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Abstract

Since no direct signs of new physics have been observed so far indirect searches in the
Higgs sector have become increasingly important. With the discovered Higgs boson behaving
very Standard Model (SM)-like, however, indirect new physics manifestations are in general
expected to be small. On the theory side, this makes precision predictions for the Higgs
parameters and observables indispensable. In this paper, we provide in the framework of the
CP-violating Next-to-Minimal Supersymmetric extension of the SM (NMSSM) the complete
next-to-leading order (SUSY-)electroweak corrections to the neutral Higgs boson decays that
are on-shell and non-loop induced. Together with the also provided SUSY-QCD corrections
to colored final states, they are implemented in the Fortran code NMSSMCALC which already
includes the state-of-the art QCD corrections. The new code is called NMSSMCALCEW. This
way we provide the NMSSM Higgs boson decays and branching ratios at presently highest
possible precision and thereby contribute to the endeavor of searching for New Physics at
present and future colliders.
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1 Introduction

The discovery of a scalar particle by the LHC experiments ATLAS [1] and CMS [2] and the
subsequent investigation of its properties revealed a Higgs boson that behaves very Standard
Model (SM)-like. Also years after its discovery there are no evidences for new physics from
direct searches. In this situation the precise investigation of the Higgs sector plays an important
role. Indirect effects of physics beyond the SM (BSM) might show up in the properties of the
discovered Higgs boson. With a mass of 125.09 GeV [3] it does not exclude the possibility for the
Higgs boson of a supersymmetric (SUSY) extension of the SM, like the minimal (MSSM) or the
next-to-minimal (NMSSM) ones. Supersymmetry certainly belongs to the best motivated and
most intensively studied BSM extensions, and the NMSSM, with a Higgs sector consisting of
seven Higgs bosons arising after electroweak symmetry breaking (EWSB) from the two doublet
and singlet fields of the Higgs sector, provides a rich phenomenology [4,5]. The experimental
limits strongly restrict possible new physics effects in the Higgs sector and call for precision in
the theory predictions for the Higgs boson observables. This is also necessary in order to be able
to distinguish between new physics extensions in case of discovery.

In this paper, we concentrate on the NMSSM Higgs boson decays. While the (SUSY-)QCD
corrections can be taken over from the MSSM case with the appropriate modifications and a
minimum of effort, this is not the case for the electroweak (EW) corrections. In the recent years
there has been some progress on this subject. In the CP-conserving NMSSM, members of our
group computed the next-to-leading order (NLO) SUSY-EW and SUSY-QCD corrections to the
decays of CP-odd NMSSM Higgs bosons into stop pairs and found that the both the EW and
the SUSY-QCD corrections are significant and can be of opposite sign [6]. The authors of [7,[]
provided in the framework of the CP-conserving NMSSM its full one-loop renormalization and
the two-body Higgs decays at one-loop order in the on-shell (OS) renormalization scheme. A
generic calculation of the two-body partial decays widths at full one-loop level was provided in [9]
in the DR scheme. In [10] the full one-loop corrections for the neutral CP-violating NMSSM
Higgs bosons were calculated to their decays into fermions and gauge bosons and combined with
the leading QCD corrections. For the Higgs-to-Higgs decays, we provided in previous papers the
complete one-loop [11] and the order O(atas) two-loop [12] corrections in the CP-conserving
and CP-violating NMSSM, respectively.

In this work, we compute, in the framework of the CP-violating NMSSM, the complete
next-to-leading order (SUSY-)electroweak corrections to the neutral NMSSM Higgs boson de-
cays into all tree-level induced SM final states, i.e. into fermion and massive gauge boson
pairs, but also into non-SM pairs, namely gauge and Higgs boson final states, chargino and
neutralino pairs, and into squarks. Where applicable we combine our corrections with the
already available (SUSY-)QCD corrections. We furthermore include the complete one-loop cor-
rections to the decays into Higgs boson pairs, c¢f. Refs. [11,|12]. For the loop-induced decays
into gluon and photon pairs as well as a photon and a Z boson no corrections are provided
as they would be of two-loop order. For the first time, we present the one-loop corrections
to the electroweakino, stop and sbottom masses in the context of the CP-violating NMSSM,
by applying both OS and DR schemes. We have implemented our corrections in our original
code NMSSMCALC [13], which calculates, based on a mixed OS-DR scheme, the NMSSM Higgs
mass corrections and decays in both the CP-conserving and CP-violating case. This way we
provide the NMSSM Higgs boson decays and branching ratios at presently highest possible
precision including the state-of-the-art (SUSY-)QCD and the computed (SUSY-)EW correc-
tions. In the EW higher-order corrections we not only include the NLO vertex corrections but



also take into account the proper on-shell conditions of the external decaying Higgs bosons up
to two-loop order O(ayas + o?). This is the order up to which the mass corrections for the
NMSSM Higgs bosons both in the CP-conserving [14] and CP-violating case [15-17] have been
implemented in NMSSMCALC. The new program is called NMSSMCALCEW can be obtained at the
url: https://www.itp.kit.edu/~maggie/NMSSMCALCEW/. Here also a detailed description of
the program and its structure are given, instructions on how to compile and run it as well as
information on modifications, which is constantly updated. A brief description of the code is
given in Appendix [B]

The paper is organized as follows. In Section [2| we introduce the NMSSM sectors at tree
level, that are relevant for our computation, and set our notation before we move on to the
NMSSM at one-loop level in Section We here describe the renormalization of the Higgs,
chargino/neutralino, and squark sectors as well as the loop corrections to the Higgs boson
masses and mixings, to the neutralino and chargino masses, and finally to the squark masses
and their mixings. Section[dis devoted to the detailed presentation of our calculation of the one-
loop corrections to the neutral non-loop induced Higgs boson decays into on-shell final states,
namely into fermion pairs, massive gauge boson pairs, final states with one gauge and one Higgs
boson, neutralino and chargino pairs, and squark final states. In Section [5| we present the
numerical analysis of the one-loop corrections to the Higgs boson branching ratios into SM and
SUSY final states, where we discuss in particular the size of the newly implemented corrections
to both the branching ratios and to the electroweakino and third generation squark masses. Our
conclusions are given in Section [6] Explicit expressions of the counterterm couplings for the
decays of neutral Higgs bosons into a squark pair are displayed in Appendix [A]

2 The NMSSM at Tree Level

We are working in the complex NMSSM with a preserved Zs symmetry. The Lagrangian of the
NMSSM can be divided into the Lagrangian of the MSSM and the additional part coming from
the NMSSM. For convenience of the reader and to set our notation, we give here the parts of
the Lagrangian that are relevant for our calculations. For the Higgs sector we need the NMSSM
Higgs potential. It is derived from the NMSSM superpotential Wxnmssm, the corresponding
soft SUSY-breaking terms, and the D-term contributions. With the Higgs doublet superfields
H, and Hd coupling to the up- and down-type quark superfields, respectively, and the singlet
superfield S, we have for the NMSSM superpotential

PPN 1 -
Winmssm = Wassm — eabASHSH,Z + 5165'3 , (2.1)

where a,b = 1,2 are the indices of the fundamental SU(2), representation and ey, is the totally
antisymmetric tensor with e;3 = ¢!? =1 . The MSSM part reads

Whissm = —€ap (Y HIQ U — yaH3Q"D® — y HLYE°) (2.2)

in terms of the left-handed quark and lepton superfield doublets Q and L and the right-handed
up-type, down-type, and electron-type superfield singlets U, D, and E, respectively. Charge
conjugation is denoted by the superscript ¢, and color and generation indices have been omitted.
The NMSSM superpotential contains the coupling x of the self-interaction of the new singlet
superfield and the coupling A for the S interaction with the two Higgs doublet superfields. Both
couplings are complex. The quark and lepton Yukawa couplings y4, v., and y. are in general



complex. However, in case of no generation mixing, as assumed in this paper, the phases of the
Yukawa couplings can be absorbed through a redefinition of the quark fields, so that the phases
can be chosen arbitrarily without changing the physical meaning [18]. The soft SUSY-breaking
NMSSM Lagrangian in terms of the component fields H,,, H; and S reads

1
L ot = L3580 — m3|S12 4 (eap ANNSHIHE — gAmS?’ + h.c). (2.3)

It contains two more complex parameters specific to the NMSSM, the soft SUSY-breaking tri-
linear couplings Ay and A,. The soft SUSY-breaking MSSM contribution can be cast into the
form

C3tsn = —m | Hal? — miy, |Hul? = m3|QP — m2, |anl? — m? |dr|* —m?|L[* — m2, [en|?
+ e (Yu A HEQ W, — ygAgHQ A% — ye AcHEQEH + h.c.)
1 . - .
— i(MlBB + MW, W; + M3GG + hC) s (24)

where the SM-type and SUSY fields corresponding to a superfield (denoted with a hat) are
represented by a letter without and with a tilde, respectively. The indices Q (f)) of the soft
SUSY-breaking masses denote, exemplary for the first generation, the left-handed quark (lepton)
doublet component fields of the corresponding quark and lepton superfields, and @g, dg, € the
right-handed component fields for the up-type and down-type quarks, and charged leptons,
respectively,. The trilinear couplings A,, Ay and A, of the up-type and down-type quarks
and charged leptons are in general complex, whereas the soft SUSY-breaking mass terms m?
(x = S, H,, Hy,Q,ug,dg, L, ér) are real. The soft SUSY-breaking mass parameters of the
gauginos, My, Ms, Ms, for the bino, the winos, and the gluinos, B, W; (1 = 1,2,3), and G,
corresponding to the weak hypercharge U(1), the weak isospin SU(2), and the color SU(3)
symmetry, are in general complex. The R-symmetry can be exploited to choose either M; or
Ms to be real. In this paper we keep both M; and My complex.

Expanding the scalar Higgs fields about their vacuum expectation values (VEVSs) vy, vg, and

vg, two further phases, ¢, and @g, are introduced which describe the phase differences between
the VEVs,

L(Ud + hq + iag) . ht eips
Hy= (V2 , H,=e¥ ro , 8= —=(vs + hs +ias) .
d ( h’c? € \}ﬁ(vu‘i’hu‘i‘lau) \/5('1) v )

(2.5)
For vanishing phases, the fields h; and a; with ¢ = d, u, s correspond to the CP-even and CP-odd
part of the neutral entries of H;, H, and S. The charged components are denoted by hfu. In
this paper, we set the phases of the Yukawa couplings to zero. We furthermore re-phase the

left- and right-handed up-quark fields as u;, — e “uuy and ur — e“up, so that the quark
and lepton mass terms yield real masses.

After electroweak symmetry breaking (EWSB) the six Higgs interaction states mix and in
the basis ¢ = (hg, hy, hs, aq, @y, as) the mass term is given by

1
Teutral = §¢TM¢¢¢ . (26)

The mass matrix Mgy is obtained from the second derivative of the Higgs potential with respect
to the Higgs fields in the vacuum. The explicit expression of the mass matrix My, can be
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found in Ref. [15]. The transformation into mass eigenstates at tree level can be performed with
orthogonal matrices R, R®,

. T
dlag(mil,m,zm,m,zlg,m%4,m%5,0) = RRGM(RRG) , (2.7)
(h1, ha, ha, b, hs, G)T = RRE(hg, hu, hs, ag, ay, as)”
= R(hd7 hu; hsv a, as, G)T ) (28)

where the matrix R is used first to single out the Goldstone boson G. The tree-level Higgs mass
eigenstates are denoted by the small letter A, and their masses are ordered as myp, < ... < my,.

The mass term for the charged components of the Higgs doublets in
m hy
charged — (hd ) hu) Mh+h+ B ) (29)
u

is given by

1 tﬁ 1 2 p“”s
M =35 M, ( 2Re A 3 )
Ty (1 1/%)[ WS25+COS(%+%+%) VERe Ay [islus coslpn +3s)
2|\2 M sew
-2 %8| (2.10)

where My, is the mass of the W boson, 8y, the electroweak mixing angle, e the electric charge
and @)y, ¢, the complex phases of A and &, respectively. The angle § is defined as

tan 8 = vy /vg . (2.11)

Here and in the following we use the short hand notation ¢, = cosx, s, = sinx and t, = tanz.
Diagonalizing this mass matrix by a rotation matrix with the angle 5., for which at Born level
B. = [, one obtains the charged Higgs boson mass as

‘)"”s
525 cos(x + Yu + s

2|\ M2, 52
] <\/§Re Ay + |K|vs cos(pr + 3<ps)> — HeQWQW. (2.12)

M[%[:I: = M§V+

The charged Goldstone boson G*, on the other hand, is massless.

The fermionic superpartners of the neutral Higgs bosons, Hg, S’ and of the neutral gauge
bosons, B Wg, mix, and in the Weyl spinor basis ¢° = (B Wi, H H 0'8)T the neutralino mass
matrix My is given by

My =
My 0 —cgMzsg,, MZS,BSQWe*w“ 0
0 M, CﬁMW —MWsﬂe_W’u 0
—cgMzsg,, cg My 0 _/\\1}%61'% _ﬂMwsgngAewu
Mzsgsoy e —Mysge™ " —AZpeles 0 Y2 cgsog A
0 0 _ \/QMws;gESGW Aeteu \/iMwsﬁs(,W A ﬁﬂvsei‘f’*

(2.13)

after EWSB, where My is the Z boson mass. The symmetric neutralino mass matrix can be

diagonalized by a 5 x 5 matrix N, yielding dlag(m 00 M50, Mg, Mo, My o) N*MyNT, where



the absolute mass values are ordered as [mgo| < ... < |m>28| The neutralino mass eigenstates
)Z?, expressed as Majorana spinors, can then be obtained by

0
X4
x?:(é) with  x§ = Ny, i,j=1,...,5, (2.14)

where, in terms of the Pauli matrix o,
x0 = ioax{” . (2.15)

The fermionic superpartners of the charged Higgs and gauge bosons are given in terms of the
Weyl spinors H3, Hf, W~ and W*. With

_ (W L (Wt
the mass term for these spinors is of the form
L=Wn) "My} + hec., (2.17)
where
Ms \@SBMWe_w“
e (ﬁCBMW Ut (2.18

The chargino mass matrix M can be diagonalized with the help of two unitary 2 x 2 matrices,
U and V| yielding

diag(mxli,m@t) =U*McVT, (2.19)
with My < My The left-handed and the right-handed part of the mass eigenstates are
Xf=Vyl and xp=U¢pg, (2.20)

respectively, with the mass eigenstates (i = 1,2)

o

- XL;

XZT“ = ( - ) (2.21)
XR;

written as Dirac spinors. In summary, the bilinear terms in the chargino and neutralino mass
eigenstates are given by

L=XTBPLX 4 XX — X UMV Poxy =X [VMEUT] Pax)
+ XPPLIE + XPPPRRE — X [N MNT] PLf X [NMENT] PRl (222)

where the left- and right-handed projectors are defined as Pr,/r = (1F75) /2 and 4, j = 1,2 and
ki=1,....5.

The scalar partners of the left- and right-handed quarks are denoted by §;, and g, respec-
tively. The mixing matrix for the top squark is given by
v (M. T MEens(3 — 355,,)  mu (AfeT — pen/t5)
¢ my (Ae™ — pig/ts) m? + mfR + %M%czgsgw ’

(2.23)



while the bottom squark matrix reads

(ma +m ot Mpeas(—§ + 553,)  mu (45 — € pents) )

M; = -
my (Ap — e gt ) mj +m? — s Mcapsy,,

A (2.24)

where .
Avger¥s

NeH—T

The mass eigenstates are obtained by diagonalizing these squark matrices with the unitary
transformations

(2.25)

diag(m2,,m2,) = UIMzU, (g;) — yi (Z;) . q=t,b, (2.26)

with the usual convention mg, < mg,.

3 The NMSSM at One-Loop Level

3.1 Renormalization
3.1.1 The Higgs Sector

For the Higgs sector we follow the mixed on-shell OS-DR renormalization scheme described
and applied in Refs. |[14517]. We do not repeat all details here but quote the most important
formulae. There are eighteen parameters entering the Higgs sector at tree level,

m%{d, m%]u,m%, M3, M2, e,tan B, vs, s, 0u, |\ @x, |6, ©x, Re Ay, Im Ay, Re A, Im A, . (3.27)

Note that for the sake of convenience we decompose the complex trilinear couplings Ay and A,
into a real and imaginary part in contrast to Ref. [15] where the absolute values and complex
phases were used. It was found in Ref. [15] that the four complex phases g, @y, @) and
p, do not need to be renormalized. We verified this statement and will discard them in our
renormalization procedure.

In our introduction of the NMSSM Higgs sector in Sec. [2| we have already replaced the U(1)
and SU(2) gauge couplings ¢’ and g and the VEV v by the physical observables My, Mz and e.
It is convenient to further convert, where possible, the input parameters of the set Eq. to
parameters that can be interpreted more easily in terms of physical quantities. Thus we trade
the three soft SUSY-breaking mass parameters m%[d,m%[u, m% as well as Im Ay and Im A, for
the tadpole parameters ty (¢ = hq, hu, hs, aq,as). These coefficients of the terms of the Higgs
potential Vijjges are linear in the Higgs boson fields and have to vanish, in order to ensure the
minimum at non-vanishing VEVs v,,, vg, vs,

b= aV'Higgs
v 8¢ Min.

