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We extend to a non-Hermitian fermionic quantum field theory with PT symmetry our previous
discussion of second quantization, discrete symmetry transformations, and inner products in a scalar field
theory [Phys. Rev. D 102, 125030 (2020)]. For illustration, we consider a prototype model containing a
single Dirac fermion with a parity-odd, anti-Hermitian mass term. In the phase of unbroken PT symmetry,
this Dirac fermion model is equivalent to a Hermitian theory under a similarity transformation, with the
non-Hermitian nature of the model residing only in the spinor structure, whereas the algebra of the creation
and annihilation operators is just that of a Hermitian theory.
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I. INTRODUCTION

Quantum systems with non-Hermitian Hamiltonians that
possess PT symmetry, where P and T denote parity and
time-reversal, have real energy levels and exhibit unitary
time evolution [1]. These [2] and the wider class of pseudo-
Hermitian quantum theories [3–5] have attracted growing
interest in recent years, driven also by the applications of
such theories in many different fields, including photonics
[6–8] and phase transitions [9,10]. In view of this increasing
importance, it is desirable to formulate more carefully
PT -symmetric quantum field theories, verifying the argu-
ments for their consistency, and analyzing the structures of
their Fock spaces, their discrete symmetries and inner
products.1 We recently analyzed these issues in a prototype
minimal field theory containing a pair of scalar bosons that
are free apart from non-Hermitian mixing [12].
In this paper, we extend our analysis of this bosonic field

theory to a minimal non-Hermitian quantum field theory
with a single Dirac spin-1=2 fermion that possesses
PT symmetry at the classical and quantum levels. We

formulate the discrete symmetries of this Dirac model and
discuss candidate inner products in Fock space.
A prototype non-Hermitian theory with a single fermion

flavor ψ was originally studied in Ref. [13], where the anti-
Hermitian but PT -symmetric fermion mass term μψ̄γ5ψ
was considered. The tachyonic (PT -broken) regimes of this
model were studied in Refs. [14–17]. It was shown in
Ref. [18] that this model corresponds to chiralities with
different current densities, and similar behavior has been
reproduced in a 1þ 1-dimensional lattice model [19]. The
corresponding gauged fermion model was studied in
Ref. [20], wherein it was shown how the prototype model
can be obtained from a non-Hermitian Higgs-Yukawa theory
(see also Ref. [21]), discussed further in the context of
the type-I seesaw in Ref. [22]. An extension to include
four-fermion interactions was studied in Ref. [23]. The
supersymmetric version of this model was analyzed in
Ref. [24]. Reference [25] studied a fermionic model with
a single wave function and oscillations between different
energy states, which is possible with a non-Hermitian
Hamiltonian only if the latter has complex coefficients,
and its application to neutrino mixing and oscillations (first
suggested in Ref. [26]) was considered. It was found in
Ref. [12] that the apparent puzzles concerning the positivity
of transition probabilities and unitarity found in Refs. [27,28]
(cf. Ref. [29] for the phase of broken PT symmetry) are
resolved in a bosonic model by recalling that these require-
ments apply only to asymptotic states, which are not
problematic in these respects.
As we discussed in Ref. [12], whereas the inner product

in the quantum Fock space is unique in a bosonic theory
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1See, e.g., Ref. [11] for a discussion of the inner products in
PT -symmetric quantum mechanics.
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described by a Hermitian Hamiltonian, theories with non-
Hermitian Hamiltonians can be formulated using different
definitions of the inner product. However, energy eigen-
states are not orthogonal with respect to the usual Dirac
inner product, and the norm with respect to the PT inner
product is not positive-definite. This issue in the formu-
lation of the Fock space in a non-Hermitian model with PT
symmetry may be resolved by introducing a discrete
symmetry C0,2 defined previously in quantum-mechanical
systems and in a bosonic PT -symmetric model [12],
and using the C0PT inner product that yields a positive-
definite norm.3

For definiteness, we frame the discussions that follow
in the context of the prototype non-Hermitian but
PT -symmetric noninteracting Dirac fermion field theory
of Ref. [13], formulated in 3þ 1 dimensional Minkowski
spacetime. This model contains a single Dirac fermion and
is described by a non-Hermitian Lagrangian with real
parameters. It comprises four degrees of freedom, the
minimal number needed to realize a non-Hermitian,
PT -symmetric field theory with real Lagrangian param-
eters. We show that the non-Hermiticity of this model
resides only in the spinor structure, such that the Fock
space remains that of a Hermitian theory. In this way, and
while the C0 transformation can still be constructed, we
argue that there is no subtlety to defining the inner product
between single-particle states, so long as one works with
the correct canonical conjugate spinor field operators.
The layout of our paper is as follows. First, in Sec. II, we

introduce the Dirac fermion field theory that we study, then
reviewing in Sec. III its discrete P and T symmetries at the
classical level. We introduce the two-component Weyl
spinor formulation of the theory in Sec. IV, and present
a discussion of quantization in four-component notation in
the Dirac basis in Sec. V. Next, we discuss a useful matrix
theory in Sec. VI and display a similarity transformation to
a Hermitian theory in Sec. VII. We revisit in Sec. VIII the
discrete symmetries, including the C0 symmetry [30], and
discuss inner products in Sec. IX. Finally, we summarize
our conclusions in Sec. X.

