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Abstract

We describe a new and model-independent Lévy imaging method of quality fits to the published

datasets and reconstruct the amplitude of high-energy pp and pp̄ elastic scattering processes. This

method allows us to determine the excitation function of the shadow (inelasticity) profile P (b), the

elastic slope B(t) and the nuclear phase φ(t) functions of pp and pp̄ collisions directly from the

data. Surprisingly, notable qualitative differences in B(t) for pp and for pp̄ collisions point towards

an Odderon effect. As a by-product, we clearly identify the proton substructure with two different

sizes at the ISR and LHC energies, that has striking similarity to a dressed quark (at the ISR) and

a dressed diquark (at the LHC). We present model-independent results for the corresponding sizes

and cross-sections for such a substructure for the existing data at different energies.
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“What we pay attention to is largely determined by our expectations of what
should be present.”

Christopher Chabris

I. INTRODUCTION

The TOTEM Collaboration at the Large Hadron Collider (LHC) at CERN has released
recently two new data sets from the first measurements of the total, elastic and differential
cross sections, as well as the ρ-parameter, of elastic pp collisions at the currently highest
available energy of

√
s = 13 TeV [1, 2]. Taken together, these papers indicate the influence

of an odd-under-crossing (or C-odd) contribution to the elastic scattering amplitude, tradi-
tionally called the Odderon [3], or in more modern language of Quantum Chromo Dynamics
(QCD), an odd-gluon (predominantly, three-gluon) bound state, a quarkless excitation some-
times also referred to as a vector glueball. As far as we know, the properties like the

√
s

and t dependences of the differential cross-section of an Odderon contribution at the LHC
energies were determined from pp and pp̄ collisions first in Ref. [4].

The new TOTEM preliminary results [1, 2] generated a burst of high-level and vigorous
theoretical debate about the correct interpretation of these data, see Refs. [5]–[18]. All
possible extreme views were present among these papers, including claims for a maximal
Odderon effect [14] and claims of lack of any significant Odderon effects, see Refs. [10, 18].

In this paper, we investigate earlier, published data and a recently released, new TOTEM
preliminary data set [19], to look for the Odderon effects in elastic pp collisions, and for the
interpretation of the data, using a new and model-independent imaging technique, the Lévy
series. Our analysis is based on the TOTEM preliminary data as presented by F. Nemes for
the TOTEM Collaboration in Ref. [19].

We find that clear, but indirect signals of Odderon effects are present in the differential
cross-section of elastic pp and pp̄ scattering, as indicated by the difference of the four-
momentum transfer dependence of the elastic slope B(t) for pp and for pp̄ collisions. A less
evident but clear difference is also identified between the nuclear phase φ(t) of pp and pp̄
collisions in the TeV energy range.

Although our analysis was motivated by the search for Odderon effects, our most sur-
prising result is that we find a clear-cut evidence for a proton substructure having two
distinct sizes in the GeV and TeV energy ranges, respectively. We estimate these sizes and
the corresponding contributions to the total pp cross-section at the ISR and Tevatron/LHC
energies.

The structure of the presentation is as follows. In Section II, we present the model-
independent imaging approach of Lévy expansions, in Section III, we apply this method
in a comprehensive analysis of elastic pp and pp̄ collisions, and in Section IV, we discuss
and interpret the results, as well as present the indirect signals of Odderon effects in elastic
scattering in the TeV energy range. Finally, we summarize and conclude in Section V.

This manuscript is closed by four Appendices. Appendix A details the results of the Lévy
expansion fits to elastic pp scattering data for the whole available region of t. Appendix
B shows the individual fits to elastic pp̄ scattering data. Appendix C describes fits to the
tails (i.e. in the large-|t| region just after the dip and the bump structure) of the differential
cross-section of elastic pp scattering for all the experimentally accessed energies. These fits
indicate an evidence for a proton substructure. Appendix D details Lévy fits to the cone
(small-|t|) regions of elastic pp scattering, indicating that the proton size grows self-similarly
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in the GeV energy range, but at the LHC energies of
√
s = 7 and 13 TeV, something

drastically changes, such that the protons keep on growing but their shape also becomes
significantly different from their shape in the ISR energy range of

√
s = 23.5 – 62.5 GeV.

II. MODEL-INDEPENDENT LÉVY ANALYSIS OF ELASTIC pp AND pp̄ SCAT-

TERING

We describe a model-independent Lévy series, that is a generalization of the Laguerre,
Edgeworth [20] and Lévy expansion [21] methods proposed to analyze nearly Lévy stable
source distributions in the field of particle correlations and femtoscopy. The key point of this
method is to have a look at the data, guess their approximate shape (for example, Gaussian,
exponential or Lévy-stable shape) and then develop a systematic method to characterize the
deviations from the approximate shape with the help of a dimensionless variable denoted in
this paper by z, and a complete orthonormal set of polynomials that are orthogonal with
respect to the assumed zeroth order shape or weight function w(z). We recommend Ref. [20]
for detailed discussions and for the convergence criteria of such expansions given in general
terms. This way one may find the minimal number of necessary expansion coefficients.

For example, if the data follow the guessed approximate shape precisely, that can be
clearly demonstrated by fitting the series to the data and finding that all the expansion
coefficients that measure deviations from the zeroth-order shape are within errors consistent
with zero. Indeed, the PHENIX Collaboration analyzed recently Bose-Einstein correlations
of
√
sNN = 200 GeV Au+Au collisions [22], and found that they are well described by the

Lévy stable source distributions. The accuracy of the Lévy description was tested by a
Lévy expansion of the Bose-Einstein correlation functions, as proposed in Ref. [23], to find
that the first-order deviations from the Lévy stable source distributions within errors are
consistent with zero [22].

The data analysis method of Ref. [23] was developed first for the functions that may
oscillate between positive and negative values. However, the differential cross-section of
elastic scattering is measured as an angular-dependent hit distribution, so it is a positive
definite function, related to the modulus square of the elastic scattering amplitude. Hence,
we describe this expansion at the amplitude level, with complex expansion coefficients, and
then take the modulus square of such an amplitude to get a positive-definite form.

The differential cross-section of elastic scattering at high energies is measured as a func-
tion of the four-momentum transfer squared, the Mandelstam variable t = (p1 − p3)2 < 0.
A differential cross-section of elastic scattering starts at the optical point at t = 0, de-
creases quickly and nearly exponentially in |t|, as typically characterized by an exponential
slope parameter B, as follows: dσ

dt
= A exp(−B|t|). The region, where such a behaviour is

approximately valid, is called a diffractive cone, and such a featureless exponential decay
corresponds to a nearly Gaussian distribution of the centers of elastic scattering [24]. This
region is followed by (one or more) alternating diffractive minima and maxima, finally at
high four-momentum transfers, a diffractive tail might be seen as well. For more details and
for an introduction and review of diffraction before the start of the LHC measurements, see
Ref. [24].

We know from the TOTEM analysis of
√
s = 8 TeV elastic pp scattering data, that the

differential cross-section in the diffraction cone, at |t| values below the diffraction minimum,
deviates significantly from an exponential shape [25]. This deviation is a subtle, but a more
than 7σ effect [25]. Using this knowledge, we assume that the elastic scattering amplitude
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is nearly (but not completely) exponential in |t|, i.e. we assume that it is approximately
described by a (Fourier-transformed) Lévy stable source distribution:

dσ/dt ∝ exp
(
−(R2|t|)α

)
.

The conventional exponential behaviour corresponds to the α = 1 special case. This way
the deviation from the exponential behaviour can be quantified by a single parameter. If the
value of the exponent α is significantly different from unity, it evidences a non-exponential
behaviour of the differential cross-section of elastic scattering. Later on, we shall see that this
is a very fortunate approach, and it connects the imaging of the differential cross-sections of
high-energy pp and pp̄ collisions with the Lévy stable source distributions that are ubiquitous
in Nature [26].

We also know that the differential cross-section of high-energy pp and pp̄ collisions has a
diffractive minimum, followed by a second maximum, that is followed by an extended tail.
Thus, the behaviour of the differential cross-sections at large |t| has structures that deviate
from a simple Lévy stable source. In this paper, we attempt to characterize these structures
with an orthonormalized Lévy expansion. This way we obtain a new imaging method, that
we describe in detail below, and apply it to reconstruct the shadow (inelasticity) profile
functions, the t-dependent slope parameters and the t-dependent nuclear phases in high-
energy pp as well as pp̄ collisions.

These physical and mathematical assumptions result in the following formulae for the
differential cross-section of elastic pp and pp̄ collisions:

dσ

dt
= Aw(z|α)

∣∣∣∣∣1 +
∞∑
j=1

cjlj(z|α)

∣∣∣∣∣
2

, (2.1)

w(z|α) = exp(−zα) , (2.2)

z = |t|R2 ≥ 0 , (2.3)

cj = aj + ibj , (2.4)

where w(z|α) is the Lévy weight function, and a dimensionless variable z is introduced as the
magnitude of the four-momentum transfer squared |t| multiplied by a Lévy scale parameter
R squared, where R is measured in units of fm (natural units c = ~ = 1 are adopted here and
below). Note that the w(z|α) is also called the stretched exponential distribution, which,
for α = 1 limiting case, corresponds to the exponential distribution. This shape actually
corresponds to a Fourier-transformed and modulus squared symmetric Lévy-stable source
distribution centered on zero. The orthonormal set of Lévy polynomials, defined below, are
denoted as lj(z|α). The complex expansion coefficients are cj, with aj and bj standing for
the real and the imaginary parts of cj, respectively.

In the forthcoming, we shall refer to the zeroth-order (ci = 0) Lévy expansion simply as a
Lévy fit. Let us clarify here that these so-called Lévy fits actually correspond to the Fourier-
transformed and modulus squared, symmetric Lévy stable source distributions tel(b), as
approximations to the shape of the amplitude of elastic pp scattering. This elastic amplitude
will be introduced and detailed in Subsection II A. For more details on the application of Lévy
stable source distributions [27, 28] in particle correlations and femtoscopic measurements,
we recommend Refs. [21–23, 29, 30].

The expansion (2.1) is expected to converge to nearly Lévy shaped data, if the order of
the series n is chosen to be sufficiently large, i.e. n→∞. In practice, however, third-order
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(n = 3) Lévy series already converged to the data measured at
√
s < 1 TeV, with confidence

levels (i.e. the probability that the Lévy series or expansion of the elastic scattering amplitude
converges to the differential cross-section under investigation) corresponding to a statistically
acceptable description. In order to gain a statistically marginal or acceptable description of
the high precision TOTEM data at 7 TeV and preliminary data at 13 TeV, we had to go to
the fourth-order Lévy series, n = 4, in these two cases. For reasons of consistency, and in
order to eliminate fitting artefacts that may show up if one compares different orders of the
Lévy expansions with one another, we decided to re-fit all the pp elastic scattering data with
the fourth-order Lévy expansion and to show only these results. However, when applying a
similar procedure to pp̄ elastic scattering, it turned out that the range of the data around
the dip position was too limited in this case, and the fourth-order Lévy expansion terms
could not be determined in a reliable and reasonable manner. So we decided to show only
the fit results of the second- and third-order Lévy expansions for the pp̄ elastic scattering
data.

As we explicitly demonstrate in Appendices C and D, in certain limited intervals of
|t|, Lévy fits without correction terms (i.e. for ci = 0, i ≥ 1) provided statistically not
unacceptable, but in contrast, rather good quality fits and the corresponding confidence
levels. These results suggest that the Lévy series is a reasonable representation of the
scattering amplitude of elastic pp and pp̄ collisions.

The first four orthogonal (but not yet normalized) Lévy polynomials denoted as Li(z |α)
are found as follows

L0(z |α) = 1, (2.5)

L1(z |α) = det

(
µ0,α µ1,α

1 z

)
, (2.6)

L2(z |α) = det

 µ0,α µ1,α µ2,α

µ1,α µ2,α µ3,α

1 z z2

 , (2.7)

L3(z |α) = det


µ0,α µ1,α µ2,α µ3,α

µ1,α µ2,α µ3,α µ4,α

µ2,α µ3,α µ4,α µ5,α

1 z z2 z3

 , . . . etc , (2.8)

where

µn,α =

∫ ∞
0

dz zn exp(−zα) =
1

α
Γ

(
n+ 1

α

)
and Euler’s gamma function is defined as

Γ(x) =

∫ ∞
0

dz zx−1e−z. (2.9)

The normalization of these Lévy polynomials is straightforwardly expressed as follows:

lj(z |α) = D
− 1

2
j D

− 1
2

j+1Lj(z |α), for j ≥ 0 , (2.10)

where D0 = 1 and, in general, Dj ≡ Dj(α) stands for the Gram-determinant of order j,
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FIG. 1: Illustration of the four normalised Lévy polynomials for α = 0.9.

defined as

D0(α) = 1, (2.11)

D1(α) = µ0,α, (2.12)

D2(α) = det

(
µ0,α µ1,α

µ1,α µ2,α

)
, (2.13)

D3(α) = det

 µ0,α µ1,α µ2,α

µ1,α µ2,α µ3,α

µ2,α µ3,α µ4,α

 , (2.14)

D4(α) = det


µ0,α µ1,α µ2,α µ3,α

µ1,α µ2,α µ3,α µ4,α

µ2,α µ3,α µ4,α µ5,α

µ3,α µ4,α µ5,α µ6,α

 , . . . etc. (2.15)

These normalized Lévy polynomials lj(z|α) are, as far as we know, newly introduced
in this work, while the unnormalized Lévy polynomials Lj(z|α) were introduced earlier in
Ref. [21].

