002801059 001__ 2801059
002801059 005__ 20250606090612.0
002801059 0248_ $$aoai:cds.cern.ch:2801059$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002801059 0247_ $$2DOI$$9arXiv$$a10.1038/s41586-021-04298-1$$qpublication
002801059 037__ $$9arXiv$$aarXiv:2106.11933$$chep-ex
002801059 035__ $$9arXiv$$aoai:arXiv.org:2106.11933
002801059 035__ $$9Inspire$$aoai:inspirehep.net:1869688$$d2025-06-05T07:31:49Z$$h2025-06-06T02:08:14Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002801059 035__ $$9Inspire$$a1869688
002801059 041__ $$aeng
002801059 100__ $$aAcharya, B.$$tGRID:grid.13097.3c$$uKing's Coll. London$$uCERN$$vTheoretical Particle Physics & Cosmology Group, Physics Department, King’s College London, London, UK
002801059 245__ $$9Springer$$aSearch for magnetic monopoles produced via the Schwinger mechanism
002801059 260__ $$c2022-02-02
002801059 269__ $$c2021-06-22
002801059 300__ $$a16 p
002801059 500__ $$9arXiv$$aMinor fixes to the authorship list found during production
002801059 520__ $$9Springer$$aAt the Large Hadron Collider, the MoEDAL experiment shows no evidence for magnetic monopoles generated via the Schwinger mechanism at integer Dirac charges below 3, and suggests a lower mass limit of 75 GeV/c$^{2}$.
002801059 520__ $$9arXiv$$aSchwinger showed that electrically-charged particles can be produced in a strong electric field by quantum tunnelling through the Coulomb barrier. By electromagnetic duality, if magnetic monopoles (MMs) exist, they would be produced by the same mechanism in a sufficiently strong magnetic field. Unique advantages of the Schwinger mechanism are that its rate can be calculated using semiclassical techniques without relying on perturbation theory, and the finite MM size and strong MM-photon coupling are expected to enhance their production. Pb-Pb heavy-ion collisions at the LHC produce the strongest known magnetic fields in the current Universe, and this article presents the first search for MM production by the Schwinger mechanism. It was conducted by the MoEDAL experiment during the 5.02 TeV/nucleon heavy-ion run at the LHC in November 2018, during which the MoEDAL trapping detectors (MMTs) were exposed to 0.235 nb$^{-1}$ of Pb-Pb collisions. The MMTs were scanned for the presence of magnetic charge using a SQUID magnetometer. MMs with Dirac charges 1$g_D$$\leq$$g$$\leq$ 3$g_D$ and masses up to 75 GeV/c$^2$ were excluded by the analysis. This provides the first lower mass limit for finite-size MMs from a collider search and significantly extends previous mass bounds.
002801059 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002801059 542__ $$dThe Author(s)$$g2022
002801059 595__ $$aArticle
002801059 595__ $$aarticle
002801059 595__ $$aDOKIFILE:nature.034-2130
002801059 595_D $$aG$$d2021-07-17$$sfullabs
002801059 595_D $$aG$$d2021-07-18$$sprinted
002801059 65017 $$2arXiv$$ahep-ph
002801059 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002801059 65017 $$2arXiv$$ahep-ex
002801059 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002801059 690C_ $$aCERN
002801059 690C_ $$aARTICLE
002801059 700__ $$aAlexandre, J.$$tGRID:grid.13097.3c$$uKing's Coll. London$$uCERN$$vTheoretical Particle Physics & Cosmology Group, Physics Department, King’s College London, London, UK
002801059 700__ $$aBenes, P.$$tGRID:grid.6652.7$$uIEAP CTU, Prague$$vIEAP, Czech Technical University in Prague, Prague, Czech Republic
002801059 700__ $$aBergmann, B.$$tGRID:grid.6652.7$$uIEAP CTU, Prague$$vIEAP, Czech Technical University in Prague, Prague, Czech Republic
002801059 700__ $$aBertolucci, S.$$uINFN, Bologna$$vINFN, Section of Bologna, Bologna, Italy
