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1 Introduction

The Effective Field Theory (EFT) approach to describe low-energy experiments is based on
the idea of integrating out heavy particles from the theory, keeping only the relevant light
degrees of freedom. The effects of these heavy particles are then captured in the (Wilson)
coefficients of the EFT which become the relevant parameters to be measured in low-energy
experiments, as for example the magnetic dipole moment of the SM fermions, g − 2.

When performing these calculations using Feynman rules, it has been found that in
certain models the different contributions to the Wilson coefficients add up to zero with no
apparent explanation. An example for the g−2 case has been extensively studied in [1], and
other examples can be found e.g. in [2] for the Higgs coupling to photons, Hγγ. In these
cases, there is no obvious symmetry which would explain this cancellation, jeopardizing
the idea of naturalness which states that contributions not forbidden by symmetries are
compulsory. In [1] instead the vanishing of the g − 2 Wilson coefficient was found to
arise since the total contribution is a total derivative. In the following, we will show
that the cancellations can also be understood from exchange symmetries which act at the
amplitude level.

We will analyze the cancellations by calculating the finite contributions to the Wilson
coefficients using on-shell methods. These methods have already been useful to understand
certain cancellations in the anomalous dimensions which looked mysterious from the
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Feynman approach [3]. We will show that the finite contributions to g − 2 arising from
integrating out heavy fermions can also be obtained by a product of tree-level amplitudes. In
certain models, these amplitudes are odd under the interchange of the heavy fermions, while
the total contribution must be even under this interchange. This provides an explanation
in terms of symmetries acting at the amplitude level of the vanishing Wilson coefficients in
the models in [1, 2]. It will also allow us to find new cases where the contributions add up
to zero. For models without this parity, the contributions will not cancel, and our method
will explicitly provide the Wilson coefficients as a simple product of tree-level amplitudes.

We will extend the analysis also to the Wilson coefficient of the Hγγ coupling (for
tree-level calculations using on-shell methods, see [4]). We will see that the same argument
as for the g − 2 case can lead to an explanation for the absence of the total contribution to
this Wilson coefficient in certain models of heavy fermions.

The calculation of Wilson coefficients using on-shell amplitudes has been previously
studied in the literature — see for example [5] and references therein. Nevertheless, in these
cases first the full amplitude is calculated, and later the heavy mass limit is taken to match
with the EFT. This makes the method too long and probably not so competitive with the
Feynman approach. The main purpose here will be to understand what cuts in the one-loop
amplitudes are needed in order to simply extract the finite contributions to the Wilson
coefficients, specially for cases of phenomenological interest. This will also allow us to more
clearly understand the origin of the rational number appearing in the Wilson coefficients.

While this work was being written, the article [6] appeared where also a symmetry
argument was presented as an explanation of the zeros found in [1]. Although the symmetry
is also an interchange parity, the approach in [6] is different from the one followed here [7].

2 Finite contributions to Wilson coefficients via on-shell methods

Amplitudes at the one-loop level can have a Passarino-Veltman decomposition given by

Aloop =
∑
a

C
(a)
1 I

(a)
1 +

∑
b

C
(b)
2 I

(b)
2 +

∑
c

C
(c)
3 I

(c)
3 +

∑
d

C
(d)
4 I

(d)
4 +R , (2.1)

where In are master scalar integrals with n propagators (n = 1, 2, 3, 4) and Cn are mass-
and kinematic-dependent coefficients. The master integrals are given by

In = (−1)nµ4−D
∫

dD`

i(2π)D
1

(`2 −M2
0 ) ((`− P1)2 −M2

1 ) ((`− P1 − P2)2 −M2
2 ) · · ·

, (2.2)

where P1, P2, . . . , Pn−1 are sums of external particle momenta pi. The first four contributions
to eq. (2.1) are called respectively tadpoles, bubbles, triangles and boxes, according to the
topology of the scalar integral. Terms collected under R are rational functions of kinematic
invariants. We will be using dimensional regularization, D = 4− 2ε.

In general Aloop can be divergent. Nevertheless, here we are only interested in one-loop
effects from renormalizable theories contributing to processes, such as the magnetic dipole
moment, which must go to zero as the heavy masses go to infinity, and are therefore UV
convergent. Even in these cases, it is still possible to have IR divergencies (∝ 1/M2

i lnMi/µ)

– 2 –



J
H
E
P
0
5
(
2
0
2
2
)
1
2
0

which would signal the presence of nonzero anomalous dimensions. The processes that we
will consider here will however also be IR convergent.1

To match with the EFT, we must take the limit in which the masses of the heavy
particles in Aloop are larger than all the external momenta pi. For simplicity in this section
we take these masses to be equal to M . Note that In can involve both massless, Mi = 0, as
well as massive states, Mj = M . The external states will be assumed to be massless, p2

i = 0.
By performing an expansion for Pi � M in eq. (2.1), the amplitude Aloop should match
with the amplitude associated with a higher-dimensional operator AOi = 〈12 . . . |Oi|0〉.
Assuming that the leading operator in this expansion has dimension six, we have

Aloop →
Ci
M2AOi + · · · , (2.3)

where Ci is a rational number times some couplings divided by 16π2, and is often referred
to as the Wilson coefficient of the corresponding operator. In appendix A we will prove
that no contribution at order 1/M2 can arise from R in eq. (2.1). Therefore we have that
the Wilson coefficients are given by

Ci = 1
AOi

lim
Pi/M→0

M2
(∑

a

C
(a)
1 I

(a)
1 +

∑
b

C
(b)
2 I

(b)
2 +

∑
c

C
(c)
3 I

(c)
3 +

∑
d

C
(d)
4 I

(d)
4

)
. (2.4)

From eq. (2.4) we see that in order to determine the Wilson coefficients we need to know the
coefficients C(a)

n . These coefficients can however be easily obtained using on-shell methods.
In particular generalized unitarity methods, extensively developed in the literature in recent
years [8], allow one to calculate C(a)

n without the need to perform loop calculations. Instead
one uses products of tree-level amplitudes (integrated over some phase space), making the
determination of the Wilson coefficients Ci clearer. The idea is to obtain the coefficients
C

(a)
n from performing n-cuts in the loop. Although this can look like a lengthy procedure,

we will see that in many cases, and specially those we are interested in, the situation is
quite simple and only one or two 2-cuts are needed.