The orthonormality of {lj(z|α)}∞j=0 with respect to a Lévy or stretched exponential weight
is expressed by the following relation:∫ ∞

0

dz exp(−zα)ln(z |α)lm(z |α) = δn,m . (2.16)

The first few of these orthonormal Lévy polynomials are illustrated in Fig. 1 for a specific
value of α = 0.9. More details of them, in particular the α = 2 Gaussian, the α = 1 Laguerre
special cases and their explicit forms are being described in Refs. [29, 30].

Once we have a statistically acceptable description of the differential cross-section of
elastic pp and pp̄ collisions, we can build the elastic scattering amplitude with the help
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of the Lévy imaging method, and we can then compare the resulting shadow profiles of
pp and pp̄ collisions without any model-dependent assumptions. Similarly, we can extract
the t-dependence of the nuclear slope B(t) directly from the data, as well as compare its
behaviour for pp collisions with that of pp̄ collisions. The same is true for the nuclear phase
and for the t-dependent ρ-parameter as well.

In fact, in our analysis we rely only on the convergence of the Lévy series (or Lévy
expansion), that we have tested by the usual χ2-optimization methods with the CERN
Minuit package and by evaluating the confidence level.

Based on our experience with extracting B(t), ρ(t) and the shadow profile P (b) from pp
and pp̄ elastic collision data, we can definitely state that the precise reproduction of the
measured data points, with a statistically acceptable confidence level of CL > 0.1% is a
necessary condition for interpreting our fit results. We have achieved such good quality fits
in many cases of the analysis of the published, final data, except for the 7 TeV pp elastic
scattering data, where we reached a marginal confidence level of CL ≈ 0.02%, as indicated in
Fig. 2. After scrutinizing this fit, presented in Fig. 2, we decided to interpret the parameters
of this fit as well. But in principle, in order to get the final errors of our parameters, we
may need to repeat the analysis by taking into account the full covariance matrix.

)2-t (GeV

0 0.5 1 1.5 2 2.5 3 3.5 4

)2
/d

t (
m

b/
G

eV
σd

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

Levy expansion (pos.def)

pp: TOTEM - 7 TeV R  0.004 fm± = 0.639 

A -2 3.7 mbGeV± = 220 
α  0.007 ± = 0.933 

1a  0.005 ± = -0.395 

1b  0.002 ± = 0.0796 

2a  0.004 ± = 0.115 

2b  0.002 ± = -0.0734 
3a  0.002 ± = -0.0369 
3b  0.001 ± = 0.0261 

4a  0.0008 ± = 0.00673 

4b  0.0005 ± = -0.00729 

totσ  0.9 mb± = 99.8 
elσ  0.09 mb± = 25 

ρ  0.002 ± = 0.11 
/NDF2χ  = 224 /154,  CL = 0.018%

FIG. 2: Model-independent Lévy expansion results from fits to elastic pp scattering data by the

TOTEM Collaboration at the LHC energy of
√
s = 7 TeV. Although the fit quality is marginal, CL

≈ 0.02%, the fitted curve follows the data so closely that we decided to interpret the fit parameters,

noting that the errors on the best values of the parameters are likely underestimated.

In case of the TOTEM preliminary 13 TeV data set, we also warn the reader that these
data points and their errors are still in a preliminary phase, so we have determined the
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best preliminary values of the parameters of the Lévy series from the minimum of the χ2-
distribution. The preliminary value of the confidence level of fits to the TOTEM preliminary
data at

√
s = 13 TeV CL= 2%, as indicated in Fig. 3, satisfies the criteria for good quality

fits.
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1

10

210
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pp: TOTEM - 13 TeV
preliminary data

R  0.004 fm± = 0.722 

A -2 5.2 mbGeV± = 361.9 
α  0.004 ± = 0.903 

1a  0.004 ± = -0.318 

1b  0.001 ± = 0.0706 

2a  0.002 ± = 0.0567 

2b  0.002 ± = -0.0350 
3a  0.0006 ± = -0.0193 
3b  0.0007 ± = 0.0227 

4a  0.0002 ± = 0.00675 

4b  0.0002 ± = -0.00216 

totσ  0.8 mb± = 115 
elσ  0.05 mb± = 31.4 

ρ  0.0004 ± = 0.087 
/NDF2χ  = 330 /279,  CL = 2 %

FIG. 3: Model-independent Lévy expansion results from fits to the TOTEM preliminary elastic

pp scattering data at the currently largest LHC energy of
√
s = 13 TeV. The errors on the fit

parameters and the fit quality are also preliminary.

Fig. 4 summarizes the fits with a fourth-order Lévy expansion to all the differential cross-
section measurements of elastic proton-proton collisions from

√
s = 23.5 GeV up to 13 TeV.

These fits are detailed in Appendix A, where the fits to each dataset are shown in detail,
with the fit parameters and confidence levels (or p-values) are listed on the corresponding
plots, together with the total and elastic cross-sections as well as the ρ(t = 0) values that
are calculated from the fit parameters.

Similarly, Fig. 5 summarizes the fits with a third-order Lévy expansion to all the differ-
ential cross-section measurements of elastic proton-antiproton collisions from

√
s = 53 GeV

up to 1.96 TeV. The fits converged, error matrix was accurate and CL ≥ 0.1 % for these
fits, that were obtained with fixed α = 0.9. These fits are described in greater details in
Appendix B, where the fit parameters and confidence levels (or p-values) are listed on the
corresponding plots, together with the total and elastic cross-sections as well as the ρ(t = 0)
values that are calculated from the fit parameters.

Fig. 6 represents the summary plot of the Lévy fits, dσ/dt = A exp(−(R2|t|)α) , that
correspond to the zeroth-order of the Lévy expansion detailed in this manuscript, to the
tails of the elastic pp scattering data at ISR and LHC energies from

√
s = 23.5 GeV up to
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FIG. 4: Summary plot of the model-independent, fourth-order Lévy expansion fits to the elastic pp

scattering data at ISR and LHC energies ranging from from
√
s = 23.5 GeV up to 13 TeV. These

fits are detailed in Appendix A.

13 TeV, with α = 0.9 fixed. These results are detailed in Appendix C, and are explained
in terms of the newly identified proton substructure in Subsection III D. Namely, rather
elegantly and clearly, a smaller substructure is seen in the ISR energy range, that is invariant
for the (relatively small) change of

√
s, as evidenced by the dashed lines that (except an

overall normalization factor) follow the same curves. It is apparent from the visualization
of Fig. 6, that at

√
s = 7 and 13 TeV, the slope of these dashed lines changes dramatically:

a proton substructure of a different size is found that is apparently (within the errors) the
same both at 7 and at 13 TeV.

Fig. 7 represents a summary plot of the Lévy fits, dσ/dt = A exp(−(R2|t|)α) to the cone
or low-|t| part of the elastic pp scattering data at ISR and LHC energies from

√
s = 23.5

GeV up to 13 TeV, with α = 0.9 fixed. All the low-t ISR fits are successful with the
Levy leading order result where there are sufficient data sets at low-t, except those data
at
√
s = 44.7 and 52.8 GeV which exhibit a gap in the measured dataset at low values of

|t|. These results are detailed in Appendix D. The gradual steepening of the slope of the
fitted curves indicate, that the Lévy scale R, characterizing the overall size of the proton,
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FIG. 5: Summary plot of the model-independent Lévy expansion fits to the elastic pp̄ scattering

data at ISR, Spp̄S, and Tevatron energies ranging from
√
s = 53 GeV up to 1.96 TeV. The fits

converged, error matrix was accurate and CL ≥ 0.1 % for these fits, that were obtained with fixed

α = 0.9. These fits are detailed in Appendix B.

was increasing monotonically with increasing energy
√
s. This behaviour can be explained

in terms of the proton size growing self-similarly in the ISR energy range, as evident also
from the excitation function of the shadow-profiles at 23.5 ≤

√
s ≤ 62.5 GeV. This effect is

discussed in greater details in Subsection III B.
However, at

√
s = 7 and 13 TeV, the leading-order Levy fits for fixed α = 0.9 have

failed, indicating that not only the size of the proton increases with an increase of collision
energies, but also the shape of the protons changes. A successful fit in this case is possible
only if the first few data points are taken only into account. Note, that any data in the
Coulomb-nuclear interference (CNI) region, i.e. at |t| < 0.01 GeV2, were not included in
these fits, thus one may neglect any possible CNI effect when interpreting the results of the
Levy expansion.

The observation that the impact parameter b dependent shadow profile function P (b) at
7 and 13 TeV deviates from a Levy shape even in the leading order confirms that the shape
of protons changes at LHC energies in a way which is different from that at ISR energies.
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FIG. 6: Summary plot of the Lévy fits, dσ/dt = A exp(−(R2|t|)α) to the tails of the elastic pp

scattering data at ISR and LHC energies ranging from
√
s = 23.5 GeV up to 13 TeV, with α = 0.9

fixed. Solid black lines indicate the fitted region, in each case the CL is in the acceptable 99.9% >

CL> 0.1% range. Dashed line indicates an extrapolation outside the fitted region. These results are

detailed in Appendix C and further explained in terms of a proton substructure in Subsection III D.

The dashed lines continue the fitted, solid curves outside the fitted region, to improve the clarity

of the presentation.

These results, detailed in Subsection III B, can be explained in terms of the evolving shape of
the shadow profiles at 7 and 13 TeV which exhibits plateaux near b = 0 (which were not seen
at lower energies). As shown in Subsection III B, one observes a saturation of the shadow
profile functions P (b) ≈ 1 in the b ≤ 0.4− 0.5 fm region at 7 and 13 TeV, respectively.

A. Differential, total and elastic cross-sections

The conventional form of the elastic differential cross section

dσ

dt
=

1

4π
|Tel(∆)|2 , ∆ =

√
|t| , (2.17)
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FIG. 7: Summary plot of the Lévy fits, dσ/dt = A exp(−(R2|t|)α) to the cone (or low-|t|) region of

the elastic pp scattering data at ISR and LHC energies ranging from
√
s = 23.5 GeV to 13 TeV,

with α = 0.9 fixed. The dashed lines continue the fitted, solid curves outside the fitted region,

to improve the clarity of the presentation. These fits are detailed and described individually in

Appendix D.

provides us with the key expression for the complex-valued elastic scattering amplitude
Tel(∆) in terms of a Lévy series

Tel(∆) = i
√

4πA exp

(
−1

2
zα
) [

1 +
∞∑
i=1

cili(z|α)

]
, (2.18)

z = ∆2R2 = |t|R2 . (2.19)

Then, according to the optical theorem, the total cross section is found as

σtot ≡ 2 ImTel(∆ = 0) = 2
√

4πA

(
1 +

∞∑
i=1

aili(0|α)

)
, (2.20)
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while the ratio of the real to imaginary parts of the elastic amplitude

ρ(t) ≡ ReTel(∆)

ImTel(∆)
= −

∑∞
i=1 bili(z|α)

1 +
∑∞

i=1 aili(z|α)

∣∣∣∣
z=tR2

(2.21)

is known as the ρ-parameter, in consistency with the traditional form of the forward elastic
differential cross section

dσ

dt

∣∣∣
t→0

=
(1 + ρ2

0)σ2
tot

16π
, ρ0 = ρ(t = 0) . (2.22)

B. Four-momentum transfer dependent elastic slope B(t)

The t-dependent elastic slope B(t) is traditionally defined as

B(t) ≡ d

dt

(
ln
dσ

dt

)
. (2.23)

There is a great current interest in the value of this function at t = 0 at LHC energies.
Traditionally, the elastic slope is determined as B = B(t = 0). Let us note that this
requires an extrapolation of the measured differential cross-sections to the t = 0 optical
point. Frequently, an exponential approximation is applied, however, at the very low-|t|
region the CNI complicates such an extrapolation as well [25].

