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We present the status of our project to calculate 𝐷 → 𝜋ℓ𝜈, 𝐷 → 𝐾ℓ𝜈 and 𝐷𝑠 → 𝐾ℓ𝜈 semileptonic
form factors using domain wall fermions for both heavy and light quarks. Our computations are
performed using RBC/UKQCD’s set of 2+1 flavour domain wall fermion and Iwasaki gauge
field ensembles. We plan to calculate three-point functions covering the full, physically allowed
kinematic range. Given that the signal decays faster than the noise, unambiguously and reliably
extracting the ground state is critical for success. We include an analysis of operator diagonalisation
within several possible 2 × 2 operator bases and find an admixture of gauged fixed wall and Z (2)
wall sources to be acceptable at both zero and non-zero momentum. Initial results for semileptonic
form factors are presented for first ensembles.
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Semileptonic 𝐷 (𝑠) → 𝐾/𝜋ℓ𝜈 decays with 2+1f domain wall fermions Michael Marshall
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Figure 1: Tree-level semileptonic decay of an initial pseudoscalar 𝐷 (𝑠) meson (with momentum 𝑝𝑖) to a
final pseudoscalar 𝐾 or 𝜋 meson (momentum 𝑝 𝑓 ). Momentum 𝑞 = 𝑝𝑖 − 𝑝 𝑓 is transferred to the final-state
ℓ𝜈 pair.

1. Introduction

The six-quark model and the Cabibbo-Kobayashi-Maskawa (CKM) matrix was first proposed
as a “very interesting and elegant” [1–3] mechanism to explain CP-violation. Half a century later,
the model still stands and the study of flavour-changing processes has become the field of flavour
physics.

Precise experimental measurements from charm factories such as CLEO-c and BESIII and
bottom-factories such as Belle, Belle II, BaBar and LHCb continue to test the Standard Model and
the unitarity of the CKM matrix to ever greater precision. Hints of potential new physics exist but
to resolve them requires increased precision in theoretical prediction and experimental results.

The aim of this work is to perform lattice computations of the matrix elements of exclusive
semileptonic meson decays involving 𝑐 → 𝑑 and 𝑐 → 𝑠 flavour transitions (fig 1). We use this to
extract the 𝑞2-dependence of the relevant form factors over the entire physically allowed kinematic
range.

Experimental results for semileptonic meson decays quote products of form factors and
CKM matrix elements. Recent HFLAV values for 𝐷-meson decays [4–6] give

��𝑉𝑐𝑠 𝑓 𝐷→𝐾
+ (0)

�� =
0.7133(68) and

��𝑉𝑐𝑑 𝑓 𝐷→𝜋
+ (0)

�� = 0.1400(33), i.e. errors of 1% and 2.4% respectively. By com-
bining the experimental results with our lattice form factors, we aim to extract |𝑉𝑐𝑑 | and |𝑉𝑐𝑠 | which
will allow us to test the unitarity of the CKM matrix in the Standard Model.

Our immediate goal is to perform the form factor determination to percent-level accuracy in
order to be commensurate with the experimental results. Our approach complements the existing
literature by performing the computation entirely with domain wall fermions. For the charm quark
we utilise the discretisation employed in [7], using a stout-smeared [8] Möbius [9] action. The light
and strange quarks are simulated with the Shamir [10–14] kernel.

2. Point-wall diagonalisation study

In order to extract form factors with the smallest possible variance, we seek methods to reliably
eliminate excited state contamination from the two- and three-point functions we use on the earliest
possible timeslice. Our earlier study of pseudoscalar-axial diagonalisation proved equivocal [15].
In this study we examined whether linear combinations of correlators constructed from point and
wall operators could be used.
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Figure 2: Effective mass plot 𝑎𝐸eff (𝑡) = cosh−1 (𝐶 (𝑡 − 1) + 𝐶 (𝑡 + 1)/2𝐶 (𝑡) ) for a 𝐷-meson 𝐶 (2)
mixed (𝑡, 0)

constructed from 𝐶𝑃𝑃 and 𝐶𝑊𝑃 using overlap coefficients extracted from combined fit on timeslices [7, 17].
The green data points are obtained for an angle of 𝜃 = − 𝜋/4 . As expected, this choice leads to a significant
reduction in excited state contamination. The grey dashed line (grey band) is the prior published result
(variance) [7] (Table VI, 𝑎𝑚ℎ = 0.58)