3 Dipole moment Wilson coefficient

We start by calculating the Wilson coefficient of the magnetic dipole moment induced by
different models with heavy fermions. For the SM leptons this operator is defined as

Cγ
2M2

qe√
2

¯̀
LσµνeRHF

µν = Cγ
M2 qe `αeβHF

αβ , (3.1)

where we have introduced the 2-component Weyl spinors `α and eα of helicity h = −1/2,
and F refers to the field strength of the photon. We follow the usual definition of the
gauge coupling used when calculating amplitudes with spinors (∆L = qfAµf̄γ

µf/
√

2) which
avoids the proliferation of factors of

√
2 in the calculations. In particular, eq. (3.1) leads to

the amplitude
Cγ
M2AD(1`, 2e, 3γ− , 4H0) = Cγ

M2 qe 〈13〉〈23〉 , (3.2)

1For obtaining anomalous dimensions via on-shell methods, see for example [9–16].
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where H0 is the neutral Higgs component, and with an abuse of notation we have denoted by
` also the charged-lepton component of the SU(2)L doublet. Subindices ± denote helicities
h = ±1 and all particles are taken to be incoming. We use spinor-helicity notation [8]
using properties and conventions which are summarized in appendix B. A key point for our
calculation is to set the Higgs momentum to zero, pH0 = 0, as this enormously simplifies
the loop amplitude. This is possible because the amplitude (3.2) does not explicitly depend
on the Higgs momentum.

3.1 Massive vector-like singlet S and doublet L

The first model we consider is the one studied in ref. [1] which consists of two massive
vector-like fermions, a singlet (S) and an SU(2)L doublet (L). The Lagrangian in Weyl
notation is given by (omitting Lorentz indices)

L = −YL`SH̃ − YRLeH − YV H̃†LcSc − Y ′V LSH̃ −MS SS
c −ML LL

c + h.c. , (3.3)

where H̃ = iσ2H
∗. For simplicity we choose the couplings to be real. As we will see, it will

be useful for our calculation to take MS 6= ML with both being larger than the Pi. As in
ref. [1], we set the SM Yukawa coupling for the muon to zero, Y` = 0 (at tree-level).

Y ′
V 6= 0 case. Let us start by considering the case with YV = 0, Y ′V 6= 0. The Feynman

diagram which contributes to the SM lepton dipole moment is given in figure 1. We
will follow eq. (2.4) for the calculation. The coefficients Cn which enter this relation can
be obtained by applying n-cuts on both sides of eq. (2.1), after analytically continuing
to complex momenta. In particular, performing 4-cuts, the coefficients C4 are given by
products of four amplitudes. Similarly, C3 and C2 can be obtained from 3-cuts and 2-cuts,
respectively, provided that the contributions from boxes and triangles are subtracted.

In this example and the others that will follow, however, all the coefficients C4 and C3
vanish, as all possible 4-cuts and 3-cuts of figure 1 give zero. The reason is the following.
Since we are taking pH0 = 0, we have pS = pL and then the condition to have S and
L simultaneously on-shell cannot be fulfilled as both have different masses. This implies
that the 4-cut gives zero and there are thus no boxes. The only potential nonzero 3-cut
must then arise from cutting two massless states and one massive state. The coefficient
of the corresponding triangle is however also zero. Indeed, one can follow the arguments
of ref. [11] to prove that in the absence of IR divergencies (as it is our case), IR-divergent
triangles cannot be present when there are no boxes. We are thus left only with bubbles
and can obtain their coefficients C2 directly from applying 2-cuts to both sides of eq. (2.1).
The bubble coefficients are then given by a phase-space integral over the product of two
amplitudes. Note that there could also be momentum-independent bubbles I2(p2 = 0,M2, 0)
and tadpoles I1(M2) = M2I2(0,M2, 0). However, these bubbles and the tadpoles, added to
the momentum-independent terms of the other bubbles (see e.g. eq. (3.8) below), must sum
to zero since the one-loop amplitude cannot have divergent terms. We can therefore ignore
them in the following.

According to eq. (2.4), we must perform an expansion in p/M . For that purpose, the
momentum controlling the expansion can be freely chosen among those of all the external
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ℓ e

H0

γ

H+

S L

cutS cutL

Figure 1. One-loop contribution to the g − 2 of the SM leptons from the model eq. (3.3) with
YV = 0 and Y ′

V 6= 0, with the relevant 2-cuts.

lines. Notice that since pH0 = 0, we have p1 + p2 + p3 = 0. Therefore if we work in the
limit in which s13 = (p1 + p3)2 is small but nonzero, we will have to take also p2

2 = s13 6= 0.
This means that the fermion e is either slightly off-shell or has a small mass equal to s13.2

Alternatively, we can take the limit s23 = (p2 + p3)2 → 0 and then p2
1 = s23 6= 0 (i.e. the

fermion ` slightly off-shell or massive). Let us choose the first option and consider the 2-cuts
where S becomes on-shell. There are in principle two possible 2-cuts of this type. However,
the one leaving ` alone as an external leg is proportional to I2(p2

1 = 0,M2
S , 0) and cannot

give any contribution of O(s13/M
2). The only relevant 2-cut is then the one depicted by

cutS in figure 1. We have

C
(13)
2 =

∫
dLIPS (−1)FA(1`, 3γ− , 1′S , 3′H+)×A(3′

H̄+ , 1′S̄ , 2e, 4H0) , (3.4)

where the integral is over the Lorentz-Invariant Phase Space (LIPS) associated with the
momenta of the two cut states, p1′ and p3′ , normalized as

∫
dLIPS = 1. With a bar over a

state we denote that the signs of the momentum, helicity and all other quantum numbers
of the state have been reversed, and F is the number of internal fermions (F = 1 in this
case) [11].