At this point, it is important to emphasize, that the Lévy series utilized in this paper to
represent the elastic scattering amplitude is not an analytic function at t = 0 if α < 1, hence
formally our expressions for B may not exist, as B(t) is well-defined only for |t| > 0 in this
case. However, if α = 1, the cone region decreases exponentially and the elastic scattering
amplitude becomes an analytic function at t = 0. Hence, it is very important to determine
the value of α precisely from the analysis of the elastic differential cross-section data.

Note that B is related to the root-mean-square (RMS) radius of the impact-parameter b-
dependent elastic amplitude tel(b). It is well known that for Lévy-stable source distributions,
that are our zeroth-order choices for the impact parameter dependent elastic amplitudes, the
RMS of the source is divergent, if the Lévy index of stability αL < 2 [27], with the exception
of the Gaussian case, corresponding to αL = 2, when the RMS of the source is finite. Due to
the importance of this point, we have dedicated Subsection II E to compare the differential
cross-section of Lévy-stable sources with Gaussian sources and dedicated Appendices C and
D to investigate if such a non-analytic model at t = 0 as the Lévy-stable source distribution
tel(b) can describe reasonably well the pp elastic differential cross-section data in limited
kinematic regions. Actually, we find that this is indeed a very good approximation to the
data at low values of |t| in the ISR energy range of 23.5 ≤

√
s ≤ 62.5 GeV, as explicitly

demonstrated with α = 0.9 fixed fits in Appendix D. Let us note here that the cone region
of TOTEM data at

√
s = 7 and 13 TeV can also be described in the same cone (or low-|t|)

region only approximately, if the parameter α is released, corresponding to a change of the
proton shape in the TeV energy range.

For more detailed examples and for the introduction of Lévy stable source distributions
to femtoscopy in high-energy particle and nuclear physics, with an emphasis at their non-
analytic nature of their Fourier-transform, we recommend Ref. [31].
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C. Four-momentum transfer dependent nuclear phase φ(t)

The nuclear phase φ(t) can also be introduced at this point. A conventional definition
of this phase φ(t) is referring to it as the phase of the elastic scattering amplitude in the
complex plane, as follows:

Tel(t) = |Tel(t)| exp(iφ(t)) . (2.24)

An alternative definition was used recently by the TOTEM Collaboration, that related φ(t)
to the t-dependent ρ(t) parameter as

φ2(t) =
π

2
− arctan ρ(t) . (2.25)

These definitions are equivalent if the nuclear phase satisfies 0 ≤ φ(t) ≤ π. The mathemat-
ical definition of the inverse tangent function arctan(x) is as follows. For a real number x,
θ = arctan(x) represents the radian angle measure θ with −π

2
< θ < π

2
such that tan(θ) = x.

Thus by definition, φ2(t) of eq. (2.25) satisfies 0 ≤ φ2(t) < π : it stands for the principal
value of the nuclear phase φ(t). Given that for complex arguments, arctan(z) has branch
cut discontinuities on the complex plane the principal value and the continuous definitions
of the nuclear phase with the help of Eqs. (2.25) and (2.24) are, in general, inequivalent.

It is also interesting to evaluate the total elastic cross-section, σel. In this calculation, we
utilize the orthonormality of the Lévy polynomials ln(z|α) to obtain

σel =

∫ ∞
0

d|t|dσ
dt

=
A

R2

[
1

α
Γ

(
1

α

)
+
∞∑
i=1

(a2
i + b2

i )

]
. (2.26)

One may argue that the overall phase χ(z) of the elastic amplitude (2.18) is not con-
strained by the fits of the elastic cross section data. Indeed, an overall phase factor may in
principle cause a redefinition of the complex expansion coefficients in the amplitude as

T̃el(∆) = i
√

4πA exp

(
−1

2
zα
) [

eiχ(z) +
∞∑
i=1

c̃i(z)li(z|α)

]
,

such that the new coefficients c̃i(z) = exp(iχ(z))ci could not be uniquely determined by
the fits with the Lévy expansion. However, under certain additional assumptions, the Lévy
expansion and the reconstructed phase is unique, as outlined below.

By means of the optical theorem, the measurable total cross section uniquely determines
the imaginary part of the elastic amplitude at t = 0, as indicated by Eq. (2.20). Measure-
ments of the nuclear phase at t = 0 use the CNI region to determine ρ(t = 0) with typical
values at LHC of the order of 0.1. This implies that not only the imaginary but also the
real part of the forward scattering amplitude can also be uniquely determined at the optical
point, t = 0, not allowing for an arbitrary phase at z = 0: the value of φ(t = 0) is fixed by
measurements unambiguously. One can also determine the nuclear phase at the dip position
tdip, where the differential cross-section of elastic proton-proton collisions has a diffractive
minimum. At this point, the imaginary part of the elastic scattering amplitude approxi-
mately vanishes, hence the differential cross-section measures the real part of the forward
scattering amplitude and the nuclear phase is an integer multiple of π. Under the additional
assumption that the nuclear phase φ(t) is an analytic function of t, it can be continued with
the help of our expansion method from its known value to arbitrary values of 0 ≤ −t <∞.
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In the subsequent applications, the nuclear phase φ(t) can thus be uniquely determined, if
a well-defined diffractive minimum is included to the measured region, due to the following
reasons: The arbitrary phase χ(z), based on the construction of Eq. (2.18), has to have a
vanishing initial value both at small z, i.e. χ(z) → 0 for z → 0, as well as at the value of
zdip that corresponds to tdip.

If a non-vanishing χ(z) emerges at z > 0, that would apparently destroy the orthonor-
mality of the Levy terms (2.16) in the expansion for the amplitude, given that∫ ∞

0

dz cosχ(z) exp(−zα)ln(z |α)lm(z |α) 6= δn,m . (2.27)

which holds, by construction, for χ(z) = 0. Actually, the condition of the orthonormal-
ity may only be restored for functions that satisfy two conditions: cos(χ(z)) = 1, and
χ(z = 0) = 0. There are infinitely many piecewise continuous functions that satisfy both
requirements, by jumping between 0 and 2π at various values of z, however, the requirement
that the arbitrary phase χ(z) is a continuous function of its argument z, uniquely deter-
mines that χ(z) ≡ 0. One may also observe that the overall normalization coefficient A
and the zeroth order expansion coefficient a0 + ib0 would appear in the fits with Eq. (2.1)
in a product form only. By absorbing these possible zeroth order constants into the overall
normalization constant A, the zeroth order expansion simplifies as A exp(−zα), that can be
uniquely fitted to the data points. Furthermore all the fit parameters of Eq. (2.1) can be
uniquely determined under these above listed conditions, that imply that χ(z = 0) ≡ 0.

This proof indicates, that with the help of the Lévy expansion method, the nuclear phase
of the elastic scattering amplitude can be unambiguously determined, if this nuclear phase
is measurable at t = 0 (as evident from total cross-section and ρ0 measurements at t = 0)
and if it is assumed to be a continuous function of its argument t (apart from branch cuts,
where uniqueness requires that we specify on which branch we define the value of the nuclear
phase).

A posteriori, our method is validated by the excellent reproduction of the ρ0 value mea-
sured in elastic pp collisions at

√
s = 13 TeV by the TOTEM Collaboration [2] using the

data in the CNI region. Fits detailed in Appendices A and B indicate that indeed the 4th
and 3rd order Lévy expansions reproduce well measured values of ρ0 not only at

√
s = 13

TeV but at lower energies as well, if the fit quality is satisfactory. Results summarized in Ap-
pendices C and D also indicate that the zeroth order Lévy fits are not suitable to determine
the nuclear phase and ρ0: one has to measure an interference to extract information about
the phase, which interference is natural to find in the dip-bump region of elastic proton-
proton (or, proton-antiproton) reactions. Note that this proof however does not extend to
the investigation of the convergence properties of the φ(t) measurements. We recommend to
investigate the stability of the reconstructed φ(t) by fitting the data with higher and higher
order Lévy expansions and to look for the numerical convergence of the reconstructed φ(t)
functions and to determine the domain of convergence also numerically.
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D. Shadow profile functions

Turning to the impact parameter space, we get

tel(b) =

∫
d2∆

(2π)2
e−i∆b Tel(∆)

=
1

2π

∫
J0(∆ b)Tel(∆) ∆ d∆ , (2.28)

∆ ≡ |∆| , b ≡ |b| ,

This Fourier-transformed elastic amplitude tel(b) can be represented in the eikonal form

tel(b) = i
[
1− e−Ω(b)

]
, (2.29)

where Ω(b) is the so-called opacity function, which is in general complex. Thus, a statistically
acceptable description of the elastic scattering data provides us with a direct access to the
opacity Ω(b) (known also as the eikonal function) and, in particular, to the shadow profile
function defined as

P (b) = 1−
∣∣e−Ω(b)

∣∣2 . (2.30)

E. A simple example – Gaussian versus Lévy stable source distributions

To gain intuition about the meaning of the characteristic Levy scale parameter of the
proton R, before we go deeper to the data analysis, let us consider first the usual α = 1
case, neglecting all but the leading order (unity) term in the series that defines the Lévy
expansion of the differential cross-section in Eq. (2.1).

In this Gaussian case, the differential cross section is apparently a structureless exponen-
tial in t,

dσ

dt
= A exp(−R2|t|) , (2.31)

that corresponds to a Gaussian parametrization of the elastic scattering amplitude, based
on Eq. (2.17):

tel(b) ∝ exp

(
− b2

2R2

)
. (2.32)

The Gaussian distributions correspond to central limit theorems, when several random
elementary processes are convoluted to yield the final distribution. The Gaussian appears
as a limiting distribution, if the elementary processes have finite means and variances, re-
gardless of further details of the elementary probability distributions. Generalized central
limit theorems describe limiting distributions for a large number of elementary processes,
when the resulting elementary distributions have infinite means or variances. In these cases
a limiting distribution exists, that remains stable for adding one more random elementary
process. Due to this reason, such distributions are called stable, or, Lévy-stable distribu-
tions. They are denoted by Sn(x|αL, β, γ, δ) where x is the variable of the distribution, αL
stands for the Lévy index of stability, β is the asymmetry parameter, γ is the so called
scale parameter, and δ is the location parameter of this distribution, while n determines the
convention [27, 28, 31]. In this paper, we follow the conventions defined in Ref. [31], that
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correspond to n = 2. In this case, for α 6= 1, the Fourier-transformed Lévy stable source
distribution reads as

S̃2(q|αL, β, γ, δ) = exp
(
iqδ − γαLqαL

×
[
1− iβ sgn(u) tan(

1

2
παL)

])
. (2.33)

By now, the Lévy stable distributions are implemented into commercially available soft-
ware packages, for example, Mathematica [27]. In practice, we utilize the parameterization
that is continuous in the Lévy index of stability αL [27]. Given that the Gaussians corre-
spond to Lévy-stable source distributions with αL = 2 (the value of the exponent in the
Fourier-transformed Gaussians) and taking into account, that in our analysis the Gaussian
elastic amplitude tel(b) has the exponent α = 1, we conclude that the Lévy index of stability
αL is simply twice the exponent of our Lévy series, i.e.

αL = 2α . (2.34)

Recently, the TOTEM Collaboration published a high precision measurement of the
low-|t| region of the differential cross-section of elastic pp scattering at

√
s = 8 TeV [25].

This demonstrated a significant, more than 7σ deviation from a simple exponential cone
behaviour, corresponding to a Gaussian representation of the elastic scattering amplitude.
In our language, this means that α < 1, or, using the standard form of the Lévy index of
stability, αL = 2α < 2 for this data set.

Subsequently, let us present the results of our data analysis and indicate the best Lévy
expanison fits to elastic pp and pp̄ differential cross-sections. Let us proceed to evaluate
the shadow profiles P (b, s) and the slope parameters B(s, t) as well as the nuclear phases
φ(s, t) for the available values of s and for both proton-proton and proton-antiproton elastic
scattering reactions, to find their excitation functions, and to compare proton-proton and
proton-antiproton results, as described in the next section.

III. DATA ANALYSIS

Let us test the power of our Lévy expansion method first on the already published dif-
ferential cross-section data of elastic pp collisions at

√
s = 7 TeV, utilizing the published

TOTEM data set of Ref. [32]. Fig. 2 indicates that the 7 TeV TOTEM data set can be
represented by a fourth-order Lévy expansion with a reasonable χ2/NDF = 224/154, that
corresponds to a marginal confidence level of CL ≈ 0.02%. Inspecting Fig. 2 by eye suggests
also that the parameters of the Lévy expansion in Eq. (2.1) can be interpreted as they closely
represent the data. These parameters are printed on the right-hand side of the top panel of
Figs. 2–3.

