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1. Introduction

Semileptonic decays of 𝐵 (𝑠) mesons play an important role in testing and constraining the
Standard Model (SM) of elementary particle physics. Focusing on exclusive semileptonic decays,
we report on our work for 𝐵 → 𝜋ℓ𝜈, 𝐵𝑠 → 𝐷𝑠ℓ𝜈 and 𝐵𝑠 → 𝐾ℓ𝜈 decays. Each of these processes
can be described by two form factors, 𝑓+ and 𝑓0, which parametrize the semileptonic decay rate. For
the semileptonic decay of pseudoscalar meson 𝐵 (𝑠) of mass 𝑀 and momentum 𝑝 to pseudoscalar
meson 𝑃 of mass 𝑚 and momentum 𝑘 , with 𝑞 = 𝑝 − 𝑘 ,

𝑑Γ(𝐵 (𝑠)→𝑃ℓ𝜈)
𝑑𝑞2 =

𝜂
𝐺2

𝐹
|𝑉𝑥𝑏 |2

24𝜋3

(𝑞2−𝑚2
ℓ
)2 | ®𝑘 |

(𝑞2)2

[(
1+
𝑚2

ℓ

2𝑞2

)
®𝑘 2 | 𝑓+(𝑞2) |2 +

3𝑚2
ℓ

8𝑞2
(𝑀2−𝑚)2

𝑀2 | 𝑓0(𝑞2) |2
]
, (1)

where 𝑚ℓ is the mass of the outgoing charged lepton ℓ and 𝜂 is an isospin factor. The form factors
𝑓+ and 𝑓0 appear in the decomposition

⟨𝑃(𝑘) |V𝜇 (0) |𝐵 (𝑠) (𝑝)⟩ = 2 𝑓+(𝑞2)
(
𝑝𝜇 − 𝑝 · 𝑞

𝑞2 𝑞𝜇
)
+ 𝑓0(𝑞2)𝑀

2 − 𝑚2

𝑞2 𝑞𝜇, (2)

where V𝜇 = 𝑥𝛾𝜇𝑏, with 𝑥 = 𝑢 or 𝑐.
Compared to our earlier results for 𝐵 → 𝜋 and 𝐵𝑠 → 𝐾 decays [1], we have added calculations

of 𝐵𝑠 → 𝐷𝑠 form factors and have an additional, third, lattice spacing. With results for 𝐵𝑠 → 𝐾

and 𝐵𝑠 → 𝐷𝑠 from the same ensembles, we will be able to compute the ratio of partially integrated
decay rates (minus CKM factors) in the region 𝑞2 ≥ 7 GeV2 for the two decays and combine with
recent LHCb results [2] to determine |𝑉𝑢𝑏/𝑉𝑐𝑏 |. We also consider 𝑅 ratios of branching fractions
with 𝜏 leptons in the final state to those with light final-state leptons, sensitive to violations of
lepton-flavor universality (for 𝐵 → 𝐷 (∗)ℓ𝜈 there is tension between Standard Model predictions
and experimental results for 𝑅(𝐷 (∗) ) [3–12]). We propose a modified ratio with smaller uncertainty
when evaluated using lattice-determined form factors.

2. Lattice calculation

We use a subset of six RBC/UKQCD 2+1-flavor domain-wall fermion (DWF) and Iwasaki
gauge field ensembles with three lattice spacings 𝑎 ∼ 0.11, 0.08, 0.07 fm, and pion masses spanning
267 MeV < 𝑀𝜋 < 433 MeV. The ensembles are listed in Table 1. Light and strange quarks are
simulated with the Shamir DWF action with 𝑀5 = 1.8. Lattice spacings are determined from
combined RBC/UKQCD analyses [13–15]. Our calculations are described briefly below; for more
details see [1].