We label pseudoscalar mesons |𝑃𝑖 , 𝑛〉 where 𝑃𝑖 labels the initial or final meson (𝐷, 𝐷𝑠, 𝐾 or
𝜋), 𝑛 = 0 labels ground and 𝑛 > 0 label excited states. We use |Ω〉 to denote the vacuum. When
labelling an operator (and anything derived from an operator), the subscript 𝑖 ≡ initial and 𝑓 ≡ final
also includes 𝑃 ≡ point and𝑊 ≡ wall variants.

This study was performed on the RBC/UKQCD C1 ensemble [16]: 𝑎−1 = 1.78 GeV; 𝐿/𝑎 = 24;
𝑇/𝑎 = 64; 𝑚𝜋 = 340 MeV; 𝑚𝜋𝐿 = 4.57. This preliminary study uses a stout-smeared [8] Shamir
[10–14] action for the charm, rather than stout-smeared Möbius [9] used in our production setup.
This preliminary data set has 35 configurations, binning measurements from 16 timeslices on each.

2.1 Two-point diagonalisation study

We construct two-point correlation functions 𝐶 (2)
𝑖 𝑓

(with 𝑖, 𝑓 ∈ { 𝑃,𝑊 }, i.e. point or wall)
using interpolating operators 𝑂 = �̄�2Γ𝜓1 with Γ ∈ { 𝛾5, 𝛾𝑇 𝛾5 } appropriate for pseudoscalar
mesons. Defining 𝐴 𝑓 ,𝑛 ≡ 〈Ω|𝑂 𝑓 |𝑛〉 and using the labels 𝑖 ≡ initial and 𝑓 ≡ final, the correlation
function can be parameterised as

𝐶
(2)
𝑖 𝑓

(𝑡, p) ≡
∑︁

x
ei p·x

〈
𝑂 𝑓 (𝑡, x)𝑂†

𝑖
(0, 0)

〉
=
∑︁
𝑛

𝐴 𝑓 ,𝑛𝐴
∗
𝑖,𝑛

2𝐸𝑛

(
e−𝐸𝑛𝑡 ± e−𝐸𝑛 (𝑇 −𝑡)

)
. (1)

Consideration of the ground and first excited state in (1) leads us to define a linear combination for
a source mixing angle 𝜃 (where the first excited states are expected to cancel for 𝜃 = − 𝜋/4 )

𝐶
(2)
mixed (𝜃, 𝑡, p) =

sin 𝜃
𝐴𝑊 ,1

𝐶
(2)
𝑊𝑃

(𝑡, p) + cos 𝜃
𝐴𝑃,1

𝐶
(2)
𝑃𝑃

(𝑡, p) , (2)

where we extract the 𝐴 𝑓 ,𝑛 from simultaneous fits to the point and wall correlation functions.
We observe that the mixed correlator reaches a plateau around timeslice 8, much earlier than

the underlying point and wall correlators (which plateau around timeslice 15), and the mass is
compatible with prior published results [7] (Table VI, 𝑎𝑚ℎ = 0.58). Plateauing much earlier, the
relative error of the mixed correlator is much smaller than that of the underlying correlators when
they reach plateau. We conclude that excited state cancellations occur as expected.
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2.2 Three-point diagonalisation study

Heavy-light/strange three-point functions with local current𝑉𝜇 have the form (ignoring around-
the-world effects and assuming 𝑃𝑖 is located on timeslice 0)

𝐶
𝜇

𝑖 𝑓

(
Δ𝑇, 𝑡, p𝑖p 𝑓

)
=

∞∑︁
𝑚,𝑛=0

𝐴 𝑓 ,𝑚𝐴𝑖,𝑛

4𝐸 𝑓 ,𝑚𝐸𝑖,𝑛

〈
𝑃 𝑓

(
p 𝑓

)
, 𝑚

��𝑉 𝜇 (𝑞2)
��𝑃𝑖 (p𝑖) , 𝑛〉 e−(𝐸𝑖,𝑛−𝐸 𝑓 ,𝑚)𝑡 e−𝐸 𝑓 ,𝑚Δ𝑇 .