Let us also investigate in detail the recently released, new 13 TeV TOTEM preliminary
data set [19], to look for crossing (C) odd effects in the comparison of elastic pp and pp̄
collisions. In what follows, we consider four different aspects of the TOTEM data in com-
parison with elastic scattering data at lower energies, both for pp and pp̄ collisions. Namely,
we compare the shadow profile functions, the t-dependence of the elastic slope parameter
B, the same for the ρ-parameter and the so-called nuclear phase φ(t), that measures the
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argument of the elastic scattering amplitude. Finally, we show in a simple and straight-
forward analysis of a large-|t| region beyond the diffractive minimum and maximum, that
the differential cross-section of elastic pp scattering evidences a proton substructure of two
distinct sizes for GeV and TeV energy ranges, respectively.

A. Looking for Odderon effects

As noted in Refs. [4, 33], the only direct way to see the Odderon is by comparing the
particle and antiparticle scattering at sufficiently high energies provided that the high-energy
pp and pp̄ elastic scattering amplitude is a difference or a sum of even and odd C-parity
contributions. The even-under-crossing part consists of the Pomeron and the f Reggeon
trajectory, while the odd-under-crossing part contains the Odderon and a contribution from
the ω Reggeon, i.e.

T ppel (s, t) = T+
el (s, t) + T−el (s, t), (3.1)

T ppel (s, t) = T+
el (s, t)− T

−
el (s, t), (3.2)

T+
el (s, t) = T Pel (s, t) + T fel(s, t), (3.3)

T−el (s, t) = TOel (s, t) + T ωel(s, t) . (3.4)

It is clear from the above formulae that the odd component of the amplitude can be ex-
tracted from the difference of the pp̄ and the pp scattering amplitudes. At sufficiently high
energies, the relative contributions from secondary Regge trajectories is suppressed, as they
decay as negative powers of the colliding energy

√
s. The vanishing nature of these Reggeon

contributions offers a direct way of extracting the Odderon as well as the Pomeron contri-
butions, TOel (s, t) and T Pel (s, t), respectively, from the elastic scattering data at sufficiently
high colliding energies.

In Refs. [4], the authors argued that the LHC energy scale is already sufficiently large to
suppress the Reggeon contributions, and they presented the (s, t)-dependent contributions
of an Odderon exchange to the differential and total cross-sections at LHC energies. That
analysis, however, relied on a model-dependent, phenomenological extension of the Phillips-
Barger model [34] and focussed on fitting the dip region of elastic pp scattering, but it did
not analyse in detail the tail and cone regions. In fact, that analysis relied heavily on the
extrapolation of fitted model parameters of pp and pp̄ reactions to exactly the same energies.
Similarly, Ref. [13] also argued that the currently highest LHC energy of

√
s = 13 TeV is

sufficiently high to see the Odderon contribution, given that the Pomeron and the Odderon
contributions can be extracted from the elastic scattering amplitudes at sufficiently high
energies as

T Pel (s, t) '
1

2

(
T ppel (s, t) + T ppel (s, t)

)
, (3.5)

TOel (s, t) '
1

2

(
T ppel (s, t)− T ppel (s, t)

)
. (3.6)

One of the problems is that the elastic pp and pp̄ scattering data have not been measured
at the same energies in the TeV region so far. So, we strongly emphasize the need to run the
LHC accelerator at the highest Tevatron energies of 1.96 TeV, in order to make such direct
comparisons possible. Another problem is a lack of precision data at the low- and high-
|t|, primarily, in pp̄ collisions. Nevertheless, we show that robust features of the already
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performed measurements provide not only an Odderon signal, but they also indicate the
existence of a proton substructure.

In this paper, we take the data as given and do not attempt to extrapolate the model
parameters for their unmeasured values. Instead, we look for even-under-crossing and odd-
under-crossing contributions by comparing pp and pp̄ collisions at different energies, looking
for robust features that can be extracted in a model-independent manner. In addition, we
build upon Ref. [4] by assuming, as justified by that analysis, that the Reggeon contributions
to the elastic scattering amplitudes are negligible if

√
s ≥ 1.96 TeV.

Let us first of all compare the behaviour of the shadow profile functions P (b) before
investigating the four-momentum transfer dependent B(t) functions for both pp and pp̄
reactions.

B. Excitation function of the shadow profiles

The excitation of the shadow profiles is obtained from the elastic scattering amplitude
obtained by fits to pp elastic scattering cross-section data from

√
s = 23.5 GeV to 13 TeV, as

illustrated in Fig. 8. The excitation function of the shadow profile functions for pp̄ reactions
is indicated in Fig. 9.

13 TeV

7 TeV

62 GeV

53 GeV

45 GeV

30 GeV

23 GeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

b, fm

Shadow profile P(b) for pp collisions

FIG. 8: Shadow profile functions for pp collisions from
√
s = 23.5 GeV to 13 TeV.

In pp collisions at the lower ISR energies, the shadow profile functions look nearly Gaus-
sian, and their values at zero impact parameter are below unity, P (b = 0) < 1. The picture
changes at the LHC energies of 7 and 13 TeV, where the shadow profile functions seem to
saturate, with P (b = 0) > 99.9% in an extended range, for b < 0.4 fm at 7 TeV and b < 0.5
fm at 13 TeV. This indicates that the black disc limit is reached in the center of these colli-
sions, corresponding to P (b) ≈ 1. However, outside the 0.4 or 0.5 fm saturated regions, the
P (b) decreases nearly in the same manner, as at lower energies. One may conclude that a
new, black region opens up in the TeV energy region, which increases with growing colliding
energies, and it is surrounded by a gray hair or skin region, that has a “skin-width” that is
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approximately independent of the energy of the colliding protons. Thus, with an increase of
colliding energies, the protons become blacker, they do not become edgier but become larger.
This is the so called BnEL effect [35], which can be contrasted to the earlier expectations,
the so-called BEL effect suggesting that with increasing energy of the collisions, the protons
might become blacker, edgier and larger.

1960 GeV
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
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0.2

0.4

0.6

0.8
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b, fm

Shadow profile for pp collisions for α=0.9

FIG. 9: Shadow profiles for pp̄ collisions,
√
s = 53 GeV to 1.96 TeV.

A new trend opens up with the 7 TeV TOTEM data, that indicates a black region,
P (b) ' 1 up to a radius of about 0.4 fm and the size of this black region is increasing with
an increase of colliding energies. Note also that at the ISR energy range,

√
s ≤ 62.5 GeV,

the shadow profiles are very similar, however, at the TeV energy range, pp and pp̄ collisions
evolve somewhat differently. For example, in the shadow-profile of the elastic pp̄ collisions
at
√
s = 1.96 TeV, the nearly flat region with P (b) ≈ 1 is not yet present, while this region

is present and it is rather extended in the shadow profiles of elastic pp collisions at
√
s = 7

and 13 TeV.
In both Figs. 8 and 9, one can observe that the proton becomes blacker and larger with

increasing energies, however, its edge is apparently nearly constant, looks like a nuclear skin
that has the same skin-width regardless of the energy of the collision. These results are
similar to earlier observations, published in Refs. [35–38]. To highlight this point, we have
plotted the shadow profile functions P (b|pp, 13 TeV), P (b|pp, 7 TeV) and P (b|pp, 1.96 TeV)
together in Fig. 10 containing the effects that come from evolution of the structure of the
proton with increasing

√
s. We find that the energy evolution of the shadow profiles is

similar for the C-even pp collisions and for the C-odd pp̄ collisions.
We summarize that from the shadow profile functions it is very difficult to draw strong

conclusions given that the model-independent method does not allow estimation of the
collision energy dependence of the model parameters yet, so it is very hard to tell if the
obvious difference between the pp and the pp̄ collisions is due to the difference in the energy
of the collisions or not.

This observation underlines the importance of data-taking at the LHC, a pp collider, with√
s decreased to as close as reasonably possible to 1.96 TeV or 1.8 TeV, the energy range of
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FIG. 10: Shadow profile functions of pp collisions at
√
s = 13 and 7 TeV, as compared to the

shadow profile function for
√
s = 1.96 TeV pp̄ collisions.

the pp̄ collisions measured at Tevatron.

C. Results for the nuclear slope parameter B(t)

Let us move on to the analysis of another important characteristics, namely, the t-
dependent nuclear slope B(t).

In pp collisions, the analysis of the four-momentum transfer and center-of-mass energy
dependent nuclear slope, B(t, s) is summarized in Fig. 11. Surprisingly, in the low-|t| region,
where a diffraction cone is expected, we find that B(t) is actually not exactly constant,
but a t-dependent function, so the exponential behaviour can only be considered as an
approximation, as clearly shown in Fig. 11. In the ISR energy range 23.5 GeV ≤

√
s ≤ 62.5

GeV, the nuclear slope can be considered as roughly constant both in the |t| ≤ 1.0 GeV2

(diffractive cone) and in the 2.0 ≤ |t| ≤ 3.0 GeV2 (tail) region, with nearly ISR energy
independent Bcone(pp|ISR) ≈ 10 GeV−2 and Btail(pp|ISR) ≈ 2 GeV−2, rather surprisingly.
At the LHC energy scales

√
s =7 and 13 TeV, the cone region shrinks, as expected, down to

|t| ≤ 0.3 GeV2, however, rather unexpectedly and surprisingly, the tail region opens up with
a featureless, nearly flat B(t) function that extends the tail region to 1.0 ≤ |t| ≤ 3.0 GeV2.
An obvious and numerically very stable observation is that the low-|t| approximate value,
Bcone(pp|LHC) ≈ 20 GeV−2 is nearly a factor of two larger than the corresponding values at
ISR, but also it is clear that these values are significantly t-dependent. On the other hand,
in the large-|t| region, Btail(pp|LHC) ≈ 5 GeV−2, valid in a broad, 2 GeV−2 wide range of
|t|, with not larger than 20 % level variations over this range. This suggests the existence
of some substructures inside the protons that we detail in the next subsubsection.
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1. Substructures of protons from B(t) at large t

It is important to realize, that the asymptotic value Btail(pp|LHC) ≈ 5 GeV2 is nearly
independent of the 7 or 13 TeV colliding energies and it is apparently significantly larger
than the same asymptotic values at the ISR energies. It is rather clear that these values of
B(t), nearly constant over such rather extended 1 or 2 GeV2 ranges (plateaux) of |t|, indicate
two different and nearly Gaussian shaped proton substructures, a smaller substructure at
ISR energies, that corresponds to Btail(pp|ISR) ≈ 2 GeV−2, and a larger substructure at
LHC energies, that corresponds to Btail(pp|LHC) ≈ 5 GeV−2. It is remarkable that the size
of these substructures is not changing when the center of mass energy of the collision is
varied in the

√
s = 23.5 to 62.5 GeV ISR range, or in the LHC energy range of

√
s = 7 to

13 TeV. It is desirable to take more data and to investigate what happens in between these
energy ranges. In particular, we suggest that the colliding energy of the LHC accelerator
be varied in the broadest possible range, from

√
s = 900 GeV to the designed top colliding

energy of 14 TeV, to see particularly if a smooth or sudden transition is seen in Btail(pp)
between 2.76 TeV and 7 TeV, or not.