Bottom quarks are simulated with the relativistic heavy quark (RHQ), action, which is the
Columbia variant [18, 19] of the Fermilab heavy-quark action [20], with three nonperturbatively-
tuned parameters (𝑚0𝑎, 𝑐𝑃, 𝜁) [21]. A new tuning was performed for this analysis. Charm quarks
are simulated with the Möbius DWF action with 𝑀5 = 1.6 [14, 15, 22, 23]. We use three masses
below 𝑚

phys
𝑐 on the C ensembles and two masses which bracket 𝑚phys

𝑐 on M and F. Light and
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𝐿 𝑇 𝐿𝑠 𝑎−1/GeV 𝑎𝑚sea
𝑙

𝑎𝑚sea
𝑠 𝑀𝜋/MeV # cfgs # sources

C1 24 64 16 1.785 0.005 0.040 340 1636 1
C2 24 64 16 1.785 0.010 0.040 433 1419 1

M1 32 64 16 2.383 0.004 0.030 302 628 2
M2 32 64 16 2.383 0.006 0.030 362 889 2
M3 32 64 16 2.383 0.008 0.030 411 544 2

F1S 48 96 12 2.785 0.002144 0.02144 267 98 24

Table 1: Ensembles used for the simulations reported here [13, 14, 16, 17]. 𝑎𝑚sea
𝑙

and 𝑎𝑚sea
𝑠 are the sea light

and strange quark masses and 𝑀𝜋 is the unitary pion mass. Valence strange quarks are near their physical
mass, with the mistuning accounted for in our systematic errors.

strange quarks have point sources; while the 𝑏 and 𝑐 quarks use Gauss-smeared sources and point
or smeared sinks.

Renormalized, V𝜇, and lattice, 𝑉𝜇, currents are related by the ‘partially nonperturbative’
procedure [24, 25], using

⟨𝑃 |V𝜇 |𝐵𝑠⟩ = 𝑍𝑏𝑥
𝑉𝜇

⟨𝑃 |𝑉𝜇 |𝐵𝑠⟩, (3)

with 𝑍𝑏𝑥
𝑉𝜇

= 𝜌𝑏𝑥
𝑉𝜇

√︃
𝑍 𝑥𝑥
𝑉
𝑍𝑏𝑏
𝑉

and

𝑉0 = 𝑉0
0 + 𝑐3

𝑡𝑉
3
0 + 𝑐4

𝑡𝑉
4
0 , 𝑉𝑖 = 𝑉

0
𝑖 + 𝑐1

𝑠𝑉
1
𝑖 + 𝑐2

𝑠𝑉
2
𝑖 + 𝑐3

𝑠𝑉
3
𝑖 + 𝑐4

𝑠𝑉
4
𝑖 . (4)

Here, 𝜌𝑏𝑥
𝑉𝜇

and the coefficients 𝑐𝑛𝑡,𝑠 of the 𝑂 (𝑎) current-improvement operators are computed
perturbatively at one-loop [26], while 𝑍𝑏𝑏

𝑉
is computed nonperturbatively from the forward matrix

element
𝑍𝑏𝑏
𝑉 ⟨𝐵 (𝑠) |𝑉0(0) |𝐵 (𝑠)⟩ = 2𝑀 (5)

and 𝑍 𝑥𝑥
𝑉

is computed nonperturbatively using the relation 𝑍 𝑥𝑥
𝑉

= 𝑍 𝑥𝑥
𝐴

+ 𝑂 (𝑎𝑚res) for DWF
fermions [17] (for our systematic error analysis for 𝐵𝑠 → 𝐷𝑠 decays, we also compare to us-
ing 𝑍𝑐𝑐

𝑉
= 𝑍 𝑙𝑙

𝐴
[14]).

To extract the form factors we first calculate the matrix elements

𝑓∥ (𝐸) =
⟨𝑃 |V0(0) |𝐵 (𝑠)⟩√

2𝑀
, 𝑓⊥(𝐸) =

⟨𝑃 |V𝑖 (0) |𝐵 (𝑠)⟩
𝑘 𝑖
√

2𝑀
, (6)

with a 𝐵 (𝑠) meson at rest, where 𝐸 is the energy of the outgoing pseudoscalar meson, from which
we determine

𝑓0(𝑞2) =
√

2𝑀
𝑀2 − 𝑚2

[
(𝑀 − 𝐸) 𝑓∥ (𝐸) + (𝐸2 − 𝑚2) 𝑓⊥(𝐸)

]
, (7)