The tree-level amplitudes in eq. (3.4) can be easily calculated from the model eq. (3.3).
We use the spinor-helicity formalism for massive particles from ref. [17], using properties
and conventions which are summarized in appendix B. This gives (recall that pH0 = 0)

A(1`, 3γ− , 1′S , 3′H+) = qeYLMS
[3′1′]

[3′3][13] , A(3′
H̄+ , 1′S̄ , 2e, 4H0) = YRY

′
V

[−1′|p1′ |2〉
M2
S −M2

L

. (3.5)

Writing the SU(2) little-group indices of the bold spinor-helicity variables explicitly, the
integrand in eq. (3.4) is then given by

A(1`, 3γ− , 1′IS , 3′H+) εIJ A(3′
H̄+ , 1′JS̄ , 2e, 4H0) = −qeYLYRY ′V

M2
S

M2
S −M2

L

[3′|(p3 + p1)|2〉
[3′3][13]

= −qeYLYRY ′V
M2
S

M2
S −M2

L

(〈32〉
[13] + [3′1]〈12〉

[3′3][13]

)
, (3.6)

2Note that below we work with amplitudes where all external particles are on-shell and massless. However,
the extension to massive external particles is straightforward by bolding the corresponding spinor-helicity
variables. After taking the massless limit, the result is the same as working with massless particles from
the start.
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where we have used that |1′]I [−1′|I = MS (see appendix B). Only the first term can give a
contribution to the dipole since in the second term the two external spinors are contracted
among themselves, 〈12〉 (cf. eq. (3.2)).3 The first term of eq. (3.6) does not depend on the
internal spinors so the dLIPS integration in eq. (3.4) is trivial leading to

C
(13)
2 = YLYRY

′
V

M2
S

M2
S −M2

L

1
s13
AD(1l, 2e, 3γ− , 4H0) . (3.7)

Plugging this into eq. (2.4), and expanding the bubble integral to O(s13/M
2
S),

I
(13)
2 (s13,M

2
S , 0) ' 1

16π2

(
1
ε

+ ln µ2

M2
S

+ 1 + s13
2M2

S

+ · · ·
)
, (3.8)

we obtain a finite term4 corresponding to the contribution from this 2-cut to the Wilson
coefficient:

∆Cγ
M2 = YLYRY

′
V

32π2
1

M2
S −M2

L

. (3.9)

There are also 2-cuts where L instead of S is put on-shell, in particular cutL of figure 1.
It is clear however that this 2-cut is identical to cutS by the exchange5

S ↔ L , `↔ e . (3.10)

Therefore the contribution must be the same as eq. (3.9) with the replacement MS ↔ML.
Since eq. (3.19) is odd under this transformation, the total contribution to Cγ adds up
to zero.

It is easy to understand this cancellation without the need to go through all the details
of the calculation. The first important thing to know is how ML enters into cutS, since the
dependence on MS can then be fixed by dimensional analysis. Now, by inspection of the
second amplitude of eq. (3.5) we see that, due to the L propagator, ML can only appear as
∆Cγ ∝ 1/(M2

S −M2
L), being then odd under eq. (3.10). Since the total contribution from

cutS and cutL must be symmetric under eq. (3.10), this must be zero.

3The vanishing of the second term can also be explicitly seen by integrating over the phase space
as in eq. (3.4) which can be easily done by relating the internal spinor |3′] with the external ones |1]
and |3]. This relation is given by |3′] =

√
1−M2

S/s12
(
cθ/2|1] + sθ/2e

−iφ|3]
)
which fulfills the kinematic

constraint p1 + p3 = p3′ + p1′ with p2
1 = p2

3 = p2
3′ = 0 and p2

1′ = M2
S . The integral measure is

∫
dLIPS =∫ 2π

0 dφ
∫ π

0 dθ sθ/(4π).
4Again, we are neglecting the divergent and the constant term in eq. (3.8) which must cancel other

divergent and 1/s13 contributions arising from bubbles proportional to I2(0,M2
S , 0) which, as explained, we

also neglect.
5If we keep s13 6= 0 the contribution from this 2-cut will not contain terms of O(sij/M2

L) and can be
neglected. However, there is then another 2-cut which isolates the fermion e with p2

2 6= 0 and which does
not vanish. Since the contribution from cutting the L state should not depend on our choice of whether we
take s12 or s13 nonzero, we can just choose s12 6= 0 for this calculation in which case cutL gives the only
relevant contribution.
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γ

H+

S LSc Lc

cutS cutL

γ

S Sc Lc Lℓ e

H0cut′S

H+

(a) (b)

Figure 2. One-loop contributions to the g − 2 of the SM leptons from the model eq. (3.3) with
Y ′

V = 0 and YV 6= 0, with the relevant 2-cuts.