It is debatable whether the tadpole parameters can be called physical quantities, but certainly
their introduction is motivated by physical interpretation. In the same way, in a slight abuse
of the language, we will call the renormalization conditions for the tadpole parameters on-shell.
With the new set of input parameters, we allow for two possible renormalization schemes in our

0. (3.28)



Higgs mass calculation. The difference between the two schemes relates to the treatment of the
charged Higgs mass. In the first scheme the charged Higgs mass is an OS input parameter,

thys the s thes tags tass M?{i,MI%V, M%, e,tan 5, vg, |\, |k|, Re Ax , (3.29)

on-shell DR

while in the second scheme Re Ay is an input parameter renormalized as a DR parameter and
the charged Higgs mass is a derived quantity,

thys the s thes tags tas s MI%V, M%, e,tan 3, vg, |\, |k|, Re Ax,Re Ay . (3.30)

on-shell DR

For the definition of the one-loop OS counterterms we refer the reader to Ref. [15]. The coun-
terterms of the DR parameters do not contribute to the final physical results but they are kept
to ensure UV finiteness. We define these counterterms solely in the Higgs sector by requiring
that all renormalized self-energies of the Higgs bosons be finite. This is different with respect to
the definition in Ref. [15] where the chargino and neutralino sectors were used. The numerical
results between the two definitions are identical, however. We renormalize the Higgs fields in
the DR scheme as described in Ref. [15] at one-loop level, and in Refs. [164(17] at two-loop order
O(azas) and O(a?), respectively.

3.1.2 The Chargino and Neutralino Sector

The chargino and neutralino sectors are described by fourteen real parameters: My, My,
tan 8, s, ©s, us | A, @, |El, @xy [ Mi], ©ar | Mal, @ar,. Since the first ten of these already appear
in the Higgs sector, there remains to define the renormalization conditions for the four parameters
|Mi|, o1, | Ma|, @, [T| There are no physical renormalization conditions to fix the counterterms
of the phases ¢, ¢nr,- It has been found in Ref. [15] that the complex phases of M; and Ms
do not need to be renormalized. We verified this statement in our computationE] In addition,
we have to renormalize the chargino and neutralino fields in order to obtain finite self-energies.
In the literature there exist two descriptions for the introduction of wave function renormaliza-
tion (WFR) constants. In the Espriu-Manzano-Talavera (EMT) description two independent
renormalization constants were introduced for incoming and outgoing fermions [19-21]. Thanks
to more degrees of freedom one can keep contributions arising from absorptive parts of the loop
integrals and eliminate completely the mixing self-energies thereby fulfilling the standard OS
conditions. However, the hermicity of the renormalized Lagrangian is not satisfied anymore. In
the Denner description [22], one WFR constant was used instead. It preserves the hermicity
constraint, but the absorptive part of the loop integral must be eliminated. We want to investi-
gate the effect of the absorptive part and therefore apply both descriptions. In the following we
will derive the formulae in the EMT method. From these formulae, one can easily obtain the
ones in the Denner description. The bare parameters and fields are replaced by the renormalized

'In the case of the MSSM one needs to renormalize three complex parameters M, Mo, .
2The same holds true in the complex MSSM [19]. The three complex phases of M1, M2 and p do not need to
be renormalized in order to render all Green functions finite.



ones and the corresponding counterterms as

My = M+ 8|Myfe™n, (3.31)
My = Ms+ 3| Mple'#™e, (3.32)
1. - — — 1 _.
P — (1 + 252{) CPLXS. X P X <1 + 252;{) P (3.33)
i 7t
o+ 1ooxt oF T o 1ooxt
Pryx; = (1+50Zg ) Prxy, XiPr—Xj (1+5020 ) P (3.34)
%] 7
Pri? 14+ 5525) Pt 0P =0 (14 262C) P
LXk — 5 L . LX1s XptL — X + 5 R " L (335)
-0 Lo 50 0 =0 =0 Loz
Prxx — (1+507y ; Prxi, XpPr—Xi |1+ 5077 . Pg , (3.36)
where ¢,j = 1,2 and k,l = 1,...,5. Since the neutralinos are Majorana fermions we have
0 -0\ 0 a
o7y = (627)  and o7 = (0Z%) . (3.37)

Note that we do not need to renormalize the rotation matrices U, V and N because their
counterterms are redundant. They always appear in combination with WFR constants. One
can therefore always redefine the WFR constants to absorb the counterterms of the rotation
matrices, as shown in Ref. [23]. In general, the renormalized self-energies 3 of the fermions can
be cast into the following form, cf. Ref. [22],

Sii(p) = PS5 (%) Pr + p2f(0°) Pr + S5 (0°) P + SF (0°) Pr (3.38)
with
SHPY) = SH) + % (021 +071),, . (3.39)
ﬁlgﬁ(p2) = 25@2) + % (6Zp + 5ZR)Z.]. , (3.40)
sbe?) = =ke?) - (;(MR)Um;Q + %(5ZL)ijmii + (5M§ree)ij> : (3.41)
Shsp?) = shp?) - <;(5ZL)ijm>~<j + %(5ZR)ijm;@ + (5M;35%)jj) : (3.42)

where 3;;(p) denotes the unrenormalized self-energy of the transition )Z;F — )2;', 1,7 =1,2, for
the charginos and )Z? — )2?, 1,7 =1,---,5, for the neutralinos. For the charginos, the tree-level
mass matrix M and its counterterm dM"° are given by

M = UMV, §ME* = U*sMcV! (3.43)
and for the neutralinos by
MU = N*MyNT,  MF® = N*SMyN'. (3.44)

In the following, we will discuss the OS conditions for the general fermion fields x; having the
tree-level masses myg,. The renormalized fermion propagator matrix is given by

Sp)=-T(m)", (3.45)



where the renormalized one-particle irreducible (1PI) two-point functions I are related to the
renormalized self-energies as

Lij(p) = i35 (B — my,) + iS5 (p) - (3.46)

The propagator matrix has complex poles at ./\/l?(l = M 2 — 1My, I'y,, where I'y, denotes the
decay widths. In the OS scheme we require that the tree—level masses are equal to the physical
masses, the mixing terms are vanishing at the poles and that the residues of the propagators
are unit

Re i (p)Xi =0, (3.47)
p2=m?
Xi
2 (P)% =0, XiSii(p) =0, i#j (3.48)
})2:717,2~ ) p2:m2.'
Xj X4
1 il ~ .~ . - - ]- B
lim —Relux: =1ixi, lim y;Relji—— =1ix; . (3.49)
p2 —mg, ]5 my; pgam;(i ]6 — my,

In addition, we require the chiral structure to vanish in the OS limitﬂ

Shm3,) =Sim3) . BfFmg) =S m3) . (3.50)

Applying the decomposition in Eq. (3.38)) and the tree-level relations
(¥ — mfa)fiz =0, Z(ﬁ + mf(z) =0, (3.51)
one obtains the mass counterterms dmy, = Re (5M>'i<ree)ii, with
Re (M), =1 (mlee SE(m2) +mgReSE(m2 ) + Re S5 (m2,) + Re zgS(mga)) (3.52)

the off-diagonal wave function renormalization constants, 027,/ i, 87, / Rvijﬂlﬂ

2 S
Mg =M%
+my, T (m2) — my, (SME)] — my, (5M “ee)w} : (3.53)
2 S
0ZRij = —5 5~ {mfb Ef}( )t lemXJEL( )+ m;(iilf-} (m%g)
Mg =M%
+my SH(m3,) — my, (GMEee)]; —mg, (5M>%ree)ij:| : (3.54)
07145 = 6 Z145(m3, <> m3,), (3.55)
8ZRij = 0Zpuj(m3, <> m3,), (3.56)

3In the Denner description, S in Eq. , 21']' in Eq. and [ in Eq. are replaced by f{éiii,
ﬁéii]’ and ﬁéfii, respectively. Re means that one takes only the real part of the loop integrals but leaves the
couplings unaffected.

“If we use the Denner OS conditions in Ref. [22] then these relations are automatically satisfied for the real

parts only.

L/R/Ls/Ra L/R/L.s/R,s

5In the Denner description by are replaced by ReE
5Note that the §Z are obtalned from 6Z by interchanging the m of the electroweakinos, but not the my.
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and the diagonal wave function renormalization constants|

8 S S
021 = ~Big(m3,) —mu gy [ma ZE0%) +me ZE0") + X 07) + ZE 0] | pye +o
(3.57)
0
0Zpii = —Xij(m3,) — M 52 [mg.S5(0%) +mg, SHE?) + 25 (0%) + 2 (09)] | o —mz tbta
(3.58)
6ZL,M = 5ZL,ii — 2a (359)
5ZR,M' = 5ZR,ii —2b— QCL, (360)
where
1 S S ree ree
b = . [S55(m3,) = S (m3,) — (OMF)s + (SMF) ] (3.61)
b
- 2 .62
a 5 (3.62)

Our results coincide with those given in Ref. |[19]. The above wave function renormalization
constants have been chosen such that for all fermions the mixing terms are cancelled and the
correct propagators are produced at the tree-level mass values. Note that in case we do not have
enough parameters to renormalize all fermions on-shell, only some of these fermions satisfy OS
conditions, i.e. their tree-level masses are equal to the physical masses. The remaining fermions
have loop-corrected masses. This is the case for the electroweakino sector. Given the fact that
we have already fixed the renormalization scheme for the Higgs sector, only the two gaugino
masses M; and My remain to be renormalized, while we have 7 masses (5 neutralino and 2
chargino masses), so that only two of them can be set OS. The remaining 5 particles receive
loop-corrections to their masses. At loop level the mixing between fermions is in general not
vanishing any more, and the residues of the propagators are not unity. These effects should be
taken into account if the loop corrections to the masses are large. This is not the case for the
renormalization schemes chosen here, therefore we neglect these effects.

In the chargino and neutralino sector hence only the two counterterms 6|M;| and §|Ma|
remain to be determined. There are 21 different ways to choose two out of the 7 masses for
the OS conditions. We will consider here two different schemes. In the first scheme (OS1), we
require the masses of the wino-like chargino )Z:r and the bino-like neutralino )22 to be OS. The
bino-like neutralino is sensitive to M; while the wino-like chargino is sensitive to Ms. Note that
we do not choose the chargino and neutralino by referring to a fixed index order since they may
not be sensitive to My or Ms. This can then lead to numerical instability, as was found in the
MSSM [23-26] and in [7[8] for the NMSSM. We denote the tree-level masses for the neutralinos

(charginos) by a small letter m L and the loop corrected masses by a capital letter M _ L

In the OS scheme the tree—level masses are equal to the loop-corrected ones. We deﬁne the
counterterm mass matrices of the chargino and neutralino sector in the interaction basis, d My
and dM¢, through

My — My +0My and Moc— Mo+ Mo, (3.63)

with the neutralino mass matrix given in Eq. (2.13)) and the chargino mass matrix in Eq. (2.18]).

L/R/LS/RS L/R/Ls/Rs

"In the Denner description a = b = 0 and the pIp are replaced by ReE
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The counterterms for M; and My are then given by

_ 1 1 XLy 2 xR, 2 1 X Ls, 2
6| Ma| = Re [0 Viem] {Qmﬁ (Re i (i) + Re X T (miy) ) 4 gRe Xy (miy)
1 X5 Rs, o * t
+ 5Re Sy ™ (m)) - Re [U SMcV ] ) (3.64)
i i |5 My=0
1 1 XLy 2 Xp R 9 1 XpoLs, 2
S| M| = Re [N7, N7, o] {2m>~<2 (Re Zor (mig) +ReXpy (m22)> + §Re D (mf(%)
1 -0
+ sRe = (m2y) — Re [N*aMNNT} ] . (3.65)
2 k kk | 500, =0

In the second scheme (OS2), we use the masses of the bino-like neutralino, denoted by )22,
and of the wino-like neutralino, denoted by )Z?, as inputs. The renormalization conditions for
their OS masses are given by

A0 B
S5 (X0 =0 (3.66)
p2:m;0
k
~ 50 5
S5 ()R] = 0. (3.67)
p2:m?<0
l

This results in the two solutions for the counterterms ¢|M;| and 6| Ma|,

S|My| = _amRe [NlBNzEei%MQ] — azRe [N,ijgzei¢A42] | 569
Re [N}, Ni €®M1]Re [N Ny e'®M2] — Re [N, Ni,e'M2 [Re [N N e |
5|M2| _ . ai1Re [Nl*lNlﬁeift)Ml] — asRe [N:lNgleiqu{l] | (3‘69)
Re [Nj, N €M1 Re [N}, Njye'®M2] — Re [N, Niye¥M2|Re [N Ny e ¥ ]

with
a; = 1(m (ReEig’L(m2 )—FReEfzg’R(m2 )) —l—ReE)Zg’LS(m2 )%—E{eE)&’RS(m2 ))
1= |5 \my Kk (M50 Kk 50 kk X0 kk X
“Re (N*(sMNNT> (3.70)
kk | 50 =6 Ma=0
1 0L W.R 0,L Y.R
ar = [2 (myg (Re i (m2y) + Re Xy (m2y) ) + Re S ™ (m2y) + Re 53 (m2) )
~Re (N*aMNNT> . (3.71)
W01, =5 My=0

For the field renormalization constants of the charginos and neutralinos, we impose the OS
conditions for the tree-level masses. Besides the two OS schemes, we will also adopt the DR
renormalization scheme for M7 and Ms, while for the field renormalization constants we use the
OS conditions.

3.1.3 The Squark Sector

We consider here only the third-generation squarks. The results for the first- and second-
generation squarks are obtained analogously. There are seven parameters to be renormalized in

12



this sector,

mg, Mp, M Qs 7m2 ml%RaAthba (372)

where A;, Ay are complex and the mass terms are real. We denote their corresponding counter-
terms as

Sy, dmp, (5m2~23, (5mt2R, (5ng, 8A;, 0 A, (3.73)

and define the squark-mass counterterm matrices as
Mq — M(j + 5Mq, (3.74)

with My given in Eq. (2.23]) for the stops and in Eq. (2.24)) for the sbottoms. The renormalization
of the remaining parameters appearing in the squark mass matrices has been specified in the
renormalization of the Higgs sector, more specifically see Refs. [14-17].

We have to renormalize the squark fields in order to make the squark self-energies finite.
Here we use both the EMT and the Denner description. For the EMT description we have to
introduce two separate WFR constants, one for the particle and one for the anti-particle. We
introduce the squark WFR constants for the particles and anti-particles in the mass eigenstate

asis adl
| () (edom) (B) (B) () (rpz) o

The renormalized self-energies in the mass eigenstate basis are given by (i,j = 1,2)
. . 1/ - . 1/ _~ .
2y _ 2 2 2 2 T
S50%) = 5507 + 5 (025 + 928 ) v — 5 (9Z8m2, +m2 o2 ) - (Uanqu)ij . (3.76)

where we denote by E?j the unrenormalized self-energies for the ¢ — ¢; transitionﬂ In the

following, we give the OS counterterms. The DR counterterms are then easily obtained by
taking only the divergent parts of the corresponding OS counterterms.

Applying the decomposition of the fermionic self-energies as given in Eq. (3.38]), the mass
counterterm in the OS scheme for the top and bottom quark, respectively, is given by (¢ = t, b)m

5mq:%Re{(Eg(mg)+Ef(mg)) + B (m2) + 5 (m2)} (3.77)

The OS conditions for the scalar renormalized self-energies are (i,j = 1, 2)E|

Rei‘?( g) =0 (3.78)
$L(mg) = SLmg)=0, i#j (3.79)

ReEq (p2) B

87192 o 0. (3.80)

4

8In the Denner description, we have §Z; = 5Zg.

9Note that in the real NMSSM the unrenormalized self-energies for the §; — G; transition and for the §; — §j
transition are identical. They are different, however, in the complex case.

10Tn the Denner description, Re is replaced by Re.

"'Tn the Denner description, Re %7 is replaced by ﬁéii in Eqgs. and while in Eq. Re i?j is

replaced by ﬁvei]?j.

13



We apply the conditions in Egs. 1} and 1' for the top squark to determine § Ay, 5m%3

and 5m§R
om% = UL Pom2 +|UlPom2 + UL ULY + UL US (0Y)" — 2medm, (3.81)
+§ sin (3 cos® BMZ(3 — 4sin? fy) & tan 8 + é cos 23 §M% — ; cos 23 O M3,
om2 = |UL[Pom2 + |UsPom? + ULU{0Y + Ul,UL; (8Y)* — 2mdm, (3.82)
+§ sin 3 cos® BM% sin? Oy 6 tan 8 — % cos 2/ 5M§

2
+§ cos 263 O M3,

et { rrix t 7rix * t rrix
s = S uffs (o, - o) + LUKV + URUTY;
i Hefr e Puptgdtan B e Puduty
_ (A — smo | — 3.83
( te tan B) mt] tan? 3 R g (3:83)
where
smi = ReXf;(m?) (3.84)
6m%2 = Re Eéﬂmi) (3.85)
-~ ~ -~ ~ 7% 1 — ~ ~
- tsarartt]  — [rdsagrdt]” — 2 i 2 i 2
5Y; [U SM;U LQ [U SM;U ]21 SRe (212(%) v zlg(mb)) . (3.86)

There remain two parameters from the bottom squark sector to be determined, Ay, m% . We
R

choose the OS scheme where the bottom squark with the dominant contribution from the right-
handed sbottom, which we denote by b; »» 18 OS and the mixing between the two bottom squark
states vanishes. The three counterterms 5ng, Re §d Ap, Im 0 Ay are then obtained by solving three
linear equations

UL o2 + 2mpRe (U ,U Jy — 2mpIm [Uf o U ]2 = dy (3.87)
Re [UYU%% )z + myRe [UL U 4+ UL, US|y — myIm [Ub,US; — UP,USS)z = Reds (3.88)
Im [UL,US) 2 4+ mpIm [USUSF + UL ULy + myRe [ULUSH — Ub, US3)2z = Im ds | (3.89)

where (z,y,z) = (5m§R,Re 0Ap, Im 6 Ap) andlﬂ

di = Rexl, (m? )—(Uz’éMBUZ’T). | (3.90)
‘R 'RAR | p=y=2=0
I A G (3.91)
1 r=y=2=0
5V = IRe (5ho0m2) + 5ha(m2)) (3.92)
b T 9 12397%, 121174, ) .