002801059 700__ $$aBevan, A.$$tGRID:grid.4868.2$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary University of London, London, UK
002801059 700__ $$aBranzas, H.$$tGRID:grid.450283.8$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Măgurele, Romania
002801059 700__ $$aBurian, P.$$tGRID:grid.6652.7$$uIEAP CTU, Prague$$vIEAP, Czech Technical University in Prague, Prague, Czech Republic
002801059 700__ $$aCampbell, M.$$tGRID:grid.9132.9$$uCERN$$vExperimental Physics Department, CERN, Geneva, Switzerland
002801059 700__ $$aCho, Y.M.$$tGRID:grid.263736.5$$uCQUeST, Seoul$$vCenter for Quantum Spacetime, Sogang University, Seoul, Korea
002801059 700__ $$ade Montigny, M.$$tGRID:grid.17089.37$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Alberta, Canada
002801059 700__ $$aDe Roeck, A.$$tGRID:grid.9132.9$$uCERN$$vExperimental Physics Department, CERN, Geneva, Switzerland
002801059 700__ $$aEllis, J.R.$$tGRID:grid.13097.3c$$tGRID:grid.9132.9$$uKing's Coll. London$$uCERN$$vTheoretical Particle Physics & Cosmology Group, Physics Department, King’s College London, London, UK$$vTheoretical Physics Department, CERN, Geneva, Switzerland
002801059 700__ $$aSawy, M. El$$tGRID:grid.9132.9$$uCERN$$vExperimental Physics Department, CERN, Geneva, Switzerland
002801059 700__ $$aFairbairn, M.$$tGRID:grid.13097.3c$$uKing's Coll. London$$uCERN$$vTheoretical Particle Physics & Cosmology Group, Physics Department, King’s College London, London, UK
002801059 700__ $$aFelea, D.$$tGRID:grid.450283.8$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Măgurele, Romania
002801059 700__ $$aFrank, M.$$tGRID:grid.410319.e$$uConcordia U., Montreal$$vDepartment of Physics, Concordia University, Montreal, Quebec, Canada
002801059 700__ $$aGould, O.$$tGRID:grid.4563.4$$tGRID:grid.7737.4$$uNottingham U.$$uHelsinki U.$$vUniversity of Nottingham, Nottingham, UK$$vHelsinki Institute of Physics, University of Helsinki, Helsinki, Finland
002801059 700__ $$aHays, J.$$tGRID:grid.4868.2$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary University of London, London, UK
002801059 700__ $$aHirt, A.M.$$tGRID:grid.5801.c$$uETH, Zurich (main)$$vDepartment of Earth Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
002801059 700__ $$aHo, D.L.-J.$$tGRID:grid.7445.2$$uImperial Coll., London$$vDepartment of Physics, Imperial College London, London, UK
002801059 700__ $$aHung, P.Q.$$tGRID:grid.27755.32$$uVirginia U.$$vDepartment of Physics, University of Virginia, Charlottesville, VA, USA
002801059 700__ $$aJanecek, J.$$tGRID:grid.6652.7$$uIEAP CTU, Prague$$vIEAP, Czech Technical University in Prague, Prague, Czech Republic
002801059 700__ $$aKalliokoski, M.$$tGRID:grid.7737.4$$uHelsinki U.$$vHelsinki Institute of Physics, University of Helsinki, Helsinki, Finland
002801059 700__ $$aKorzenev, A.$$tGRID:grid.8591.5$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
002801059 700__ $$aLacarrère, D.H.$$tGRID:grid.9132.9$$uCERN$$vExperimental Physics Department, CERN, Geneva, Switzerland
002801059 700__ $$aLeroy, C.$$tGRID:grid.14848.31$$uMontreal U.$$vDépartement de Physique, Université de Montréal, Montreal, Quebec, Canada
002801059 700__ $$aLevi, G.$$tGRID:grid.6292.f$$uINFN, Bologna$$uU. Bologna, DIFA$$vINFN, Section of Bologna, Bologna, Italy$$vDepartment of Physics and Astronomy, University of Bologna, Bologna, Italy
002801059 700__ $$aLionti, A.$$tGRID:grid.8591.5$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
002801059 700__ $$aMaulik, A.$$tGRID:grid.17089.37$$uINFN, Bologna$$uAlberta U.$$vINFN, Section of Bologna, Bologna, Italy$$vPhysics Department, University of Alberta, Edmonton, Alberta, Canada
002801059 700__ $$aMargiotta, A.$$tGRID:grid.6292.f$$uU. Bologna, DIFA$$uINFN, Bologna$$vDepartment of Physics and Astronomy, University of Bologna, Bologna, Italy