YV 6= 0 case. Let us next move to the case Y ′V = 0, YV 6= 0. We now have two Feynman
diagrams, see figure 2. Let us first consider diagram (a). The contribution from cutS is
again given by eq. (3.4) with the only difference with respect to the previous case that now

A(3′
H̄+ , 1′S̄ , 2e, 4H0) = YRYV 〈−1′2〉 ML

M2
S −M2

L

. (3.11)

Plugging eq. (3.11) into eq. (3.4) it is easy to see that we get the same as in eq. (3.9) with
the only differences being that, due to the L mass insertion in eq. (3.11), we have an extra
factor of ML/MS and that it depends on YV instead of Y ′V :

∆Cγ
M2 = YLYRYV

32π2
ML/MS

M2
S −M2

L

. (3.12)

This contribution is not odd under the symmetry eq. (3.10). Therefore, when adding cutL
of figure 2, obtained by performing MS ↔ML in eq. (3.12), we get a nonzero result:

∆Cγ
M2 = YLYRYV

32π2
(ML/MS −MS/ML)

M2
S −M2

L

= −YLYRYV32π2
1

MSML
. (3.13)

There is, however, another contribution coming from the 2-cut of diagram (b) in figure 2.
This contribution can be considered as arising from an extra term to the amplitude eq. (3.11)
given by

A(3′
H̄+ , 1′S̄ , 2e, 4H0) = −YRYV 〈−1′2〉 ML

p2
2 −M2

L

' YRYV 〈−1′2〉 1
ML

, (3.14)

which exactly cancels the leading term of O(1/ML) of this amplitude in the limit ML �MS .
Notice that this leading term was crucial in obtaining the nonzero result at O(1/MLMS) in
eq. (3.13). We therefore have that by adding the contribution from eq. (3.14) in eq. (3.4)
we again find a vanishing Wilson coefficient.

The origin of this cancellation can again be understood from symmetries acting at the
amplitude level. For ML �MS , the leading term of the total amplitude A(3′

H̄+ , 1′S̄ , 2e, 4H0)
is captured by the dimension-5 operator H̃†HSce/ML. However, this operator is zero since
H̃†H = εabH

aHb = 0 (a, b being SU(2)L indices). Were this property absent, as we will
find in the next model, the Wilson coefficient would have been generated.

We conclude then that the a priori non-trivial result that the contributions to the
Wilson coefficient of the dipole moment add up to zero in this model boils down, by
inspection with on-shell methods, to a clash of even× odd under a given parity.
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E Ec Lc Lℓ e

H0

H+

(a)

e

γ H0

ℓ

H0

E Ec Lc L

(b)

Ec eLc L

γH0

ℓ E

H0

(c)

Figure 3. One-loop contributions to the g − 2 of the SM leptons from the model eq. (3.15), with
the relevant 2-cuts.

3.2 Massive vector-like charged E and doublet L

Let us next consider a model where the extra vector-like fermions, E and L, have the same
quantum numbers as the leptons of the SM. The Lagrangian is now given by

L = −YL`EH − YRLeH − YVH†LcEc − Y ′V LEH −ME EE
c −ML LL

c + h.c. (3.15)

For the case Y ′V 6= 0, YV = 0, there is no possible Feynman diagram. Therefore we only
have to study the opposite case YV 6= 0, Y ′V = 0. The Feynman diagrams are given in
figure 3. Let us first consider the contribution coming from the charged Higgs, diagram
(a). The calculation is identical to the one of the 2-cut of diagram (b) in figure 2 which we
already found to give

∆Cγ
M2 = YLYRYV

32π2
1

MEML
. (3.16)

Next we study the contributions from the neutral Higgs. For the 2-cut of diagram (b)
in figure 3, the involved amplitudes read

A(1`, 3γ− , 1′E , 3′H0) = qeYL
ME

2p3p1′

〈33′〉[3′1′]
[31] , A(3′

H̄0 , 1′Ē , 2e, 4H0) = YRYV
ML〈−1′2〉
p2

2 −M2
L

.

(3.17)
This leads to

A(1`, 3γ− , 1′IE , 3′H0) εIJ A(3′
H̄0 , 1′JĒ , 2e, 4H0) ' −qeYLYRYV

ME

ML

〈32〉
[31] + · · · , (3.18)

where we have used that 〈33′〉[3′1′I ]〈−1′I2〉 = 〈3|p3′p1′ |2〉 = −〈3|p3′(p3 + p1)|2〉 =
−2p3p3′〈32〉+ · · · ' 2p3p1′〈32〉+ · · · with the dots corresponding to terms ∝ 〈12〉 which do
not contribute to the dipole and to terms which are subdominant for s13/M

2
L,E � 1. Since

eq. (3.18) does not depend on the internal spinors, we can trivially integrate over the phase
space and from this get

∆Cγ
M2 = −YLYRYV32π2

1
MEML

. (3.19)

As opposed to eq. (3.9) this contribution is symmetric under E ↔ L, ` ↔ e. Therefore
we get a factor 2 when adding the 2-cut of diagram (c) in figure 3. Summing the three
contributions, we find a result in agreement with ref. [18].
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Figure 4. One-loop contributions to the g − 2 of the SM leptons from the model eq. (3.20), with
the relevant 2-cuts.

3.2.1 A natural zero for models with an extra (massless) scalar singlet

We have seen that in the model eq. (3.15) we do not find a vanishing contribution from the
diagrams (b)+(c) since each contribution is even under E ↔ L, `↔ e. To have a contribu-
tion which is odd under this interchange, we need to have the same type of diagram as the
one in figure 1 with no mass insertions in the heavy fermion lines. Unfortunately, diagrams
of this type are identically zero in the model eq. (3.15) as the Higgs line cannot be closed if
we do not insert fermion masses. Nevertheless, diagrams of this type can be generated if we
add an extra massless scalar singlet φ0 to the model with the following couplings:

∆L = Y φ
L φ

0`Lc + Y φ
R φ

0Ece+ h.c. (3.20)

The Feynman diagrams involving this scalar are given in figure 4. Now, we can follow
the same reasoning as in section 3.1 to show that this contribution to the dipole moment
is zero. Indeed, we can get the dependence on ML of cutE (where E is put on-shell)
by noticing that it only enters in the L propagator, so it must appear as 1/(M2

E −M2
L).