(3)

We construct two symmetric (with respect to the sink and source meson) double ratios, 𝑅𝜇1 and
𝑅
𝜇

2 [17, 18], which are designed to approach the renormalised ground state matrix element for
Δ𝑇 � 𝑡 � 0, leaving the matrix element of the renormalised current

𝑅
𝜇
𝛼

(
p𝑖 , p 𝑓

)
= 2

√︄
𝐸𝑖𝐸 𝑓

𝐷𝛼

√︃
𝐶
𝜇

𝑖 𝑓

(
p𝑖 , p 𝑓

)
𝐶
𝜇

𝑓 𝑖

(
p 𝑓 , p𝑖

)
≈ 𝑍𝑉

〈
𝑃 𝑓

(
p 𝑓

) ��𝑉 𝜇 (𝑞2)
��𝑃𝑖 (p𝑖)〉 , (4)

where 𝑎 ∈ { 1, 2 } and the denominator is: 𝐷1 = 𝐶
(2)
𝑖𝑖

(p𝑖) 𝐶 (2)
𝑓 𝑓

(
p 𝑓

) /
(𝑍𝑉 h𝑍𝑉 l) (see section 3.2

for 𝑍𝑉 h ≡ 𝑍𝑉 heavy and 𝑍𝑉 l ≡ 𝑍𝑉 light/strange); or 𝐷2 = 𝐶0
𝑖𝑖
(p𝑖 , p𝑖) 𝐶0

𝑓 𝑓

(
p 𝑓 , p 𝑓

)
. We define mixed

three-point functions (simplifying the notation and introducing arbitrary constants 𝛼, 𝛽, 𝛾 and 𝛿)

𝐶
𝜇
source
mixed , 𝑓

= 𝛼𝐶
𝜇

point, 𝑓 + 𝛽𝐶𝜇wall, 𝑓 , (5)

𝐶
𝜇

mixed = 𝛾 𝐶
𝜇
source
mixed ,point

+ 𝛿 𝐶𝜇source
mixed ,wall

. (6)

We can show that if we introduce tunable mixing angles 𝜙 at sink and 𝜃 at source

𝛾 =
cos 𝜙

𝐴
(point)
𝑓 ,1

, 𝛿 =
sin 𝜙

𝐴
(wall)
𝑓 ,1

, 𝛼 =
cos 𝜃

𝐴
(point)
𝑖,1

and 𝛽 =
sin 𝜃

𝐴
(wall)
𝑖,1

, (7)

then we expect excited state cancellations. That is, near 𝜙 = 𝜃 = − 𝜋/4 the mixed three-point
function approaches this form

𝐶
𝜇

mixed ≈

(
𝛾𝐴

(point)
𝑓 ,0 + 𝛿𝐴(wall)

𝑓 ,0

) (
𝛼𝐴

(point)
𝑖,0 + 𝛽𝐴(wall)

𝑖,0

)
4𝐸 𝑓 𝐸𝑖

〈
𝑃 𝑓

��𝑉 𝜇��𝑃𝑖〉 e−(𝐸𝑖−𝐸 𝑓 )𝑡 e−𝐸 𝑓 Δ𝑇 , (8)

which is the exponential behaviour of the ground-state. We extract the 𝐴(point/wall)
𝑓 /𝑖,1 from simultaneous

fits to the point and wall correlation functions, 𝐶 (2)
𝑃𝑃

(𝑡, p) and 𝐶 (2)
𝑊𝑃

(𝑡, p). In the absence of exact
knowledge of the numerical values of 𝐴(point/wall)

𝑓 /𝑖,1 , the parameters 𝛼, 𝛽, 𝛾 and 𝛿 can be tuned to
optimise the excited state cancellation.