II. DIRAC MODEL

The fermionic model that we study is composed of a
single Dirac fermion with both a Hermitian and an anti-
Hermitian mass term. The c-number Lagrangian is [13]

L ¼ ψ̄i=∂ψ −mψ̄ψ − μψ̄γ5ψ ; ð1Þ
where m and μ are both real mass parameters, and ψ̄ ≡
ψ†γ0 is the usual Dirac-conjugate spinor. The squared
eigenmasses are

M2 ¼ m2 − μ2; ð2Þ

which are real in the PT -symmetric regime μ2 < m2. The
fifth gamma matrix, which appears explicitly in Eq. (1), is
given in the Dirac basis by

γ5 ¼ ðγ5Þ† ¼ iγ0γ1γ2γ3 ¼
�
02 I2
I2 02

�
; ð3Þ

where 02 and I2 are the 2 × 2 zero and unit matrices,
respectively. At the so-called exceptional points (unique to
non-Hermitian theories), when μ ¼ �m, the mass matrix
becomes defective, and we lose a degree of freedom: the
theory reduces to one of either a massless left- or a right-
chiral Weyl fermion (see, e.g., Refs. [20,21]). In fact, this
model is most easily studied in two-component notation in
the Weyl basis, as we describe in Sec. IV. We note that the
conserved current corresponding to the global Uð1Þ sym-
metry of the Lagrangian (1), which was originally derived in
Ref. [18], has nontrivial properties under improper Lorentz
transformations [31].
The non-Hermiticity of the Lagrangian in Eq. (1) means

that the variations of the corresponding action with respect
to ψ and ψ̄ do not yield identical equations of motion, since
they differ by μ → −μ. However, as explained in Ref. [32],
we are free to choose either of these equations of motion,
since physical observables depend only on μ2 and are
therefore independent of this sign. Choosing the equations
of motion obtained by varying with respect to ψ̄ , we obtain
the following non-Hermitian Dirac equation

i=∂ψ −mψ − μγ5ψ ¼ 0: ð4Þ

However, as we will see in the next section, and as was first
established for scalar quantum field theories in Ref. [12],
there exists an alternative Lagrangian for this model that
yields the same equations of motion without the need for
the above prescription for obtaining the dynamics by
varying with respect to ψ or ψ̄, but not both, as we now
describe.

III. DISCRETE SYMMETRIES

We recall that the classical Lagrangian (1) is PT
symmetric under the following naive transformations of
the c-number fields [32]:

P∶ ψðt;xÞ → ψ 0ðt;−xÞ ¼ Pψðt;xÞ;
ψ̄ðt;xÞ → ψ̄ 0ðt;−xÞ ¼ ψ̄ðt;xÞP; ð5aÞ

T ∶ ψðt;xÞ → ψ 0ð−t;xÞ ¼ Tψ�ðt;xÞ;
ψ̄ðt;xÞ → ψ̄ 0ð−t;xÞ ¼ ψ̄�ðt;xÞT; ð5bÞ

where P ¼ γ0 and T ¼ iγ1γ3.

2This was introduced in the quantum mechanics case in
Ref. [30] as the C symmetry. We refer to it as the C0 symmetry
to distinguish it from charge conjugation.

3An alternative approach has been proposed in Ref. [11].
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However, the Lagrangian in Eq. (1) is not invariant
under parity, since the action of parity changes the sign of
the anti-Hermitian term. Parity therefore maps between the
two possible choices of equation of motion obtainable
from Eq. (1).
Taking this into account and following Ref. [12], it is

more convenient to work with the Lagrangian4

L̃ ¼ ψ̃†γ0i=∂ψ −mψ̃†γ0ψ − μψ̃†γ0γ5ψ ð6Þ

and its Hermitian conjugate, where the equation of motion
of the tilded field ψ̃ is the parity conjugate of that of the
untilded field ψ , i.e., if ψ satisfies Eq. (4) then

i=∂ψ̃ −mψ̃ þ μγ5ψ̃ ¼ 0: ð7Þ
The equations of motion obtained from varying the
corresponding action with respect to ψ and ψ̃† are now
mutually consistent.
The consistent discrete spacetime transformations of the

c-number spinors are then

P∶ ψðt;xÞ → ψ 0ðt;−xÞ ¼ Pψ̃ðt;xÞ;
ψ†ðt;xÞ → ψ†0ðt;−xÞ ¼ ψ̃†ðt;xÞP; ð8aÞ

T ∶ ψðt;xÞ → ψ 0ð−t;xÞ ¼ Tψ�ðt;xÞ;
ψ†ðt;xÞ → ψ†0ð−t;xÞ ¼ ψTðt;xÞT; ð8bÞ

and we see that the classical Lagrangian (6) is PT
symmetric.

IV. TWO-COMPONENT WEYL BASIS

It will prove convenient to consider the decomposition of
the Dirac four-spinor in terms of two two-component Weyl
spinors χ1 and χ2 in the chiral (Weyl) basis. In this basis, the
four-component Dirac spinor can be written as

ψ ¼
�
χ2;α

χ̃† _α1

�
; ð9Þ

where α and _α are spinor indices. We note that the four-
spinor necessarily involves the untilded Weyl spinor χ2 and
the Hermitian conjugate of the tilded Weyl spinor χ̃1, due to
the requirement that the four-spinor ψ evolves with respect
to the Hamiltonian H. This implies that both Weyl compo-
nents must evolve with the same Hamiltonian, whereas the
Weyl spinor and its Hermitian conjugate evolve with H and
H† ≠ H, respectively.
In terms of the two-component c-number Weyl spinors,

the Lagrangian takes the form

L̃¼ iχ̃†i; _ασ̄
ν _αβ

∂νχi;β− ðm−μÞχα1χ2;α− ðmþμÞχ̃†2; _αχ̃† _α1 ; ð10Þ

where i ∈ f1; 2g, σ̄μ ≡ ðσ0;−σÞ and σμ ≡ ðσ0; σÞ, with the
Pauli matrices σ ≡ ðσ1; σ2; σ3Þ. The resulting equations of
motion are

iσ̄ν _αβ∂νχi;β − ðmþ μÞχ̃† _α=i ¼ 0; ð11aÞ

iσ̄ν _αβ∂νχ̃i;β − ðm − μÞχ† _α=i ¼ 0; ð11bÞ

along with their Hermitian conjugates. Herein, =i ¼ 2 if
i ¼ 1, and =i ¼ 1 if i ¼ 2. Notice that tilde conjugation takes
μ ↔ −μ but not σ̄ ↔ σ.
The corresponding momentum-space Dirac equations