Dimensional analysis tells us then that ∆Cγ ∝ 1/(M2
E −M2

L). The dependence on the
masses for cutL is determined by a permutation similar to eq. (3.10) with S replaced by E
which gives ∆Cγ ∝ 1/(M2

L −M2
E). Adding both contributions we get zero. It is clear that

the cancellations have nothing to do with where the photon is attached, either to the Higgs
line as in figure 1 or to the fermion line as in figure 4.

4 |H|2F 2 Wilson coefficient

Let us now move to the calculation of the Wilson coefficient of the operator contributing to
the decay of a Higgs to two photons. The operator reads

Cγγ
M2

q2
e

2 |H|
2F 2

µν , (4.1)

and the resulting amplitude is

Cγγ
M2AH2F 2(1γ− , 2γ− , 3H0 , 4H0) = −Cγγ

M2 q
2
e 〈12〉2 . (4.2)

We consider the same model as eq. (3.15), containing two vector-like fermions, L
and E, with the same quantum numbers as the SM leptons. Here we assume vanishing
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cutE cutE

cutEL cutEL cutEL

E

E

E

L

E

E

L

L

E

E

cutE

E

L

Figure 5. One-loop contributions to Hγγ from the model eq. (3.15), with the relevant 2-cuts. There
is a similar 2-cut isolating the other photon that we do not show. Fermion lines can be clockwise
and counterclockwise.

Yukawa couplings between the new fermions and the SM leptons though, YL,R = 0. In the
following, we will focus on the case YV = 0, Y ′V 6= 0. The discussion for the opposite case
YV 6= 0, Y ′V = 0 is identical.

Since the amplitude eq. (4.2) does not depend on the Higgs momenta, we can take
them to be zero, p3 = p4 = 0. In this case we can take the limit pi/M → 0 by giving to
the photons a small nonzero mass p2 ≡ p2

1 = p2
2 = −p1p2. An alternative is to set only

one Higgs momentum to zero, say p3 = 0, but in this case we have nonzero 3-cuts as we
elaborate in appendix C.

There are three different diagrams which can contribute to the Wilson coefficient, shown
in figure 5. Additional contributions arise from the same diagrams with E ↔ L. So the
total contribution must be symmetric under E ↔ L. As we will see, this will clash with
the fact that the contributions from figure 5 are odd under E ↔ L. Although to show that
the total contribution is zero is quite easy, we will proceed here with the details of the
calculation which can be useful for cases where they do not add up to zero.

As in the g − 2 case, there are no possible 3-cuts or 4-cuts since the on-shell conditions
cannot be simultaneously fulfilled for vanishing Higgs momenta. Furthermore, one can show
that the tadpoles do not contribute to the dimension-6 operator since their coefficients
cannot have the required dependence on the masses. This leaves the 2-cuts shown in figure 5.
The 2-cut denoted as cutEL isolates two amplitudes involving a photon coupled to two
different fermions which are zero by gauge invariance. This can explicitly seen by calculating
these amplitudes,

A(1γ ,2E ,3L,4H0) = 1
s−M2

E

(〈1|p2|1] 〈23〉
p

+〈12〉〈13〉
)
+ 1
u−M2

L

(〈1|p3|1] 〈32〉
p

+〈12〉〈13〉
)
,

(4.3)
where s = (p3 + p4)2, u = (p2 + p4)2 and p =

√
p2. In the limit p4 → 0, we have s→M2

L

and u → M2
E , and the amplitude vanishes after symmetrizing over the SU(2) indices of

the photon.
The only remaining 2-cut is cutE of figure 5. This involves a coupling of a massive

photon to massive fermions given by [19]

A(1γ , `E , `′E) = qe
p

(
〈1`〉 [1`′] + [1`]〈1`′〉

)
. (4.4)
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On the other side of the cut, we have the same type of amplitude A(1γ , `E , `′E) but with
the external fermion line corrected by the insertion of two Higgs. This can be considered
as a correction to the E propagator which can be absorbed into a renormalization of the
wavefunction δZE and of the mass,

ME → M̂E = ME + 1
2 |Y

′
VH

0|2 ME

M2
E −M2

L

, (4.5)

where the Higgs has been considered a constant configuration. The correction from δZE is
expected to be exactly cancelled by a correction to the photon vertex, as dictated by gauge
invariance. This vertex correction is given by the third diagram in figure 5 where a Higgs is
inserted on each of the two fermion lines. This leaves us with eq. (4.5) as the only effect of
the Higgs. Notice that this is odd under E ↔ L.