In pp̄ elastic collisions, a similar analysis of the four-momentum transfer squared and
center-of-mass energy dependent nuclear slope, B(t, s) is summarized in Fig. 12. In this
analysis, the data are less detailed and only one data set is analyzed in the ISR energy
range, corresponding to

√
s = 53 GeV. This data set has points both in the cone and in the

tail regions, while the dataset at
√
s = 546 GeV is detailed in the low-|t| region but lacks

data in the tail. The data at
√
s = 630 GeV lacks data in the cone region, but extends more

to the tail range, finally the data that we analyze at the Tevatron energy scale, at
√
s = 1.96

TeV, have limited |t|-range that only partially covers the cone and the tail regions.
For a kind of uniformity of the comparisons of pp̄ elastic scattering data at various ener-

gies, we thus rely on fits and extrapolations with fixed α = 0.9, as detailed in Appendix B,
and also summarized in Fig. 5. In the low-|t| region, where a diffractive cone is expected, we
find that B(t) is actually not exactly constant, but a t-dependent function, so the exponen-
tial behaviour can only be considered as an approximation at all the considered energies, as
clearly seen in Fig. 12. In pp̄ collisions, the nuclear slope is approximately a constant both
in the |t| ≤ 0.5 GeV2 (cone), as well as in the 2.0 ≤ |t| ≤ 3.0 GeV2 (tail) region. These
data sets cover a broad energy range, and Fig. 12 clearly indicates, that the approximate
average values of Bcone(pp) increase monotonically with an increase of

√
s. It is remarkable,

that the slope parameter B(t) is, rather surprisingly, tending to an energy-scale independent
asymptotic value of Btail(pp) ≈ 5 GeV−2. The range, over which the asymptotic exponential
region prevails, is apparently extending at least up to 3 GeV2 or more. The larger the col-
liding energy, the broader this region, which starts to open at |t| ' 1.5 GeV2 at

√
s = 1.96

TeV. The asymptotic value Btail(pp|1.96 TeV) ≈ 5 GeV2 is nearly the same as the value of
Btail(pp|LHC) at

√
s = 7 or 13 TeV colliding energies and is thus almost independent of the

type of the collisions as well.
It is clear that these two different, but nearly constant asymptotic values of B(t), cor-

responding to Btail(pp|1.96 TeV) ≈ Btail(pp|LHC) ≈ 5 GeV−2 and Btail(pp|ISR) ≈ 2 GeV−2

over extended, 1 or 2 GeV2 wide four-momentum transfer squared ranges exhibit a do-
main with a nearly exp(−B|t|) behaviour. Thus, this domain reveals the existence of
a proton substructure with a nearly Gaussian elastic scattering amplitude distribution,
tel(b) ∝ exp(−b2/(2R2)). As is well known, an approximate value of the slope parame-
ter Btail is proportional to the squared Gaussian radius of such a substructure. The larger
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FIG. 11: Slope parameter B(t) for elastic pp collisions. The diffractive minimum followed by a

diffractive maximum is present in each case, as evidenced by B(t) crossing the B(t) = 0 line twice

in each case.

radius of this substructure is observed in the TeV energy range, both in pp and in pp̄ colli-
sions, while a smaller-size substructure is seen in pp collisions in the

√
s = 23.5− 62.5 GeV

ISR energy range. From the relation R2 = 4B (in natural units) [24, 39], the Gaussian radius
of the substructure is about RLHC ≈ 0.9 fm (TeV energies) and RISR ≈ 0.6 fm (few 10 GeV
energies). The analysis of the proton substructure and the determination of its contribution
to the total cross-section is detailed in the next subsection, as well as in Appendix C.

The values RLHC and RISR are strikingly similar to the radii of an effective diquark
(Rd) and quark (Rq), respectively, that were independently obtained to characterize the
substructures inside the protons in Ref. [35]. It turned out that the unitarized quark-
diquark model of elastic pp scattering (called the Real extended Bialas-Bzdak or ReBB
model) predicted the

√
s dependence of the total cross-section, the dip position and even

certain scaling properties of the differential cross-section of elastic pp scattering at
√
s = 13

TeV with a reasonably good accuracy, based on its tuning at ISR energies and the TOTEM
data set at

√
s = 7 TeV. So, the hypothesis about a proton substructure gains a larger weight

and evidence in our analysis and, thus, definitely deserves more detailed investigations –
that, however, go beyond the scope of the model-independent approach elaborated in this
work. In particular, an important question is whether the observed two distinct scales RLHC

and RISR correspond to the dressed diquark and the dressed quark, respectively, or simply
represent a single substructure whose size grows with energy, remains open.

A dynamical model for the elastic amplitude based upon a two-scale structure of the
proton was previously proposed also in Refs. [40–42]. In this model, while the first scale
was associated with the confinement radius Rc ' 1 fm and can be attributed to the proton
“shell”, the second semi-hard scale r0 ≈ 0.3 fm originates due to non-perturbative inter-

23



1960 GeV

630 GeV

546 GeV

53 GeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-5

0

5

10

15

20

25

|t|, GeV2

Slope B(t) for ppbar collisions for fixed α=0.9

FIG. 12: Slope parameter B(t) for elastic pp̄ collisions.

actions of gluons and characterizes an effective gluonic “spot”, or a cloud, around each of
the valence quarks. Despite somewhat different values of the physical scales adopted in this
model, it has appeared to predict the energy dependence of the total and elastic cross sec-
tions quite accurately, at least, in a parameter-dependent way. In our current work, however,
instead of reviewing various possible model interpretations, we study the model-independent
properties of the elastic scattering data and search for C-odd (or Odderon) effects. We em-
ploy our model-independent imaging method to sharpen the picture of the proton as can be
“seen” by elastic scattering measurements at different energies.
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FIG. 13: Slope parameter B(t) for elastic pp collisions at
√
s = 13 and 7 TeV, compared to the

slope parameter of pp̄ collisions at
√
s = 1.96 TeV.

24



2. Odderon effect and the difference between B(t|pp) and B(t|pp̄)

We can observe in Fig. 11, that in pp collisions B(t) starts in the cone region with nearly
constant values. However, after the cone region, B(t) increasea shortly then falls sharply,
to cut through the B(t) = 0 line and to reach a deep minimum with B(t)� 0 values. Then
this function B(t) starts to increase, it cuts through the B(t) = 0 line second time, from
below, to approach slowly its asymptotic value, Btail.

Remarkably, for pp̄ collisions, the B(t) functions behave apparently in a qualitatively
different way. In this case, after the cone region, B(t) approaches zero and it may marginally
cross zero, but not so deeply and sharply as in the case of pp collisions. Taking into account
that the published error on B in pp̄ collisions is about 0.5 GeV−2 [43], the error on the
extrapolated B(t) function can be estimated also. The latter appears to be similar or even
larger as compared to the error of B at the optical point t = 0. So it seems to us, that the
crossing of the B(t) function below zero is within errors and thus it is likely not a significant
effect in any of the pp̄ collision data.

To clarify this point more, we compare the B(t) functions for pp collisions at
√
s = 7 and

13 TeV with that of the pp̄ collisions at
√
s = 1.96 TeV, see Fig. 13. The nuclear slope in pp

collisions becomes clearly and significantly negative in an extended |t| region, starting from
the diffractive minimum (dip) and lasting to the subsequent diffractive maximum (bump).
These dip and bump structures are clearly visible in the corresponding data sets, as visualized
in Figs. 2 and 3 as well. In contrast, for pp̄ collisions in the Tevatron energy range, we do
not find any dip and bump structure, that would correspond to a |t|-region where B(t) were
negative.

We have performed further tests to cross-check if, within the errors of the analysis, the dip
and bump structure is indeed absent in pp̄ collisions at

√
s = 1.96 TeV, or not. First of all,

one can directly inspect Appendix B to see that any reasonably smooth (e.g. spline) extrap-
olation of the pp̄ data points would lack a diffractive minimum structure at

√
s = 1.96 TeV.

One may argue that we do not see the minimum because the values of α and R were fixed.
However, these numbers specify the approximate Lévy shape only, dσ/dt ∝ exp (−(R2|t|)α),
that decreases monotonically, so their variation cannot cause diffractive minima or maxima,
as also apparent on the dashed lines of partial fits described in Appendices C and D. In any
case, we have also tested numerically that changing α in the region of fixed 0.8 – 1.0 does
not qualitatively change the behaviour of B(t). Within the allowed range of variation of the
essential Levy expansion parameters ci, we find that the diffractive minimum is lacking in
elastic pp̄ collisions at 1.96 TeV.

This lack of diffractive minimum as well as the lack of the subsequent diffractive maximum
in elastic pp̄ collisions is contrasted to the strong diffractive minimum and maximum (the dip
and bump structure) in elastic pp collisions at all investigated energies, hence it indicates a
rather evident C-odd contribution to the elastic scattering amplitude, the so called Odderon
effect, shown also in Fig. 13.

D. Evidence for proton substructure from Lévy fits at large |t|

Lévy fits to the tails of the differential cross-section of pp elastic scattering data from√
s = 23.5 GeV to 13 TeV are shown on a summary plot in Fig. 6 and detailed in Appendix

C. Note, that all the tails of the differential cross-sections are nearly linear on a log-linear
plot, indicating a nearly Gaussian substructure of the proton. As was discussed earlier, two
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distinct sizes of such a substructure are seen, given the two different values of the slope in
the ISR energy range of

√
s = 23.5 – 62.5 GeV, and in the LHC energy range of

√
s = 7 –

13 TeV. After the dip-bump structure, the differential cross-section of elastic pp collisions
can be described by a simple A exp (−(|t|R2)α) form, with α = 0.9 ± 0.1 value. Thus, for
illustration this plot was done for fixed value of α = 0.9.

We found that in the 23.5 ≤
√
s ≤ 62.5 GeV range, a proton substructure of nearly

constant size (within errors) was present, with a characteristic Lévy length scale of RISR =
0.3±0.1 fm, and with the corresponding contribution to the total cross-section σISR = 0.3+0.3

−0.1

mb, where the quoted errors take into account also the errors coming from the variation of
the value of α between 0.8 and 1.0, see also the ISR plots of Appendix C for details.

Fig. 14 indicates the TOTEM preliminary elastic scattering data at
√
s = 13 TeV with

their fourth-order Lévy expansion fits. A power-law tail would show up as a straight line
on this plot, but apparently it does not yet show up on the currently available |t|-range
that extends up to about tmax = 4 GeV2. Although a straight line fit to the tail of this
distribution is perhaps possible starting from |t| ≥ 2 GeV2, these points are getting close to
the end of the TOTEM acceptance for this data set, and the error bars are getting large.
To clarify the existence of such a possible power-law tail, more data at larger values of |t|
would be desirable. In contrast, the data in the well measurable |t|-range are sufficient to
demonstrate the nearly exponential behaviour of the differential cross-section in the tail
region that follows the dip and bump structure. The existence of the nearly Gaussian
substructure is thus an obvious and rather robust feature of the data (for more details, see
Appendix C). This claim is also supported by the nearly energy- and t-independent values
of the slope-parameter B(t) in the tail regions, see Figs. 11 and 12.

E. Results for ρ(t)

By reconstructing the elastic scattering amplitude from the data, we have also found the
t-dependent ratio of its real to the imaginary parts in pp collisions, the ρ-parameter. Such a
result is illustrated in Fig. 15 and indicates that the ρ-parameter is significantly t-dependent.
This dependence is initially nearly linear in t.

However, at the 7 and 13 TeV LHC energies, ρ(t) starts to diverge to minus infinity
which corresponds to a zero point or node of the imaginary part of the elastic scattering
amplitude. In order to illustrate this point, we show the real and imaginary parts of the
elastic amplitude in Figs. 16 and 17.

Let us now analyze in detail the nuclear phase φ(t), the argument of the complex elastic
scattering amplitude Tel, that is traditionally measured in units of π, as described in the
next subsection.

F. Results for the nuclear phase φ(t)

In this subsection, let us investigate in detail if we can identify the Odderon effects in the
t-dependence of the nuclear phase φ(t). As we clarify in Appendices A and B, such a phase
can be reconstructed mostly from the differential cross-section at low-momentum transfers
squared. In Appendix B we have demonstrated that ρ(t = 0) cannot be reliably extracted
from the studied elastic pp̄ collision data, in particular, due to a significant lack of the low-|t|
data points. However, in Appendix A we demonstrated that ρ(t) can be extracted from Lévy
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FIG. 15: ρ(t)-parameter for pp elastic scattering collisions.

fits to elastic pp scattering, with the exception of
√
s = 44.7 GeV and 52.8 GeV data, where

the confidence level of our fits is not in the statistically acceptable domain.
We have evaluated the t-dependent nuclear phase for pp collisions in the both ISR and
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FIG. 17: Imaginary part of the elastic scattering amplitude as a function of t for three distinct

energies of pp and pp̄ collisions.

LHC energy ranges. Unfortunately, the ISR range is a cumbersome one, where the Reggeon
as well as the Pomeron and Odderon contributions mix with each other. In this energy
range, for some of the pp collision data sets, we found that φ(t) reaches π value at the same
(or close) |t| values above 1 GeV2 while our sensitivity studies indicate that in this region
our method to reconstruct the nuclear phase has increasing systematic difficulties. So, we
cannot at present reliably test if the points where φ(t) = π coincide or not at low energies
in pp and pp̄ collisions. We can however make a statement that the pp collisions at the ISR
energy range of 23.5 ≤

√
s ≤ 62.5 GeV, the nuclear phase does not reach π for |t| ≤ 1 GeV2.

Fortunately, a similar analysis in the TeV energy range gave interesting results. Fig. 18
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FIG. 18: The nuclear phase φ(t), shown in units of π as a function of the four-momentum transfer

squared |t|, for pp collisions at
√
s = 13 TeV and 7 TeV, as compared to the nuclear phase for pp̄

collisions at
√
s = 1.96 TeV. Here, for illustration we also kept the corresponding principal values

for the nuclear phase satisfying 0 < φ2(t) < π, also shown in units of π. The latter are indicated

by thinner and discontinuous curves explicitly seen at large |t| > |tdip|.

indicates that the phase φ(t) reaches the π value at 7 and 13 TeV simultaneously at |t0|(pp)
≈ 0.45 ± 0.05 GeV2 in pp collisions, while φ = π is reached at a rather different value of
|t0|(pp) ≈ 0.70± 0.05 for 1.96 TeV pp̄ collisions.