1211) the Denner description, Re Efi in Egs. 1) and li is replaced by ﬁ:sEfi. Note, however, that Eq. 1|
is the same in both the EMT and the Denner description. We use Re in the definition of 6Y; (¢ = ¢,b) so that
§Aq = (6A3)". The contribution from the imaginary part of the loop integrals is then moved into §Z;; and 6Z7;.

13Tn the Denner description, Re E{-’RiR in Eq. 1} is replaced by Rex?

IRIR"
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where we have introduced the notation 0Y; for later use. The other bottom squark mass gets
loop correctionsﬂ Its loop-corrected mass ng is obtained by solving iteratively the following

equationE

2 _ 2 &b 2
Mi)j = mi)j — Re ij(ng) . (3.93)

We stop the iteration when the difference between two consecutive solutions is less than 1075.

The OS wave function renormalization constants for the squarks are given bym

- OReX(p?
0Zj; = —eap’;(p ) (3.94)
pr=mj.
. 29, (m2) — 8Y;
574 —9 12\""g2 4 3.95
. m%l o mgz ( )
g Egl (mZ2) — oY
674 = —2 — = — £ (3.96)
q1 q2
5q Dia(m7 ) — 0Y;
621, = -2 — . (3.97)
g1 P
- ¥ (m2) — oY
073 = 2— 5, (3.98)
q1 q2

where the 0Yj are given in Eq. and Eq. for ¢ =t and g = b, respectively. Besides
the OS scheme we also provide the option to use the DR scheme for all parameters and the wave
function renormalization constants. In the DR scheme, all squarks receive loop-corrections to
their masses. We will discuss this issue in Subsection 3.4

3.2 Loop-corrected Higgs Boson Masses and Mixings

Since we use the mixed OS-DR renormalization scheme for the Higgs sector parameters together
with the DR scheme for the Higgs fields, all Higgs bosons are mixed and receive loop corrections
to their masses. For the evaluation of the loop-corrected Higgs boson masses and the Higgs
mixing matrix, we use the numerical results obtained from NMSSMCALC [13]. In this code the
two-loop corrected Higgs boson masses are obtained by determining the zeros of the determinant
of the two-point function I'"*(p?) with

(7)) =00 = m) +iSh0Y) , ij =105, (3.99)
ij

where my, are the tree-level masses and fl?](pQ) is the renormalized self-energy of the h; —
h; transition at p?. In NMSSMCALC, we have included in the renormalized Higgs self-energies
the complete one-loop contributions with full momentum dependence [144/15] and the two-loop

14Note that in principle all four masses of the stops and sbottoms can be renormalized on-shell simultaneously
by adapting the input parameters appropriately.

15Tn the Denner description Re 2% is replaced by P%ig’-j.

1611 the Denner description, Re E?i in Eq. is replaced by ﬁéZfi and Re 2‘172, Re Zgl in Eqgs. 7. .. 7
are replaced by P/{VGE%, ﬁézg’l, respectively.
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contributions of O(azas) [12] and of O(a?) [17] in the gaugeless limit at zero momentum. The
loop-corrected masses of the Higgs bosons are then sorted by ascending masseﬂ

My, < My, < Mg, < Mg, < My, . (3.100)

We have improved the stability of the determination of the Higgs boson masses in NMSSMCALC
by implementing two-point loop integrals with complex momentum. In the old version of
NMSSMCALC, in order to take into account the contribution of the imaginary part of the com-
plex momentum we expanded the renormalized Higgs self-energies around the real part of the
complex momentum as

A

h

sk 2
2 8Zij(Rep )

2\ _ xh 2 -
(p°) = ¥i5(Rep”) + ilmp IR p?

(3.101)
Note that this was done only for the one-loop correction with full momentum dependence. This
expansion is not good when Rep? is close to threshold regions in which 82%(Re p?)/ORe p?
contains threshold singularities. To overcome this problem one can use complex masses for
the loop particles or complex momenta. Using complex masses requires the decay widths of the
particles. These have to be obtained in an iterative procedure which is very time consuming. We
have decided to use the complex momenta and to keep the masses real. We have implemented
the two-point loop integrals with complex momenta and therefore do not use any more the
mentioned approximation. We have confirmed that the evaluation of the Higgs masses is stable in
the singularities region and the differences between Higgs masses using the complex momentum
and the expansion in Eq. (3.101), defined as (MgPsion — ppeemplex sy ppespansion (; 1 5)
are of per mille level.

In processes with external Higgs bosons finite wave-function renormalization factors Z have
to be taken into account in order to ensure the on-shell properties of these Higgs bosons. The
wave-function renormalization factor matrix performing the rotation to the OS states is given

by [27]

Zn, ZnZiny A D Zhans A Zmi Znina A\ Zy Znans
\/ZTQZAthl \/ZTLQ ZnyZnghs N ZnyZngh N Zng Ly
2" =\ \/ Zny Zngny \ Zns Znghy \/Z>h3 ZnyZnshy \ Ty Zngns | - (3:102)

Zhs Lhshy Zhs Lhshs Zhs Lhshs Zhs Lhsha \/ Zhs

where

: (3.103)

with .
Al = [f‘h(p2)} . (3.104)

Here prime denotes the derivative with respect to p?.

"We denote loop-corrected Higgs mass eigenstates by capital letters H; (i = 1, ...,5).
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3.3 Loop-corrected Neutralino and Chargino Masses

Within the OS and DR schemes defined for the neutralino and chargino sector, the electroweaki-
nos cannot all be renormalized OS, and there remain neutralinos and charginos that receive
loop corrections to their masses. In the following we define our procedure to determine the
loop-corrected masses for fermions in the general case where mixing contributions are presenﬂ
This procedure will be used for both the OS and the DR scheme. To give an intuitive definition
of the loop-corrected fermion masses, we express the propagator matrix in terms of left- and
right-handed Weyl spinors, 1'p = (¢r,%g)". In this basis, the tree-level propagator matrix is
given by

_ -1 . p'uUu —m
S(p) =-T(p)~", F(p)z(_m p“au)’ (3.105)
with

o' =(1,6) and &= (1,-3), (3.106)

where & = (0!, 02%,0?) denotes the three Pauli matrices. The mass matrix is given by

(7?1 7(7)1) . (3.107)

The loop-corrected propagator matrix in the Weyl basis (¢, g)7 is defined as

" ()2 _ SLs(p2) \ L
S(p) :7:(7’ ol @) —m B0 ) . (3.108)
—m+X%(p%)  prou(l+ X7 (p%))
The loop-corrected mass M is determined from the real pole p> = M? of the propagator
matrix satisfying the equation

prou(1+Re2l(p?))  —m+ ReZE5(p?)
ot . " _0. 3.109
ot etnets) (s + me Sy (3109

The solution of Eq. (3.109) is given by

p2 = (1= ReZE(p?)/m)(1 = Re 2(p?) /m) (3.110)
(14 ReSLGP)(1+ ReSRp2) |

which can be solved iteratively. When the fermion is OS, p?> = m?, the above relation is nothing
else but the OS condition obtained from Eq. (3.47)). For the case of n Dirac spinors, the 1PI

two-point function in the basis (1}, 9%, -+ @7,k %, -+ ,Yk) is a 2n X 2n matrix
- (proua(p?®) d(p?) )
T'(p) =1 _ . 3.111
) < cp?)  P'oubp?) (3110

1811 the literature there exist many papers that deal with loop-corrected masses for neutralinos and charginos in
the MSSM such as Refs. [23}[28}29] to name a few of them. For the definition of the loop-corrected masses applied
there, OS conditions for the field renormalization constants were applied to eliminate mixing effects between
fermions at tree-level mass values.
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The matrices a, b, c,d are 2 X 2 matrices in case of charginos and 5 x 5 matrices for neutralinos.
With my, generically denoting the mass of an electroweakino with index ¢, the matrices are
given by

ai;(p?) = &+ SE(p?) (3.112)
bii(P*) = 6+ (%) (3.113)
cij(p?) = —mydi + (07 (3.114)
dij(p*) = —mg, 05+ S (0%, (3.115)

with ¢, 57 = 1,2 for charginos and ¢,j = 1, ..., 5 for neutralinos.

The poles of the propagator matrix are the solutions of the equation
det[I'(p)] =0. (3.116)
This is equivalent to [30],

det[p? — ¢(p*)b~ (p*)d(p*)a™ (p*)] = 0. (3.117)

In practice, we solve the equation numerically through iteration together with the diagonalization
of the mass matrix My = ¢(p?)b=1(p?)d(p?)a=1(p?) to obtain the complex poles. The loop-
corrected masses are then obtained from the real parts of these complex poles. This procedure is
applied for the calculation of the loop-corrected masses for neutralinos using the OS definition of
the neutralino WFR constants. However, for the chargino sector the mass matrix Mg+ contains
infrared (IR) divergences at arbitrary momentum. We have implemented the approximation
used in Ref. [23] and calculate the loop-corrected chargino masses by using the formula

1 v .L 1 VIR 1 L
M)ZZ“ = mgr (1 — §Re P (m;j) — iRe P (m%)) — §Re X S(m%)
1 XTRs, o * t
—5Rexi " (m2,) + Re (U SMcV ) (3.118)
7 23
3.4 Loop-corrected Squark Masses and Mixings
In our DR scheme, the counterterms
omy, Omy, 5m%3, 5m?R, 5mlg)R, 0A:, 0Ap (3.119)

contain only the UV divergent parts. For the renormalization of the squark fields we use a
modified OS scheme. In the following, we will describe the details of this scheme. We first
compute the DR squark WFR constants by taking the UV-divergent parts of the OS countert-
erms, defined in Eqgs. to , with tree-level mass values. Using these DR squark WFR
constants, we then compute the loop-corrected squark masses Mg, that are obtained by solving
iteratively the equations )

M} =m2 —ReXy,(MZ2), i=1,2. (3.120)
We have assumed here that the off-diagonal renormalized self-energies vanish and that the
residues of the propagators are unity at the loop-corrected masses. This is equivalent to redefin-
ing the diagonal squark WFR constants at loop-corrected masses as

oxI™ (p?) AR

I ( qi ) 8p2 p2 —m?2 8p2 p2:M2 ? ( )
q i

7
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and the off-diagonal WFR constants as

E‘fdiV(mQ ) o E?jdiv(mg*j) 2‘1 (Mg )

§ZI(M2y =4 G —o WGk ik =1,2, ] (3.122)
J qk 2 2 2 2 sJ PR
mfij mg; Mfik mg,

In the above equations the renormalized self-energies are computed with the DR squark WFR
constants. We keep also the imaginary part of the two-point loop integrals in the renormalized
self-energies. Note that the WFR constants 5ij(Mq2k) will enter the evaluation of the decay

width. The diagonal WFR, constants 6Zg(M qgk) contain IR divergences evaluated at the loop-
corrected masses. These IR divergences will cancel exactly with those arising from the virtual
part and the real radiation contributions which are also evaluated at the loop-corrected masses.
We have verified that this statement is true for both the EW and the QCD corrections.

4 Higher-Order Corrections to the Two-Body Decays of the
Neutral Higgs Bosons

In this section, we present those two-body decay channels that we have improved by including the
missing NLO EW and QCD corrections. These channels are the decays into OS SM fermion pairs,
OS massive gauge bosons, into a pair of Higgs and gauge bosons, into chargino or neutralino
pairs and into top or bottom squark pairs. We will not discuss decays into gluon pairs, photon
pairs or Z~ which can be found in Ref. [13]. For these decays, NLO EW corrections are of
two-loop order as the leading order (LO) decay widths are already loop-induced. The inclusion
of the NLO EW corrections to Higgs-to-Higgs decays on the other hand have been presented in
Ref. [11] and the dominant two-loop corrections of the O(a;as) have been provided in Ref. [12].

For our computation we have used several programs. The generation of the amplitudes was
done by FeynArts [31,[32] using a model file created by SARAH [33-36]. The output amplitudes
were further processed using FeynCalc [37,38| for the simplification of the Dirac matrices and
for the tensor reduction. The one-loop integrals were evaluated with the help of LoopTools [39].

4.1 Higgs Boson Decays into Fermion Pairs

In order to make use of the published results of higher-order corrections in the literature for CP-
even and CP-odd Higgs bosons, it is convenient to write the interaction vertex of the complex
NMSSM Higgs boson h; (i =1,...,5) and quarks as

m —_ .
Lhigg = ==t ahi (9,0 — hiqq¥5) 1 (4.123)

where the scalar and pseudoscalar coupling coefficients for the up- and down-type quarks at
tree-level are given by

s Ri

P
Ihsdd = cs In,aqa = Rialp (4.124)
R'Q R.4
Tnuis = S; : I e = t; : (4.125)

where R;; (i,j = 1,5) denotes the matrix elements of the mixing matrix rotating the tree-level
Higgs gauge eigenstates to the mass eigenstates, see Eq. (2.8)).

Following the prescription outlined in our publication [13], we improve the widths of the
Higgs boson decays into quark pairs by including the missing SUSY-QCD and SUSY-EW
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corrections. We decompose the EW corrections into the known QED corrections arising from a
virtual photon exchange and a real photon emission and the remaining unknown EW corrections
from the genuine EW one-loop diagrams.

The one-loop SUSY-QCD corrections originate from loop diagrams with the exchange of
a gluino, while the SUSY-EW corrections stem from loop diagrams with weak gauge bosons
W, Z, fermions, Higgs bosons and their superpartners in the internal lines. They are both IR
finite quantities. The computation of the Higgs boson decays into a bottom quark pair shows
that the bottom quark mass counterterm contains terms proportional to tg. This contribution
is large in the large-tg regime and universal. In many cases, this contribution is the leading part
of the SUSY-QCD and SUSY-EW corrections and can be absorbed into an effective bottom
quark Yukawa coupling. This can be done by using an effective Lagrangian formalism [40-
42]. In Ref. [13], we have presented the effective bottom Yukawa couplings in the real and
complex NMSSM. We do not repeat every detail here but only quote the relevant formulae. In
Eq. we have given the tree-level scalar and pseudoscalar coupling coeflicients appearing in
the Feynman rule for the CP-violating Higgs bosons h; to a bottom-quark pair. The Feynman
rule for the effective coupling including the leading SUSY-QCD and SUSY-EW corrections
[40-49] (denoted by a tilde to mark the inclusion of the corrections) is also decomposed into a
scalar and a pseudoscalar part and reads |13]

imp . .
I Q;ibg —Wwibg] ) (4.126)
with
Tiop = Regyl and gy =Imgy! (4.127)
where
; 1 Ri Ri Rizv A Rosv
~h 11 12 13 . b Ris
L = A Ay +iRiat 1- - Ayl . (4.128
by (14 Ay) cos,8+sin,8 bt Vs b tRig anB( tan25> t Vs b] ( )

The correction Ay including the leading SUSY-QCD and SUSY-EW corrections can be cast
into the form

QCD Iw
AyF7 + A}

Ay A 7 (4.129)
with the one-loop corrections given by
AQOP % as(:R) M; i3y tan BT (m2 ,m2 m2) | (4.130)
AV = O‘ti‘;R) Af il tan BI(m2 m? el | (4.131)
Ay = Tl a2 ), (4.122)

where oy = y?/(47) with y, = v/2my/(vsin B) is the top-Yukawa coupling and Cr = 4/3. The
generic function [ is defined as

ablog & + be log & + ca log €
I(a,b,c) = b ¢ o 4.1
(a,,¢) (@a—b)(b—c)(a——o) (4.133)
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Note that the scale of a; in the SUSY-QCD corrections has been set equal to up = (mj +
mg, + |Mg|)/3, while in the SUSY-EW corrections it is up = (mg, + mg, + |u[)/3. The strong
coupling constant oy is evaluated with five active flavors.

The decay width of the CP-violating NMSSM Higgs bosons H; into g, including the QCD,
SUSY-QCD, QED, EW and SUSY-EW corrections, can then be cast into the form

_ 3GrMpy,
T(H; = qq) = “aor ma(Mpy,) [ (1 - dz)*? AZcpAQEDT ;s qg
+(1—42)"? ALcp ALl Ll (4.134)

— 2 2
where z, = mg/Mp., and

5 *
S _
FHi%qti - Zzwghjqq (Z Zlkghqu>
Jj=1 k=1

i 5 5 *

+ 2R,e Z] ghjqq Z ZH 5Mrem 3 hk — qq))
L k=1
[ 5 5 *

+ 2Re 23 Ghs0q Z Z{}, 05 (hy — qq)) (4.135)

k=1
and
5 *
p _
FHi_)Qti - ZZU hyqq <Z ikd hqu>

k=1

(ZHy (SM™™F (hy, — q@) + IMazmix(hi — 47))°

Mm

+ 2Re Zzw Thaa
7=1

e
Il

1
5

5 *
+ 2Re Z i1 9100 (Z Zik O (i — QCY)> : (4.136)
k=1

In the numerical analysis presented in Sec. |5| we will use the quantity TSEWHQCD) for the
decays into fermion pairs to denote the partial decay widths including the SUSY-EW and (for
the quarks) SUSY-QCD corrections, i.e. exactly the partial decay width as defined in Eq.
with the loop-corrected I'S and I'? given in Eqs. (4.135)) and (4.136)), respectively. In contrast, we
will denote by I'*®® the partial decay widths that only include the A, corrections, i.e. Eq.
but with I and I'" given by the first lines in Eqs. (4.135)) and (4.136)), respectively.