The cutE of figure 5 can therefore be obtained by the dLIPS integral of the product of
two photon couplings to the fermion E of mass given by eq. (4.5),

A(1γ , `IE , `′KE ) εIJεKLA(`′L
Ē
, `J
Ē
, 2γ) = q2

e

p2

[
2 M̂2

E〈12〉[12] +
(
〈1|`|2]〈2|`′|1] + (`↔ `′)

)]
,

(4.6)
where we have used eq. (4.4). In order to simplify the integration of eq. (4.6) over dLIPS,
we can go to the rest frame of the photon where pµ1 = −pµ2 = (p, 0, 0, 0). In this frame,
we furthermore have `µ = (−p/2, ~̀), where ~̀= `(sθcφ, sθsφ, cθ) with ` = (p2/4−M2

E)1/2,
and `′µ = −`µ − pµ1 . We next have the freedom to choose a particular basis for the photon
polarizations, for which we take (equivalent to setting |s| = sin(θ/2) = 0 in appendix C of
ref. [17]):

|1I=1〉 = √p
(

1
0

)
, |1I=2〉 = √p

(
0
1

)
, (4.7)

and |1I=1,2] = |1I=1,2〉. Since p1 = −p2, we can set |2〉 = −|1〉 and |2] = |1]. Furthermore,
we will only calculate the result for one of the three polarizations of the massive photon, as
the others must give the same result. We take the longitudinal one, which leads to

〈12〉[12] → 〈1I=12I=2〉[1I=12I=2] = p2, (4.8)

and similarly for the other terms in eq. (4.6). This gives∫
dLIPSA(1γ , `E , `′E)×A(`′

Ē
, `Ē , 2γ) → q2

e

∫ 2π

0

dφ

4π

∫ π

0
dθ sθ

[
2 M̂2

E(1− c2
θ) + 1

2p
2(1 + c2

θ)
]

= 2q2
e

3
(
2M̂2

E + p2
)
.

(4.9)

Furthermore, from the bubble integral we have expanding in p2/M2 and |H0|2/M2 that

I2(p2, M̂2
E , M̂

2
E) = 1

16π2

(
1
ε

+ ln µ2

M̂2
E

+ . . .

)
= 1

16π2

(
1
ε

+ ln µ2

M2
E

− |Y ′VH0|2

M2
E −M2

L

+ · · ·
)
.

(4.10)
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In order to match the product of eq. (4.9) and eq. (4.10) with the amplitude eq. (4.2),
we must take the photons in the latter to be massive too, 〈12〉2 → 〈12〉2, and project the
photons into their longitudinal components, 〈12〉2 → p2. The Wilson coefficient then arises
from the p2|H0|2-dependent part of this product which gives6

∆Cγγ
M2 = 1

16π2
2
3
|Y ′V |2

M2
E −M2

L

. (4.11)

This is again odd under the interchange E ↔ L, so when adding the contribution from the
same diagrams as in figure 5 but with E ↔ L, we see that the total contribution to the
Wilson coefficient vanishes.

5 Conclusions

In this paper we have shown how to efficiently calculate finite contributions to Wilson
coefficients using amplitude methods which are known to significantly simplify loop cal-
culations compared to the Feynman approach. The Wilson coefficients can be extracted
from one-loop amplitudes by expanding them in powers of the masses of the heavy particles.
Using a Passarino-Veltman decomposition, one-loop amplitudes can in turn be expressed in
terms of basic scalar integrals called bubbles, triangles and boxes. By applying generalized
unitarity cuts to this relation, the coefficients of these integrals are obtained from products of
tree-level amplitudes integrated over some phase-space. In general, the one-loop amplitudes
receive additional contributions from rational terms whose calculation is more involved. We
have shown, however, that these rational terms cannot contribute to the Wilson coefficients.
Combining everything, the Wilson coefficients can then be calculated from products of, in
general, two, three and four on-shell amplitudes.

We have applied this method to calculate finite contributions to the dipole-moment
operator and the operator coupling the Higgs to photons, |H|2F 2. This was done for
several theories containing heavy vector-like fermions. We have shown that the calculation
simplifies significantly by taking the momenta of the (one respectively two) Higgs fields
in these operators to zero. The reason is that in this limit, triangles and boxes in the
Passarino-Veltman decomposition necessarily vanish due to kinematical constraints. The
calculation of the Wilson coefficients then boils down to products of two on-shell amplitudes,
integrated over the phase space of the two intermediate particles. In many cases, this
phase-space integral is trivial, further simplifying the calculation.

Our method has allowed to shine light on the mysterious cancellations in the contribu-
tions to these Wilson coefficients, recently discussed in detail in [1] for the dipole-moment
operator, but also noted (e.g. in [2]) for |H|2F 2. This has been shown to happen in certain
models with heavy fermions, even though the contributions do not seem to be forbidden
by any symmetry. We have seen that the Wilson coefficients can be expressed as the sum
of two different products of amplitudes, corresponding to two possible ways of applying

6The leading terms (proportional to M̂2
E in eq. (4.9)) must vanish when adding other bubbles which do

not involve p2 terms. These have been omitted here such as the one related to the vertical 2-cut of the
diagrams of figure 5 which isolates a two-photon amplitude.
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2-cuts to the one-loop amplitude. We have found that these contributions to the Wilson
coefficients are odd under the exchange of the heavy fermions, while the total contribution
has to be even under this exchange. Therefore, upon inspection with amplitude methods,
the cancellation boils down to a clash of even × odd under the exchange parity. This
understanding has allowed us to find other models where this cancellation also occurs.
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A The absence of rational terms

Here we will show that the rational terms R of eq. (2.1) do not contribute to the Wilson
coefficients arising from integrating out heavy particles.

Rational terms are related to UV divergences and, in D = 4− 2ε dimensions, within
the Passarino-Veltman reduction, they appear from the product εI1 or εI2, where the
scalar integrals I1 and I2 carry 1/ε UV-divergent terms. Having no imaginary parts, they
can in principle not be obtained by performing cuts of the loop diagrams. Nevertheless,
it was shown in [20] that by extending eq. (2.1) to a D-dimensional Passarino-Veltman
decomposition, generalized unitarity methods can also be used to obtain these rational terms.

