advantage of being able to run more points in parallel in a HPC farm. Indeed, although
low batch sizes allow the ORACLE to converge fastest in terms of fraction of the overall data set,
it may be faster in terms of user wall time to run large batch sizes, where more points can be
sampled in parallel. The developers would recommend the default setting of a batch size be set
to approximately half the number of jobs which can be run in parallel by the user’s HPC farm,
divided by three if each point has to be sampled for three beam energies. This can be adjusted
depending on the user’s requirements: lower batch sizes lead to lower compute requirements, but
more wall time before convergence, and vice versa.

The number of trees for the random forest does not have a strong effect on the convergence of
the ORACLE as long as the number is much higher than the number of parameters in the model.
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(c) 4 iterations
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Figure 6: Comparison of the 95% (solid lines) and 68% (dashed lines) exclusion contours from
the brute-force CONTUR scan (in white) and from the ORACLE predictions (in red) for 2-5 iter-
ations, for a slice of the four-dimensional grid of parameter points for the simplified DM model
where gχ = 0.65 and gq = 0.15. In this slice, after five iterations (or less than 20% of the total
grid), the ORACLE reproduces the standard CONTUR results perfectly.

All choices for this hyper-parameter gave comparable results, except for the extremal case of 1
tree, where the performance was obviously degraded due to insufficient flexibility of the model.
The ORACLE training time increases for larger numbers of trees (up to a few seconds), but this is
negligible in the face of time taken to sample grid points. The developers therefore recommend
the default setting of a few hundred trees.

Finally, the testing–training fraction has a small effect on the performance of the model: typi-
cally, the smaller the test fraction, the better the performance, since the model can be trained with
more of the available points. However, the trade-off is that small testing fractions lead to large
statistical uncertainties in the testing pool accuracy, which is one of the stopping conditions for
the ORACLE. The risk is therefore that the ORACLE workflow terminates prematurely if a too-low
testing fraction is chosen. Testing fractions between 12.5% and 25% gave similar results. The
default of 25% is deemed by the developers as an appropriate compromise between statistical
fluctuations in the stopping conditions and final performance.
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3.5 Prediction uncertainty

There are two ways that we have used to measure the unceratinty of the ORACLE predictions. First,
a fraction of the points received from each iteration are kept aside for validation purposes, and the
uncertainty of the predictions can be measured by comparing the ORACLE’s predictions for all the
points in the testing pool and the CONTUR results through the precision and recall testing metrics,
which are shown in Figure 4. In addition, the uncertainty of a certain prediction can be measured
by inspecting how concentrated the probability mass is on the predicted class. The entropy of the
distribution is one such measure of this, also present in Figure 4.

The reliability of the ORACLE’s predictions can be customised by configuring the precision and
recall stopping conditions, and by modifying the threshold for declaring a point to belong to a
certain class, thus leveraging the trade-off between precision and recall. In this paper, we have
used the convention of declaring the prediction to be the class with the highest probability, but
this can easily be modified to require a higher probability threshold to declare an exclusion, and
declare a non-exclusion otherwise, or vice-versa. A high exclusion threshold will lead to a higher
precision of the predicted exclusions, but will also miss many exclusions and miscategorise them
as non-exclusions. Conversely, a low exclusion threshold will achieve the opposite effect.

Users can leverage this trade-off between precision and recall by modifying the threshold ac-
cording to their needs. Therefore, the ORACLE results are intended to be used as an approximation
of the CONTUR results that can optimise for the metrics of interest to the user without requiring
nearly as much computational power, rather than strict exclusion boundaries.

Two other methods have been used to measure uncertainty in the benchmarking section: first,
running several independent ORACLE instances in parallel, and then obtaining the average and
standard deviation of the results, as can be seen in Figure 4. Second, the results of the Oracle
were compared with the full-grid CONTUR results. These methods are only currently useful for
benchmarking and not for analysing a novel BSM model, but they can easily be modified for this
purpose. Boostrapping or cross-validation techniques can be used to perform the train/test split
multiple times, and separate classifiers can be trained for each split. Their predictions can be
averaged for selecting the next set of points to sample. This was manually done for the novel
model in Section 4, but is not currently implemented in the software. On the other hand, a
fraction of the sampled points in each iteration can be a random sample of the full grid, which
can be used to measure the uncertainty of the ORACLE predictions, since the uncertainty from the
training points is a considerable over-estimate as the algorithm intentionally selects points that
are difficult to classify.

Including these methods in the ORACLE is technically possible, but is left as future work.

4 Application of the ORACLE to a new model

The CONTUR ORACLE was further used to study a model at a previously impossible dimensionality
and granularity, to provide a real-world example of its versatility. For this test, a more complex
version of the simplified DM model described Section 3.1 was used, in which the couplings of
the vector mediator to quarks can be set separately for each generation. The coupling of the
DM candidate to the vector mediator was fixed to 1, but the five other parameters were varied
independently. The couplings of the vector mediator to first-, second- and third-generation quarks
(gq1, gq2 and gq3) were all varied independently between 0.09 and 0.89 with a resolution of
0.1, leading to 10 points on each axis. The mass of the DM candidate was varied between 10
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GeV and 4 760 GeV with a resolution of 250 GeV, leading to 20 points on that axis. Finally,
the mass of the vector mediator was varied between 10 and 9510 GeV with a resolution of 500
GeV, leading to 20 points on that axis. The total number of points on the grid was therefore
10× 10× 10× 20× 20= 400 000, which would cost nearly half a million hours of compute time
using CONTUR. This type of scan would previously have been impossible. The default ORACLE

parameters were used, and the stopping conditions were set at 90% for precision and recall, and
0.2 for entropy. The scan was limited to 13 TeV exclusions.