Note that in dMremS/P 63/ P and OIMGzmix (which will be explained below) we use the
tree-level Higgs couplings ghqu to the quarks. We take the occasion to remind the reader that
tree-level mass eigenstates are always denoted by h; and loop-corrected ones by H;. Unless stated
otherwise, this means that we use tree-level couplings for external h; but with loop-corrected
masses, and for particles inside loop diagrams we always use tree-level masses and tree-level
couplings. We comment on the various terms appearing in Eqgs. (4.134)), (4.135]) and (4.136]) one
by one. The one-loop QED corrections, denoted by Aqrp have been known in the SM for a
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long time, cf. Refs. [50-55]. In the limit m, < Mp, they are given by Ref. [56]|E|7

2

Afp = Abep = 1+ 2Q2 ( — 3log ]:;2 > , (4.137)
where (), denotes the electric charge of the quark ¢q. The one-loop SM QCD corrections are
similar to the QED corrections, with the replacement of Q2 a by (4/ 3)a5(M12{i). It is well-known
that the SM QCD corrections are rather large. The large logarithmically enhanced part has been
absorbed in Eq. into the running MS quark mass mq(Mfﬂ) at the corresponding Higgs
mass scale M, to improve the convergence of the perturbative expansion. The QCD corrections
can be taken over from the MSSM case by adapting the Higgs couplings [50-53,/59H68]. After
subtracting the enhanced part, the remaining QCD correction Agcp reads

2
17 as(M) as(Mg,)
Adep = Abgp=1+ 3%+(35.94—1.359NF) %

3
ag(M?
+(164.14 — 25.77Np + 0.259N7) <S(H)>
m

2 4
2 3 O‘S(MHi)
+(39.34 — 220.9Np + 9.685NF — 0.0205N7) | ——== | (4.138)

where N = 5 active flavors are taken into account. In the CP-conserving case we also include

top quark induced corrections Af P by adding them to Agcp. They can be taken over from
the MSSM case and read [50-53,59H67],

S 2 2 _2
Ih,tt O‘s(MH‘) 2 MH 1 2 mb(MH)
Af = = < : 1.57 — S log —5* + < log™ ———5—= (4.139)
Invb T 3 " omy 9 Mg,
P 2 2 _9
Inoti My, Mg, 1 My,
AY = <a5( HJ) [3.83—loggl +  log” m”]\(ﬂm)] . (4.140)
Inibb T mi ;i

In the decay into a bottom quark pair, the large universal corrections proportional to O(astg, aptg)

are resummed into the effective bottom Yukawa couplings g gh wpe given in Eqgs. (4.127)) and (4.128
while in the decay into top quarks we use the tree-level values of the effective couplings, 7.e.

9

~S,P S, P
Initt = Iyt - (4.141)
with gp, 4 given in Eq. (4.125). The remaining SUSY-QCD and SUSY-EW corrections are
collected in M5 M F and OIMGz mix, where
5Mrem,S/P _ 5Mge(§lé%/P + 5MrSeEn;1},VS/P + 5Mcounter,S/P ’ (4142)

with dMeemter.S/P denoting the counterterm contributions. Since in the decay into bottom
quarks we have resummed the dominant corrections into the effective couplings, in the re-
maining SUSY-QCD and SUSY-EW correction we have to subtract these corrections to avoid

9Note that actually in the code we have programmed the QCD corrections for the completely massive case at
next-to-leading order, translated to the MS scheme, and interpolated with the massless expression for large Higgs
masses, according to the implementation in HDECAY [57}/5§].
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double counting by adding appropriate counterterms. This is taken care of by the last terms in

Eqgs. (4.135)) and (4.136]), respectively, to which we will come back below.

The term 0 M Gz mix is the sum of the contributions from the mixing of the CP-odd component
of the Higgs bosons with the neutral Goldstone boson G and with the Z boson, respectively.
We use the tree-level masses for the Higgs bosons in the loops in order to ensure the proper
cancellation of the UV-divergent pieces, but we use the loop-corrected Higgs boson masses for
the external particles in the evaluation of the wave-function renormalization factors, of the
amplitudes, and of the decay widths. It is well-known that the use of loop-corrected Higgs
boson masses for the external particles violates the Slavnov-Taylor identity of the amplitude
IMGzmix [11527,69]. To restore the gauge symmetry one should use the tree-level masses for
both the external and the internal Higgs bosons. This causes a mismatch with the phase-space
factor (where we use the loop-corrected Higgs boson masses) and with the evaluation of the
other amplitudes. We therefore use the loop-corrected masses for the external particles also in
these contributions, which are then computed in the unitary gauge. Note that we apply the
same method also for the other decays that contain the contribution Mgz mix. In Ref. [11],
OMaGz mix was computed only for the ith tree-level mass eigenstate of the decay H; — ¢g. This
may cause instabilities in the case of large mixing between Higgs boson mass eigenstates at
loop-level. We avoid this by multiplying it also with the WFR factor Z¥.

The remaining SUSY—-QCD and SUSY-EW corrections are computed in the Feynman dia-
grammatic approach. The corrections consist of the contributions from genuine one-loop dia-
grams and the counterterms. The counterterms are given by

nter _ S/P
SMEmEnSIE (1 5 gq) = AT (4.143)
with the expressions for the scalar and pseudoscalar parts, 5/\55 :;_, readin
5
5mb ov 505 R' 5Zh'h Rkl h; 6ZbL h; 6ZbR
oA — - — - - * 4.144
hibb <mb " > cs +Z 2 ¢s + 91, 2 + o — 5 ( )
k=1
Smy v 57 Y/
P b h h h; 94bL hix O4bR
0N = < my v ) Riatp + Z — " Rrat+g iy 9L (4.145)
5mt ov 585 ng 5Zh~h ng h; 5ZtL h; 5ZtR
N = — - — - =& it § 4.146
hitt < me v 5,8 ) + Pt 2 8,8 + tL 9 + gtL ) ( )
5 ~ ~
5mt ov 85 Rl4 07 hih Rk4 h: 5ZtL h.*éZtR
SN 5= ( ——— ) + ar — g , (4.147)
my v 83 tg pt 2 tg 2 2
with
gy =2 iR, he Riz  Ria (4.148)
s 58 tg
The counterterm dv for the VEV is given by
5 G (OMZ,  SMZ\  SME
L 57 4w < W _ 2Z> W (4.149)
v 2s5,, \ My, M 2My,

2ONote, that the angle 3 in the sense of a mixing angle does not get renormalized.
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The electric coupling e, the W and Z boson masses and tan 8 are renormalized according to the
Higgs sector. The top and bottom quarks are renormalized OS using both the EMT and the
Denner descriptions. The terms being related to left-handed and right-handed OS wave function
renormalization constants for the quarks (0Z,7/r) and anti-quarks (6Z,z/r) (¢ = t,b) areiﬂ

~ 07 L/R+6ZqL/R
6 Zgrp =—
2
0
= = S50 mg) = maz 5 [ma (S 07) + 5570%) + 2007 + 50 07)] o, - (4150)

The DR wave function renormalization constants for the Higgs bosons are denoted by 0Zn;hy, -
We have checked the UV-finiteness of the SUSY-QCD and SUSY-EW corrections to the decay
amplitude.

As mentioned above, in the decay into bottom quarks we have to take care to avoid double
counting after resumming the dominant part of the SUSY-QCD and SUSY-EW corrections
into the effective bottom coupling. To subtract these contributions we add in the decays into a

b-quark pair the following counterterms to Eq. (4.135]) and Eq. (4.136)),

T Rii Rz R R
6§1b(hi — bb) = <1 - 3U> ReA;, — <Ri4t5 + ~ + R¢5’U> ImAy, (4.151)
cg s Vg 196; Vs
5§1b(hz — bB) = <Ri4t,3 + Ria —+ Rig,v) ReAy + <R'll — @ _ W) ImAb7(4‘152)
tg Vg cg 53 Vg

where Ay equals ASCD — Ay and Aglw for the SUSY-QCD and SUSY-EW corrections, respec-
tively. For the decays into a top-quark pair, these contributions are
5P (hy — 1) = 0. (4.153)

In the decays into strange quarks we also include the one-loop SUSY—-QCD corrections. They
are obtained after substituting A; as given in Eq. (4.129)) with

QCD
A= D

= 4.154
1+ 44 . ( )

S
The decays into charm quarks are treated as the decays into top quarks, with the appropriate
replacements.

The decays into lepton final states [ = e, u, 7 do not receive QCD corrections. Their SUSY—
EW corrected decay width is given by

_ GrMpyg,
I'(H; = 1) = 4i/§:l m [ (1 — da;)*/? A%EDFISLL__),,-
+ (1 — 4ay) Y2 ASEDrzﬁu‘] ; (4.155)

where x; = ml2/M12{Z The ASI{ZJD are given by Eq. (4.137) after replacing (Qq, mq) with (Qr, my).
Furthermore, we resum the dominant SUSY-EW corrections into the effective couplings f]}iﬁ

2In the Denner description, 34 is replaced by ﬁéZq.
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They are obtained from the effective couplings g, ,; in Eqgs. (4.127) and (4.128) after replacing
Ay with A;, where A; in the complex case is given by

o2 . o2
A= a2 M7 pigts I(m%,mi, M%) + mM2 pigtsl(m2,, | Mal?, | peg?) - (4.156)
The contributions F ” are obtained from the ones given in Egs. (4.135)) and (4.136]) after

replacing ¢ — .

4.2 Higgs Boson Decays into WTW~ and ZZ

We now address the higher-order corrections to the Higgs boson decays into gauge boson pairs.
We consider corrections only for on-shell decays. Off-shell decays are still treated at tree-level
as done in NMSSMCALC [13|. The one-loop corrected decay amplitude for the decay of a CP-
violating NMSSM Higgs boson H; (i = 1,...,5) into a pair of massive gauge bosons V = Z, W¥,
Hi(p) = V(k1)V (k2), is given by

Z ZI(Miyo(hy = VV) + MY (hj — VV)) | eulkr)en(k2) | (4.157)

where €, (k1) and €,(k2) are the polarization vectors of the two gauge bosons with four-momenta
k1 and ko, respectively. Note that the GZ, mix contribution vanishes. The tree-level amplitudes
for the two final-state pairs are

Mﬁ;e(h]’ — VV) = glw./\/ltree(hj — VV), (4,158)
= g"gnvv (cgRj1 + sgRj2) (4.159)
with
My for V=W »
h;vv = el for V= 7 (4.160)
SOy Cow

And the tensor structure of the NLO corrections is given by
M (hy = VV) = (MY + MGD)g" + MRS + M 7 ke o, (4.161)

The genuine one-loop triangle diagram contributions are denoted by ./\/l(z) (1 =1,2,3) and the
counterterm contribution by M%:F . The term ./\/lgi) vanishes in the CP-conserving case.

The decay width for the decay H; — V'V, including the NLO corrections, is given by
I(H;, » VV)=R([I"(H; - VV)+I'""(H, - VV)), (4.162)

where R=1/2 for V.= 7 and R =1 for V. = W. The improved tree-level decay width reads

2

5
foq Z Zthree(hj - V)| (4.163)

=1

2 2
T — ry My,

t _
T (H;, - VV) = TS
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with

2
ry = Mi, (4.164)
AMZ
and
fog =418 —4dry +3. (4.165)

The NLO partial width for the Z-boson pair final state contains only virtual contributions,
MYH;, » 22)=T""Y(H; - Z7Z) . (4.166)
For the W-boson pair final state it contains both virtual and real radiation contributions,
DY H, > WIW ™) =D (H; - WHW ) + T (H; - W) . (4.167)
The virtual part is given by

2 _ 2 5 5
T — rv My o .
= WRG{ > Zf Miyeo(hy — VV) [fgg > (Zi)x
H; j=1 =1
5
(M( (hy = VV) + MST*(hy — VV)) + M fop > (ZHY M (hy Vv)} } ,
=1

IY'(H; » VV)

(4.168)
with
fop=2rt —3ry +1. (4.169)

The formulae for M&) and Mﬁ) are quite lengthy and we do not display them explicitly here.
The counterterm contributions for V = W and Z, respectively, read
5M5V B 056y,

2
2My,

MG (hy = WHEW ™) = Migeo(h; — WW) <5Ze+ +5ZW> (4.170)

S0y,
eMW

SO

+

5
1
(—SﬁC%Rﬂ + C%RjZ) 5tﬁ + 5 Z 6Zhjthtree(hl — WW)
=1
5M% B 056y, B dcoy,
QM% Sy Coy,

MST(h; = Z2Z) = Myeelhj — Z2) (5Ze+ +5ZZ> (4.171)

eMy

89W C@W

5
1
(—SﬁC%Rﬂ + C%Rjg) 5t5 + 3 Z 5Zhjthtree(hl — ZZ) .
=1

For the decay H; — WTW ™ we have to include to the contribution from the radiation of a
real photon in order to get an infrared-finite result. This contribution is given by

[ (H; — W*W ™) = Rg ’ Z Z Mireo(hj — vl (4.172)

64m 3M
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where

1
Rs = e AME, (—4rdy + 4rw — 3)(I1 + I + M3 Iy + M3 D) + AI7 + 413
+ 2172 4 2100 + AT + 8Myy, (83, — 12rw 4+ 10rw — 3) 12| . (4.173)

The formula is in agreement with the result given in Ref. [70]. Here, we have neglected the
arguments of the Bremsstrahlung integrals 11?117’.'.'_'7’1?22 (Mp,, My, My ) for the sake of readability.
In terms of the photon momentum ¢, the W momentum k; and the W~ momentum ko, these
integrals are defined as

d3ky d3ky d3q (£2qgkj,) ... (£2qk;,.)

[0 9m (M, My, M S LT L 5 oy — kg — by —
i (M, M, M) /ka 2k20 2q0 (o= =k>=q) (£2qks, ) . .. (£2qki,)

. (4.174)

where kg is the four-momentum of H; and 4;, jr = 0,1,2. The plus signs correspond to ki, ks,
the minus sign to kg. Their analytic expressions are given in Ref. [22].

We have checked the UV finiteness of the NLO decay widths of both the H; — ZZ and
the H; — WTW~ decays. The IR divergence in the decay H; — W+W ™, however, is more
demanding. At strict one-loop level, i.e. one must use the tree-level Higgs boson mass for the
external Higgs boson and the unity WFR factor matrix, the IR finiteness if fulfilled. However,
the use of the loop-corrected Higgs masses and the WFR, factors Zg breaks the IR finiteness,
because different orders of perturbation theory are mixed in this case. At tree level there exists
a relation between the coupling of the neutral Higgs boson with the charged Goldstone bosons
and the coupling of the neutral Higgs boson with the W bosons. Defining the Lagrangian for
the interaction between Higgs and Goldstone bosons by

Ly,cra- = 9nara-hiGTG™ + hee., (4.175)
it is given by
m2
InjGra- == M (caRj1 + 55Rj2)gn,w+w- (4.176)

with the tree-level Higgs boson mass my,. In order to obtain an IR-finite result while using the
loop-corrected mass Mp,, we chose to modify the coupling gh,GHG- 88

2
InjGra == M (csRj1 + sgRj2) gnw+w- (4.177)

where the tree-level mass m% has been replaced by the loop-corrected mass M%I of the decaying

Higgs boson H;. We verified that the modification of this coupling ensures IR finiteness while
not affecting UV finiteness. The same method has been used in Ref. [71]. While taking the loop-
corrected mass for the external decaying Higgs boson ensures compatibility with the observation
of a 125 GeV SM-like Higgs boson, this approach breaks gauge invariance, however. For more
details on this issue, we refer to an upcoming publication [72].

For the non-SM-like neutral Higgs bosons, the tree-level coupling g,y is in general sup-
pressed, in particular in case the Higgs boson with mass 125.09 GeV behaves very SM-like.
In this case, the one-loop corrected decay width I''V(H; — VV) can be even larger than the
tree-level improved one I''"¢(H; — V' V). This becomes a problem when the one-loop correction
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is negative, as then the one-loop corrected partial decay width becomes negative. In this case,
we have to include the one-loop squared term, which is formally of higher order. For the decay
H; — ZZ, we will include the one-loop squared contribution@ In particular, the decay width
now is given by

T(H; — Z7) = % (T"(H; — ZZ) + T (H; — ZZ) + TYS(H; — 22)) , (4.178)
where
e, — TvM2
1Ls _ 4 1)+CT
MYS(H, - 22) = W{ Zz WHCT . — 72) (4.179)
(fggZz MDYy = 22) + M, fngZ M (ny — ZZ))
=1
> 2 ° 2 )
+ MY (ry — 1)2(2 ZE M (h; — ZZ)) <Z zZH M (h, — ZZ))
Jj=1 =1

5 5 *
1
M rvrv (S ziMP; — 22)) (Z ZH M (b — ZZ)) }

j=1 =1

where M(1)+CT is the sum of M&) + MchT For the decay H; — WTW ™, the form factor

./\/lgL) T contains TR divergences so that we cannot treat it in the same way as in the decay
H; — ZZ. Note, however, that the 1L decay width I'""(H; — WW) can always be divided into
three parts that are separately UV and IR finite: the (s)fermion contribution arising from loops
containing SM model fermions and their superpartners, the chargino/neutralino contribution
from loops with internal charginos and neutralinos and the gauge/Higgs contribution from loops
with gauge and Higgs particles. In many cases the dominant contribution is the (s)fermion part.
That was also observed in the MSSM case [71,[73]. We therefore add to the one-loop corrected
decay with H; — WTW ™ the one-loop squared contribution from the (s)fermion part only. This
part is IR finite as it solely involves fermions and sfermions but no photons. Both for the decays
into ZZ and into WW we include the respective one-loop squared terms in case the one-loop
contribution is larger than 80% of the tree-level decay width.