When we plot the effective mass of the source mixed correlation function (left panel, fig 3), the
correlator is an interpolation between the point and wall sources. There is no obvious improvement
as there was with the two-point source mixed correlation function. Tuning the mixing angle(s)
makes little difference.

Similarly, when we plot the 𝑅𝛼 ratios, we see no obvious improvement near 𝜙 = 𝜃 ∼ − 𝜋
4 . If a

scan over all mixing angles is performed, we see that the optimal mixing angle (right panel fig 3)
involves mostly the wall-source.
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𝜇

source mixed,point
(
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4
)
,

Δ𝑇/𝑎 = 20. Near the mid-point, the ground-state in (3) dominates, and the effective mass of the three-point
function approximates the meson mass difference, 0.198(1) [7]. Right: Mixed 𝑅2 ratio at 𝜃 = 𝜙 ∼ −80◦

(determined from a scan over mixing angles). We see agreement for multiple wall separations Δ𝑇/𝑎 (except
for Δ𝑇/𝑎 = 12). The statistical variance increases as the wall separation is increased.

3. Preliminary 𝐷 (𝑠) → 𝐾/𝜋 ℓ𝜈 data production

Data presented in this section were created on the RBC/UKQCD M1 ensemble [19, 20]:
𝑎−1 = 2.38(1) GeV; 𝐿/𝑎 = 32; 𝑇/𝑎 = 64; 𝑚𝜋 = 300 MeV; 𝑚𝜋𝐿 = 4.08 using a stout-smeared [8]
Möbius [9] action for the charm, with Shamir [10–14] action for the light and strange quarks. This
is the first ensemble from what will be our production data set, and the bare charm quark mass is
chosen to be 𝑎𝑚ℎ = 0.477. We present results for 128 configurations, computing inversions on a
single timeslice per configuration.

3.1 Fitting the two-point correlation function

In order to produce the mixed correlators defined in equations (2) and (8), we extract the overlap
coefficients per (1) from simultaneous, two-state fits to 𝐶 (2)

𝑃𝑃
and 𝐶 (2)

𝑊𝑃
(see fig 4).

Fit results are stable and consistent over the scanned fit ranges, except where fit ranges start
very early or very late. Prior results [7] (Table 6) bracket the values determined here:
𝑎𝑚𝐷

��
𝑎𝑚ℎ=0.50 = 0.8489(11) and 𝑎𝑚𝐷

��
𝑎𝑚ℎ=0.41 = 0.74931(91).

3.2 Extracting 𝑍𝑉

Due to Lorentz invariance, the renormalised matrix element is parameterised in terms of the
form factors 𝑓+ and 𝑓− as

𝑍𝑉
〈
𝑃 𝑓

(
p 𝑓

) ��𝑉 𝜇 (q2)
��𝑃𝑖 (p𝑖)〉 = 𝑓

𝑃𝑖𝑃 𝑓

+ (𝑞2)
(
𝑝𝑖 + 𝑝 𝑓

)𝜇 + 𝑓
𝑃𝑖𝑃 𝑓
− (𝑞2)

(
𝑝𝑖 − 𝑝 𝑓

)𝜇
. (9)

Due to charge conservation, the form factor 𝑓+ at vanishing momentum transfer is unity, i.e.
𝑓
𝑃𝑖𝑃𝑖
+ = 1. Considering the rest frame where 𝑝𝑖 = 𝑝 𝑓 =⇒ 𝑝𝑖 + 𝑝 𝑓 = (2𝐸𝑖 , 0) and 𝑝𝑖 − 𝑝 𝑓 = 0

we find (in the limit as Δ𝑇 � 𝑡 � 0)

𝑍𝑉 =
2𝐸𝑖

〈𝑃𝑖 (0) |𝑉0 (0) |𝑃𝑖 (0)〉
'

𝐶
(2)
𝑖𝑖

(Δ𝑇, 0)
𝐶

4,bare
𝑖𝑖

(Δ𝑇, 𝑡, 0, 0)
. (10)
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Figure 5: 𝑍𝐾
𝑉 light extracted from Kaon 2- and 3-point functions with Δ𝑇/𝑎 = 28. A correlated fit over

𝑡/𝑎 ∈ [10, 18] (shaded region) yields 𝑍𝐾
𝑉

= 0.741(7), compatible with the published result 0.74563(13)
[21].