The ORACLE run reached the stopping conditions after sampling just over 25 000 points—6.3%
of the total grid size—of which approximately 8 000 were used for testing. At that stage, the pre-
cision was found to be 90%, the recall 92% and the entropy 0.11. Figure 7 shows a sample of the
results from this scan, showing exclusion contours and entropy at each point. To obtain a measure
of uncertainty in the results, we later performed bootstrapping, i.e. repeated train/test splits of
the sampled points in each iteration, and trained a separate classifier for each split. We let the
ORACLE run until it sampled 12% of the full grid, and the precision was found to be (94.7±0.5)%
for 68% CL, (92.8 ± 0.4)% for 95% CL, the recall (94.3 ± 0.5)% for 68% CL and (94.9 ± 0.5)%
for 95% CL, and the entropy 0.057± 0.002, where the quoted uncertainties refer to the standard
deviation of the sampled statistic.

The exclusion depends chiefly on the coupling of the vector mediator to first-generation quarks:
the higher the coupling, the higher the excluded mediator mass mZ ′ . The dependence on the DM
mass is typically quite flat. For example, for gq1 = gq2 = gq3 = 0.49, vector mediator masses up
to about 3 500 GeV are excluded at 95% CL, and up to nearly 5 000 GeV at 68% CL. If the value
of gq1 is reduced to 0.09, the exclusion contours retreat to about 2 000 GeV; while if the value of
gq1 is increased to 0.99, the exclusion contours increase to about 5 500 GeV. This can be explained
by the fact that CONTUR uses analyses of data collected from proton–proton collisions, where the
first-generation quarks dominate the parton distribution functions. Therefore, the vector mediator
production cross-section will depend strongly on its coupling to the valence quarks, which is gq1,
especially for high mediator masses.

When gq1 is maintained at 0.49 but the other two couplings are varied between 0.09 and
0.89, either together or separately, the contours shift only by about 500 GeV at most. Similar flat
dependence on the gq2 and gq3 couplings is observed when gq1 is set to high values. However,
when gq1 is set to low values, such as 0.09, the exclusion gains a dependence on gq3, while
remaining largely independent of gq2. Indeed, for gq1 = 0.09 and gq2 = 0.49, the exclusions
in vector mediator mass vary from about 2 500 GeV for high values of gq3 to 1 000 GeV or less
for low values of gq3. This dependence occurs because in the low-gq1 but higher-gq3 regime,
measurements of processes involving top quarks contribute to the exclusion.

The entropy at each point is also shown in Figure 7. As expected, the regions with high entropy
are concentrated chiefly in the regions near the exclusion contours. This indicates that outside of
these regions, the ORACLE is able to quickly determine the exclusion status, using few points for
most of the parameter space away from the exclusion hyper-surfaces.

This exercise further demonstrates the power of the CONTUR ORACLE to provide insights on the
variation of the LHC exclusion of a model with its parameters, using reduced computing resources:
in this case, this corresponds to an improvement by a factor of 16 compared to the case where all
points are sampled..
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gq3 0.89Figure 7: Examples of ORACLE exclusion contours extracted from 13 TeV LHC measurements,

in slices of the parameter space of a simplified DM model with five free parameters. The testing
pool recall, precision and entropy were 0.9, 0.92 and 0.11 respectively, after sampling only 6.3%
of the total grid size. The results are presented as a function of the dark matter mass (mχ)
versus vector mediator mass (mZ ′), for fixed values of the couplings of the vector mediator to
the three generations of SM quarks, gq1, gq2 and gq3. The colour scale shows the entropy for
the prediction at each point, which is a measure of the uncertainty of the prediction: higher
values indicate regions where the prediction is more uncertain. The red dashed and solid lines
represent the 68% and 95% exclusion contours predicted by the ORACLE.

5 Conclusion

This paper introduces a method to focus computing resources on the most interesting regions of pa-
rameter space when evaluating the exclusion status of new physics models using re-interpretation
tools such as CONTUR. Our implementation is publicly available as part of CONTUR v2.2.0.

By combining adaptive sampling with random forests, the method achieved precision and
recall scores of 90-95% for a variety of models with different phenomenology and underlying
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dynamics, using no more than 5-10% of the data points and computational resources required for
a full scan using state of the art methods such as CONTUR. To demonstrate the method, a study
of a model in a dimensionality and granularity which would otherwise have been impossible was
conducted, and the key features of the exclusion in that space are successfully summarised using
only a sixteenth of the computational resources that would otherwise have been required.

While the performance of the method is already impressive, this is only a first step. The
exclusions obtained from each measurement pool could be provided to the algorithm, instead
of the total exclusion, which would produce even more accurate predictions. This would also
shed light on which types of measurement yield the best predicted exclusion for any given point.
We believe that harnessing the power of adaptive learning can play a key role in determining
the models and regions which lead to future discoveries at the LHC, and that this method can
be used to design searches and measurements to study those regions. This method relies on the
publication of RIVET routines for new LHC measurements, and we encourage the collaborations
to continue making ever more of their measurements available in this format.
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