4.3 Higgs Boson Decays into a Z Boson and a Higgs Boson

The one-loop corrected amplitude for the decay of a heavy Higgs boson H; with four-momentum
p into a light Higgs boson H; and a Z boson, with four-momenta ki and ko, respectively,
H;(p) — Hj(k1)Z(k2), can be written as

MlL(Hi — H]Z) = Eu(kg)p#MlL(Hi — H]Z) s (4180)

22Note, however, that the thus obtained result has to be taken with caution. The complete two-loop calculation
contributes further terms that might cause the complete two-loop result to differ considerably from the result
obtained in the here applied approximation. Moreover, the inclusion of (part of) the two-loop corrections explicitly
includes a dependence on the renormalization scheme chosen at one-loop order that would need to be cancelled
by transforming the input parameters appropriately so as not to become inconsistent. We still use this approach
in order to obtain physical, i.e. positive, partial decay widths and hence physical branching ratios. Since the
partial decay width is suppressed here anyway, the effect of the difference between the approximation and the
full two-loop result on the branching ratio is expected to be subleading. Still, the code NMSSMCALC will print out
a warning to make the user aware of this issue.
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where

G Z,mix
My (H; — H,Z) Z ZH 2l (M) 7+ ML+ MEZES) (4.181)
k' l'=1

The tree-level expression ./\/lgg)hj , reads

(&

0
Mgi)hjz =

(85 (Ri4Rj1 — Rile4) +cp (—Ri4Rj2 + RiQRj4)) , (4.182)
SOy Cow
and the one-loop term MS}LJ , consists of the genuine one-loop diagram contribution and the
counterterm part given by

5
1 0 0 1 0

MSE = 55 <5Zhihi/M§Zi2h].Z+5Zhjhi/M§zq;;Li/Z)+§M§Li)hjZézZ
=1

5
M), (526 - %V?W) . (4.183)

80W CQW
Also here, the contribution from the one-loop diagrams with the transition h; — Z(G), Mi%f;x,
is calculated in the unitary gauge. The improved tree-level decay width is given by
2

IY(H; — H;jZ) = Runz Z Z;; ZH/M huth 2 (4.184)
/=1

and the NLO decay width by
M™NOH, — H;Z) = Ruwpz|MiL(Hi — H;Z)|?, (4.185)
with the 2-particle phase-space factor

/\3/2(M1%I¢7 MIZ{J, , M%)
647rMI3{iM% ’

Rynz = Mz, y,2) =22 + oy + 2% — 22y — 202 — 22 . (4.186)

Since the formulae for the 1-loop amplitudes are quite lengthy we do not display them explicitly
here. Note that, as in the decay into massive gauge bosons, in Eq. we also included,
keeping in mind the caveat mentioned there, one-loop contributions squared as the one-loop
corrections can be large and negative.

4.4 Higgs Boson Decays into Neutralinos and Charginos

The couplings of a neutral Higgs boson h; with the electroweakinos can be defined as

e
2sp

—1

(gﬁif(jf(kPL + g’ﬁf(k}%jPR) ) (4.187)

w

where ¥ stands generically for the neutralinos and charginos and gh e (gthkX]> . At tree
level, the left- and right-handed coefficients for the Higgs-chargino couplings are given in terms
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of [13]

Av (R3+1R5)U Vise ips .
L _ v v j2 * Y7k —ioy o )
Inixf s~ V2Mgco,, + V2U Vipe ™ (Riz — icgRia)
+V2U5L Vi (R — isgRia) | (4.188)
where i = 1,...,5, j,k = 1,2, and for the Higgs-neutralino couplings we have
1 . 1 * * —1
9r s0v0 = | —Ni5 (o Noma = 860 Nyvt) (Rit — isgRia) — —— N (oy Nz — s0, Nopg) €7
iX] Xm Coyy Coyy

AN N e (Rig +icgRia)  ANENy 4 (Rit +issRia)
V2Mzcy, V2Mzcp,,
v(Riz +iR4s5)e "‘PS(2/<5NZ5 — AN} Ny 3)
V2 MZCBW
with [,m = 1,...,5. The decay width for the decay of a Higgs boson H; into a neutralino pair

or a chargino pair including higher order corrections is given by

D(H; = XjXk) = R (rtr%(HZ- — XjXk) + rMtH; — XiXk)) s (4.190)

(Rig — iC,BRi4> —

+1m|, (4.189)

where R = 1/2 for identical final states and R = 1 otherwise. The improved tree-level decay
width reads

<o 2 2 2 2 2 R,0 2
O, ) = R M M) | (=0 08 ) (1M IS )
R,0x%
—4My, My, Re [MH 9 XkMHinXk]] , (4.191)
where the 2-body phase space factor is
A2 (x,y, 2)
Ry(x,y, _— 4.192
2(2,,2) 16m23/2 ( )
in terms of the improved tree-level amplitude
5
L/RO  _ H © L/R
=1 w
The one-loop decay width for the decay into a neutralino pair is given by
MU (H; = 39%0) = TV (H; = X9%7) (4.194)
and for the decay into a chargino pair it is
DU (H = X)X ) = TV (H = X x) + T (H = XX ) (4.195)

where the virtual contribution can be cast into the form

T (H; = XjXn) = 2Ra(My, M3, M)
2 2 2 L1x RO R+
{ <MHz~ - Mg, - Mn) (MH v Mizm T MHixjkaHixij

— 2My, Mg, Re M5 - MpY o 4 MBSO ML’1~*~]], (4.196)

Hixixe” " "HiXjXk Hixixe” " "HiXjXk
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with the left- and right-handed one-loop amplitudes containing genuine triangle, counterterm
and 'GZ, mix’ contributions,

L/R 1 L/R,A L/R,CT L/R,GZ mix
7,Xij Z Z ( h, /)Zj)zk + Mh ’X Xk + Mh ’X]Xk ) . (4197)

We do not display explicitly here the lengthy expressions for the triangle and 'GZ, mix’ con-
tributions. The explicit expressions of the counterterm amplitudes for the decays into neutralinos

are

rer € Z L A L X’ Z L Zx°
Myisozy = 56, [,_ Inyso59 0 Zhitis + Z Inix, 590 %L.5 + Inix0x2, 0L kre

e 0s e . s )
+ gii;z(?*) (526 - 9W> + 9 [_ Nl3Nm16t9W (Ril - ZSﬁRm)
w SOy
AU
V2Mzep,,
(Riz + icgRia) + NjsNpy (Rit + isgRia) + (Riz + iRis)e'?* NjyNv3)
(571) i 57)\ _ (5M% B 569W n \/51)%(7?4'3 + iRig,)eil’Dle*sN;:m
v A 2MZ ey Mzcq,,

Sv ok OMZ 6
x (24202 0w ) s (4.198)
v K 2M7 Cowr

=+ NMN* 16 w“étgw (RZ‘Q — ngRi4) — (NZEN;?)QW

and for the decays into charginos they read

rcr € L L s I S+
Misic = Tog, {Z Thsiig 0 mta + D G0 Ziyi+ D ghix;x;,‘SZL,kk/]
i'=1,5 7'=1,2 k'=1,2
(& * Y% —ipy . * % . 539W
+ — ( lek2€ (7—\)4;2 — ZCﬁRM) + UjQVkl (Ril — 28/37—\)4'4)) 5Ze —

f aw 89W

Us Vi e¥s (Rig + iR,
Vi (Ria 1 Ris) (4.199)

V2

The right-handed counterterm amplitudes are equal to the complex conjugate of the correspond-
ing left-handed parts after interchanging the indices of the charginos and neutralinos in the final
state. The real photon contribution for the decays into a chargino pair is expressed in terms of
the Bremsstrahlung integrals as

2

— e
= X5 = gy

{ (|MHX Xk\ + \MHX wl ) (I3 + I +21)
— <11 + Iy — 2(M% — M2, — M? )15 +2M? I; + QM?IQQ)
v X Xk X Xk
2 2 2 R0 2
X [ <MHZ o ng o Mgk> (‘M 1X]Xk| +|M ZX]Xk’ )

L0 R,0%
—4M+ My-Re [MHi)ZijMHi)ngk]} } : (4.200)
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where the arguments of the Bremsstrahlung integrals Ifllzj;" (Mpy;,, Mgf,MXI:) have been ne-
glected. Note that we use the loop-corrected masses for the external] Higgs boson and the
external charginos and neutralinos in the tree-level, virtual and real contributions. However,
for particles inside loops we use the tree-level masses and tree-level couplings. This does not
affect the UV-finiteness but can break the IR-finiteness in the decay into a pair of charginos.
We overcome this problem by replacing the tree-level mass of the chargino in the loop diagrams
with a photon by the corresponding loop-corrected chargino mass. Our treatment is different
from Ref. |9] where the authors define an IR divergent counterterm to cancel the mismatch
between the real and virtual contributions. Note finally, that in case the NLO decay width
into neutralino final states becomes negative, the improved tree-level decay width is calculated
instead in NMSSMCALCEW, including the Z* factor.

4.5 Higgs Boson Decays into Squark Pairs

The NLO corrections to the decay of a neutral Higgs boson into a squark-antisquark pair consist
of the QCD and EW corrections. In the CP-conserving NMSSM, the NLO corrections to the
decay of a CP-odd Higgs boson into a stop pair have been calculated and discussed in Ref. [6].
We extend this computation to the CP-violating case and include also the decay into a sbottom-
antisbottom pair in this paper. The NLO QCD corrections are positive and large. They can be
larger than 100% as observed in Ref. [6] while the EW correction are negative and can be of up
to —40%. In our calculation, we have implemented both the OS and the DR scheme. We have
three options here. First, the seven parameters are renormalized in the OS scheme. Second, the
parameters of the stop sector, M, M, 5 My Ay, are renormalized in the OS scheme while the

remaining parameters, mp, mp. Ap, are renormalized in the DR scheme. Third, all parameters

are renormalized in the DR scheme. The loop-corrected decay width is decomposed into the
improved tree-level, one-loop QCD and one-loop EW decay widths,

- - . 1 o~
D(H; — Gd7) = D" (H; = §3) + Dolp (Hi = @) + TRy (Hi = §d) - (4.201)
Denoting the color factor by Np, with Nrp = 3, the improved tree-level decay width is given by
T (H; — ;) = NeRo(Mfy,, M2, MZ )| My g 0|7, (4.202)
in terms of the improved tree-level amplitude
iy Z Z{hgn,qq - (4.203)

i1=1

The tree-level Higgs-squark-squark couplings are given by [13]

ey [mR (UhUh +UGUL)  me (USUL R+ URULFY)
_l’_

Iniit; = S0y, Cour 35M% ZSﬂM%
+ % (csRi1 — 55Ra2) ((4czw — )ULUL, +4s3, Uf;U,ﬁz) } , (4.204)
oty iR (U8R - UBUR) o (vOLE + Uh0R)
TS — [ 502 * 205 M2
_ é (csRi1 — s5Ra2) ((2c3W + OUBUL, + 253 UL Um) } (4.205)
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with

Aveg (Riz + iRis) eips

V2
Avsg (Riz +iRs) i(esteu)
V2

The one-loop QCD and EW contributions to the decay width are given by the sum of the
virtual and real contributions, respectively,

= A:efwu (Riz —icgRia) — preft (Ri1 + i58Ria) —

(4.206)

Fy = AZ (Ril — iSﬁRM) — ,ueffei“"" (Rig + iCﬁ'RM) — (4.207)

1 ~ ~% vir ~ ~%
Fégng/Ew(Hi — Qij) = I_‘Q(gD/EV\/(I{ — QJQk) + FQCD/EW(I_IZ' — Qijg/’V) . (4.208)

For the virtual QCD contribution we have

T88n(H: — 4i@y) = NpRo(ME, M2, MZ) x
A,QCD CT,QCD
quk (ZZ hyr G Mh,%qk ))] . (4.209)

with the 2-body phase space factor Ry defined in Eq. (4.192)). The expression for the virtual
EW contribution is different from the QCD one due to an extra contribution containing the
transition h; — G, Z. Explicitly, we have

2Re

FVlrt(H —>QJQk) = NFR2(M[21[27M,§2]7M[121€)X

5
2Re | M50 50 2 (MEEY, + METE M) ] 0
=1

hir ;G

The explicit expressions for the counterterm contributions are quite lengthy and given in Ap-
pendix [A] We do not display, however, the more cumbersome amplitudes of the virtual QCD

and EW contributions, Mﬁ (3(3]]3 nd M2 h; q 5*7 respectively.

The real photon radiation contribution in the EW corrections is expressed in terms of the
Bremsstrahlung integrals as

N
Tiw (Hi = 4@v7) = M{an( ~ L — I~ M2 Iy
—M Iy + (Mj, — M7 — M3, )Il2>|Mqu a: 2. (4.211)

As usual, we have neglected the arguments of the Bremsstrahlung integrals Il(MJ%Ii, M gj , M q?k)
and Ilm(M?{i, M(%,Mgk) (I,m =1,2and j,k = 1,2). The real gluon radiation contribution in the
QCD corrections can be obtained from the EW real photon radiation contribution by replacing
Qza with CpaZ, where Cp = 4/3 for SU(3)c. We have checked the UV and IR finiteness of
the EW and QCD corrections. We have compared numerically with the NLO EW and QCD
corrections in the OS scheme for the decay Ay — #1fy [6] using their description in the real
NMSSM and found full agreement.
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5 Numerical Results

To illustrate the importance of the higher-order corrections to the decays of the light and heavy
neutral Higgs bosons and to test the stability of the NLO results in various regions of the
parameter space we have performed a scan in the NMSSM parameter space. The parameter
points are checked against compatibility with the experimental constraints from the Higgs data
by using the programs HiggsBounds5.3.2 [74-76] and HiggsSignals2.2.3 [77]. These programs
require as input the effective couplings of the Higgs bosons, normalized to the corresponding SM
values, as well as the masses, the widths and the branching ratios of the Higgs bosons. These have
been obtained for the SM and NMSSM Higgs bosons from the Fortran code NMSSMCALC [13,(78].
One of the neutral CP-even Higgs bosons is identified with the SM-like Higgs boson — it will be
called h from now on — and its mass is required to lie in the range

123 GeV < my, < 127 GeV . (5.212)

For the SM input parameters we use the following values |79}80]

a(Mz) = 1/127.955, aMS(My) = 0.1181

My = 91.1876 GeV My = 80.379 GeV

my = 172.74 GeV mMS(mM) = 4.18 GeV

me = 1.274 GeV ms = 95.0 MeV (5.213)
My = 2.2 MeV mg = 4.7 MeV

m, = 1.77682 GeV  m, = 105.6584 MeV

Me = 510.9989 keV Gr = 1.16637-107° GeV~2.

Concerning the NMSSM sector, we follow the SUSY Les Houches Accord (SLHA) format [81] in
which the soft SUSY breaking masses and trilinear couplings are understood as DR parameters
at the scale

pr =M = /mg m;, . (5.214)

This is also the renormalization scale that we use in the computation of the higher-order cor-
rections. Note that we chose the charged Higgs boson mass as an OS input parameter. The
computation of the O(ayas + a?) corrections to the Higgs boson masses is done in the DR
renormalization scheme of the top/stop sector. We have included the contribution of the gauge
parameters gi, g» into the conversion from pole to DR top masses. In Table |lf we summarize
the ranges applied in our parameter scan. In order to ensure perturbativity we apply the rough
constraint

M4 k2 <072, (5.215)

The remaining mass parameters of the third generation sfermions that are not listed in the table
are chosen as

Ab = AT =2 TeV, and Mmsp = ng = ml;R =3TeV. (5.216)
The mass parameters of the first and second generation sfermions are set to
Myg,ér = md~R:§R = le,z = mil,? = Meg g = 3 TeV . (5.217)

We have performed two scans. In the first (smaller) scan we took care to select only such
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tg A k | My My Ms A ma, Mg, Mpgs Ag | pes]
in TeV

1 0 -07]05 05 1.8 -3 06 1 05 -2 02

min

20 0.7 0.7 1 1 25 3 3 3 1.5 2 1

max

Table 1: Input parameters for the NMSSM scan. All parameters have been varied independently between the
given minimum and maximum values.

scenarios where the lightest CP-even Higgs boson Hj is singlet-like and the second lightest CP-
even Higgs boson is the SM-like Higgs boson. We refer to this scan as scan! in the following. In
the second (larger) scan, called scan2 in the following, we only retained scenarios where the SM-
like Higgs boson is the lightest CP-even Higgs boson. Both scans allow for points that have a y?
computed by HiggsSignals-2.2.3 that is consistent with an SM x? within 20. All the branching
ratios shown in the following have been calculated by implementing the here presented higher-
order corrections to the various decay widths in NMSSMCALC. In this way the new EW corrections
are combined with the state-of-the-art higher-order QCD corrections already implemented in
NMSSMCALC. Note, however, that the EW corrections are only taken into account if the respective
decay is kinematically allowed. Otherwise, the corresponding decay width without the higher-
order corrections discussed in this paper, which only apply for on-shell decays, are taken into
account in the computation of the total decay width and branching ratios.