for the two independent c-number two-spinors x and y are

ðσ̄ · pÞ _αβxβðp; sÞ − ðmþ μÞỹ† _αðp; sÞ ¼ 0; ð12aÞ

ðσ̄ · pÞ _αβx̃βðp; sÞ − ðm − μÞy† _αðp; sÞ ¼ 0; ð12bÞ

ðσ̄ · pÞ _αβyβðp; sÞ þ ðmþ μÞx̃† _αðp; sÞ ¼ 0; ð12cÞ

ðσ̄ · pÞ _αβỹβðp; sÞ þ ðm − μÞx† _αðp; sÞ ¼ 0; ð12dÞ

along with their Hermitian conjugates, wherein we have
followed the notation of Ref. [33], with the exception that
we denote the helicity index by s ¼ �. The explicit
expressions for the two-component Weyl spinors are

xαðp; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ μ

m − μ
4

r
ð ffiffiffiffiffiffiffiffiffi

σ · p
p Þαβus;βðsÞ; ð13aÞ

x̃αðp; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m − μ

mþ μ
4

r
ð ffiffiffiffiffiffiffiffiffi

σ · p
p Þαβus;βðsÞ; ð13bÞ

y† _αðp; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ μ

m − μ
4

r
ð ffiffiffiffiffiffiffiffiffi

σ̄ · p
p Þ _α _βu

_β
sðsÞ; ð13cÞ

ỹ† _αðp; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m − μ

mþ μ
4

r
ð ffiffiffiffiffiffiffiffiffi

σ̄ · p
p Þ _α _βu

_β
sðsÞ; ð13dÞ

which reduce to the standard expressions in the
Hermitian limit μ → 0 (see Ref. [33]). Herein,

s≡ p=jpj≡ ðsin θ cosϕ; sin θ sinϕ; cos θÞ ð14Þ

in spherical polar coordinates, and the usðsÞ are the two-
spinors5

4Equivalently, we could work with the Lagrangian ˜̃L ¼
ψ†γ0i=∂ψ̃ −mψ†γ0ψ̃ − μψ†γ0γ5ψ̃ , which gives equations of mo-
tion consistent with fixing the dynamics by varying Eq. (1) with
respect to ψ , i.e., the alternative choice to that made in the main
text.

5Herein, we employ conventions similar to those used in
Appendix B of Ref. [34].
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usðsÞ ¼

8>>>>><
>>>>>:

�
cos θ

2
e−i

ϕ
2

sin θ
2
ei

ϕ
2

�
; s ¼ þ

i

�− sin θ
2
e−i

ϕ
2

cos θ
2
ei

ϕ
2

�
; s ¼ −

; ð15Þ

satisfying

σ · p
jpj usð�sÞ ¼ �susð�sÞ: ð16Þ

We note also that

xαðp;sÞ¼
ffiffiffiffiffiffiffiffiffiffiffi
mþμ

m−μ

r
x̃αðp;sÞ; ð17aÞ

y† _αðp;sÞ¼
ffiffiffiffiffiffiffiffiffiffiffi
mþμ

m−μ

r
ỹ† _αðp;sÞ; ð17bÞ

and that the usual relationship between the x and y spinors
persists:

xðp; sÞ ¼ −syðp;−sÞ; x†ðp; sÞ ¼ −sy†ðp;−sÞ: ð18Þ
It can easily be checked that the spin sums for conjugate

pairs of two-spinors have the usual forms [33]:

X
s

xαðp; sÞx̃†_βðp; sÞ ¼ ðσ · pÞα _β;
X
s

yαðp; sÞỹ†_βðp; sÞ ¼ ðσ · pÞα _β; ð19aÞ

X
s

y† _αðp; sÞỹβðp; sÞ ¼ ðσ̄ · pÞ _αβ;
X
s

x† _αðp; sÞx̃βðp; sÞ ¼ ðσ̄ · pÞ _αβ; ð19bÞ

X
s

xαðp; sÞỹβðp; sÞ ¼ Mδα
β;

X
s

yαðp; sÞx̃βðp; sÞ ¼ −Mδα
β; ð19cÞ

X
s

y† _αðp; sÞx̃†_βðp; sÞ ¼ Mδ _α _β;
X
s

x† _αðp; sÞỹ†_βðp; sÞ ¼ −Mδ _α _β; ð19dÞ

along with the corresponding tilde-conjugated expressions,
where M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − μ2

p
and we have usedX

s

usðsÞu†sðsÞ ¼ σ0: ð20Þ

Given the expression for the four-spinor [Eq. (9)] and its
transformation properties [Eq. (8)], we see that the parity
and time-reversal transformations for the c-number two-
spinors are as follows:

P∶ χiðt;xÞ → χ0iðt;−xÞ ¼ χ̃†=i ðt;xÞ;
χ̃iðt;xÞ → χ̃i

0ðt;−xÞ ¼ χ†=i ðt;xÞ; ð21aÞ

T ∶ χiðt;xÞ → χ0ið−t;xÞ ¼ Tχ�i ðt;xÞ;
χ̃iðt;xÞ → χ̃i

0ð−t;xÞ ¼ Tχ̃�i ðt;xÞ; ð21bÞ

where T ¼ iσ1σ̄3 in the two-component basis. We can
confirm that the Lagrangian is indeed PT symmetric.
Turning our attention to second quantization, we

can decompose the two-component quantum fields as
follows:

χ̂1;αðxÞ ¼
X
s¼�

Z
p

1ffiffiffiffiffiffiffiffi
2Ep

p ½d̂p;sð0Þxαðp; sÞe−ip·x þ b̂†p;sð0Þyαðp; sÞeip·x�; ð22aÞ

χ̌1;αðxÞ ¼
X
s¼�

Z
p

1ffiffiffiffiffiffiffiffi
2Ep

p ½d̂p;sð0Þx̃αðp; sÞe−ip·x þ b̂†p;sð0Þỹαðp; sÞeip·x�; ð22bÞ

χ̂2;αðxÞ ¼
X
s¼�

Z
p

1ffiffiffiffiffiffiffiffi
2Ep

p ½b̂p;sð0Þxαðp; sÞe−ip·x þ d̂†p;sð0Þyαðp; sÞeip·x�; ð22cÞ

χ̌2;αðxÞ ¼
X
s¼�

Z
p

1ffiffiffiffiffiffiffiffi
2Ep

p ½b̂p;sð0Þx̃αðp; sÞe−ip·x þ d̂†p;sð0Þỹαðp; sÞeip·x�; ð22dÞ
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and similarly for their Hermitian conjugates, where
p0 ¼ Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. The hatted ð ^Þ field operators

correspond to the untilded c-number fields, and the
checked ð ˇÞ operators correspond to the tilded c-number
fields. The need to introduce these two distinct sets of field
operators follows from the requirement that canonical-
conjugate variables must both evolve with the same
Hamiltonian Ĥ (see Ref. [12] and the earlier discussion
in this section). Whereas χ̂i and χ̂