𝑓+(𝑞2) = 1
√

2𝑀

[
𝑓∥ (𝐸) + (𝑀 − 𝐸) 𝑓⊥(𝐸)

]
. (8)

To find 𝑓∥ and 𝑓⊥, we evaluate a correlator ratio

𝑅3,𝜇 (𝑡, 𝑡snk, ®𝑘) =
𝐶3,𝜇 (𝑡, 𝑡snk, ®𝑘)√︃

𝐶𝑃
2 (𝑡, ®𝑘)𝐶𝐵(𝑠)

2 (𝑡snk−𝑡, ®0)

√︂
2𝐸

𝑒−𝐸𝑡−𝑀 (𝑡snk−𝑡 )
, (9)
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𝑡src = 0

𝑙, 𝑐

𝑡snk

𝑏

𝑙, 𝑠

𝑉𝜇 (𝑡)

Figure 1: Three-point correlator used in form-factor determinations.
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Figure 2: Extraction of 𝑓∥ for 𝐵𝑠 → 𝐾 on the coarse ensemble C1 from the ratio 𝑅3,0. The different colors
denote different three-momenta 2𝜋®𝑛/𝐿 injected at the current, labelled by 𝑛2. The plot shows a ground-state-
only fit together with a fit over an extended range of times for each momentum once excited state terms are
included for the current matrix elements in the numerator of 𝑅3,0. The horizontal bars near the left axis show
the values for 𝑓∥ from the ground-only and from the excited-state fits.

where 𝐶𝑃,𝐵(𝑠)
2 are two-point correlators and 𝐶3,𝜇 is the three-point correlator shown schematically

in figure 1. For large time separations between source, sink and current insertion, we obtain

𝑓 bare
∥ ( ®𝑘) = lim

0≪𝑡≪𝑡snk
𝑅3,0(𝑡, 𝑡snk, ®𝑘), 𝑓 bare

⊥ ( ®𝑘) = lim
0≪𝑡≪𝑡snk

1
𝑝𝑖
𝑃

𝑅3,𝑖 (𝑡, 𝑡snk, ®𝑘). (10)

Figure 2 illustrates the determination of 𝑓∥ for 𝐵𝑠 → 𝐾 on the coarse, C1, ensemble.

For 𝐵𝑠 → 𝐾 and 𝐵 → 𝜋we extrapolate the renormalized lattice form factors to vanishing lattice
spacing and to the physical light-quark mass, and interpolate in the kaon(pion) energy, using next-
to-leading order SU(2) heavy-meson chiral perturbation theory (HM𝜒PT) in the “hard-kaon(pion)”

4
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Figure 3: Chiral-continuum extrapolation for the 𝐵 → 𝜋 form factors 𝑓+ (left) and 𝑓0 (right). The colored
data points show the underlying data. The colored lines show the result of the fit evaluated at the parameters
of the respective ensembles. The grey bands display the form factors in the chiral-continuum limit and the
associated statistical uncertainty.

limit [27–29]. The function we use, with 𝑃 denoting kaon or pion, is

𝑓 𝐵(𝑠)→𝑃 (𝑀𝜋 , 𝐸𝑃, 𝑎
2) = Λ

𝐸𝑃 + Δ

[
𝑐0

(
1 + 𝛿 𝑓 (𝑀

sea
𝜋 ) − 𝛿 𝑓 (𝑀phys

𝜋 )
(4𝜋 𝑓𝜋)2

)
+ 𝑐1

Δ𝑀2
𝜋

Λ2 + 𝑐2
𝐸𝑃

Λ
+ 𝑐3

𝐸2
𝑃

Λ2 + 𝑐4(𝑎Λ)2

]
, (11)