5.1 Decays into SM Fermion Pairs

In the old implementation in NMSSMCALC the tree-level couplings entering the various decay
widths were improved by including loop effects in the Higgs mixing matrix elements. Thus, the
tree-level rotation matrix R was replaced by the loop-corrected rotation matrix

R =Z1R | (5.218)

evaluated at zero external momentum both at one-loop and at two-loop order to ensure unitar-
ity@ The implementation here differs by the fact that in the computation of Z we include the
momentum dependence at one-loop order and we do not apply the approximation of Ref. [14]
to deduce Z" but proceed as described in Eqgs. (3.102)-(3.104). In the following, we call the
couplings where we apply R' as obtained from Eq. (5.218) with zero external momentum and
by applying the approximation of Ref. [14] ’effective tree-level couplings’ while those with Z
calculated according to Egs. — including the momentum dependence at one-loop
order are denominated 'improved couplings’.

The decays into SM fermion pairs in the old implementation in NMSSMCALC were calculated
using the loop-corrected rotation matrix, R!, evaluated at zero external momenta and by in-
cluding the A, correctionslﬂ into the effective tree-level couplings, as specified in Ref. [13]. The

23We remind the reader, that in contrast the one-loop corrected masses are obtained at non-vanishing external
momenta and the two-loop corrections at zero external momenta.

24For simplicity, we collectively call them A, corrections although we also include the corresponding corrections
in the decays into strange quarks and into leptons.
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thus obtained ’effective couplings’ are given by@

_eff,S/P _ -S/P

o= gl (5.219)

Beyond the Ay approximation no further SUSY-EW nor SUSY-QCD corrections were included.
To quantify the difference between the branching ratio computed in this paper and the old

implementation in NMSSMCALC we introduce the relative change in the branching ratio for the
decay H; — X; X}, as

BREEWVCSQCD) (g, X X,) — BRUSS(H; — X, X)

Apr(H; X Xi) = , (5.220)
o max(BRyy 5P (7, 5 X X,), BRI (H; — X, X))
with X; X, = f f for the decays into fermions. Here the branching ratio BR;%WHSQCD)(Hi —

ff) means that we include the SUSY-EW corrections (and SUSY-QCD corrections for the
decays into quarks) together with the wave-function renormalization factor into the decay width
of the decay H; — ff. The formulae are given by Eq. (4.134) for the decays into quarks and by

Eq. (4.155)) for the decays into leptons together with the definitions Egs. 14.135? and (4.136)).

The branching ratio in the old implementation in NMSSMCALC is denoted by BRZ°(H; — f )
(although it also includes the A corrections where applicable). The quantity Aggr hence gives
information on the importance of the improvement of the branching ratios by the Z¥ factor
and the SEW(+SQCD) corrections. This quantity will also be used in the investigations of the

decays into gauge boson pairs and into a pair of Z and Higgs bosons.
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Figure 1: Scanl: Loop-corrected branching ratios of the lightest Higgs boson, which is the singlet-like state, into
SM particles versus the element R}, , of the loop-corrected Higgs rotation matrix.

The SM-like Higgs boson is given by the h,-like Higgs statﬂ and in our scans we found
valid scenarios where this can be the lightest or the second lightest of the CP-even Higgs bosons.
We first consider only the parameter points where the lightest CP-even Higgs boson H; is

25We call them ’effective couplings’ and not ’effective tree-level couplings’ as they also contain the Ay corrections.

26 As the SM-like Higgs boson has to comply with the experimentally measured Higgs rates and for small values
of tan 3, as preferred by the NMSSM, is dominantly produced through gluon fusion it needs a substantial coupling
to top quarks so that it is the h,-dominated Higgs state that turns out to be SM-like.
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the singlet-like state, i.e. has a large hs; component. These are points obtained in the above
described scani. Here and in the following we denote a Higgs boson H; to be dominantly x-like
(z = hs, hy, hq, as, ag) if the corresponding matrix element squared \Rim 2 exceeds 80%. When
Hy is hs-like, the question which final state has the largest decay width strongly depends on
the amount of admixture of hy and h, components to the singlet-state. In Fig. [l we show, for
all parameter points that pass our constraints, the scatter plot of the Hy branching ratios into
SM particles against its hy component represented by the element Rllhd of the loop-corrected
Higgs rotation matri)ﬂ The mass of H; lies between 70 and 118 GeV for these points. As
can be inferred from the plot, the dominant decays are those into bb, cé, 77 and gg. In most
cases the branching ratio into a bottom-quark pair is dominant followed by the decay into 77.
However, when the hg component of H; is very small the branching ratios into gg and ¢¢ become
competitive and can even be larger than those for the decay into bb with values beyond 60%
for the gg final state and of up to 35-39% for ¢¢ in some of the scenarios. In this case, i.e. for
|Rllhd] < 0.02, also the branching ratios into 7y and into the off-shell final state W**W*~
increase and can reach up to about 30% in the latter and about 2% in the former case. The
branching ratio into the off-shell Z*Z* final state, which also increases then, is about one order
of magnitude smaller than the one into W*W ~*. But already for |Rllhd\ 2 0.02 the decay into
bb takes over again and reaches branching ratio values of up to 90% followed by the branching
ratio into 77 with values of up to 10%.

In order to investigate the importance of the higher-order corrections we define for our new
implementation the relative correction of the partial width for the decay H; — X; X}, as

[SEW(+5QCD)

SSEW(HSQED) (1, X X, ) = —27 (Hi — X;Xy) — T5 (Hi — X;Xp)
3 ] -

nge(HZ — X]Xk) ’

(5.221)

with the higher-order decay widths for the decays H; — g into quarks given in Eq. (4.134
and the higher-order decay widths for the decays H; — Il into leptons given in Eq. (4.155
and with the tree-level decay width I" tzrf}e including only the Ay corrections. The tree-level and
higher-order decay widths are both evaluated with the new implementation of Z¥. Note that
the quantity 0 gives information on the importance of the SEW(+SQCD) corrections in the
decay width alone as the factor Z* cancels in the ratio. In Fig. [2| we show the scatter plot of
the relative change of the branching ratios, Agr(H1ff), f = b, c, 7, for all the parameter points
passing the constraints, against BR;EWHSQCD) (Hy — ff).

The color code in Fig. [2| as well as in Figs. denotes the sizes of the relative corrections
of the partial decay widths. The points where the absolute value of §SEW(HSQCD) exceeds 10%
are marked in blue, those with ’65EW(+SQCD)‘ in the [5,10]% range in black and those with
relative corrections less than 5% in red. For Figs. and we distinguish two regimes for
the larger corrections, in blue where }5SEW+SQCD is in the [10,20]% range and in green where
|5SEW+SQCD} is in the [20,40]% range; in Fig. we also add two other categories of points,
in cyan where |§5EWHSQED| g in the [40,60]% range and in pink where [§SEWTSQCD| s in
the [60,80]% range. Note that for the 7 decays there are no SUSY-QCD corrections. The
ballpark of the relative change Agg(H1bb) in the branching ratios between the old and the new

2"Note, that led is the (1, hq)-component of the mixing matrix R! given by Eq. l) evaluated at zero
external momentum both at one- and at two-loop order and where for the computation of Z” the approximation
of Ref. [14] is used. In the computation of the loop-corrected branching ratios, however, we of course use the new
implementation described at the beginning of this subsection.
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Figure 2: Scanl: Relative difference Apr (see text, for definition) in percent for the H; decays into bb, 77, cc.
Red: relative corrections d (see text, for definition) in percent of the SUSY-EW (+SUSY-QCD) corrections to the
decay widths with |§] < 5%; black: 5 < |§] < 10%; blue: |§] > 10%.

implementation ranges below about 30% with vertex corrections |0| smaller than 5%. There are
some very rare scenarios where ‘A(H 1bl_))‘ exceeds 50% and where at the same time the relative
vertex corrections are between 5 and 10%. We investigated these cases and observed that there
is an accidental cancellation either in the effective tree-level or in the improved couplings. These
parameter points lead to similar results for the 7 final states, i.e. |[Apr(H177)| > 50% and at
the same time || between 5 and 10%. The cancellation results in a suppression of the branching
ratio, to less than 4% for the 77 final state and 10% at maximum for the bb final state. In
most of the cases, the large Agr(H1ff) is due to the use of the wave-function renormalization
factor Z| however. There are also cases with a cancellation between the SUSY-EW /SUSY-
QCD corrections and the wave-function renormalization factor Z correction. This results in
Apr(Hjpce) being less than 1%.

We have performed the same analysis for the heavier Higgs bosons, using the full set of
points from our scan2. Figure [3| is the scatter plot of the Agr(hff), f = b,7,¢,t, against

BR;%WHSQCD)(h — ff) for an SM-like Higgs boson h, while Figures and |§| are the scatter

plots of Agr(H;ff), f = b,t, against BR;EWHSQCD) (H; — ff) for a heavy as-, a- and hg-like
Higgs boson i.e. H; = H,,, H,, Hy,, respectively. As before, the SM-like Higgs boson h is
always h,-like and decays dominantly into a bottom-quark pair with a branching ratio of about
60%, as expected, followed by the decay into a 7 pair and the decay into a c-quark pair. As can
be inferred from Fig. [3| the relative changes between the old and the new implementation are
much smaller than for the singlet-like lightest Higgs boson and amount only to a few percent.
The relative vertex corrections |d| are below 10% for the b-quark pair final state and below 5%

for the decays both into 77 and cc.

For the heavy Higgs bosons, the decay into a top quark pair can become kinematically
possible. We start by discussing the decay pattern of the heavy singlet state H,,, with a mass
between 120 GeV and 1.7 TeV, into the b-quark and t-quark final states, presented in Fig.

28Gince we will not gain much new information, for H,,, H, and H},, we do not show the corresponding plots
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Figure 3: Scan2: Same as Fig. |2/ but for the SM-like Higgs boson h that is h,-like.
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Figure 4: Scan2: Same as Fig. but for the heavier as-like Higgs boson H,, decaying into bb (left) and t (right).

For the bb final states the relative change in the branching ratios due to the new implementation
is mostly between -20% and 20%. We also find points where the relative change is close to
100%, in particular for branching ratios close to 100%. Most points exhibit small relative vertex
corrections (see, red points in Fig. , so that the large changes of Apr(H,,bb) are due to the
implementation of ZH. This is especially the case for large branching ratios close to 100%. There
are a few points where the relative vertex corrections lie between 5 and 10% (black) and even
above 10% (blue). This happens for the cases where the effective tree-level couplings H,, f f are
suppressed. The relative change Apg can still be very small when the effects from the Z factor
and the vertex corrections cancel. The decay pattern for the tf channel, finally, is displayed
in Fig. 4bl The branching ratio takes all values between almost 0 and 100%. The relative
changes Apr(H,,tt) are mostly between -20% and 20% and close to 0% for large branching
ratios above about 60%. We also observe large Agg, in particular for branching ratios close to

into 77 and cc.
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Figure 5: Scan2: Same as Fig. [2| but for the heavier a-like Higgs boson H, decaying into bb (left) and tf (right).

zero. This is mainly due to very suppressed effective tree-level H, ¢t couplings corresponding
to the regions where the branching ratio BR(H,, — bb) is enhanced. These regions correspond
to large values of tan /3 close to the upper bound in our scan, or to smaller mass values of H,,
with not sufficient phase space to decay into an on-shell top-quark pair. In these regions the
relative corrections |d| are most of the time below 40%, and for cases where |0] < 5% the large
changes in Agr are mostly due to the use of the wave-function renormalization factor Z*. For
larger branching ratios the relative corrections |d| are mostly below 10% (red and black points).
Some rare scenarios display corrections above 40% and up to 80% (in cyan and in pink), again
mostly in regions with lower branching ratios.

Similar observations can be made for the other heavier Higgs states H, (with a mass between
539 GeV and 2 TeV) and Hj, (with a mass between 548 GeV and 2 TeV), with the notable
exception that the relative changes Apr(Hq/p,XiX;) are more reduced and never reach 100%.
The relative changes Apr(H,/,bb) are most of the time positive and below 40% as seen in
Figs. [5al and @ The decays into top-quark pairs can be dominant where the decays into bb are
suppressed, and the relative changes Apr between the old and new implementation are close
to zero when BR(H,p, — tt) — 100% as seen in Figs. and [6bl For some rare scenarios
the relative vertex corrections |§| can reach 40%, depicted in green in the figures. Note that
BR(H, Jha = bb) can reach 90%, corresponding to regions where the effective tree-level coupling
H,/n,bb is strongly enhanced due to large values of tan 8 while at the same time the effective
tree-level coupling H, p,tt is strongly suppressed.

5.2 Decays into a Massive Gauge Boson Pair

In the CP-conserving case, the heavy Higgs boson that can decay into two on-shell massive gauge
bosons is hg-like. The tree-level coupling of a Higgs boson H; to VV (V = W, Z) is proportional
to

Ri’lc/g + Ri’zsﬁ . (5.222)

Due to the SM-like (i.e. hy-like) Higgs boson coupling with almost SM-strength to the massive
gauge bosons the tree-level coupling of the hg-like heavy Higgs boson to V'V is almost zero
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Figure 6: Scan2: Same as Fig. but for the heavier hg-like Higgs boson Hy,, decaying into bb (left) and ¢ (right).

because of sum rules. This leads to very suppressed tree-level partial decay widths I'(Hp, —
VV).

In order to compare the results obtained in this paper with the old implementation in
NMSSMCALC using the tree-level coupling together with the loop-corrected rotation matrix R, we
show in Fig. the relative change Agr(Hp,WW) of the branching ratio into WW between
the old and the new implementation including the NLO-EW vertex corrections as described in
Sec. and the improvement with the Z factor, as a function of the loop-corrected branching
ratio BR%%W (Hp, — W*TW™). The plotted points are those of our scan that pass the constraints
we have applied. We display in Fig. the same but for the decay into ZZ. The color and
symbol code denotes the magnitude of the relative NLO electroweak vertex corrections alone,
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Figure 7: Scan2: Relative difference Apr in percent for the hg-like Higgs boson Hy, into a W boson pair
(left) and into a Z boson pair (right) as a function of the corresponding loop-corrected branching ratio. Black:
relative corrections §°®"W in percent of the SUSY-EW corrections to the decay widths with [65%W| < 20%; blue:
20 < [05FW| < 40%; pink: 40 < |65FW| < 60%; green: 60 < [65FWV| < 80%; cyan: 80 < |6°FW| < 100%; red:
[65EW] > 100%.
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with § defined in Eq. . As can be inferred from the plots both the Z¥ factor and the NLO
electroweak corrections can be responsible for the large relative changes in the branching ratios.
This is in particular reflected by the black points for which the vertex corrections are below 20%
and at the same time the relative changes Agr can reach up to 100%. In some cases there is a
cancellation between the two contributions (the vertex corrections and the Z# factor) leading to
relatively small relative changes in the branching ratios. These cases are the pentagon-marked
full (red) points in Fig. for the decay Hp, — WTW ™, which are mostly located in regions
where |Apr(Hp,WW)| < 25% while the relative vertex correction |d| is at least 100%. In the
case of the decay into a Z boson pair, however, the bulk of these pentagon-marked full (red)
points, indicating again a relative vertex correction || of at least 100%, induces large relative
changes of Aggr(Hp,ZZ) close to 100%. These points correspond to a region which is discussed
in more detail in the next paragraph.

We also note that there are two regions concentrating many points for the decay into a Z
boson pair, the region for which Apr(Hp,ZZ) ~ 0% and the one for which Apr(H,Z2Z) ~
100%. This is in contrast to the decay into a W boson pair which is mostly centered around
Apr(Hp,WW) =~ 0% for vertex corrections |6| < 80% and much more scattered for the points
where 80 < |§] < 100%, displayed with cyan-pentagon-marked points (for |§] > 100% the
above described cancellation takes place in the decay Hp, — W1TW ™). This presence of the
second region in the Z boson final state, for which Agg is close to 100% can be explained by
the occurrence of many parameter points having a very suppressed tree-level coupling Hy ,Z Z.
They also correspond to regions where the loop-corrected partial decay width I'(Hp, — ZZ) is
higher, up to 1 GeV, while the decay width is at most 5 MeV for the region centered around
Apr(Hp,ZZ) = 0. Note, that while the tree-level couplings Hy,ZZ and Hj,WW are the same,
the loop-corrected decay widths differ by the fact that the decay into W W bosons receives real
corrections and that in the one-loop squared contributions to the decay width Hjy, — WTW~
we only include the (s)fermion contributions in contrast to the decay Hy, = ZZ @

5.3 Decays into a Z Boson and a Higgs Boson

In the searches for heavy pseudoscalars, this decay can be an important search channel [82,83].
We are interested here in how large the branching ratio can be and how important are the
newly included higher-order corrections, in the case for which on-shell decays are possible. With
the obtained valid set of parameter points, we present in Fig. scatter plots of the relative
changes of the branching ratios between the old and new implementation for the decay of a heavy
pseudoscalar-like Higgs boson H, into ZH; and in Fig. for the decay into ZH,, against the
respective loop-corrected branching ratios. The color and marker codes denote the relative sizes
of the one-loop vertex corrections within specific ranges, identical to the ranges used in the
previous sub-section for the decays into gauge boson pairs. The mass values of the individual
involved CP-even Higgs bosons in the final state range in 123 GeV < mp, < 127 GeV and
463 GeV < mpg, < 1.73 TeV, while the mass of the decaying Higgs boson ranges in 539 GeV <
mpg, < 2.0 TeV for the on-shell decay into ZH; pairs and in 713 GeV < mpg, < 2.0 TeV for the
on-shell decay into Z Ho pairs. As can already be inferred from the mass ranges, the H; state is
the SM-like Higgs boson h, while the Hy state is the singlet-like scalar Higgs boson Hp,.