This is an important qualitative feature of φ(t), that indicates a significant Odderon
contribution, that apparently cannot be attributed to an s-dependent effect. This subtle
Odderon signature is clearly illustrated in Fig. 18 and cannot be directly seen in the differ-
ential cross sections. Thus, the

√
s independence of the crossing point of the nuclear phase

φ(t) = π in the TeV energy range for pp collisions and its strong shift in pp̄ collisions in
the TeV energy range, where the Reggeon contributions are apparently negligible, can be
considered as a second reliable signature of the Odderon.

IV. DISCUSSION

Our experience is that many of our results, for example, for ρ(t) and also for the nuclear
phase φ(t) in the |t| > 1 GeV2 region are very sensitive to the precise details of the fits, so
interpretation of the TOTEM results at

√
s = 13 TeV depends critically and sensitively on

the currently preliminary TOTEM data points and their error bars. Certain features of our
analysis, for example, the behaviour of B(t) in the range where the slopes could directly be
evaluated from the data are more robust and stable.

Thus, we feel strongly motivated to warn the astute reader against the over-interpretation
of model results that indicate certain features of the elastic scattering data correctly only
on the qualitative level, but fail miserably on a confidence level test. Actually, the Odderon
effects that we discuss in detail in this work are due to some robust and model independent
features of the data, but we have investigated other more subtle effects too that we do not
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emphasize in this work.
Our key point is that the significance of the new Odderon effects can be revealed only if

the data sets are final, with published statistical and systematic errors, and if they can be
correctly and faithfully represented by theoretical calculations. So we recommend to care-
fully evaluate the confidence levels of all subsequent theoretical analysis of final TOTEM
data in future analyses and to determine the significance of the presence of novel effects like
the Odderon contributions. Our method, presented in this work, allows for such sensitivity
and significance analysis, however, given that the TOTEM data at

√
s = 13 TeV are pre-

liminary, the evaluation of the systematic errors of the our fit results would most likely also
be premature at present.

Nevertheless, we may warn the careful readers that descriptions of possible Odderon
effects or the lack of them, based on data analysis with zero confidence levels might have
apparently been over-interpreted recently: the significance of the interpretation of fits that
do not describe the data in a statistically acceptable manner is not particularly well defined.
Based on our experience, we recommend against the over-interpretation of the data in terms
of models that do not have a confidence level of at least CL ≥ 10−3%, but in a final analysis,
we strongly recommend to rely on descriptions that have a confidence level of at least CL
> 0.1% before the model results can be interpreted. The authors should also check if their
optimization procedure has converged or not and test if the error matrix is accurate and the
estimated distance to the real minimum is sufficiently small.

In our studies, we have found that small variations in the fit range or in the values of
the fit parameters do not change the following robust features of the data, that we highlight
below.

A. Robust qualitative features

While searching for the differences between the differential cross-sections of elastic pp
and pp̄ collisions, that could exhibit a C-odd contribution, or an Odderon effect in 13 TeV
pp elastic scattering, we have evaluated the shadow profile functions at 7 and 13 TeV pp
collisions using a novel imaging method, the model-independent Lévy expansion.

We have compared the shadow profile functions of pp and pp̄ collisions at various energies.
We have found that the shadow profiles saturate at the LHC energies of 7–13 TeV: for small
values of the impact parameter, a P (b) ' 1 region opens up. With increasing the collision
energies, the protons become blacker, but not edgier, and larger, confirming the BnEL effect,
that was reported in Ref. [35].

We see a significant difference between the shadow profile functions P (b) of protons and
anti-protons in the TeV region, but from the current analysis we cannot determine uniquely,
if this difference is an Odderon effect, or, an effect of saturation that is apparent also in pp
collisions with an increase of collision energy. We would need pp and pp̄ elastic scattering
data at exactly the same collision energies, that can be realized these days only by running
the LHC accelerator at energies close to the Tevatron energy scales of

√
s = 1.8 – 1.96 TeV.

In Subsection II B, we have analyzed the dependence of the B-slope parameter on the
four-momentum transfer squared t in pp as well as in pp̄ reactions. We have found, that the
B(t) functions indicate an Odderon effect very clearly.

Surprisingly, we have identified a |t| region after the dip and the bump structure, where
a clear-cut evidence is seen in our analysis for a proton substructure of two distinct sizes
in two experimentally probed GeV and TeV energy ranges. In every case, such a substruc-
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ture is characterized by a Lévy exponent of α = 0.9 ± 0.1. Possible evidence for a new
substructure inside the proton at LHC energies was, as far as we know, first pointed out
by Dremin in Ref. [16]. In this paper, we explored this possibility in detail and identified
the characteristic Lévy exponent as α = 0.9 ± 0.1, characterized the substructure with an
approximate Gaussian and Lévy scales at the ISR and LHC energies, respectively, and de-
termined the corresponding contribution to the total pp cross-section as well, as described in
Subsection II B and in Appendix C. Based on the Gaussian sizes found in Subsection II B, it
is tempting to note that they are strikingly similar to a dressed quark and a dressed diquark,
found to describe elastic pp scattering in an earlier, model dependent analysis [35]. Their
presence seems to provide a phenomenological support for the quark-diquark picture of the
proton, which is deeply related to the solution of the confinement problem in QCD proposed
recently by Brodsky and collaborators in Ref. [44]. This, however, does not exclude the
possibility for a single substructure growing with energy in such a way that the substructure
grows only in between the ISR and the LHC energies, but remains constant between

√
s =

23.5 and 62.5 GeV, then it grows but again remains of constant size between
√
s = 7 and 13

TeV. More measurements would be strongly desirable to justify the quark-diquark picture or
to investigate the growth of a single substructure (a dressed quark) with increased colliding
energy. Presently this is feasible only by running the LHC accelerator at decreased energies,
varying the collision energies between

√
s = 900 GeV and 7 TeV, to identify the transition

energy. Another measurement at the desinged top LHC energy of 14 TeV is already planned
and approved, as far as we know, by the TOTEM Collaboration at CERN LHC.

B. Highlighted results

Let us highlight some of the important points of our study:

1. We have found a solid, stable and clear-cut evidence for a proton substructure, with
two different sizes extracted for two distinct (GeV and TeV) energy ranges that are
similar to the sizes of a dressed quark and a dressed diquark, respectively, as discussed
in Ref. [35], and as also derived from QCD in Ref. [44]. Fig. 13, even without the
quantitative results, demonstrates the existence of such a proton substructure, cor-
responding to the second extended plateau in the large-|t| region (besides the usual
elastic cone region at low |t|) with a nearly exponential contribution to the differential
cross-section of elastic pp scattering. We noticed that such a plateau corresponds to
a dressed quark-scale substructure in the lower

√
s = 23.5 – 62.5 GeV energy range,

while it resembles a larger, dressed diquark-scale substructure in the 7 – 13 TeV energy
range, see Fig. 6. This, however, does not exclude the possibility for a single substruc-
ture growing with energy in such a way that the substructure grows only stepwise:
within the resolution errors, it remains of a constant size between the

√
s = 23.5 and

62.5 GeV ISR energies, then it grows but its size remains constant within the experi-
mental resolution error of about 0.1 fm in the energy region between

√
s = 7 and 13

TeV. In short we observed two significantly different in size substructures inside the
protons at ISR and LHC energies but the physical interpretation of this substructures
is an open question, and requires more experimental and theoretical investigations.

2. At each energy and for each investigated data set, the scattering amplitude of elastic
pp and pp̄ collisions was described by our new Lévy series expansion method. With
the help of the elastic scattering amplitude, we have reconstructed values for the total
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cross-section and for the differential cross-section of elastic scattering. The published
values of the total cross-sections were reproduced within errors and the fits to the
differential cross-section looked fine. In case of several data sets they have also passed
the more stringent tests of mathematical statistics, namely the confidence level of most
of our fits was not unacceptable from the point of view of mathematical statistics,
either, with confidence levels CL > 0.1 %.

3. For all those data-sets, where the confidence level of the fit was not unacceptable
from the point of view of mathematical statistics, we found that the exponent α was
significantly less than unity in pp collisions, the deviation being a more than 5σ effect.
Given that exponential behaviour corresponds to the case of α = 1, and fits with CL
> 0.1 % represent the data undoubtedly, we find that the differential cross-section
at low |t| is apparently non-exponential in 23.5, 30.7, 62.5 GeV and in 13 TeV pp
elastic scattering data. It is quite remarkable, that the corresponding values of the
non-exponentiality are α = 0.88 ± 0.01, 0.89 ± 0.02, 0.90 ± 0.01, 0.90 ± 0.01, when
rounded up to two decimal digits. This implies that an average value of α = 0.89±0.02
is consistent with all the measurements in a very broad energy range from 23.5 GeV
to 13 TeV. The energy independence of this α = 0.89 ± 0.02 value calls for a physics
interpretation, and for further studies.

4. Signals of non-exponentiality in the cone region are also indicated in pp̄ elastic scatter-
ing data at all energies, where we have been able to describe all the analyzed datasets
with an α = 0.9 fixed value, from

√
s = 53 GeV to 1.96 TeV. At a first sight, differ-

ence of α from unity may imply non-linearity of the Regge trajectories. However, it is
known that the extrapolation of the Regge trajectories from masses to negative values
of momentum transfer t depends on the assumed analyticity of the elastic scattering
amplitude. It is worth to mention here that our amplitudes are singular at t = 0
for α < 1, and this behaviour does not allow for an easy analytic continuation and,
hence, an interpretation of non-exponentiality is not straightforward in terms of Regge
theory.

5. This non-exponential nature of the differential cross-section in the low-|t| region im-
plied that the slope parameter B = B(t) is a function that is strongly dependent on
the |t| range, where it is determined. We have evaluated B(t) both numerically and
analytically in the whole |t| region, where it is defined. The extrapolation of B(t)
to the optical point of t = 0 turned out to be model-dependent, not only due to the
fact that there is a Coulomb effect that induces CNI terms and modifies the slope at
very small |t|, but also due to the analytic result that limt→0B(t) =∞, i.e. our Lévy
expansion method is non-analytic at the optical point. This closely corresponds to the
physical picture that we allow for the underlying source contributions that may have
infinite root mean square, which is typical for a Lévy stable source distribution. (For
a typical example, one may consider a Lorentzian distribution, that is a symmetric,
Lévy stable distribution with Lévy index of stability αL = 1, corresponding to our
non-exponential parameter α = 0.5.

6. The failure of the leading-order Levy fits for fixed α = 0.9 at
√
s = 7 and 13 TeV,

while their success at any lower energy, have indicated that not only the size of the
proton increases with an increase of collision energies, but also the shape of the protons
changes. These results can be explained due to an emergence of the saturated plateaux
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P (b) ≈ 1 in the small b ≤ 0.4− 0.5 fm region at
√
s = 7 and 13 TeV which were not

seen at lower energies. In our analysis, the data points from the CNI region, i.e. at
|t| < 0.01 GeV2, were not included neglecting any possible Coulomb effect in the Levy
expansion.

7. The lack of detailed data in the very low- or very large-|t| regions in pp̄ collisions
prevented us to determine precisely the ρ and the B parameters of this case.

8. The analysis of the four-momentum transfer squared and the center of mass energy
dependent nuclear slope, B(t, s) in Fig. 11 not only confirms the existence of a proton
substructure (corresponding to the existence of large regions in t where B(t) is ap-
proximately but not exactly constant), but also indicates a sharp difference between
the B(t) functions of pp and pp̄ collisions, when comparing Figs. 11 and 12. This is
a clear-cut and significant Odderon effect. For pp collisions, B(t) starts with positive
values, then it cuts sharply through the B(t) = 0 line and returns above it shortly
but very significantly, corresponding to the dip and bump structure in the differential
cross-section for elastic scattering in each of the investigated data sets. In contrast,
in pp̄ collisions, B(t) approaches zero but within the errors of the analysis it does
not cross it at

√
s = 1.96 TeV. At two of the lower energy scales of

√
s = 630 and

53 GeV, B(t) apparently crosses zero and develops minima whose values are 2 and 1
GeV−2, respectively. However, taking into account that the published error on B in
pp̄ collisions is about 0.5 GeV−2 [43], the error on the extrapolated B(t) function can
be estimated to be similar or larger as compared to the error of B at the optical point
of t = 0. So it seems to us, that the crossing of the B(t) function below zero is within
errors likely not a significant effect in any of the pp̄ collision data. In the only data set
that we could access in the TeV energy range, where the complicated Reggeon con-
tributions are already negligible, B(t) does not cross zero, so the diffractive minimum
and maximum, the dip-bump structure is lacking in these

√
s = 1.96 TeV pp̄ elastic

collisions. Such a behaviour is in sharp contrast to the pp differential cross-sections at
all energies. Apparently, this is a clear-cut Odderon effect, as illustrated in Fig. 13.