We use this as a prescription to extract 𝑍𝑉 , emphasising that the denominator in (10) is the bare
(unrenormalised) correlator, following [18]. 𝑍𝑉 is extracted by forming the ratio defined on the right
hand side of equation (10) and fitting it to a constant in the region where excited state contributions
are negligible (see fig 5).

We have a different action for the heavy vs the strange and light quark propagators and as
a temporary measure we treat the mixed action bilinear using 𝑍𝑉 mixed =

√︁
𝑍𝑉 heavy𝑍𝑉 light/strange.

However, in future we plan to use non-perturbative renormalisation [22] on the mixed action bilinear.

3.3 Three-point data

Our aim is to map out the 𝑞2 dependence of the form factors over the entire physical kinematic
range. In our setup, the heavier meson is always kept at rest and the integer momentum n = p 𝐿/(2𝜋)

6
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Figure 6: Temporal component of 𝑅1 for 𝐷𝑠 → 𝐾 and 𝐷 → 𝜋 decays for |n|2 = 0, 𝑉0 (𝑞2
max

)
(point source

and point sink). Excited state contamination is clearly present for small Δ𝑇/𝑎 (as evidenced by the lack of
plateau and failure to agree with other source-sink separations). At larger Δ𝑇/𝑎 the data overlap and we see
a plateau, but it is not clear that excited states have been fully eliminated. A fit to multiple Δ𝑇/𝑎 will likely
be required to reliably obtain the asymptotic plateau with small error.

of the lighter meson labels the process. The momentum transfer to the lepton pair is 𝑞 = 𝑝𝑖 − 𝑝 𝑓
(see fig 1), for which the physical range is 𝑚2

ℓ
≤ 𝑞2 ≤ 𝑞2

max = (𝑀𝑃 𝑓
−𝑀𝑃𝑖 )2. For n = 0, 𝑞2 = 𝑞2

max
and as |n|2 increases we move down in 𝑞2, reaching 𝑞2 ' 0 for |n|2 = 4 on the 𝑀1 ensemble for the
mesons of interest.

In order to assess their statistical properties, we produced both ratios defined in equation (4)
for all three decays: 𝐷𝑠 → 𝐾 , 𝐷 → 𝐾 and 𝐷 → 𝜋. The denominator for 𝑅2 requires production
of additional three-point correlators, making the 𝑅2 ratio twice as expensive to calculate. We found
that the results for 𝑅1 and 𝑅2 are consistent, with errors of the same magnitude. Due to the reduced
cost of data production, we anticipate that we will only generate data for 𝑅1 in the future. For this
reason, only data for 𝑅1 is shown in figures 6-9.

These proceedings show our methodology and give a flavour of the quality of our data produced
to date. As we are still in the process of refining the analysis strategy, the data shown are preliminary.

3.3.1 Temporal component of 𝑅1 at 𝑞2
max

The 𝐷𝑠 → 𝐾 decay is a charm to light transition with a strange spectator, whereas the 𝐷 → 𝜋

decay has a light spectator. The light propagator on the lattice is noisier than the strange, resulting
in smaller relative uncertainties in fig 6a compared with fig 6b.

There is clearly excited state contamination at small Δ𝑇/𝑎 , which appears much reduced at
larger Δ𝑇/𝑎 although not necessarily fully suppressed. As expected, errors grow quite distinctly
with Δ𝑇/𝑎 . We would ideally like to use the statistically cleaner data from smaller Δ𝑇/𝑎 in our
analysis. This means we will need to model the excited state behaviour and include that in our fits
for our full analysis – the double-ratios alone will not be sufficient to fully control the contamination
from the excited states.