We observe that the branching ratios into the Z H; final state remain very small, below 0.4%,
while those of the decay into Z Hy can reach 11%. This is due to the nature of the H; Higgs boson

2We remind the reader that we take into account this part of the two-loop corrections in case the one-loop
corrected partial decay width becomes negative, see also Eq. (4.179).
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Figure 8: Scan2: Relative difference Agg in percent for the H,-like Higgs boson decay into ZH; (left) and into
Z H> (right) as a function of the corresponding loop-corrected branching ratio. Black: relative corrections §SEW
in percent of the SUSY-EW corrections to the decay widths with [65EW| < 20%; blue: 20 < |6%EY| < 40%; pink:
40 < |65V < 60%; green: 60 < |65FW| < 80%; cyan: 80 < [05FW| < 100%; red: [65FWV| > 100%.

that is SM-like, with very suppressed tree-level Hy H,Z couplings. The relative changes Apg of
the branching ratio for the decay H, — ZH; are mostly between 0 and -75% corresponding to
relative vertex corrections \5SEW| being at most 60% (black, blue, and pink points), while a few
points corresponding to higher vertex corrections up to more than 100% (green, cyan, and red
points) can reach Aggr = £100%. These extreme points correspond to very small values for the
branching ratios themselves which explains in turn the very large relative corrections |d| that we
observe. Note that in these decays we take into account the one-loop squared term as described
in Eq. which makes up for the main contribution to the very large relative corrections.
As for the decay H, — ZH> the relative correction Apgr is most of the time between 0 and
+25%, corresponding to points where the relative vertex corrections |J| are below 20%. A few
points display larger Apg values, and also larger relative vertex corrections |§| that can reach
100% and even beyond, again for points that display very small branching ratios, below about
10~*%. Note that there are points for which the correction |Agg| is rather limited, below 25%,
while the relative vertex correction can reach 40% (for one scenario even more than 100%). This
can be explained by a sign compensation between the Z factor and the vertex correction.

The corresponding results for the heavy singlet-like Higgs boson Hj, decaying into ZA;
and ZAj are shown in Figs. [9a] and Figs. [0D] respectively. We see that the maximum achieved
branching ratios for the decay Hj, — ZA; are below 20% and for a large number of parameter
points are tiny. In the case of the decay Hj,, — Z A the branching ratio can reach around 15%.
In most of the cases A; is singlet-like, corresponding to points where the branching ratio is small
(below 10%), while Ay is doublet-like. The mass values of the individual involved Higgs bosons
in the final state range in 120 GeV < my, < 1.50 TeV and 562 GeV < my4, < 1.63 TeV, while
the mass of the decaying Higgs boson ranges in 464 GeV < mp, < 1.75 TeV for the on-shell
decay into Z A pairs and in 696 GeV < m H,, < 1.75 TeV for the on-shell decay into Z Hs pairs.
The cases with larger branching ratios for the decay Hy, — ZA; (larger than 10%) correspond
mostly to the few A; pseudoscalar Higgs bosons with doublet-like admixture and mass values
above 400 GeV.
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Figure 9: Scan2: Same as in Fig. [§| but for a heavy singlet-like Higgs boson H}, decaying into ZA; and Z A,
pairs. In the right plot, however, red: |65W| < 5%; black: 5 < |65EW| < 10%.

The relative changes Agg in the branching ratios are mostly positive, and can reach values of
100%. For some very rare scenarios we get Apg(H}p,,Z A1) close to -100%, while Apg (Hp, Z As) is
not below -15%. The relative vertex corrections are moderate for the decay Hy_, — ZA;, mostly
|0] < 20% (black points). This means that the large changes in Apr(Hp,Z A1) are mostly due
to the Z factor. For very small branching fractions below 1074% larger vertex corrections are
possible, mainly because the denominator in the definition of § is very small in these regions
and can lead to sharp changes in §. Note that the bulk of the changes between the old and
the new implementation in these cases stems from the vertex corrections. In the case of the
decay Hjp, — Z Az the relative vertex corrections are mostly small, with values |d| < 5% (red
triangle-marked points). For large relative changes Apr(H},, ZAs) the ZH factor is responsible
then.

5.4 Decays into Charginos and Neutralinos

We start by investigating the loop corrections to the masses of the charginos and neutralinos
using the three renormalization schemes OS1, OS2 and DR, imposed on the two gaugino masses
My and Ms, as defined in Section According to the SLHA format that we apply in our
code, My, M, are DR parameters given at the scale Mgysy = VG When we use the

OS schemes we have to translate the DR input parameters to the OS values by applying the
approximate transformation formulae

MIOSi — MPR o 5M1ﬁnOSi

MPST = MPR - 5pfnOSt (5.223)
where (5Mfi/nzosi are the finite parts of the M/, counterterms computed in the OSi (i = 1,2)
renormalization scheme. Since the finite parts (5M1ﬁn2OSi should be computed with OS input
parameters we have used an iterative method to obtain these. For all parameter points in our
scan, the size of the loop corrections to the neutralino and charginos masses, quantified by

AMZX = ;;Op - mi{fe, with 4 = 1,...,5 for the neutralinos and 7 = 1,2 for the charginos, never

44



DR | H | H Hy | Hi | Hs |
two-loop O(asas + o) || 125.14 | 698.05 | 813.53 | 1391.6 | 1392.56
main component hy as hs a hq

Table 2: Scenariol: Masses and main components of the neutral Higgs bosons at two-loop order O(aras + a?),
using DR renormalization in the top/stop sector.

| Mgy | My | My | Mg | My | Mgy | My |

081 tree-level 265.97 | 276.05 | 565.2 | 730.92 | 920.76 | 270.72 | 730.83
one-loop 273.22 | 282.48 | 565.2 | 730.78 | 914.39 | 278.02 | 730.83
052 tree-level 265.97 | 276.05 | 565.2 | 730.78 | 920.76 | 270.72 | 730.69
one-loop 273.22 | 282.48 | 565.2 | 730.78 | 914.39 | 278.02 | 730.83
DR tree-level 265.5 | 276.2 | 563.47 | 694.32 | 920.76 | 270.38 | 694.18
one-loop 273.21 | 282.44 | 565.21 | 730.01 | 914.39 | 278.01 | 729.86
main component HY HY B Ws S HY W+

Table 3: Scenariol: Masses and main components of the neutralinos and charginos at tree and one-loop level in
the three renormalization schemes OS1, OS2 and DR.

exceeds 46 GeV.

We exemplary present here a particular point, called scenariol, with the soft SUSY breaking
masses and trilinear couplings given by

mi, = 1384 GeV, mg, = 1743 GeV, my, = mj = mz, = 3000 GeV,
|Auct] = 3594 GeV, |Agep] = 2000 GeV, |Ac, | = 2000 GeV, (5.224)
|M| = 560 GeV, |My| =684 GeV, |Ms| = 2494 GeV,

SDAE,}L,T = (pAd,s,b = 07 @Au,c,t = @Ml = (IOMQ = SOM?) = 0 ’
and the remaining input parameters set tc{ﬂ

IA| =0.307, |kl =0.517, ReA, =361 GeV, |ues| =272 GeV,
A= =¢pu=0, @uzs=m, tanf =938, Mg+ =1393 GeV. (5.225)

The Higgs boson masses and their main composition in terms of singlet /doublet and scalar/pseu-
doscalar components at two-loop order O(ayas + o?) for DR renormalization in the top/stop
sector computed by NMSSMCALC, are summarized in Table

For scenariol, we present in Table [3| the tree-level and loop-corrected masses of the neutrali-
nos and charginos in the three different renormalization schemes and for the Denner description.
As expected the wino-like neutralino and the wino-like chargino which couple to the electroweak
gauge bosons, get significant loop corrections in the DR scheme. The one-loop corrected masses
themselves, however, barely differ in the three renormalization schemes so that the remaining
theoretical error due to missing higher-order corrections is very small.

We vary the phases of the gaugino mass parameters M; and Ma, ¢y, and ¢py,, in order
to study their effect on the loop-corrected neutralino and chargino masses. Note that these
complex phases have negligible impact on the Higgs sector [15/17]. We use the DR scheme for

39The imaginary part of A, is obtained from the tadpole condition.
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definition) between the loop-corrected masses using the Denner and the EMT descriptions.

this analysis and show in the upper plots of Fig. the loop corrections to the electroweakino
masses,

AM, = M°°P — mplree r=XL% (i=1,..,5j=12), (5.226)

as function of ¢y, (left) and ¢z, (right). We apply a subtraction M, to the mass corrections
AM, of the different electroweakinos that allows us to show all corrections, which can be very
different in size, in one plot. In the lower plots of Fig. [I0] we show the differences

diff, = MoP P — ppyeor FMT (5.227)

with x denoting any electroweakino, between the loop corrected electroweakino masses computed
using the Denner and the EMT descriptions presented in Section As can be inferred from
the upper plots, the wino-like neutralino X} (cyan line) and wino-like chargino Y4 (black line)
receive the largest loop corrections of about 35 GeV in absolute values. The corrections to the
Higgsino-like neutralinos Y (blue line) and %3 (green line), the singlino-like neutralino x§ (red
line) and the Higgsino-like chargino Y (pink line) range around 6-8 GeV. The correction to the
bino-like neutralino Y9 (orange line) is somewhat smaller with values around 1.5-1.8 GeV. A small
difference between the Denner and the EMT descriptions of about 1-2 MeV is observed for the
Higgsino-like neutralinos, cf. lower plots. We do not see any difference, however, for the chargino
masses. This is because we have used the approximation in Eq. for the loop-corrected
chargino masses. There is a compensation between Re E?’Ls (mfzi) and Re Zg’Rs(m;i) that
kills the effect of the imaginary part of the loop integral function. ' '

In order to study the loop corrections on the decay widths, we computed the tree-level
and loop-corrected decay widths, defined in Section for the three different renormalization
schemes OS1, OS2 and DR for the scenariol. Note that we use the loop-corrected masses for
external Higgs bosons, charginos and neutralinos not only in the loop-corrected decay widths
but also in the tree-level ones. For illustration, we present in Table [ for the decays of all
Higgs bosons in all possible electroweakino final states the loop-corrected decay widths I =
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[ T MeV] [ 6[%] | BR' [%4] | [ T'[MeV] [ 6[%] | BR' [%] |

o w0 OSL[[ 40567 [ 0.08 | 2514 [ . o 0.43 2008 | 003
277 XIX1 DR || 407.74 8.4 95.15 27 XIX2 0.4 116.34 | 0.02
o 0o OSL| 40444 | 007 | 2506 ||, | 8023 | 0.08 | 49.72
277 X2X2 DR || 40484 | 723 | 24.98 27 XIX |l 8718 | 9.03 | 49.8
OS1 || 32153 | 0.08 | 22.01 0.78 2011 | 0.05
<00 <00
Hs > XiXi DR || 32045 | 813 | 2204 | 37 X0X2 073 | -16.24 | 0.05
. w0 OSL|[ 30894 | 0.07 | 2115 | o . | 63352 | 008 | 43383
377 X2X2 PR 309.0 708 | 21.12 377X1X1 |l 63537 | 879 | 43.42
OS1 || 10286 | 0.02 0.8 151.31 | -0.01 | 1.18
<050 <050
Hy = XiX1 pgr 894 |-11.31| o069 | ™7 XX 132.77 | -13.56 | 1.04
OS1 | 17.87 | 008 | o014 9.29 024 | 0.07
<00 <00
Hi=XiXa pr | 1450 |-1168| o011 | ™7 XX 7.65 1.94 | 0.06
OS1 || 395.9 55 1,59 123.04 | 0.02 33
<00 <00
Hi=XiXs pR | 45186 | 6.59 3.5 Hs = XiX3 448.9 7.83 3.5
. w0 OSU|[ 144821 | -0.03 | 1122 | .~ o | 116118 | 002 | 905
477 X1X4 DR || 14386 | -3.68 | 11.15 577 XIX4 |l 1957098 | -2.81 | 9.03
OS1 || 194.66 | -0.02 | 1.51 33835 | -0.02 | 2.64
<050 <050
Hi=Xi% DR || 19502 | -1.63 | 151 | 27X || 34119 | -158 | 2.66
OS1 || 2786 | -0.13 | 0.22 31.6 01 0.27
<050 <050
Hs=XoXa  pR 92554 | -20.08 | 0.2 Hs = XaoXa 32.72 | -15.35 | 0.26
OS1 || 4253 | 0.02 | 3.29 41374 | 0.01 3.22
<00 <00
Hi=22Xs  pR || 45013 | 7.77 349 | 3= X2Xs 43811 | 6.48 3.42
b 0o OSL| 112546 | 002 | 872 ||, o | 137931 | -0.08 | 10.75
477XX4e PR | 11165 | -3.34 | 8.66 577 X2X4 |l 136613 | -3.91 | 10.66
OS1 || 3824 | -0.02 | 296 180.21 | -0.02 1.4
<00 <00
Hi=XoXs DR || 38180 | -2.35 | 206 | 27X || 15034 | -1.86 | 1.41
0S1 12 019 | 001 1.19 018 | 0.01
~0-0 IO <050
Hs = X3Xs  pg 129 | 2887 | o001 | 576X 129 | 2781 | 0.01
0S1 318 005 | 0.02 1.48 006 | 001
~0-0 IO <050
Hs = XX pg 005 | 279 | 002 | 7 XsXa 1.43 089 | 0.01
o o+ OSI[ 39350 | -0.01 | 305 | ., _ | 25768 | -0.03 | 201
477 XIX1 DR || 34395 | -13.61| 2.67 57 XIXL |l 91516 | -19.09 | 1.68
b oio- OST [ 24051 | 001 | 1891 || o~ [ 248201 | -0.01 | 19.34
177 X1X2 DR || 2461.41 | -0.61 19.0 577 X1X2 |l 94988 | -0.9 | 19.49
o oto- OSU|[ 244051 | -0.01 | 1891 | . [ 248201 | 001 | 19.34
477 X2 X1 DR || 2461.41 | -0.61 19.0 577 X2X1 |l 94988 | -0.9 | 19.49

Table 4: Scenario 1: Loop-corrected decay widths T, relative loop corrections § and loop-corrected branching
ratios BRliof all kinematically allowed decays into chargino and neutralino pairs of heavy Higgs bosons in the
OS1 and DR renormalization schemes. The results in the OS2 scheme are nearly the same as in OS1 scheme.

F%%W(Hi — X;jXk), the relative corrections §(H;x;Xx) as defined in Eq. (5.221)), and the log
corrected branching ratios BR! = BR%]}:{W(Hi — XjXk) using scenariol, for the OS1 and DR
renormalization schemes. We found that I'* is almost identical in the two OS schemes. The
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relative size of the loop corrections is below 10% in the OS scheme. The relative corrections in
the DR scheme are always larger than in the OS schemes. For some channels with small decay
widths, we see significant corrections in the DR scheme. For example in the decay channel
Hy — 9%, the relative loop correction is —0.13% in the OS scheme while it is —20% in the DR
scheme. Based on our investigation, we conclude that it is better to use the OS scheme in the
decays of the neutral Higgs bosons into electroweakinos. The largest uncertainty due to missing
higher-order corrections that we estimate from the variation of the renormalization schemes is
found to be 17% in the decay Hs — X{X3. We also studied the difference between the Denner
and EMT descriptions and did not observe any significant difference. Defining the difference as
('Y — rEMT) TD with T', being the loop-corrected decay width for some Higgs decay into an
electroweakino final state, we see that the differences are of per mille level for all investigated
decays.

5.5 Decays into a Squark Pair

We start by discussing the top and bottom squark masses in the OS and DR renormalization
schemes defined in Section [3.1.3] We follow the SLHA convention where the input parame-
ters mQB,ng,ng,At,Ab are DR parameters at the scale Msysy. When we apply the OS
scheme, these parameters must be translated into OS parameters by applying the approximate
transformation formula (i = 1, 2)

XOSi — yDR _ 5xfnOSi (5.228)

with X = MGy M M Ay, Ap and the finite part of their OS counterterms denoted as § X OSi,

We have used an iterative method to obtain a stable value of X105 Note that we include
both the NLO QCD and the full NLO EW contribution in the conversion Eq. E Using
these OS parameters together with the OS top mass in the tree-level mass matrices, we obtain
the top and bottom squark masses. When we apply the DR renormalization scheme, the top
pole mass has to be translated to the DR top mass for which we follow the description in
appendix C of Ref. [17]. The DR top and bottom masses together with the DR parameters
MGy M M Ay, Ap are then used in the tree-level mass matrices to get the tree-level rotation
matrices. They are subsequently used in the computation of the renormalized self-energies of the
top and bottom squarks to obtain the loop-corrected squark masses as described in Section
In principle, we would expect that the loop-corrected masses computed in the DR scheme are
closer to the OS masses in the OS description if one includes more higher order corrections. We
consider here a parameter point (scenario2) given by the following soft SUSY breaking masses
and trilinear coupling@

Mig,er = md~R7§R = m@1,2 = mil,g = Meép.ir = 3 TeV, mg, = 623 GeV,

mQ~3 = 1180 GeV, mBR = mis = Mi, = 33 TeV,

|Au,ct| = 1760 GeV, |Agsp| = 2000 GeV, |Aep-| = 2000 GeV, (5.229)
|My| = 1000 GeV, |My| = 1251 GeV, |M;z| = 2364 GeV ,

31This is a bit different from the Higgs mass calculation in NMSSMCALC where we include the NLO QCD correction
and the NLO Yukawa correction of order O(a:) to the conversion in the OS renormalization scheme of the top/stop
sector.