9. In addition, we have also found a surprisingly clear Odderon effects in the t-dependent
nuclear phase φ(t). Our analysis indicates that this phase reaches π value at the very
different, high LHC energies of 7 and 13 TeV in elastic pp collisions at the same value
of |t0| ≈ 0.45 GeV2, that suggests that this |t0| value has a negligibly small dependence
on the collision energy,

√
s. However, in elastic pp collisions at

√
s = 1.96 TeV, such

a crossing point in the nuclear phase φ(t) = π is at a very different location from pp
collisions.

10. We have also found a weak difference between the shadow profile functions P (b) be-
longing to pp̄ collisions at

√
s = 1.96 TeV as compared to that of pp collisions at 7 and

13 TeV. However, we also found a significant evolution of the shadow profile functions
from 23.5 to 62.5 GeV and from 7 TeV to 13 TeV in elastic pp collisions.

11. In order to clarify if the difference between the shadow profiles of pp and pp̄ collisions
occurs due to the change of the colliding system type or due to the change of t he
center of mass energy of the collisions, as well as to clarify differences of the other
observables like B(t) and φ(t), we strongly recommend to run the LHC measurements
at lower energies, preferably as close to

√
s = 1.96 TeV, as reasonably achievable, to

33



measure the difference between pp and pp̄ collisions exactly and to clarify the Odderon
contribution without any possible energy evolution and extrapolation effects.

12. We recommend extreme care before drawing big conclusions, given that we see the
sensitivity of some of the details like φ(t) at large |t| for tiny details in the data and
in changing some of the higher order coefficients of the fits. Possibly these tiny details
differ in some papers that may apparently draw big, but contradicting, and not partic-
ularly well founded conclusions about the existence or non-existence of the Odderon
effects. When looking for a robust conclusion about the Odderon contribution, we
recommend to look at the summary plot of the Lévy fits to the slope of the differential
cross-sections of elastic scattering, as indicated in Fig. 13.

V. SUMMARY AND CONCLUSIONS

In summary, we conclude that we have found clear-cut and post-factum rather obvious
differences between the differential cross-sections of elastic pp and pp̄ collisions, indicating
a C-odd contribution: the Odderon effect. This corresponds to a small difference of the t-
dependent slope parameters between pp collisions at 13 TeV and 7 TeV collision energies at
the LHC as compared to a large change of the t-dependence of the slope parameter B(t) in
1.96 TeV pp̄ collisions. Another characteristic Odderon signal is the difference is between the
existence of a diffractive minimum and maximum in both 13 and 7 TeV elastic pp scattering,
corresponding to two distinct crossing-points of the B(t) functions with the B(t) = 0 line, as
contrasted to the monotonically decreasing differential cross-section of elastic pp̄ collisions,
with a t-dependent elastic slope that is B(t) > 0 significantly, a function that never crosses
the B(t) = 0 line.

These Odderon signals, the change in B(t) and the disappearance of the diffractive min-
imum as well as the diffractive maximum, when changing from pp reactions to pp̄ reactions,
are rather obvious, stable and clear-cut effects. Once they are identified, they can be directly
seen on the data sets, when one plots the 13 TeV and 7 TeV differential cross-section of elas-
tic pp scattering on the same plot with the differential cross-section of elastic pp̄ scattering,
as illustrated in Fig. 19.

We have confirmed such Odderon effects with a more refined and subtle analysis, that
indicated the lack of energy dependence of the crossing point |t0| of the nuclear phase φ(t)
both in the TeV region φ(t) = π at the same value of |t0|(pp) ≈ 0.45 ± 0.05 GeV2 both at
7 and 13 TeV. When evaluating the crossing point of the nuclear phase for pp̄ collisions at√
s = 1.96 TeV, a significantly different value of |t0|(pp) = 0.70 ± 0.05 GeV2 was obtained

for the position of this point. The difference between |t0|(pp) and |t0|(pp) is apparently a
clear but subtle Odderon effect, that cannot be obviously obtained by directly inspecting
Fig. 19, but it supports the same conclusion about the presence of Odderon effects in the
few TeV elastic scattering data.

As a by-product, but perhaps even more importantly, we have also found a clear-cut evi-
dence for a proton substructure, as shown by the presence of the second, nearly exponential
region in the differential cross-sections of elastic pp collisions at large |t|. At the ISR region,
23.5 ≤

√
s ≤ 62.5 GeV, from the asymptotic value of the t-dependent slope parameter of

BISR ≈ 2 GeV−2 a substructure with a Gaussian radius of RISR,G ≈ 0.6 fm, while at the LHC
energies of 7≤

√
s ≤ 13 TeV, a substructure with a different Gaussian radius of RLHC,G ≈ 0.9

fm is identified. Apparently, the size of this structure found at the ISR and LHC matches
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FIG. 19: A direct comparison of the differential cross-sections of elastic pp scattering at the LHC

energies of 7 and 13 TeV, with pp̄ elastic scattering at the Tevatron energy of 1.96 TeV.

reasonably well the size of the dressed quarks and diquarks, respectively, as found recently
in a unitarized Bialas-Bzak model analysis of 7 TeV elastic pp scattering [35]. These results
may provide a phenomenological support for the quark-diquark picture of hadron confine-
ment as obtained recently by Brodsky using AdS/QCD techniques [44], although they may
not exclude other reasonable interpretations.

Our analysis indicates that the proton substructure contributes to the total pp cross-
sections with σISR = 0.3+0.3

−0.1 mb at ISR, and σLHC ≈ 8.2+7.9
−4.7 mb at the LHC energies.

We have also found that this substructure can be better characterized by a Lévy source
with α = 0.9 as compared to a Gaussian source (corresponding to α = 1). Using the
characteristic Lévy length scale RL, we find that these substructures of the protons are
characterized of of RISR,L = 0.3 ± 0.1 fm at ISR, and RLHC,L = 0.5 ± 0.1 fm at the LHC
energies.

From the analysis of the cone region, we clearly demonstrated that the shape of the
protons actually changes in the 7 – 13 TeV energy range, corresponding to an opening of a
new channel, as clearly demonstrated by the appearance of a saturated P (b) ≈ 1 region in
the shadow profile functions in the TeV energy range.

Finally, based on our experience with precision description of the differential cross-sections
of elastic pp and pp̄ collisions let us warn the careful readers against over-interpreting rea-
sonably looking fit results in cases when the fitted function does not represent the data with
a statistically not unacceptable confidence level.

We hope that this data analysis method of Lévy series expansion, detailed for the first time
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in this manuscript for a positive definite function, may find several important applications
in the future, in a broad range of quantitative sciences. Essentially this method is able
to characterize the deviations from Fourier-transformed and symmetric Lévy stable source
distributions. Given the ubiquity of Lévy distributions in Nature, we hope that our new
method will be relevant in several areas of human knowledge, that extend far beyond the
science of physics.
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Appendix A: Lévy expansion fits to elastic pp collisions: full acceptance region

In this Appendix, we describe the results of the fourth-order Lévy expansion fits to
the elastic scattering data of pp collisions for five different data sets, measured in the ISR
energy range of

√
s = 23.5, 30.7, 44.7, 52.8 and 62.5 GeV, shown in Figs. 20, 21, 22, 23,

and 24, respectively. The parameters of the fourth-order Lévy expansion are shown on the
corresponding plots, together with the extracted value of the total cross-section, the value
of the ρ parameter and the measures of the fit quality.

Many of the features of these fit results are common for all of these plots, but let us start
with noting that the fits, although look quite reasonable to the naked eye, differ in their
quality. The confidence level of fits to the

√
s = 23.5, 30.7 and 62.5 GeV data sets has a

statistically acceptable value, with CL > 0.1 %, while the quality of the fits to the data sets
at
√
s = 44.7 and 52.8 GeV is not acceptable from the point of the mathematical statistics,

corresponding to CL� 0.1 % . This implies that we are not allowed to interpret the results
of the fits to the 44.7 and 52.8 GeV data sets, as the fitted curve, although looks reasonable,
does not represent the data well enough (from the mathematical statistics point of view).
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FIG. 20: Fourth-order Lévy expansion fits of the differential cross-section data from Ref. [45] on

pp elastic scattering at
√
s = 23.5 GeV.
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FIG. 21: Fourth-order Lévy expansion fits of the differential cross-section data from Ref. [45] on

pp elastic scattering at
√
s = 30.7 GeV.

Appendix B: Lévy expansion fits to elastic pp̄ collisions: full acceptance region

In this Appendix, we describe the Lévy expansion fits to the elastic scattering data of
pp̄ collisions for four different data-sets, at

√
s = 53, 546, 630 and 1960 GeV, illustrated in

Figs. 25, 26, 27, and 28, respectively.
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FIG. 22: Fourth-order Lévy expansion fits of the differential cross-section data from Ref. [45] on

pp elastic scattering at
√
s = 44.7 GeV.
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FIG. 23: Fourth-order Lévy expansion fits of the differential cross-section data from Ref. [45] on

pp elastic scattering at
√
s = 52.8 GeV.

Some of the features are common for all of these plots.
1) The parameter α was found to be within the errors independent of

√
s, so it was fixed

to a collision energy independent constant value α = 0.9 in these cases. It is an interesting
and open problem to search for a physics interpretation of the universality of the α value of
elastic pp̄ collisions, but this topic goes beyond the scope of the model-independent approach
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FIG. 24: Fourth-order Lévy expansion fits of the differential cross-section data from Ref. [45] on

pp elastic scattering at
√
s = 62.5 GeV.
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FIG. 25: Second-order Lévy expansion fits of the differential cross-section data on pp̄ elastic

scattering at
√
s = 53 GeV [46], with fixed α = 0.9.

followed in the current manuscript. As an extra bonus, fixing α = 0.9 has resulted in a
reasonably good reproduction of the

√
s dependence of the total pp̄ cross-sections, achieved

without an additional tuning.
2) These pp̄ elastic scattering data were less detailed as compared to the corresponding
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FIG. 26: Third-order Lévy expansion fits of the differential cross-section data on pp̄ elastic

scattering at
√
s = 546 GeV [47], with fixed α = 0.9.
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FIG. 27: Third-order Lévy expansion fits of the differential cross-section data on pp̄ elastic

scattering at
√
s = 630 GeV [48], with fixed α = 0.9.

pp data, presented in Appendix A. The “dip” region was covered in all the cases, however,
at very low |t| as well as at large |t| values, the acceptance and thus the t range were rather
limited. This prevented us from a reliable analysis of the ρ parameter of elastic scattering
for these collisions even at t = 0.

3) We have tested if the third-order and fourth-order Lévy expansions give similar results
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FIG. 28: Second-order Lévy expansion fits of the differential cross-section data on pp̄ elastic

scattering at
√
s = 1960 GeV [50], with fixed α = 0.9 and R = 0.689 fm.

for these data sets or not. Within errors, the fourth-order expansion parameters were found
to be consistent with zero, so we have fixed them to zero and investigated the third-order
Lévy expansion results. In some cases, e.g. for

√
s = 53 and 1960 GeV, the second-order

Lévy fits were employed as providing better confidence levels for these rather scarce data
sets.

4) We have checked that ρ(t = 0) changes well outside the Minuit indicated errors, if
we change the order of the expansion from a third-order to a fourth-order Lévy expansion.
Usually high precision data at low values of |t| are needed to reconstruct ρ reliably, so this
limitation is not unexpected. However, it indicates the sensitivity of our method. In contrast
to ρ(t), the B(t) slope parameters and the P (b) shadow profiles were found to be stable with
respect to increasing the order of the Lévy expansion from the third to the fourth order.

5) We have found that a third-order Lévy expansion provides a reasonable overall de-
scription for all of these four data sets: Minuit has converged, error matrix accurate, and the
fit quality is not unacceptable. The confidence level is sufficiently large, CL > 0.1 % for all
the four data sets. We concluded, that with the exception of the overly sensitive parameter
ρ, we can interpret the physical meaning of the fit parameters, as they represent the data.
Note that the |t| ranges of the various data sets are rather different, but it is clear that the
Lévy expansion reproduces the elastic pp̄ differential cross-section in the respective s and |t|
ranges of these four data-sets.