Let us here review the argument of [20]. This is based on the observation that, by
promoting the loop integration momentum l to D = 4−2ε dimensions, any rational term can
only appear from the −2ε component of l2, namely l2 = l2(4) + l2(−2ε) ≡ l

2
(4) − µ

2. The usual
basis of the Passarino-Veltman decomposition of eq. (2.1) is then enlarged with new master
integrals whose integrands contain powers of µ2.7 Within this framework, the rational terms
can be obtained by exploiting generalized unitarity methods and can be written as [20]

R = −1
6
∑
i,j

C̃
(ij)
2 (sij − 3(M2

i +M2
j ))− 1

2
∑
b

C̃
(b)
3 −

1
6
∑
c

C̃
(c)
4 . (A.1)

Without going into the details of the proof of the above formula (we refer the interested
reader to ref. [20]), it will be enough to highlight how the coefficients C̃n can be extracted.
Firstly, since the extra component µ2 in the integration momentum l2 can be effectively
seen as a mass, l2(4) = M2

i + µ2, all internal masses in the one-loop amplitude must be
shifted by the same mass parameter µ2, i.e. M2

i →M2
i +µ2. Secondly, we must perform the

7In [20], the new master integrals are denoted as I4−2ε
n [µ2k] where µ2k is understood as being integrated

over. The explicit computation of these integrals gives rise to the coefficients in eq. (A.1).
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corresponding n-cuts of the amplitude, and take the limit of large µ2; C̃2 and C̃3 are given
from the coefficient of the µ2-term of this expansion, while C̃4 is obtained from the µ4-term.

Equipped with these observations, we are ready to show the absence of rational
terms in the Wilson coefficients considered in this work. We are interested in one-loop
contributions arising from renormalizable theories in the limit M � pi, where we match
to the EFT at order 1/M2. Therefore the loop integrals must converge to zero for large
M . Nevertheless, since the rational terms are obtained in the large-µ2 limit (µ2 �M2, sij),
M2 is always subleading with respect to µ2. Indeed, the internal propagators will be given
by 1/(sij −M2 − µ2) and M2 can only appear as powers of M2/µ2 in the µ2 →∞ limit,
and therefore cannot contribute at O(1/M2).8

B Massless and massive spinor-helicity variables

We begin with specifying our conventions for massless and massive spinor-helicity variables.
We choose the metric ηµν = diag(+,−,−,−). For a massless particle, the momentum can
be written as

pαα̇ = |p〉α[p|α̇ , (B.1)

where |p〉α and [p|α̇ are two-component spinors which transform under the little group with
helicity h = ∓1/2, respectively. The Lorentz indices α and α̇ are raised and lowered with
the two-component Levi-Civita symbol, which we choose such that ε12 = −ε12 = 1. In
particular, we have

〈p|β = εβα|p〉α , |p]α̇ = εα̇β̇ [p|β̇ . (B.2)

The Lorentz indices of two angle or square brackets are contracted as

〈pq〉 = 〈p|α |p〉α , [pq] = [p|α̇ |p]α̇ . (B.3)

For a massive particle, on the other hand, we need twice as many spinors which combine
into two vectors transforming under the little group SU(2), |p〉Iα and |p]α̇ I [17]. The SU(2)
little-group indices I are again raised and lowered with the two-component Levi-Civita
symbol. The momentum is then given by

pαα̇ = εIJ |p〉Iα[p|Jα̇ = |p〉Iα[p|α̇ I . (B.4)

The massive spinor-helicity variables fulfil the identities

〈pIpJ〉 = −MεIJ , [pIpJ ] = −MεIJ ,

|p〉Iα 〈p|
β
I = −Mδβα , |p]α̇ I [p|β̇ I = Mδα̇

β̇
,

(B.5)

where M is the mass of the particle. From this, we in particular obtain the Dirac equation

p|p]I = M |p〉I , p|p〉I = M |p]I . (B.6)
8Rational terms can appear at O(1/sij). However, these singular contributions are cancelled by contribu-

tions from CnIn to make the one-loop amplitude non-singular in the limit of small momenta.
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We will often not write the SU(2) indices explicitly and will then use bold letters for the
massive spinor-helicity variables, |p〉I = |p〉 and |p]I = |p], to distinguish them from the
massless ones. In amplitudes involving massive spinors, the SU(2) indices I, J, . . . of a given
state must be symmetrized [17].

When contracting amplitudes to obtain the coefficients of the Pasarino-Veltman de-
composition, we need to flip the momenta of the particles on one side of the contraction
from incoming to outgoing (amplitudes are defined with all momenta being incoming). The
spinor-helicity variables for the flipped momenta then satisfy different contraction rules
from the ones given above [19]:

|p〉Iα[−p|α̇ I = pαα̇ , |p]α̇ I〈−p|αI = pα̇α

|p〉Iα 〈−p|
β
I = Mδβα , |p]α̇I [−p|β̇I = Mδα̇

β̇
.

(B.7)

C An alternative way to calculate the |H|2F 2 Wilson coefficient

In the following, we will discuss an alternative way to calculate the Wilson coefficient for
the operator |H|2F 2, corresponding to the amplitude in eq. (4.2). Here we keep the photons
on-shell and take the momentum of only one Higgs to be identically zero, p3 = 0. Since
then p2

4 = 2p1p2, the other Higgs must be slightly off-shell. The diagrams which contribute
to the Wilson coefficient are those shown in figure 5 plus the same diagrams with E ↔ L.
We will see, however, that in the chosen kinematical configuration the nonvanishing cuts are
different from those depicted in figure 5. Let us first consider 3-cuts and 4-cuts. As before,
cutting both fermion lines attached to the Higgs with vanishing momentum gives zero
since the on-shell conditions cannot be simultaneously fulfilled. This eliminates all 4-cuts
and several of the 3-cuts. Furthermore, we have shown in section 4 that the amplitude
in eq. (4.3) for a massive photon vanishes identically for zero Higgs momentum. Since
this amplitude contains the corresponding amplitudes for a massless photon (taking the
high-energy limit), the latter are zero too. Any 3-cut which isolates this amplitude therefore
gives no contribution. We are then left with only one 3-cut, the one that puts the three
fermions E in the first two diagrams in figure 5 on-shell (plus the corresponding 3-cut in
the diagrams with E ↔ L).