002801059 700__ $$aMauri, N.$$uINFN, Bologna$$vINFN, Section of Bologna, Bologna, Italy
002801059 700__ $$aMavromatos, N.E.$$tGRID:grid.13097.3c$$uKing's Coll. London$$uCERN$$vTheoretical Particle Physics & Cosmology Group, Physics Department, King’s College London, London, UK
002801059 700__ $$aMermod, P.$$tGRID:grid.8591.5$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
002801059 700__ $$aMillward, L.$$tGRID:grid.4868.2$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary University of London, London, UK
002801059 700__ $$aMitsou, V.A.$$tGRID:grid.5338.d$$uValencia U., IFIC$$vIFIC, Universitat de València, CSIC, Valencia, Spain
002801059 700__ $$aOstrovskiy, I.$$jORCID:[email protected]$$tGRID:grid.411015.0$$uAlabama U.$$vDepartment of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA
002801059 700__ $$aOuimet, P.-P.$$tGRID:grid.17089.37$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Alberta, Canada
002801059 700__ $$aPapavassiliou, J.$$tGRID:grid.5338.d$$uValencia U., IFIC$$vIFIC, Universitat de València, CSIC, Valencia, Spain
002801059 700__ $$aParker, B.$$tGRID:grid.500309.f$$uKent U.$$vInstitute for Research in Schools, Canterbury, UK
002801059 700__ $$aPatrizii, L.$$uINFN, Bologna$$vINFN, Section of Bologna, Bologna, Italy
002801059 700__ $$aPăvălaş, G.E.$$tGRID:grid.450283.8$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Măgurele, Romania
002801059 700__ $$aPinfold, J.L.$$tGRID:grid.17089.37$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Alberta, Canada
002801059 700__ $$aPopa, L.A.$$tGRID:grid.450283.8$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Măgurele, Romania
002801059 700__ $$aPopa, V.$$tGRID:grid.450283.8$$uBucharest, Inst. Space Science$$vInstitute of Space Science, Măgurele, Romania
002801059 700__ $$aPozzato, M.$$uINFN, Bologna$$vINFN, Section of Bologna, Bologna, Italy
002801059 700__ $$aPospisil, S.$$tGRID:grid.6652.7$$uIEAP CTU, Prague$$vIEAP, Czech Technical University in Prague, Prague, Czech Republic
002801059 700__ $$aRajantie, A.$$tGRID:grid.7445.2$$uImperial Coll., London$$vDepartment of Physics, Imperial College London, London, UK
002801059 700__ $$ade Austri, R. Ruiz$$tGRID:grid.5338.d$$uValencia U., IFIC$$vIFIC, Universitat de València, CSIC, Valencia, Spain
002801059 700__ $$aSahnoun, Z.$$uINFN, Bologna$$vINFN, Section of Bologna, Bologna, Italy
002801059 700__ $$aSakellariadou, M.$$tGRID:grid.13097.3c$$uKing's Coll. London$$uCERN$$vTheoretical Particle Physics & Cosmology Group, Physics Department, King’s College London, London, UK
002801059 700__ $$aSantra, A.$$tGRID:grid.5338.d$$uValencia U., IFIC$$vIFIC, Universitat de València, CSIC, Valencia, Spain
002801059 700__ $$aSarkar, S.$$tGRID:grid.13097.3c$$uKing's Coll. London$$uCERN$$vTheoretical Particle Physics & Cosmology Group, Physics Department, King’s College London, London, UK
002801059 700__ $$aSemenoff, G.$$tGRID:grid.17091.3e$$uBritish Columbia U.$$vDepartment of Physics, University of British Columbia, Vancouver, British Columbia, Canada
002801059 700__ $$aShaa, A.$$tGRID:grid.17089.37$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Alberta, Canada
002801059 700__ $$aSirri, G.$$uINFN, Bologna$$vINFN, Section of Bologna, Bologna, Italy
002801059 700__ $$aSliwa, K.$$tGRID:grid.429997.8$$uTufts U.$$vDepartment of Physics and Astronomy, Tufts University, Medford, MA, USA
002801059 700__ $$aSoluk, R.$$tGRID:grid.17089.37$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Alberta, Canada
002801059 700__ $$aSpurio, M.$$tGRID:grid.6292.f$$uU. Bologna, DIFA$$uINFN, Bologna$$vDepartment of Physics and Astronomy, University of Bologna, Bologna, Italy