The parameters of the Lévy expansion are shown on the corresponding figures, together
with the extracted values of the total cross-section, and the measures of the fit quality. The
value of the ρ parameter is also shown, but the fluctuation of these values as a function
of
√
s and their correlation with the Lévy exponent α also indicates that even the value of

ρ(t = 0) cannot be reliably determined from the these pp̄ elastic scattering data, due to lack
of data points in the sufficiently low |t| region.
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Appendix C: Lévy fits to elastic pp collisions at large |t|

In this Appendix, we detail the Lévy fits, dσ/dt = A exp (−(R2t)α) to the elastic scat-
tering data of pp collisions for seven different data sets, at

√
s = 23.5, 30.7, 44.7, 52.8, 62.5

GeV as well as at 7 and 13 TeV. These fits correspond to the zeroth order, leading terms of
the Lévy expansions, with all the expansion coefficients set to zero or ci = 0, as detailed in
Subsection II A. Some of the features are common for all of these plots.

In the ISR energy domain fits were performed in the 2.5 < |t| < 5 GeV2 region. In each
case, Minuit has converged, error matrix was accurate, and the confidence level of the fits
was acceptable, with CL > 0.1 %. In each case, the value of the parameter α was, within
errors, consistent with 0.9 so we have fixed its value to 0.9 in each case. Let us note, however,
that the fixed value of this parameter α can be varied between 1.0 and 0.8 without changing
the acceptability of the fit, so the criteria of CL > 0.1 % was satisfied.

The good quality of these fit results indicates, that a substructure is present inside the
protons: the data after the dip and bump region have the same structure and quality, as
a usual low-|t| elastic scattering data below the dip region, used to be parametrized by a
nearly exponential shape. However, the related cross-sections and length-scales are smaller
than that of the protons. This conclusion is rather obvious after one compares the results
of the Lévy fits to the tail or large-|t| regions, as presented in Appendix C with the results
of Lévy fit results in the cone or low-|t| region, as detailed in Appendix D below. These
comparisons were summarized clearly in Fig. 6 for the tail and in Fig. 7 for the cone region.
It is quite remarkable, that the proton substructure in the ISR region has a size that is
apparently independent of the change of the energy in the region of a few tens of GeV, but
this substructure appears to be different (in size) from a substructure that is emerged in
pp collisions in the 7 – 13 TeV energy range, as evidenced from the parallel dashed lines in
Fig. 6. This observation and the lack of parallel behaviour between the ISR and the LHC
data fits suggests that two substructures, characterized by different Lévy source radii but
similar Lévy index of stability α are identified at the ISR and at the LHC energies.

We have also studied the stability of these fits. Increasing the value of α decreased the
Lévy scale R and the contribution to the total cross-section. Taking into account a co-
variation of the fit parameters with the fixed value of α we find that in each of these data
sets, we are allowed to vary the value of α in a reasonable range of 0.8 to 1.0. We found
that in each case the same-size substructure of the proton was present, with a characteristic
Lévy length scale of RISR = 0.3± 0.1 fm, and a contribution to the total cross-section with
σISR = 0.3+0.3

−0.1 mb, where the quoted errors take into account the errors coming from a
variation of the value of α as well. Apparently, the same structure is seen in these reactions,
within the systematic error of the analysis, as indicated in Figs. 29, 30, 31, 32, and 33.

However, the same type of analysis reveals a different-size proton substructure, when
one performs a similar analysis in the TeV energy range. Fits to the differential cross-
sections of elastic pp scattering data at

√
s = 7 TeV and preliminary TOTEM data at√

s = 13 TeV are shown in Figs. 34, and 35, respectively. This substructure corresponds to
a Lévy scale of RLHC = 0.5 ± 0.1 fm, and to a contribution to the total cross-section with
σLHC(7 TeV) = 6.1+3.3

−2.6 mb at 7 TeV, which is within the errors the same as the preliminary
value of σLHC(13 TeV) = 10.2+5.9

−4.7 mb at 13 TeV. It is clear that these scales of R and the
contributions to the total cross-section at the level of σLHC ≈ 8.2+7.9

−4.7 mb, that emerge at the
TeV scale colliding energies, are significantly larger than the corresponding cross-sections
and scales in the ISR energy range of 23.5 – 62.5 GeV. The errors of RLHC and σLHC include
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FIG. 29: Zeroth-order Lévy fits to the tail of the differential cross-section data on pp elastic

scattering at
√
s = 23.5 GeV [45], with fixed α = 0.9, A and R as free fit parameters.
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FIG. 30: Zeroth-order Lévy fits to the tail of the differential cross-section data on pp elastic

scattering at
√
s = 30.7 GeV [45], with fixed α = 0.9, A and R as free fit parameters.

the estimated systematic uncertainties as well, and those are larger than the statistical errors
shown on the figures. Indeed, they also take into account the fact, that similar results were
obtained for α = 0.8 and α = 1.0 fixed values as well, where the increasing or decreasing of
α value has resulted in a decrease or increase of R (and σ), respectively.

The emergence of the proton substructure with two different sizes in elastic pp collisions
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FIG. 31: Zeroth-order Lévy fits to the tail of the differential cross-section data on pp elastic

scattering at
√
s = 44.7 GeV [45], with fixed α = 0.9, A and R as free fit parameters.
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FIG. 32: Zeroth-order Lévy fits to the tail of the differential cross-section data on pp elastic

scattering at
√
s = 52.8 GeV [45], with fixed α = 0.9, A and R as free fit parameters.

at the ISR energy range of
√
s = 23.5 – 62.5 GeV and at the LHC energy range of

√
s = 7 –

13 TeV, respectively, is clearly demonstrated on the summary plot that shows the data and
the Lévy fit results to the tails of the differential cross-sections of elastic pp collisions on the
same plot, also indicating with dashed lines the extrapolation of the fit results outside the
fitted domain, see Fig. 6.
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FIG. 33: Zeroth-order Lévy fits to the tail of the differential cross-section data on pp elastic

scattering at
√
s = 62.5 GeV [45], with fixed α = 0.9, A and R as free fit parameters.
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FIG. 34: Zeroth-order Lévy fits to the tail of the differential cross-section data on pp elastic

scattering at
√
s = 7 TeV, with fixed α = 0.9, A and R as free fit parameters.

The change of the slope of these lines from ISR to the LHC energies is so much obvious
and striking to the naked eye, that it is rather surprising that such a change was not reported
in the literature before, at least, to the best of our knowledge. Perhaps, the reason for this
effect is the expectation, that perturbative QCD effects should start to be visible soon after
the dip-bump structure which could result in a power-law decrease of the differential elastic

45



)2-t (GeV

0 0.5 1 1.5 2 2.5 3 3.5 4

)2
/d

t (
m

b/
G

eV
σd

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

 )α|t|)2A exp( -(R
-21.5 < |t| < 3  GeV

pp: TOTEM - 13 TeV
preliminary data

R  0.002 fm± = 0.514 

A -2 0.3 mbGeV± = 4 
α  = 0.9   

totσ  0.3 mb± = 8.9 
elσ  0.04 mb± = 0.63 
/NDF2χ  = 16.9 /  8,  CL = 3.2%

FIG. 35: Zeroth-order Lévy fits to the tail of the differential cross-section data on pp elastic

scattering at
√
s = 13 TeV (TOTEM preliminary), with fixed α = 0.9, A and R as free fit

parameters.
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FIG. 36: Zeroth-order Lévy fits to the cone region of the differential cross-section data on pp elastic

scattering at
√
s = 23.5 GeV [45], with fixed α = 0.9, A and R being free fit parameters.

cross-section. Indeed, such a power-law fit was performed and published by the TOTEM
Collaboration in Ref. [49] when analysing the first set of 7 TeV elastic scattering data.
In particular, the TOTEM Collaboration has reported that for |t|-values larger than ∼1.5
GeV2, the differential cross-section of elastic pp collisions exhibits a power law behaviour,
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with an exponent of −7.8 ± 0.3 (stat) ± 0.1 (syst).
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FIG. 37: Zeroth-order Lévy fits to the cone region of the differential cross-section data on pp elastic

scattering at
√
s = 30.7 GeV [45], with fixed α = 0.9, A and R being free fit parameters.
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FIG. 38: Zeroth-order Lévy fits to the cone region of the differential cross-section data on pp elastic

scattering at
√
s = 44.7 GeV [45], with fixed α = 0.9, A and R being free fit parameters.

Given that the new (but still preliminary) TOTEM data at 13 TeV are much more
detailed and cover an extended |t| range after the dip and bump structure, we can easily
test the presence (or not) of the perturbative QCD predicted power-law tails in these elastic

47



)2-t (GeV

0 1 2 3 4 5 6

)2
/d

t (
m

b/
G

eV
σd

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

 )α|t|)2A exp( -(R
-20.01 < |t| < 1  GeV

pp: ISR - 52.8 GeV R  0.003 fm± = 0.739 

A -2 0.4 mbGeV± = 99.9 
α  = 0.9   

totσ  0.08 mb± = 44.2 
elσ  0.02 mb± = 7.5 
/NDF2χ  = 250 / 56,  CL = 2.1e-24%

FIG. 39: Zeroth-order Lévy fits to the cone region of the differential cross-section data on pp elastic

scattering at
√
s = 52.8 GeV [45], with fixed α = 0.9, A and R being free fit parameters.

scattering data: if dσ/dt ∝ |t|n then the power-law tail emerges as a straight line on a
log-log plot. In order to illustrate this point, we have prepared a log-log plot that includes
the TOTEM preliminary dσ/dt data at

√
s = 13 TeV, and the Lévy expansion fit results.

As clearly seen in this Fig. 14, the tail is not a straight line on this plot, so the |t|-range is
apparently not yet in the domain of perturbative QCD, with a possible exception for data
points close to the end of the acceptance region at large |t|. These data points, however,
have rather big error bars.

Appendix D: Lévy fits to elastic pp collisions at small |t|

In this Appendix, we describe the zeroth-order Lévy fits, dσ/dt = A exp (−(R2t)α) to the
low-|t| or cone region of elastic pp scattering data for seven different data sets, at

√
s = 23.5,

30.7, 44.7, 52.8, 62.5 GeV as well as at 7 and 13 TeV.
Traditionally, an exponential behaviour is assumed for this kinematic region, with α = 1

fixed fits. However, recently the TOTEM collaboration demonstrated a non-exponential
behaviour in

√
s = 8 TeV pp collisions, that was found to be significant, corresponding to

a more than 7σ effect [25]. These results were highlighted and some of their implications
and ramifications were detailed also in Ref. [51]. In this Appendix, we re-examine the
other, already published data sets using the zeroth-order Lévy fits, where the selected low-
|t| regions are very similar to the 8 TeV analysis of TOTEM, namely we fit a |t| region that
is similar to the TOTEM analysis at 8 TeV, when |t| is measured in units of tdip. Our fit
region is thus 0.04 |tdip| ≤ |t| ≤ 0.4 |tdip|. We have performed a detailed investigation of this
region and found that all the data sets were described with a good confidence level with the
zeroth-order Lévy fit, with only three free parameters, A, R and α. Within the errors, in
the ISR region, the values of the parameter α were in the region of 0.90 ± 0.02 in these fits.
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FIG. 40: Zeroth-order Lévy fits to the cone region of the differential cross-section data on pp elastic

scattering at
√
s = 62.5 GeV [45], with fixed α = 0.9, A and R being free fit parameters.

Hence, we have fixed the value of α to 0.9, that allowed us to demonstrate the trends more
clearly and also to compare the results with the similar analysis in the large |t| region.
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FIG. 41: Zeroth-order Lévy fits to the cone region of the differential cross-section data on pp elastic

scattering at
√
s = 7 TeV, with fixed α = 0.9, A and R being free fit parameters.

All the data in the ISR energy range were fitted successfully with a CL ≥ 0.1 % for
the α = 0.9 fixed case as well. The Lévy radii R kept on increasing monotonically with
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increasing
√
s. The best fit parameters as well as the fit quality measures are indicated on

Figs. 36, 37, 38, 39, 40.
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FIG. 42: Zeroth-order Lévy fits to the cone region of the differential cross-section data on pp

elastic scattering at
√
s = 13 TeV (TOTEM preliminary), with fixed α = 0.9, A and R being free

fit parameters.

However, the fixed α = 0.9 fits failed both on the
√
s = 7 TeV final and on the

√
s = 13

TeV preliminary data, as indicated on Figs. 41 and 42. These fit results, although on
a qualitative level apparently may be called as “reasonable”, are in fact statistically not
acceptable. This implies that in the TeV energy region, some new mechanism starts to
work, that changes not only the Lévy scale but also the shape of the proton. Actually,
from the analysis of the shadow profile function, we know that such a new effect in the
TeV energy range corresponds to the saturation of the shadow profile functions P (b) in the
region of b ≤ 0.4 − 0.5 fm. This result, detailed in Subsection III B is supported strongly
and independently by the fits detailed above.
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