†
i evolve respectively with

Ĥ and Ĥ† ≠ Ĥ, and therefore cannot be canonical-con-
jugate variables, both χ̂i and χ̌†i evolve with Ĥ.
In terms of the spinors in Eq. (22), the second-quantized

version of the classical Lagrangian in Eq. (10) is

L̂¼ iχ̌†i; _ασ̄
ν _αβ

∂νχ̂i;β− ðm−μÞχ̂α1 χ̂2;α− ðmþμÞχ̌†2; _αχ̌† _α1 : ð23Þ

Varying with respect to either variable, i.e., χ̂i or χ̌
†
i , we

obtain mutually consistent equations of motion.6

The creation and annihilation operators satisfy the equal-
time anticommutation relations

fb̂p;sðtÞ; b̂†p0;s0 ðtÞg ¼ fd̂p;sðtÞ; d̂†p0;s0 ðtÞg
¼ ð2πÞ3δss0δ3ðp − p0Þ: ð24Þ

This algebra is consistent with the canonical commutation
relations of the field operators

fχ̂iðt;xÞ; χ̌†jðt;yÞg¼fχ̌iðt;xÞ; χ̂†jðt;yÞg¼δijδ
3ðx−yÞ: ð25Þ

Notice that, unlike the scalar example in Ref. [12], there is
no need to introduce checked creation and annihilation
operators b̌p;sðtÞ and ďp;sðtÞ, since there is only a single
squared energy eigenvalue E2

p ¼ p2 þM2. Instead, for this
non-Hermitian Dirac fermion model, the non-Hermiticity
resides only in the spinor structure, which we take into
account by introducing the tilded and untilded spinors,
defined in this and the next section. With regard the algebra
of the creation and annihilation operators, this proceeds as
per the Hermitian case, and there is no subtlety to defining
the inner product of Fock states (see Sec. IX), which is just
the usual Dirac inner product with respect to Hermitian
conjugation.

V. FOUR-COMPONENT DIRAC BASIS

Before discussing the non-Hermitian structure of this
model in detail, we include for completeness a discussion
of quantization in four-component notation in the Dirac
basis.

Given the equation of motion (4), the Dirac equations for
the momentum-space four-spinors uðp; sÞ and vðp; sÞ are

ð=p −m − μγ5Þuðp; sÞ ¼ 0; ð26aÞ

ð=pþmþ μγ5Þvðp; sÞ ¼ 0; ð26bÞ

where s ¼ � again indicates the helicity. The solutions in
the Dirac basis are

uðp; sÞ ¼
 

½ξþðEþMÞ1=2 − sξ−ðE −MÞ1=2�usðsÞ
½−ξ−ðEþMÞ1=2 þ sξþðE −MÞ1=2�usðsÞ

!
;

ð27aÞ

vðp; sÞ ¼
 

s½ξ−ðEþMÞ1=2 þ sξþðE −MÞ1=2�u−sðsÞ
−s½ξþðEþMÞ1=2 þ sξ−ðE −MÞ1=2�u−sðsÞ

!
;

ð27bÞ

where M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − μ2

p
, and we have defined

ξ� ≡ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ μ

m − μ
4

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m − μ

mþ μ
4

r �
ð28Þ

and set overall complex phases to zero for brevity. It is easy
to check that the four-spinors in Eq. (27) reduce to the more
familiar Hermitian expressions in the limit μ → 0
[cf. Eq. (73)]. We also introduce the tilded spinors

ũðp;sÞ¼
 
½ξþðEþMÞ1=2þsξ−ðE−MÞ1=2�usðsÞ
½ξ−ðEþMÞ1=2þsξþðE−MÞ1=2�usðsÞ

!
; ð29aÞ

ṽðp; sÞ ¼
 
s½−ξ−ðEþMÞ1=2 þ sξþðE −MÞ1=2�u−sðsÞ
−s½ξþðEþMÞ1=2 − sξ−ðE −MÞ1=2�u−sðsÞ

!
;

ð29bÞ

differing by μ → −μ (i.e., ξ− → −ξ−) and satisfying

ð=p −mþ μγ5Þũðp; sÞ ¼ 0; ð30aÞ

ð=pþm − μγ5Þṽðp; sÞ ¼ 0: ð30bÞ

We note the useful identities

mξþ − μξ− ¼ þMξþ; ð31aÞ

mξ− − μξþ ¼ −Mξ−; ð31bÞ

ξ2þ − ξ2− ¼ 1; ð31cÞ

ðξ2þ þ ξ2−ÞM ¼ m; ð31dÞ
6We emphasize that the definition of hatted versus checked

operators is a choice: interchanging their definitions would lead
to an equivalent description.
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2ξþξ−M ¼ μ: ð31eÞ