002801059 700__ $$aStaelens, M.$$tGRID:grid.17089.37$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Alberta, Canada
002801059 700__ $$aSuk, M.$$tGRID:grid.6652.7$$uIEAP CTU, Prague$$vIEAP, Czech Technical University in Prague, Prague, Czech Republic
002801059 700__ $$aTenti, M.$$tGRID:grid.470182.8$$uINFN, CNAF$$vCNAF, INFN, Bologna, Italy
002801059 700__ $$aTogo, V.$$uINFN, Bologna$$vINFN, Section of Bologna, Bologna, Italy
002801059 700__ $$aTuszyn’ski, J.A.$$tGRID:grid.17089.37$$uAlberta U.$$vPhysics Department, University of Alberta, Edmonton, Alberta, Canada
002801059 700__ $$aUpreti, A.$$tGRID:grid.411015.0$$uAlabama U.$$vDepartment of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA
002801059 700__ $$aVento, V.$$tGRID:grid.5338.d$$uValencia U., IFIC$$vIFIC, Universitat de València, CSIC, Valencia, Spain
002801059 700__ $$aVives, O.$$tGRID:grid.5338.d$$uValencia U., IFIC$$vIFIC, Universitat de València, CSIC, Valencia, Spain
002801059 710__ $$gMoEDAL Collaboration
002801059 773__ $$c63-67$$n7895$$pNature$$v602$$y2022
002801059 8564_ $$uhttps://doi.org/10.1063/PT.6.1.20220222a$$yPhysics Today article
002801059 8564_ $$82349623$$s1905586$$uhttp://cds.cern.ch/record/2801059/files/2106.11933.pdf$$yFulltext
002801059 8564_ $$82349624$$s32051$$uhttp://cds.cern.ch/record/2801059/files/Rexp_2gD_FPA.png$$y00004 The mean expected rate of MMs with 1 $g_D$ and 2 $g_D$ magnetic charge in the MMT as a function of the MM mass in the FPA model. The black line corresponds to the default geometry. The grey region corresponds to the systematic error, which is dominated by the material budget. The 95\% C.L. mass exclusion region is shown in blue.
002801059 8564_ $$82349625$$s2367698$$uhttp://cds.cern.ch/record/2801059/files/figure1.png$$y00000 Schematic diagram of the search. (a) The MoEDAL experiment is located at the Interaction Point 8 of the LHC. (b) It has an array of MMT detectors around the Interaction Point. (c) Peripheral Pb-Pb heavy-ion collisions produce strong magnetic fields. (d) These may produce magnetic monopole-antimonopole pairs via tunneling through the potential barrier (the Schwinger mechanism). (e) After production a magnetic monopole may be trapped in an MMT detector. (f) Samples from the MMTs are passed through a superconducting coil, and the magnetic charge of a trapped magnetic monopole will induce a signal in a SQUID detector.
002801059 8564_ $$82349626$$s38962$$uhttp://cds.cern.ch/record/2801059/files/Rexp_1gD_FPA.png$$y00003 The mean expected rate of MMs with 1 $g_D$ and 2 $g_D$ magnetic charge in the MMT as a function of the MM mass in the FPA model. The black line corresponds to the default geometry. The grey region corresponds to the systematic error, which is dominated by the material budget. The 95\% C.L. mass exclusion region is shown in blue.
002801059 8564_ $$82349627$$s40627$$uhttp://cds.cern.ch/record/2801059/files/massVssigmaExperiment.png$$y00002 The 95\% C.L. exclusion regions on the cross section for MM production via the Schwinger mechanism for 0.235 nb$^{-1}$ of 5.02 TeV per nucleon Pb-Pb collisions, as functions of the MM mass for magnetic charges 1$g_D$ (blue), 2$g_D$ (red), and 3$g_D$ (green).
002801059 8564_ $$82349628$$s44611$$uhttp://cds.cern.ch/record/2801059/files/MassBounds_SchwingerMonopoles.png$$y00001 The 95\% C.L. exclusion regions obtained using the FPA (blue) and LCFA (red) calculations of MM production via the Schwinger mechanism for 0.235 nb$^{-1}$ of 5.02 TeV per nucleon Pb-Pb collisions, with the conservative exclusion region shaded violet. Limits resulting from alternative production channels~\cite{arttu_prl2017} are also shown for comparison.
002801059 960__ $$a13
002801059 980__ $$aARTICLE