CERN Accelerating science

002801663 001__ 2801663
002801663 005__ 20240114040406.0
002801663 0248_ $$aoai:cds.cern.ch:2801663$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002801663 0247_ $$2DOI$$9arXiv$$a10.1142/9789811269776_0160$$qpublication
002801663 037__ $$9arXiv$$aarXiv:2111.03036$$chep-ex
002801663 037__ $$9arXiv:reportnumber$$aIFIC/21-44
002801663 035__ $$9arXiv$$aoai:arXiv.org:2111.03036
002801663 035__ $$9Inspire$$aoai:inspirehep.net:1960290$$d2024-01-13T21:34:15Z$$h2024-01-14T03:00:11Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002801663 035__ $$9Inspire$$a1960290
002801663 041__ $$aeng
002801663 100__ $$aMitsou, Vasiliki [email protected]$$uValencia U., IFIC$$vInstituto de Física Corpuscular (IFIC), CSIC – Universitat de València, C/ Catedratico José Beltrán 2, E-46980 Paterna (Valencia), Spain
002801663 245__ $$9World Scientific$$aLHC experiments for long-lived particles of the dark sector
002801663 269__ $$c2021-11-04
002801663 260__ $$c2023
002801663 300__ $$a21 p
002801663 500__ $$9arXiv$$a21 pages, 17 figures; Invited review talk in the 16th Marcel
 Grossmann Meeting - MG16, July 5-10, 2021; more references added
002801663 520__ $$9World Scientific$$aDark matter scenarios are being tested at the LHC in the general-purpose experiments through promptly decaying states. In parallel, new dedicated detectors have been proposed for the LHC to probe dark matter portal theories predicting long-lived particles that decay away from the interaction point: MoEDAL-MAPP, MoEDAL-MALL, FASER, [email protected], CODEX-b, MATHUSLA, AL3X, ANUBIS, FACET, milliQan, FORMOSA. In addition, the SHiP beam-dump experiment is planned to operate with the SPS beam to extend the discovery reach for such particles. The detector design and expected physics sensitivity of these experiments is presented with emphasis on scenarios explaining the nature of dark matter.
002801663 520__ $$9arXiv$$aDark matter scenarios are being tested at the LHC in the general-purpose experiments through promptly decaying states. In parallel, new dedicated detectors have been proposed for the LHC to probe dark matter portal theories predicting long-lived particles that decay away from the interaction point: MoEDAL-MAPP, MoEDAL-MALL, FASER, SND@LHC, CODEX-b, MATHUSLA, AL3X, ANUBIS, FACET, milliQan, FORMOSA. In addition, the SHiP beam-dump experiment is planned to operate with the SPS beam to extend the discovery reach for such particles. The detector design and expected physics sensitivity of these experiments is presented with emphasis on scenarios explaining the nature of dark matter.
002801663 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002801663 540__ $$3publication$$aCC-BY-NC-4.0$$bWorld Scientific$$uhttps://creativecommons.org/licenses/by-nc/4.0/
002801663 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002801663 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002801663 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002801663 690C_ $$aCERN
002801663 690C_ $$aARTICLE
002801663 693__ $$aCERN LHC$$eFASER$$eMOEDAL$$eSND@LHC
002801663 693__ $$aCODEX
002801663 693__ $$aMATHUSLA
002801663 693__ $$amilliQan
002801663 693__ $$aCERN SPS$$eSHiP
002801663 773__ $$c2029-2049$$wC21-07-05.3$$y2023$$z9789811269769
002801663 8564_ $$82350701$$s6401591$$uhttp://cds.cern.ch/record/2801663/files/2111.03036.pdf$$yFulltext
002801663 8564_ $$82350702$$s36308$$uhttp://cds.cern.ch/record/2801663/files/al3x.png$$y00011 Schematic view of the AL3X detector layout: the cylindrical TPC (dark green) and the veto and trigger layers $D_i$ (light green). The current L3 magnet is shown (dashed red) for reference.~\cite{Gligorov:2018vkc}
002801663 8564_ $$82350703$$s118218$$uhttp://cds.cern.ch/record/2801663/files/faser.png$$y00001 Annotated schematic view of the FASER detector components.