The above expressions for the four-spinors in the Dirac
basis can be obtained from the chiral basis, in terms of the
two-component spinors, by means of the usual basis
transformation

uðp; sÞ ¼ 1ffiffiffi
2

p
�

I2 I2
−I2 I2

��
xðp; sÞ
ỹ†ðp; sÞ

�
; ð32aÞ

vðp; sÞ ¼ 1ffiffiffi
2

p
�

I2 I2
−I2 I2

��
yðp; sÞ
x̃†ðp; sÞ

�
; ð32bÞ

after making use of the identities (see Ref. [33])

ffiffiffiffiffiffiffiffiffi
σ · p

p ¼ 1ffiffiffi
2

p ½ðEþMÞ1=2I2 − ðEþMÞ−1=2σ · p�; ð33aÞ

ffiffiffiffiffiffiffiffiffi
σ̄ · p

p ¼ 1ffiffiffi
2

p ½ðEþMÞ1=2I2 þ ðEþMÞ−1=2σ · p�; ð33bÞ

and the property

σ · pusðsÞ ¼ sjpjusðsÞ: ð34Þ

Given the explicit forms of the four spinors, we can
confirm that

u†ðp; sÞγ0uðp; s0Þ ¼ −v†ðp; sÞγ0vðp; s0Þ ¼ 2Mδss0 ; ð35aÞ

u†ðp; sÞγ0vðp; s0Þ ¼ v†ðp; sÞγ0uðp; s0Þ ¼ 0; ð35bÞ

and similarly for the tilded spinors, where we have used

u†sðsÞus0 ðsÞ ¼ δss0 : ð36Þ

In addition, we have

X
s

uðp; sÞũ†ðp; sÞγ0 ¼ =pþm − μγ5; ð37aÞ

X
s

vðp; sÞṽ†ðp; sÞγ0 ¼ =p −mþ μγ5: ð37bÞ

The canonical-conjugate c-number fields are ψ and ψ̃†,
and we therefore introduce the quantum fields

ψ̂ðxÞ ¼
X
s¼�

Z
p

1ffiffiffiffiffiffiffiffi
2Ep

p ½b̂p;sð0Þuðp; sÞe−ip·x

þ d̂†p;sð0Þvðp; sÞeip·x�; ð38aÞ

ψ̌ðxÞ ¼
X
s¼�

Z
p

1ffiffiffiffiffiffiffiffi
2Ep

p ½b̂p;sð0Þũðp; sÞe−ip·x

þ d̂†p;sð0Þṽðp; sÞeip·x�; ð38bÞ

along with their Hermitian conjugates. Their evolution is
governed by the Lagrangian [cf. Eq. (1)]

L̂ ¼ ψ̌†γ0i=∂ψ̂ −mψ̌†γ0ψ̂ − μψ̌†γ0γ5ψ̂ ð39Þ

and its Hermitian conjugate, which again yield mutually
consistent Euler-Lagrange equations without further
prescription.
The canonical equal-time anticommutation relations are

fψ̂ðt;xÞ; ψ̌†ðt; yÞg ¼ fψ̌ðt;xÞ; ψ̂†ðt; yÞg ¼ δ3ðx − yÞ; ð40Þ

and we remark that the relevant propagators are those
involving ψ̂ and ψ̌†. For example, the Feynman propa-
gator is

iSFðx; yÞ≡ h0jT½ψ̂ðxÞψ̌†ðyÞγ0�j0i

¼ i
Z

d4p
ð2πÞ4 e

−ip·ðx−yÞ =pþm − μγ5

p2 −M2 þ i0þ
; ð41Þ

wherein T indicates time ordering.

VI. MATRIX MODEL

As we did for the bosonic theory in Ref. [12], we can
construct a convenient matrix model that captures the
salient non-Hermitian features of this fermionic theory.
The matrix model of interest has Hamiltonian

H ¼
�

0 mþ μ

m − μ 0

�
; ð42Þ

reflecting the structure

mγ0 þ μγ0γ5 ð43Þ

of the mass term of the field theory in the chiral basis. The
eigenvectors of the Hamiltonian (42) are

e� ¼ N

�� ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
�
; ð44Þ

where

ξ≡ μ

m
ð45Þ

is the non-Hermitian parameter, and we take the normali-
zation factor N to be
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N ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ24

p : ð46Þ

As in the scalar case, the eigenvectors e� are not orthogonal
with respect to the Hermitian inner product:

e�� · e∓ ¼ −2N2ξ: ð47Þ

The parity matrix of this model (reflecting the parity
transformation of the field theory) is

P ¼
�
0 1

1 0

�
; ð48Þ

and we find that the eigenvectors are orthogonal with
respect to the PT inner product:

ePT� · e∓ ≡ e��Pe∓ ¼ 0: ð49Þ

However, one of the eigenvectors has a positive norm and
the other a negative norm with respect to the PT inner
product:

ePT� · e� ¼ �1; ð50Þ

as is expected for a non-Hermitian theory.
The Hamiltonian (42) is diagonalized by the similarity

transformation

Hdiag ¼ SHS−1; ð51Þ

where

S ¼ NS

� ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p

−
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
�
: ð52Þ

The normalization factor NS is fixed below, giving the
Hermitian Hamiltonian

Hdiag ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
1 0

0 −1

�
: ð53Þ

However, since we have in mind a transformation to a
Hermitian theory of a single Dirac fermion with squared
mass M2 ¼ m2 − μ2, we actually need to rotate this trans-
formation through π=4, so that the nonzero entries lie in the
elements associated with the operators ψ̄LψR and ψ̄RψL,
where ψL and ψR are the left- and right-chiral components
of the Dirac field. We therefore define

R ¼ 1ffiffiffi
2

p
�
1 −1
1 1

�
S; ð54Þ

giving the similarity transformation

h ¼ RHR−1 ¼
0
@ 0 m

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
m

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
0

1
A: ð55Þ

Choosing the normalization NS in Eq. (52) such that

PR−1P ¼ R; ð56Þ

we obtain

R ¼

0
B@

ffiffiffiffiffiffi
1−ξ
1þξ

4

q
0

0
ffiffiffiffiffiffi
1þξ
1−ξ

4

q
1
CA: ð57Þ

The matrix R, along with the parity matrix P, can be used
to construct an additional matrix C0, given by

C0 ¼ RPR−1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
0 1 − ξ

1þ ξ 0

�
; ð58Þ

which plays a key role in defining the positive-definite
norm for the eigenstates of the non-Hermitian matrix (42).
We use it to construct the C0PT inner product, with respect
to which the eigenvectors are orthonormal:

eC
0PT

� · e� ≡ e��C
0Pe� ¼ 1; eC

0PT
� · e∓ ¼ 0: ð59Þ

The C0 matrix can also be used to define an additional
matrix Q, which plays a role in the similarity trans-
formation that maps this non-Hermitian theory to an
equivalent Hermitian one (see, e.g., Refs. [3,13]).
Specifically, we can write

e−Q ¼ C0P ¼ RPR−1P ¼ R2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
1 − ξ 0

0 1þ ξ

�
; ð60Þ

leading to

Q ¼ lnR−2 ¼ arctanhðξÞ
�
1 0

0 −1
�
: ð61Þ

It is interesting to consider the similarities between the form
of this transformation and that of the scalar non-Hermitian
field theory considered in Ref. [12].