where 𝑀sea
𝜋 is the simulated pion mass on a given ensemble, 𝑀phys

𝜋 is the physical pion mass,
Δ𝑀2

𝜋 = (𝑀sea
𝜋 )2 − (𝑀phys

𝜋 )2 and Λ = 1 GeV is the renormalization scale appearing in the one-
loop chiral logarithm in 𝛿 𝑓 , and is also used as a dimensionful scale to render the fit coefficients
dimensionless. Δ = 𝑀𝐵∗ −𝑀𝐵(𝑠) and the 𝐵∗ is a 𝑏̄𝑢 flavor state with 𝐽𝑃 = 1− for 𝑓+, or 𝐽𝑃 = 0+ for
𝑓0. For 𝑓+ this is the vector meson 𝐵∗ with mass 𝑀𝐵∗ = 5.32470(22) GeV [30], while for 𝑓0 there
is a theoretical estimate for the 0+ state, 𝑀𝐵∗ (0+ ) = 5.63 GeV [31]. The term 𝛿 𝑓 also contains an
estimate for finite volume effects. Figure 3 shows the fit for 𝐵 → 𝜋 and Figure 4 shows the fit for
𝐵𝑠 → 𝐾 .

For 𝐵𝑠 → 𝐷𝑠 form factors, we combine a chiral-continuum fit with an extra-/inter-polation in
the charm mass with a fit form

𝑓 (𝑞2, 𝑎, 𝑀𝜋 , 𝑀𝐷𝑠
) =

[
𝑐0 +

𝑛𝐷𝑠∑︁
𝑗=1
𝑐1 𝑗 ℎ

(𝑀𝐷𝑠

Λ

) 𝑗
+ 𝑐2(𝑎Λ)2

]
𝑃𝑎,𝑏 (𝑞2/𝑀2

𝐵𝑠
), (12)

where

ℎ

(𝑀𝐷𝑠

Λ

)
=
𝑀𝐷𝑠

Λ
−
𝑀

phys
𝐷𝑠

Λ
and 𝑃𝑎,𝑏 (𝑥) =

1 +∑𝑎
𝑖=1 𝑎𝑖𝑥

𝑖

1 +∑𝑏
𝑖=1 𝑏𝑖𝑥

𝑖
. (13)

Figure 5 shows the fit. We use only one of the charm masses for F1S in this fit because of the strong
correlations between results for the two charm masses on that ensemble.
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Figure 4: Chiral-continuum extrapolation for the 𝐵𝑠 → 𝐾 form factors 𝑓+ (left) and 𝑓0 (right). The colored
data points show the underlying data. The colored lines show the result of the fit evaluated at the parameters
of the respective ensembles. The grey bands display the form factors in the chiral-continuum limit and the
associated statistical uncertainty.
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Figure 5: Chiral-continuum extrapolation for the 𝐵𝑠 → 𝐷𝑠 form factors.

3. 𝑧-fits

After extrapolating our results to the continuum and physical masses, our strategy is to generate
synthetic data points for the form factors, with all errors included, which can then be used in standard
𝑧-fits to extrapolate over the full 𝑞2 range for the physical form factors. In figure 6, we illustrate
the cumulative statistical plus systematic error budgets for the 𝑓+ form factor for 𝐵𝑠 → 𝐾 and
𝐵𝑠 → 𝐷𝑠 decays. Figure 7 shows results for 𝑧-fits for 𝐵 → 𝜋 and 𝐵𝑠 → 𝐾 form factors. These are
Bourrely-Caprini-Lellouch (BCL) fits [32], where we have included the 1− 𝐵∗ vector meson pole
for fitting 𝑓+ and no pole for 𝑓0 in both cases.
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Figure 6: Cumulative error budgets for statistical and systematic errors for 𝑓+ for 𝐵𝑠 → 𝐾 and 𝐵𝑠 → 𝐷𝑠 .
The 𝑞2 ranges of the plots correspond to the ranges in which we generate synthetic data points for subsequent
𝑧-fits. The plots are for squared percentage errors, but an additional scale on the right shows the corresponding
percentage error. The legends label those errors visible on the plots, but other error sources with sub-percent
effects were considered. For 𝐵𝑠 → 𝐾 , statistical errors (red) and systematic errors from the chiral-continuum
extrapolation (blue) dominate. For 𝐵𝑠 → 𝐷𝑠 , the dominant error (pink) is from discretization for the charm
quark.
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Figure 7: BCL 𝑧-fits for 𝐵 → 𝜋 (left) and 𝐵𝑠 → 𝐾 (right) form factors.