002801663 8564_ $$82350704$$s47674$$uhttp://cds.cern.ch/record/2801663/files/snd-lhc.png$$y00004  : Annotated schematic view of the SND@LHC detector components.~\cite{SHiP:2020sos}
002801663 8564_ $$82350705$$s204779$$uhttp://cds.cern.ch/record/2801663/files/mathusla.png$$y00007  : The MATHUSLA detector layout positioned relative to CMS IP5.~\cite{MATHUSLA:2020uve}
002801663 8564_ $$82350706$$s194839$$uhttp://cds.cern.ch/record/2801663/files/formosa.png$$y00013  : Location of FORMOSA in the cavern UJ12 or side tunnel TI12 (blue) close to the beam collision axis (red). The FPF extension is shown as a light-blue area.~\cite{Foroughi-Abari:2020qar}
002801663 8564_ $$82350707$$s656100$$uhttp://cds.cern.ch/record/2801663/files/milliqan.png$$y00012  : Diagram of the milliQan demonstrator components.~\cite{Ball:2020dnx}
002801663 8564_ $$82350708$$s38346$$uhttp://cds.cern.ch/record/2801663/files/dark-photon-mcp.png$$y00017  : 95\% CL exclusion limits for dark fermion mCPs in the mass vs.\ charge plane obtained by the milliQan demonstator~\cite{Ball:2020dnx} compared to previous constraints and to the MAPP-mQP sensitivity  for various integrated luminosity assumptions.~\cite{Staelens:2021}
002801663 8564_ $$82350709$$s296758$$uhttp://cds.cern.ch/record/2801663/files/pbc-higgs.png$$y00015 Prospects on 10-15 year timescale for dark-scalar mixing with Higgs in the  $(m_S,\sin^2\theta)$ plane with trilinear coupling $\lambda \neq 0$ and assuming $BR(h \to SS) = 10^{-2}$. The NA62$^{++}$ and KLEVER curves correspond to $\lambda=0$, so they are conservative.~\cite{Beacham:2019nyx}
002801663 8564_ $$82350710$$s39201$$uhttp://cds.cern.ch/record/2801663/files/facet.png$$y00005  : Diagrams of the detector components of the FACET spectrometer.
002801663 8564_ $$82350711$$s939596$$uhttp://cds.cern.ch/record/2801663/files/mapp-higgs.png$$y00014 95\% CL exclusion bounds Projected sensitivity of MoEDAL-MAPP and other experiments for dark Higgs bosons produced in rare $B$~decays at $\sqrt{s}=14~\tev$. Adopted from Ref.~\citenum{Gligorov:2018vkc}. \\
002801663 8564_ $$82350712$$s387609$$uhttp://cds.cern.ch/record/2801663/files/mapp.png$$y00000 Diagram of the MAPP-1 detector components: mQP at the centre and three layers of LLP around it.
002801663 8564_ $$82350713$$s72722$$uhttp://cds.cern.ch/record/2801663/files/anubis_ts.png$$y00010 Left: Location of the ANUBIS detector in the PX14 installation shaft of the ATLAS experiment. Above: One of the four ANUBIS tracking stations in the $(x, z)$ plane. The shaft walls and the ATLAS cavern pipework are shown in gray, the TS in blue and the TS support structure in orange.~\cite{Bauer:2019vqk}
002801663 8564_ $$82350714$$s14624$$uhttp://cds.cern.ch/record/2801663/files/fasernu-y.png$$y00002 FASER$\nu$ event displays of a neutral vertex in the $y-z$ projection longitudinal to the beam direction (left) and in the view transverse to the beam direction (right).~\cite{FASER:2021mtu}
002801663 8564_ $$82350715$$s434217$$uhttp://cds.cern.ch/record/2801663/files/dark-photon.png$$y00016 Future upper limits at 90\% CL for a minimal dark-photon model with visible decays in the plane mixing strength $\epsilon$ versus mass $m_{A'}$ for various projects on a $\sim$10--15 year timescale~\cite{Beacham:2019nyx}.
002801663 8564_ $$82350716$$s663913$$uhttp://cds.cern.ch/record/2801663/files/codex-b.png$$y00006 Layout of the LHCb cavern UX85 at IP8, overlaid with the CODEX-b volume.~\cite{Aielli:2019ivi}
002801663 8564_ $$82350717$$s23859$$uhttp://cds.cern.ch/record/2801663/files/fasernu-beam.png$$y00003 FASER$\nu$ event displays of a neutral vertex in the $y-z$ projection longitudinal to the beam direction (left) and in the view transverse to the beam direction (right).~\cite{FASER:2021mtu}
002801663 8564_ $$82350718$$s90686$$uhttp://cds.cern.ch/record/2801663/files/anubis.png$$y00009 Left: Location of the ANUBIS detector in the PX14 installation shaft of the ATLAS experiment. Above: One of the four ANUBIS tracking stations in the $(x, z)$ plane. The shaft walls and the ATLAS cavern pipework are shown in gray, the TS in blue and the TS support structure in orange.~\cite{Bauer:2019vqk}
002801663 8564_ $$82350719$$s369496$$uhttp://cds.cern.ch/record/2801663/files/mathusla-teststand.png$$y00008  : The MATHUSLA test stand.~\cite{Alidra:2020thg}
002801663 8564_ $$82350720$$s27985$$uhttp://cds.cern.ch/record/2801663/files/formosa-ref-xsec.png$$y00018  : Sensitivity reaches of FORMOSA in the millicharged SIDM window in terms of the reference cross-section $\bar{\sigma}_{\rm e,ref}$. In addition to accelerator constraints, constraints from direct-detection experiments (assuming $0.4\%$ DM abundance for the direct-detection experiments) are drawn.~\cite{Foroughi-Abari:2020qar}
002801663 8564_ $$82423835$$s6263685$$uhttp://cds.cern.ch/record/2801663/files/document.pdf$$yFulltext
002801663 960__ $$a13
002801663 962__ $$b2789387$$k2029-2049$$nonline20210705
002801663 980__ $$aConferencePaper
002801663 980__ $$aARTICLE