VII. SIMILARITY TRANSFORMATION

We saw in Sec. VI that the non-Hermitian matrix can be
diagonalized via a similarity transformation. We emphasize
that this transformation is not unitary. The diagonalized
matrix is Hermitian, and it is known that non-Hermitian
theories can, in their regimes of unbroken antilinear
symmetry, also be mapped to equivalent Hermitian theories
via similarity transformations. In this section, due to the
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fact that the non-Hermiticity of our prototype model resides
only in the c-number spinor structure, we show that this
transformation is simply a field redefinition. Nevertheless,
we are able to construct an operator-valued expression for
the similarity transform, which we relate to the discrete C0
transformation in Sec. VIII.
By inspection of Eq. (13), we see that by redefining

xα ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ μ

m − μ
4

r
Xα; yα ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ μ

m − μ
4

r
Yα; ð62aÞ

x̃† _α ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m − μ

mþ μ
4

r
X† _α; ỹ† _α ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m − μ

mþ μ
4

r
Y† _α; ð62bÞ

χ̂i;α ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ μ

m − μ
4

r
λ̂i;α; χ̌† _αi ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m − μ

mþ μ
4

r
λ̂† _αi ; ð62cÞ

we arrive immediately at the Hermitian theory with
Lagrangian

L̂0 ¼ iλ̂†i; _ασ̄
ν _αβ

∂νλ̂i;β −m
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξ2

p
λ̂α1 λ̂2;α−m

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξ2

p
λ̂†2; _αλ̂

† _α
1 ;

ð63Þ

where ξ ¼ μ=m and

λ̂1;αðxÞ ¼
X
s¼�

Z
p

1ffiffiffiffiffiffiffiffi
2Ep

p ½d̂p;sð0ÞXαðp; sÞe−ip·x

þ b̂†p;sð0ÞYαðp; sÞeip·x�; ð64aÞ

λ̂2;αðxÞ ¼
X
s¼�

Z
p

1ffiffiffiffiffiffiffiffi
2Ep

p ½b̂p;sð0ÞXαðp; sÞe−ip·x

þ d̂†p;sð0ÞYαðp; sÞeip·x�: ð64bÞ

The triviality of the similarity transformation in the Weyl
basis, when expressed in terms of action on the creation and
annihilation operators, is a consequence of the fact that the
similarity transformation does not mix the two Weyl
spinors, resulting only in a straightforward rescaling.
The operator implementation of the transformation was

given in Ref. [24], and takes the form

L̂ → L̂0 ¼ Ŝ L̂ Ŝ−1; ð65Þ

with

Ŝ¼ exp

�
−
1

2
arctanhξ

Z
x
ðχ̌†1ðt;xÞχ̂1ðt;xÞþ χ̌†2ðt;xÞχ̂2ðt;xÞÞ

�
.

ð66Þ

Making use of

Z
y
½χ̌†i ðt; yÞχ̂iðt; yÞ; χ̂iðt;xÞχ̂jðt;xÞ�

¼ −ð1þ δijÞχ̂iðt;xÞχ̂jðt;xÞ; ð67aÞ
Z
y
½χ̌†i ðt; yÞχ̂iðt; yÞ; χ̌†jðt;xÞχ̌†i ðt;xÞ�

¼ þð1þ δijÞχ̌†jðt;xÞχ̌†i ðt;xÞ; ð67bÞ
Z
y
½χ̌†i ðt; yÞχ̂iðt; yÞ; χ̌†jðt;xÞσ̄ · ∂χ̂jðt;xÞ� ¼ 0; ð67cÞ

(see Ref. [24]) we recover Eq. (63), but with λi → χi. If we
instead try to write the transformation such that we recover
precisely Eq. (63), as written in terms of λi, the trans-
formation becomes trivial.
In the four-component basis, the rescaling takes the form

ψ̂≡

0
BB@

ffiffiffiffiffiffi
1þξ
1−ξ

4

q
0

0
ffiffiffiffiffiffi
1−ξ
1þξ

4

q
1
CCAΨ̂; ψ̌†≡Ψ̂†

0
BB@

ffiffiffiffiffiffi
1−ξ
1þξ

4

q
0

0
ffiffiffiffiffiffi
1þξ
1−ξ

4

q
1
CCA; ð68Þ

where we have suppressed two-dimensional unit matrices
in the block form and

Ψ ¼
�
λ̂2

λ̂†1

�
: ð69Þ

We notice that the 4 × 4 matrices involved in this rescaling
are nothing but R−1 ⊗ I2 and R ⊗ I2, where R was defined
for the matrix model in Eq. (57). We see, by virtue of
Eq. (68) and the nonunitary nature of the similarity trans-
formation, the necessity to introduce the two types of field
operators, viz. the hatted and checked field operators.
Using the explicit form of the γ matrices in the Weyl

basis, i.e.,

γ0 ¼
�

0 I2
I2 0

�
; γ5 ¼

�−I2 0

0 I2

�
; ð70Þ

we can show that

0
BB@

ffiffiffiffiffiffi
1−ξ
1þξ

4

q
0

0
ffiffiffiffiffiffi
1þξ
1−ξ

4

q
1
CCAðmγ0 þ μγ0γ5Þ

0
BB@

ffiffiffiffiffiffi
1þξ
1−ξ

4

q
0

0
ffiffiffiffiffiffi
1−ξ
1þξ

4

q
1
CCA

¼ m
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
γ0: ð71Þ

We then obtain the Hermitian Lagrangian directly:

L̂0 ¼ Ψ̂†iγ0=∂Ψ̂ −MΨ̂†γ0Ψ̂; ð72Þ
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where M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − μ2

p
. The four-component field opera-

tors Ψ̂ and Ψ̂† are now built out of the usual four-spinors

Uðp; sÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ep þM
p

usðsÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep −M

p
usðsÞ

�
; ð73aÞ

Vðp; sÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ep −M
p

u−sðsÞ
−s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þM

p
u−sðsÞ

�
: ð73bÞ

If one were to insist on working with an operator
transformation, things would become significantly more
complicated. The Lagrangian (39) can be mapped to a
Hermitian one by the following similarity transformation,
as first described in Ref. [13]:

L̂ → L̂0 ¼ Ŝ L̂ Ŝ−1; ð74Þ

where

Ŝ ¼ e−Q̂=2; ð75Þ

with

Q̂ ¼ −arctanhξ
Z
x
ψ̌†ðt;xÞγ5ψ̂ðt;xÞ; ð76Þ

wherein we see the close analogy to the transformation of
the matrix model in Eqs. (60) and (61). The fields transform
under this transformation as

ψ̂ →

�
cosh

arctanhξ
2

− γ5 sinh
arctanhξ

2

�
ψ̂ ; ð77aÞ

ψ̌† → ψ̌†
�
cosh

arctanhξ
2

þ γ5 sinh
arctanhξ

2

�
: ð77bÞ

Using the identities

cosh
arctanhξ

2
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ2
p

s
; ð78aÞ

sinh
arctanhξ

2
¼ 1ffiffiffi

2
p ξffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ2
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1ffiffiffiffiffiffiffi
1−ξ2

pq ; ð78bÞ

we obtain after some algebra

L̂0 ¼ ψ̌†γ0i=∂ψ̂ −Mψ̌†γ0ψ̂ : ð79Þ

This follows immediately from Eq. (71), upon showing that

cosh
arctanhξ

2
I4 − sinh

arctanhξ
2

γ5

¼ ξþI4 − ξ−γ
5 ¼

0
BB@

ffiffiffiffiffiffi
1þξ
1−ξ

4

q
0

0
ffiffiffiffiffiffi
1−ξ
1þξ

4

q
1
CCA: ð80Þ

For 0 ≤ ξ < 1, the operator transformation above can be
written in terms of ξ, ξþ, or ξ− by making use of the
identities

arctanh ξ ¼ 2arccosh ξþ ¼ 2arcsinh ξ−: ð81Þ
Notice, however, that the transformation maps the form of
the Lagrangian, but not the field operators themselves
(cf. Ref. [12]). Were we to try to construct a similarity
transformation that maps both the Lagrangian and the
fields, we would find trivial results, since the model is
again a field rescaling away from Hermitian [see Eq. (68)].

VIII. DISCRETE TRANSFORMATIONS
IN FOCK SPACE

In this section, we discuss the discrete symmetry trans-
formations in Fock space, namely the spacetime symmetry
transformations of parity and time-reversal, and the C0
transformation that arises in PT -symmetric non-Hermitian
theories.

A. Parity

Under a parity transformation, the spatial coordinates x
change sign, i.e., x → x0 ¼ −x, but the time coordinate t is
unaffected, i.e.,

xμ ≡ ðt;xÞ → Pxμ ¼ x0μ ¼ ðt0;x0Þ ¼ ðt;−xÞ: ð82Þ
As a result, the three-momentum changes sign under parity,
as does the helicity. For our non-Hermitian Dirac model,
whose Lagrangian is not invariant under parity, the Dirac
fermion field operator transforms as

P̂ ψ̂ðt;xÞP̂−1 ¼ γ0ψ̌ðt;−xÞ; ð83Þ

where we emphasize that parity relates the hatted and
checked operators. This follows from the transformation
properties of the creation and annihilation operators

P̂b̂p;sð0ÞP̂−1 ¼ −sb̂−p;−sð0Þ; ð84aÞ

P̂d̂†p;sð0ÞP̂−1 ¼ þsd̂†−p;−sð0Þ; ð84bÞ

and the identities

uð−p;−sÞ ¼ −sγ0ũðp; sÞ; ð85aÞ

vð−p;−sÞ ¼ þsγ0ṽðp; sÞ; ð85bÞ
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where we have used the fact that

usð−sÞ ¼ su−sðsÞ: ð86Þ

As described for the bosonic case in Ref. [12], the
definition of the parity transformation does not depend
on the inner product used to define matrix elements, viz. the
Hermitian, PT or C0PT inner product.

B. Time-reversal

Under time reversal, the time coordinate t changes sign,
i.e., t → t0 ¼ −t, but the spatial coordinates x are unaf-
fected, i.e.,

xμ ≡ ðt;xÞ → T xμ ¼ x0μ ¼ ðt0;x0Þ ¼ ð−t;xÞ: ð87Þ

The three-momentum also changes sign, but the helicity
does not.
As identified in Ref. [12], in spite of the fact that the

definition of the time-reversal operator in Fock space
depends explicitly on the inner product used to define
the matrix elements of the theory, its definition does not
depend on whether we used the Hermitian, PT or C0PT
inner product, so the usual definitions of the time-reversal
operator hold. Specifically, the Dirac fermion transforms as

T̂ ψ̂ðt;xÞT̂ −1 ¼ iγ1γ3ψ̂ð−t;xÞ; ð88aÞ

T̂ ψ̌†ðt;xÞT̂ −1 ¼ ψ̌†ð−t;xÞiγ1γ3: ð88bÞ

As for the case of parity, this follows from the trans-
formations of the creation and annihilation operators

T̂ b̂p;sð0ÞT̂ −1 ¼ b̂−p;sð0Þ; ð89aÞ

T̂ d̂†p;sð0ÞT̂ −1 ¼ d̂†−p;sð0Þ; ð89bÞ

and the identities

u�ð−p; sÞ ¼ iγ1γ3uðp; sÞ; ð90aÞ

v�ð−p; sÞ ¼ iγ1γ3vðp; sÞ; ð90bÞ

wherein we have made use of the additional relation

u�sð−sÞ ¼ −iσ1σ3usðsÞ: ð91Þ

C. Ĉ0 operator

By introducing the tilded and untilded spinors, we have
seen that this non-Hermitian Dirac model is a field
redefinition away from being Hermitian. We have also
seen that the non-Hermitian nature of the model resides
only in the spinor structure, and the algebra of the creation
and annihilation operators is just that of a Hermitian theory.