Let us now calculate this 3-cut. We denote the momentum of the fermion line connecting
the two photons as `. One solution for this momentum after restricting three of the
propagators in the loop to be on-shell can be parametrized as [21]

` = τ |1〉[2| − τ−1M
2
E

s12
|2〉[1| , (C.1)

where τ is the remaining integration variable. The other two cut momenta are ˜̀= −`− p1
and ̂̀= `− p2, altogether satisfying `2 = ˜̀2 = ̂̀2 = M2

E as required. The other solution `∗

is given by eq. (C.1) with 1↔ 2. The triangle coefficient then is9

C3 =
∑
`,`∗

∫
dτJτ A(1γ− , ˜̀E , `E)×A(2γ− , `Ē , ̂̀Ē)×A(˜̀Ē , ̂̀E , 3H0 , 4H0) , (C.2)

9In general, one has to expand the integrand for large τ . This is not necessary in our case.
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where Jτ is a Jacobian arising from the transformation to the integration variable τ . We
have

∫
dτJττ

n = δ0n which leads to

C3 =
∑
`,`∗

[
A(1γ− , ˜̀E , `E)×A(2γ− , `Ē , ̂̀Ē)×A(˜̀Ē , ̂̀E , 3H0 , 4H0)

]
τ0 . (C.3)

The 4-point amplitude which is isolated in the 3-cut gets contributions from both the
first and second diagram in figure 5 and reads

A(˜̀Ē , ̂̀E , 3H0 , 4H0) = |Y ′V |2
(

[− ˜̀|(̂̀+ p3)| ̂̀〉
(̂̀+ p3)2 −M2

L

− [ ̂̀|(−˜̀+ p3)| − ˜̀〉
(−˜̀+ p3)2 −M2

L

)

=
p3→0

2|Y ′V |2
ME [− ˜̀ ̂̀]
M2
E −M2

L

. (C.4)

In the second step we have taken the Higgs momentum p3 to zero. Furthermore, the 3-point
amplitudes are given by

A(1γ− , ˜̀E , `E) = qe
〈1|`|ξ]
ME [1ξ] [ ˜̀̀ ] , (C.5)

with ξ being a reference spinor, and similarly for A(2γ− , `Ē , ̂̀Ē). Using eq. (C.1), the
reference spinors drop out. Combining the three amplitudes and summing over the SU(2)
indices of the internal fermions, eq. (C.3) then yields

C3 = 16 |Y ′V |2

M2
E −M2

L

M4
E

s12
q2
e〈12〉2 . (C.6)

Here we have included a factor 2 due to the fact that the fermion lines in the loop can
be clockwise or counterclockwise (or, alternatively, that the photons can be interchanged,
1↔ 2). From eq. (2.1), the contribution to the one-loop amplitude AH2F 2 is obtained by
multiplying eq. (C.6) with the triangle function corresponding to this 3-cut,

I3(s12, 0, 0;ME ,ME ,ME) = 1
16π2

(
1

2M2
E

+ s12
24M4

E

+ . . .

)
, (C.7)

with s12 = (p1 + p2)2 and which we have expanded to O(s12/M
2
E). The leading term in this

expansion gives rise to an unphysical pole term when multiplied with eq. (C.6). This is
cancelled by a rational term. Using eq. (2.4), the next term in the expansion then yields
the contribution of the 3-cut to the Wilson coefficient

∆Cγγ
M2 = 1

16π2
2
3
|Y ′V |2

M2
E −M2

L

, (C.8)

in agreement with eq. (4.11). This is again odd under the exchange E ↔ L and is therefore
exactly cancelled by the contribution which arises from the diagrams in figure 5 with E ↔ L.
We thus conclude that neither 4-cuts nor 3-cuts contribute to the Wilson coefficient Cγγ .

We still need to discuss the 2-cuts. Since the 3-cut already accounts for the result
in eq. (4.11), we expect that the 2-cuts give no additional contributions to the Wilson
coefficient. As before, the 2-cut which leaves the zero-momentum Higgs alone vanishes since
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the on-shell conditions cannot be fulfilled. Furthermore, any 2-cut which isolates an on-shell
photon (with p2 = 0) does not contribute to the Wilson coefficient since the corresponding
bubble integrals do not depend on any momentum (cf. the discussion in section 3.1). Other
2-cuts are zero since they again cut out an amplitude of the type A(1γ− , 3H0 , `E , `

′
L) which

vanishes for p3 = 0. Finally, also the 2-cut which leaves the off-shell Higgs alone does not
contribute. Indeed, the amplitude on the other side of this cut is A(1γ− , 2γ− , 3H0 , `E , `

′
L)

whose only kinematically allowed factorization channels once again involve amplitudes of
the type A(1γ− , 3H0 , `E , `

′
L) with p3 = 0. The amplitude A(1γ− , 2γ− , 3H0 , `E , `

′
L) and the

corresponding 2-cut therefore vanish too. This leaves only the 2-cut which puts the upper
and lower E line in the first two diagrams in figure 5 on-shell. Notice that the same two
lines are also cut in the non-vanishing 3-cut. The 2-cut therefore obtains a contribution
from the corresponding triangle and is guaranteed to be non-zero. It can be shown that
the 2-cut exactly matches the latter and the Wilson coefficient therefore does not get any
additional contribution from this 2-cut either.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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