4. Ratios for testing lepton flavor universality

Ratios of decay rates or partially integrated decay rates with tau leptons in the final state to those
with light leptons in the final state are of great interest in looking for violations of the universality
of lepton couplings in the Standard Model. For the semileptonic decays considered here, such a
ratio is 𝑅(𝑃) given by

𝑅(𝑃) =

∫ 𝑞2
max

𝑚2
𝜏

𝑑𝑞2 𝑑Γ (𝐵(𝑠)→𝑃𝜏𝜈̄𝜏 )
𝑑𝑞2∫ 𝑞2

max
𝑚2

ℓ

𝑑𝑞2 𝑑Γ (𝐵(𝑠)→𝑃ℓ𝜈̄ℓ )
𝑑𝑞2

, (14)
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where ℓ in the denominator can be 𝜇 or 𝑒. We have considered modifying this ratio to look for
a sharper test of lepton flavor universality (see discussion in [33] on optimising observables). In
particular, we try to reduce the uncertainty in the ratio coming from uncertainties in the form factors
taken from our lattice simulations. To this end, we consider the modified ratio

𝑅new(𝑃) =

∫ 𝑞2
max

𝑞2
min

𝑑𝑞2 𝑑Γ (𝐵(𝑠)→𝑃𝜏𝜈̄𝜏 )
𝑑𝑞2∫ 𝑞2

max
𝑞2

min
𝑑𝑞2 𝜔𝜏 (𝑞2 )

𝜔ℓ (𝑞2 )
𝑑Γ (𝐵(𝑠)→𝑃ℓ𝜈̄ℓ )

𝑑𝑞2

, (15)

following the recipe already applied to 𝐵 (𝑠) → 𝑉 decays (with a vector meson instead of a
pseudoscalar meson in the final state) by Isidori and Sumensari [34]. The ingredients are

• Use a common integration range for numerator and denominator, with 𝑞2
min ≥ 𝑚2

𝜏 [35–37].

• Reweight the integrand in the denominator to make the contributions from the vector form
factor the same in numerator and denominator.

Write the differential decay rate from equation (1) in the form

𝑑Γ(𝐵 (𝑠)→𝑃ℓ𝜈)
𝑑𝑞2 = Φ(𝑞2)𝜔ℓ (𝑞2)

[
𝐹2
𝑉 + (𝐹ℓ

𝑆 )
2] , (16)

where now ℓ can be any lepton flavor, with

Φ(𝑞2) = 𝜂
𝐺2

𝐹
|𝑉𝑥𝑏 |2

24𝜋3 | ®𝑘 |, (17)

𝜔ℓ (𝑞2) =
(
1 −

𝑚2
ℓ

𝑞2

)2 (
1 +

𝑚2
ℓ

2𝑞2

)
, (18)

𝐹2
𝑉 = ®𝑘2 | 𝑓+(𝑞2) |2, (19)

(𝐹ℓ
𝑆 )

2 =
3
4

𝑚2
ℓ

𝑚2
ℓ
+ 2𝑞2

(𝑀2 − 𝑚2)2

𝑀2 | 𝑓0(𝑞2) |2. (20)

If we drop the scalar contribution, (𝐹ℓ
𝑆
)2, in the denominator, with ℓ = 𝜇 or 𝑒 again, then relying

on 𝑚2
ℓ
/2𝑞2 ≤ 𝑚2

𝜇/2𝑚2
𝜏 = 0.002 for the light leptons, we expect in the Standard Model,

𝑅new,SM(𝑃) = 1 +

∫ 𝑞2
max

𝑞2
min

𝑑𝑞2 Φ(𝑞2)𝜔𝜏 (𝑞2) (𝐹𝜏
𝑆
)2∫ 𝑞2

max
𝑞2

min
𝑑𝑞2 Φ(𝑞2)𝜔𝜏 (𝑞2)𝐹2

𝑉

. (21)

Evaluating the new ratio from equation (15) using the 𝑧-fit for our lattice form factors, we find
a reduced uncertainty compared to evaluating the original ratio in equation (14). It would be
interesting to see how the ratios compare if evaluated using experimental differential decay rates.
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