Consider now the operator

Ô ¼ e−Q̂; ð92Þ

with Q̂ given by Eq. (76). This acts on the fields as

ψ̂ → ðcosh arctanh ξ − γ5 sinh arctanh ξÞ ψ̂ ; ð93aÞ

ψ̌† → ψ̌†ðcosh arctanh ξþ γ5 sinh arctanh ξÞ: ð93bÞ

Using the identities

cosh arctanh ξ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ; ð94aÞ

sinh arctanh ξ ¼ ξffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ; ð94bÞ

and the fact that

1

1−ξ2
ðI4þ ξγ5Þγ0ðmþμγ5ÞðI4−ξγ5Þ¼ γ0ðm−μγ5Þ; ð95Þ

we can convince ourselves that the action of Ô does not
leave the Hamiltonian invariant, as would be required for
the Ĉ0 operator (see Ref. [30]).
If we were to take inspiration from the quantum

mechanics case (see Ref. [30]), we would compose the
operator Ô with the parity operator P̂. This yields

ÔP̂ ψ̂ðt;xÞP̂−1Ô−1¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p γ0ðI4þ ξγ5Þψ̌ðt;−xÞ; ð96aÞ

Ô P̂ ψ̌†ðt;xÞP̂−1Ô−1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ψ̂†ðt;−xÞðI4 − ξγ5Þγ0:

ð96bÞ

While this leaves the factor mþ μγ5 invariant, i.e.,

1

1−ξ2
ðI4−ξγ5Þðγ0Þ2ðmþμγ5Þγ0ðI4þξγ5Þ¼ γ0ðmþμγ5Þ;

ð97Þ

it simultaneously transforms ψ̂ðt;xÞ → ψ̌ðt;−xÞ, and is
therefore not a symmetry of the Hamiltonian.
In order to construct Ĉ0, we would therefore need to

compose further with an operator P̂þ that has the following
action on the fermion field:

P̂þψ̂ðt;xÞP̂−1
þ ¼ ψ̌ðt;−xÞ; ð98aÞ

P̂þψ̌†ðt;xÞP̂−1
þ ¼ ψ̂†ðt;−xÞ; ð98bÞ
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without the appearance of the parity matrix P ¼ γ0. In this
way, the operator Ĉ0 would take a form analogous to the
scalar case reported in Ref. [12]. Specifically (cf. Ref. [13]),

Ĉ0 ¼ e−Q̂P̂P̂þ: ð99Þ

However, the existence of such a P̂þ operator is an open
question. Even so, its necessary appearance in the quantum
field theory case, compared to the quantum mechanics
case, can be understood as a consequence of the internal
degrees of freedom of quantum field operators and the fact
that single-particle Fock states are simultaneously eigen-
states of the momentum and energy operators. On the other
hand, for any quantum mechanical theory with a non-
Hermitian potential, e.g., the theory with Hamiltonian
Ĥ ¼ p̂2 þ ix̂3, eigenstates of the momentum operator p̂
are not eigenstates of the Hamiltonian Ĥ given its
dependence on the position operator x̂≡ x.

IX. INNER PRODUCTS IN FOCK SPACE

As noted previously, the non-Hermitian nature of this
model resides only in the spinor structure. Single-particle
momentum eigenstates jp; si and jp0; s0i, say, of momen-
tum p and p0, and helicities s and s0, respectively, are
therefore orthogonal with respect to the usual Hermitian
inner product; namely,

ðjp; siÞ†jp0; s0i ¼ ð2πÞ3δss0δ3ðp − p0Þ: ð100Þ

So long as we work with the true canonical conjugate field
operators, ψ̂ and ψ̌†, we will always obtain consistent
combinations of tilded and untilded classical spinor factors.
We therefore do not need to construct any additional inner
products for this model.
It is interesting to note that the PT norm is not positive-

definite for this model, as is expected for such non-Hermitian
theories. The PT inner product of the single-particle states
would give

ðP̂ T̂ jp; siÞTjp0; s0i ¼ ð2πÞ3δð−sÞs0δ3ðp − p0Þ: ð101Þ

The change of sign on the helicity results from the fact that
parity flips the helicity but time-reversal does not. We see
then that the PT norm of the single-particle momentum
states would be zero.

X. CONCLUSIONS

In this paper, we have extended our previous discussion
of discrete spacetime symmetries in bosonic quantum field
theories [12] to the case of a single Dirac fermion with four
components, the minimum required to realize nontrivial

PT symmetry. We discussed its parity P and time-reversal
T transformations at the classical level, and the quantum
version of the theory, revisiting its discrete symmetries
including the C0 symmetry [30]. We have shown that the
Fock space of this model is that of a Hermitian theory,
while the non-Hermiticity resides in the spinor structure. As
a result, the inner product of single-particle momentum and
helicity eigenstates is the usual Hermitian one. We have
nevertheless emphasized that the PT inner product is still
not positive-definite, as expected for a non-Hermitian PT
symmetric theory.
We have established that this model is a field redefinition

(in spinor space) away from being Hermitian and that this is
most easily seen in the two-component basis. Nevertheless,
we have constructed the C0 transformation under which the
Hamiltonian is invariant and shown how this is related to
the similarity transformation that diagonalizes the corre-
sponding Hamiltonian.
Our analysis carries forward the program of establishing

the consistency of PT -symmetric quantum field theories,
which will entail many further steps. These include the
extension to multiple flavors and Majorana fermion
models, and a more rigorous treatment of interactions
between fermions, scalars and gauge fields, which will
require deeper understanding of the path integral in such
theories than is currently available and allow, e.g., to
construct non-Hermitian extensions of the SM Higgs sector
(see the differing approaches of Refs. [35–37] and
Refs. [38–41]). Our motivation in pursuing this program
is largely due to the possibility that PT -symmetric theories
may offer generalizations of conventional quantum field
theories with interesting applications in fundamental phys-
ics, by offering a novel framework for new physics beyond
the Standard Model. We plan to return to these issues in
future publications.
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