32This parameter point is allowed by HiggsBounds5.3.2 and its x* computed by HiggsSignals2.2.3 is consistent
with an SM x? less than 1o.
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my, [GeV]  mg, [GeV] mg [GeV] my [GeV]
08 tree 334 1166 1122 2297
1loop 334 1166 1125 2297
DR tree 585 1216 1181 3000
1loop 341 1152 1152 2294

Table 5: Scenario2: The tree-level and one-loop corrected stop and sbottom masses in the DR and OS schemes.

| H Hy H; H,y Hs
two-loop O(azas + oth) 123.63 | 1621.65 | 1865.39 | 1895.83 | 2538.29
main component hy Qs hg a hs

Table 6: Scenario2: Mass values in &V and main components of the neutral Higgs bosons at two-loop order
O(atas + of) obtained by using the DR renormalization in the top/stop sector.

with the CP phases given by
SOAu,c,t = SOAd,s,b = SOAE,[,L,T = @Ml = (IOMQ = SOMS = 0 ° (5230)
The remaining input parameters have been set to

A=0106, k=-0238, Re(As)=—647 GeV, o= —603 GeV,
0y =0, tanp =175, Mg+ =1867 GeV . (5.231)

With the given DR parameters of the squark sector, we obtain their corresponding OS parame-
ters

R

A, = 1720 GeV, A, = —581 GeV. (5.232)

meg, = 1120 GeV, m;, =402 GeV, m; = 2997 GeV ,
3 R

The tree-level and loop-corrected masses of the stops and sbottoms in the OS and DR scheme
are shown in Table We see that for the DR scheme there are large changes between the
tree-level and one-loop masses, in particular for the lightest stop £;. The loop-corrected masses,
however, are then closer to each other in both schemes, as expected. The maximum difference if
found for the light sbottom b; mass, where the OS and DR results differ by 27 GeV at one-loop
order (compared to 59 GeV at tree level). The two-loop corrected neutral Higgs boson masses
at O(aas + o?) together with their respective main component are displayed in Table @ The
SM-like Higgs boson mass is around 124 GeV while the remaining Higgs spectrum is quite heavy
with masses above 1.6 TeV.

We now turn on the complex phase of A;. In the left plot of Fig. we show the tree-level
(black), NLO EW (green), NLO QCD (blue), and full, i.e. NLO QCD+EW, (red) corrections to
the partial width of the decay Hy — 11 as function of the phase (4, in both the OS (full lines)
and the DR (dashed lines) schemes while their corresponding branching ratios are depicted in the
right plot. The decay Hy — 1t} vanishes in the CP-conserving limit where Hy, which is a-like in
scenario2, is a CP-odd Higgs boson. (Note that CP-odd Higgs bosons at tree-level only couple
to two different stops.) In the OS scheme, the relative EW corrections § (see Eq. for the
definition) vary in the range (-6%,-10 %) and the QCD corrections in the range (—4%, —8%)
depending on the phase (4, that is varied from zero to £7/2. In the DR scheme, the relative
EW corrections are of order —10% and the relative QCD corrections of 22% and depend slightly
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on the phase ¢4,. We define the relative differences between the OS and DR decay widths and
branching ratios, as

FOS o Fﬁ
Ar=|Z 2 (5.233)
ZH
and o5 -
BRYY — BRDR
ABr = Z Z— | (5.234)
BRO

respectively. For ¢4, = —m/2, the relative difference Ar of the partial decay widths between
the OS and DR schemes is then about 40% at tree-level while it reduces to 4% when both QCD
and EW corrections are included, so that at one-loop level we clearly see a reduction of the
theoretical error due to missing higher-order corrections For the relative error in the branching
ratios we find values between 32% and 27% at tree level and between 0.3% and 3% at one-loop
order including both the EW and QCD corrections while the phase ¢4, is varied from +m/2 to
Z€ro.

For the decay Hy(= H,) — fﬁ;, we show in the upper panels of Fig. the partial decay
width (left) and branching ratio (right) at tree-level (black), NLO EW (green), NLO QCD
(blue), and NLO EW+QCD (red) as a function of ¢4,, both for the OS (full) and DR (dashed)
scheme . In the middle panels we show the relative NLO EW, NLO QCD and NLO EW-+QCD
corrections which are defined as

EW/QCD/EW+QCD _ ptree
op = —2% e il (5.235)
ZH
and EW/QCD/EW+QCD tree
- BRyn — DRz (5.236)
BRyi¢° ’

respectively. The lower panels display the relative differences between the OS and DR decay
widths and branching ratios, Ar and Apg, as defined in Eq. (5.233]) and Eq. (5.234])), respectively.

— Tree, OS

— Tree, OS --- Tree, DR

--- Tree, DR

— NLOEW, Os ---- NLOEW, DR — NLOEW, Os ---- NLOEW, DR

— NLOQCD, 0S --- NLOQCD, DR — NLOQCD, 0S

---- NLOQCD, DR

— Full, 0S --- Full, DR --- Full, DR

— Full, 0S

BR(H, T} ) [%]

ea, [7] @a, [
Figure 11: Scenario2: Tree-level (black), NLO EW (green), NLO QCD (blue) and full (red) partial width (left)

and branching ratio (right) of the decay Hs — t1t; (Hy is a-like) as function of the complex phase ¢4,. They are
shown for the OS (full) and DR scheme (dashed).
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Figure 12: Scenario2: Upper: Tree-level (black), NLO EW (green), NLO QCD (blue) and full (red) partial width
(left) and branching ratio (right) of the decay Hi(= H,) — tit5 as function of the complex phase @4,. They
are shown for the OS (full) and DR (dashed) scheme. Middle: Relative EW, QCD and EW+QCD corrections &
(see text, for definition) for the decay width (left) and branching ratio (right) in the OS (full) and DR (dashed)
scheme. Lower: Relative differences A between the OS and DR scheme (see text, for definition) for the decay
width (left) and branching ratio (right).

The corrections vary slightly with the phase ¢4,. The EW corrections are negative in both
schemes while the QCD corrections are positive and of the same order of magnitude. This
shows the importance to include both types of corrections to make reliable predictions. Overall,
the relative corrections ¢ in the DR scheme are larger than in the OS scheme. As can be inferred
from the bottom left panel of Fig. for ¢4, = 0, the relative difference in the partial width,
Ar, between the OS and DR scheme at tree level is about 37% and decreases dramatically to
less than 12% when both the EW and the QCD corrections are includedﬂ Similar results are
found for the branching ratios, presented on the right plots of Fig. [I2] with smaller values of
21% at tree level and 7% at full one-loop order. Note that in the right hand side plots we treated
the decays H, — t1t5 and H, — tot] at the same level of precision while all other decays are
computed at the highest possible precision.

In the CP-invariant scenario the decay width of decay H, — #1t5 is equal to the one of its
charge conjugate decay H, — fgf’{. For non-vanishing ¢ 4,, however, the CP asymmetry, defined
as s s
I'(H, — t1t5) — I'(Hg — tat])
[(H, — t1t3) + T(H, — taf3)
is non-zero. In Fig. [I3] we show the CP asymmetry as a function of ¢4,. We see that the CP
asymmetry appears already at tree-level, which results from the imaginary part of the WFR
factor Z and the imaginary part of the tree-level couplings 9h.q;q;- The relative change of the
asymmetry due to loop corrections ranges between 18% and -9% in the OS scheme while in the

(5.237)

dcp =

33When we only include the EW corrections the scheme dependence increases when going from tree- to one-loop
level. Overall, the behavior is as expected, however, when the full set of corrections is included. This shows that
care has to be taken, when estimating the theoretical uncertainty due to missing higher-order corrections based
on a change of the renormalization schemes, if not all corrections of a given loop order are included. See also
Ref. for a similar discussion.
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Figure 13: CP-asymmetry dcp as function of the complex phase ¢4, at tree level (black) and including both the
EW and the QCD corrections (red) in the DR (dashed) and OS (full) scheme.
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Figure 14: Similar to Fig. [12| but for the decay Hy, — t1t3.

DR scheme it is about 8% when the phase @4, is varied from —7/4 to 7 /4.

We present in Fig. [I4] the same plots for the decay widths and branching ratios as in Fig.
but for the decay of Hy — flfz which is the dominant decay channel of Hs. In scenario2 Hs is
hg-like. For both the OS and the DR scheme the NLO EW corrections to the decay width are
negative and the relative corrections dr are around -3% in the OS and -8% in the DR scheme.
The NLO QCD corrections on the other hand are positive and their relative size can reach 8%
in the OS scheme and around 37% in the DR scheme. For ¢4, = 0, the difference between the
decay widths in the OS and the DR scheme, Ar, is about 36% at tree-level and reduces to 12%
at full one-loop level. The corresponding numbers for the branching ratios are similar.

We have observed that for this parameter point the EW and QCD corrections in the OS
scheme are smaller in the DR scheme. In the OS scheme we have seen that this is due to a
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cancellation between the genuine triangle diagram contribution and the counterterm contribution
while this does not happen in the DR scheme. Overall the inclusion of the QCD corrections in
addition to the EW corrections reduces the difference between the OS and DR results.

6 Conclusions

In this paper, we have presented in the framework of the CP-violating NMSSM our calculation of
the complete (SUSY-)EW to the on-shell Higgs boson decays into fermion pairs, massive gauge
boson final states, gauge and Higgs boson final state pairs, electroweakino and stop and sbottom
pairs. Where applicable we have included the SUSY-QCD corrections. We have implemented
these new corrections into NMSSMCALC, a Fortran code for the computation of the Higgs mass
spectrum up to presently two-loop order O(azas + a?) and the calculation of their branching
ratios. The code already included in the branching ratios the state-of-the-art QCD corrections
and the Ay corrections as well as decays into off-shell massive gauge boson pairs and decays
with off-shell heavy quarks in the final state. The new code is called NMSSMCALCEW.

The consistent implementation of our newly computed corrections provides the presently
highest level of precision in the calculation of the NMSSM Higgs boson decays. In contrast to the
previous NMSSMCALC version, we have included the Z factor with full momentum dependence
in order to render the loop-corrected masses on-shell. For the decays into the electroweaki-
nos and into squark pairs different renormalization schemes were implemented. The numerical
analysis has demonstrated that the relative change in the branching ratios due to this new
treatment and the newly implemented corrections is significant. The analysis of the decays into
chargino/neutralino and squark pairs for different renormalization schemes has shown that the
one-loop corrections reduce the theoretical uncertainty due to missing higher-order corrections.
The new code NMSSMCALCEW can be obtained at the url:
https://www.itp.kit.edu/~maggie/NMSSMCALCEW /.

A Counterterm contribution to the decay of a neutral Higgs
boson into a squark pair

In this appendix, we give explicit expressions of the counterterm couplings for the decays of a
neutral Higgs boson into a squark pair. Note that we have used the redefined WFR, constants
for the squarks given in Egs. and . For the EW corrections, the counterterm
entering Eq. for the Higgs decay into a stop pair is given by

CT EW _ 2
htt* Zgh,tt*5zhh/+ Z(th,t (M )+ghtt*5 t,tk(M ))
J/—l
SM2  §s dc
+gh-£~£* 5Ze+ g . Ow  9Cw
145k 2M7 S0 Cop

oM,y [mgnig (U;-{U,il + U}SU;?EQ) <25mt _oME 535)

50y Cour spM3 my M2 83
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me M% 53

4 - .
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and for the decay into a sbottom pair

CT EwW * 2
Mg = Zgh,bb*5zhhf+ Z(th,b b, (M3, ) F Indyi, 0%y 5, (Mg, )>
J’—l

(SM% 5SQW (5CQW
2M2 S0y Cowy

+ ghii)jgz <6Ze +

eMy, [mbR (U Um U Uk;z) (26mb_5M§_50,3)

S0y, Cour c[gM2 my M% cs
(b - ) (s
2c5 M2 my M2 s
my (UBULOF; + Ul UL, Fs )
+ QCﬁM%

1 o
— = (0e5Rir — ds5R2) ((203W + )ULRUY, + 293, Ul UkQ)

2
— < (esRa = s5Raz) (UK Ufy + Ul U ) sewasgw] (A.239)

where

(5F1 = (5A* —ipu (Rig — iC,BRi4) — 5ueff (Ril + iSﬁRM)

vAcg (Rig + iRis) €% (N dv  deg
- —+ —+ — A.240
> < 22, (A.240)
6Fy = 6A; (Rit — isgRia) — Optere’™™ (Riz + icgRia)
(Rt Rl (B o i)
V2 A v s

For the QCD corrections, the counterterm couplings are obtained from ./\/ICT~ EYV by setting the

set of EW counterterms, 6 Z,, 5M%, 0v, 0vs, 0N, 03¢y, , 0Chy, , 053, 0cg and 5Zhih7;/ to zero. Note that
the counterterm Jueg is given in terms of dA and dv, as

_ ivs (V50X + Advy)

S fteft = A.242
[heff 7 ( )
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B The Code NMSSMCALCEW

We here give a brief introduction into our new code NMSSMCALCEW that includes the newly
calculated and here presented corrections to the decay widths of the neutral NMSSM Higgs
bosons in the CP-violating NMSSM, as well as the newly calculated and here presented one-
loop corrections to the chargino, neutralino, stop, and sbottom masses. It is derived from the
code NMSSMCALC, which is described in detail in Ref. [13]. We here concentrate on the new
features in NMSSMCALCEW with respect to NMSSMCALC.

NMSSMCALCEW requires 'LoopTools’ version 2.14 (or higher) [84,85] to work with the EW
corrections in the decay part. If LoopTools’ is not installed yet, it can be obtained from the
url: http://www.feynarts.de/looptools/

In order to generate the executable, download and unpack the tar file 'nmssmcalcew.tar.gz’.
It contains two subdirectories called 'nmssmcalc_rew_alphat2-master’ and 'nmssmecalc_cew_alphat2-
master’ for the real and complex NMSSM, respectively. Go to the subdirectory of the version
in which you want to work in. Open in a text editor the file ‘'makefile’ and in line 31 provide
the absolute path to the 'LoopTools’ binary directory located in the main directory of Loop-
Tools. Modify also the line 66 (to make sure it refers to the correct 'lib’ sub-directory within
the "LoopTools’ binary directory). In case the package is compiled without the EW corrections
in the decay widths, the flag 'yesEW’ can be switched to '"FALSE’ on line 19 and "LoopTools’ is
not needed anymore. Subsequently, all files are compiled by typing 'make’. An executable 'run’
is created. By typing’./run’ the executable is run.

For the code to be run, the user has to provide the input files for ’CalcMasses.F’ (default
name ’inp.dat’) and for bhdecay(_c).f (to be named ’bhdecay.in’). The user also has the choice
to provide in the command line the names of the input and output files for ’CalcMasses.F’ (first
and second argument) and the name of the output file provided by the decay routine (third
argument). Hence the command will be 'run name filel name._file2 name_file3’ in this case.
Sample input files ’inp.dat’ and ’bhdecay.in’ are included in the .tar files. By typing 'make
clean’ the executable as well as the object files generated in the 'obj’ directory are removed.

In 'bhdecay.in’ that is used by NMSSMCALCEW, new options have been included. They are

e ’ischhXX’ to choose the renormalization scheme for the loop corrected electroweakino
masses. The options are 1 (OS1), 2 (OS2) and 3 (DRbar). The two OS schemes are
specified in Section |3.1.2

e ’ischhst’ to choose the renormalization scheme for the stop sector. The options are 1 (OS
NLO-EW, OS NLO-QCD), 2 (OS NLO-EW, DRbar NLO-QCD), 3 (DRbar NLO-EW,
DRbar NLO-QCD).

e ’ischhsb’ to choose the renormalization scheme for the sbottom sector. The options are 1
(OS NLO-EW, OS NLO-QCD), 2 (OS NLO-EW, DRbar NLO-QCD), 3 (DRbar NLO-EW,
DRbar NLO-QCD).

e 'iewh’ to choose the levels of NLO SUSY-EW (SUSY-QCD) corrections that are included.
The options are 0 (as in NMSSMCALC 3.00), 1 (decays as implemented in NMSSMCALC, but
with the ZH factor), 2 (full NLO corrections as described in this paper). Both for option
1 and 2, the loop-corrected electroweakino and stop/sbottom masses are used in the phase
space factor.
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Further information on the organization of the files for the code and their functionalities as
well as modifications on the code (which are constantly updated) can be found at the webpage
of NMSSMCALCEW. The code has been tested on a Linux machine.
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Note added While this paper was being completed, Ref. [86] appeared, where the impact of
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stressed the relevance of three-body decays for a consistent evaluation of the total widths and
branching ratios at complete one-loop order.
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