3.3.2 Spatial and temporal component of 𝑅1 at non-zero momentum

Data have been produced across the physically allowable kinematic range. Results for spatial
and temporal components of the vector current with one unit of momentum are shown in fig 7.
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Figure 7: Temporal (fig 7a) and spatial (fig 7b) components of 𝑅1 for 𝐷𝑠 → 𝐾 decays for |n|2 = 1,
(point-point).
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Figure 8: Temporal (fig 8a) and spatial (fig 8b) components of 𝑅1 for 𝐷𝑠 → 𝐾 decays near 𝑞0 (i.e. |n|2 = 4),
(point-point).

The errors are larger than for 𝑞2
max, but still under control. Even though all but the smallest

source-sink separations reach a consistent plateau value within statistical uncertainties, an analysis
taking the excited states into account will allow us to quantify residual excited state contamina-
tion and thereby utilise the most precise data points whilst maintaining control over systematic
uncertainties.

3.3.3 Data for 𝑅1 near 𝑞2 = 0

Near the maximum recoil point 𝑞2 = 0, the final state meson carries several units of momentum,
resulting in larger statistical uncertainties. For visibility, we have removed the very noisy data points
corresponding to source-sink separations of Δ𝑇/𝑎 ≥ 24 from figure 8.

We are currently investigating whether data should be produced over a smaller range of Δ𝑇/𝑎
in finer increments as part of our fitting strategy evaluation. We might also increase statistics.

3.3.4 Fitting strategy

Figures 6-8 present data for the ratio 𝑅1 for point sources and sinks. In addition, we also
produced data with wall sources and sinks as well as the mixed cases. Figure 9 shows this data at
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Figure 9: Point(wall)-sink temporal components of 𝑅1 for 𝐷𝑠 → 𝐾 approach plateau from below(above).
This is consistent across source-sink separations, e.g.: Δ𝑇/𝑎 = 16 (fig 9a) and Δ𝑇/𝑎 = 28 (fig 9b).

fixed source-sink separation for the temporal component of 𝑅1 at zero recoil (𝑞2
max). We observe the

qualitatively different approach to the plateau of the wall-sink data, which approaches the plateau
from above, while the point data approaches the plateau from below. We intend to utilise the
various features of our data set by simultaneously fitting the different operator choices and multiple
source-sink separations.

Based on the data we have, we expect to be able to extract the form factors over the entire
physical kinematic range.

4. Summary and Outlook

We performed a study on point-wall diagonalisation as a method for reducing excited state
contamination. The method works very well for two-point functions, however, extending this to the
three-point functions is still work in progress.

We have produced two- and three-point correlation functions for 𝐷 (𝑠) → 𝐾/𝜋 semileptonic
decays on our first ensemble, which we present here. After examining the three-point correlation
function data on this first ensemble, we conclude that we will need to use wall separations which do
not fully eliminate excited state contamination (even when analysed using double-ratio methods).
We will, therefore, simultaneously fit correlator data from multiple wall separations, giving greater
control over excited state contamination.

Having both point and wall correlation function data, with differing approaches to plateau,
gives us extra control over excited states. We can include the point and wall correlation functions
separately in our simultaneous fits and/or use a rotated basis for our fits. Due to noise issues with
the wall sink data, we may use a one-sided diagonalisation at the source only for the three-point
correlation function – but this is to be determined and work is ongoing to finalise our analysis.

Since the lattice conference, we have optimised our performance on DiRAC’s new Tursa NVidia
A100 GPU-based supercomputer and we have produced data for a second ensemble.

The target result is the 𝑞2-dependence of the 𝐷 (𝑠) → 𝐾/𝜋 form factors over the entire physical
𝑞2 range, and results from our first ensemble indicate that percent-scale errors are achievable.
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